Real-time semantic segmentation for fisheye urban driving images based on ERFNet
Authors
Bergasa Pascual, Luis MiguelIdentifiers
Permanent link (URI): http://hdl.handle.net/10017/43126DOI: 10.3390/s19030503
ISSN: 1424-8220
Publisher
MDPI
Date
2019-01-25Funders
Ministerio de Economía y Competitividad
Comunidad de Madrid
Dirección General de Tráfico
Bibliographic citation
Sáez, Á., Bergasa, L. M., López-Guillén, E., Romera, E., Tradacete, M., Gómez-Huélamo, C., & Del Egido, J. 2019, "Real-Time Semantic Segmentation for Fisheye Urban Driving Images Based on ERFNet". Sensors (Basel, Switzerland), 19(3), 503. doi: 10.3390/s19030503
Keywords
Fisheye
Intelligent vehicles
CNN (Convolutional Neural Network)
Deep Learning
Distortion
Project
info:eu-repo/grantAgreement/MINECO//TRA2015-70501-C2-1-R/ES/VEHICULO INTELIGENTE PARA PERSONAS MAYORES/
SPIP2017-02305 (Dirección General de Tráfico)
info:eu-repo/grantAgreement/CAM//S2013%2FMIT-2748/ES/ROBOTICA APLICADA A LA MEJORA DE LA CALIDAD DE VIDA DE LOS CIUDADANOS, FASE III/RoboCity2030-III-CM
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/publishedVersion
Publisher's version
https://doi.org/10.3390/s19030503Rights
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Access rights
info:eu-repo/semantics/openAccess
Abstract
The interest in fisheye cameras has recently risen in the autonomous vehicles field, as they are
able to reduce the complexity of perception systems while improving the management of dangerous driving situations. However, the strong distortion inherent to these cameras makes the usage of conventional computer vision algorithms difficult and has prevented the development of these devices. This paper presents a methodology that provides real-time semantic segmentation on fisheye cameras leveraging only synthetic images. Furthermore, we propose some Convolutional Neural Networks (CNN) architectures based on Efficient Residual Factorized Network (ERFNet) that demonstrate notable skills handling distortion and a new training strategy that improves the segmentation on the image borders. Our proposals are compared to similar state-of-the-art works showing an outstanding performance and tested in an unknown real world scenario using a fisheye camera integrated in an open-source autonomous electric car, showing a high domain adaptation capability.
Files in this item
Files | Size | Format |
|
---|---|---|---|
RealTime_Alvaro_Sensors_2019.pdf | 77.36Mb |
![]() |
Files | Size | Format |
|
---|---|---|---|
RealTime_Alvaro_Sensors_2019.pdf | 77.36Mb |
![]() |
Collections
- ELECTRON - Artículos [152]
- ROBESAFE - Artículos [37]