dc.contributor.author | Bergasa Pascual, Luis Miguel | |
dc.contributor.author | Saez Contreras, Álvaro | |
dc.contributor.author | López Guillén, María Elena | |
dc.contributor.author | Romera Carmena, Eduardo | |
dc.contributor.author | Tradacete Ágreda, Miguel | |
dc.contributor.author | Gómez Huélamo, Carlos | |
dc.contributor.author | Egido Sierra, Javier del | |
dc.date.accessioned | 2020-06-05T10:07:32Z | |
dc.date.available | 2020-06-05T10:07:32Z | |
dc.date.issued | 2019-01-25 | |
dc.identifier.bibliographicCitation | Sáez, Á., Bergasa, L. M., López-Guillén, E., Romera, E., Tradacete, M., Gómez-Huélamo, C., & Del Egido, J. 2019, "Real-Time Semantic Segmentation for Fisheye Urban Driving Images Based on ERFNet". Sensors (Basel, Switzerland), 19(3), 503. doi: 10.3390/s19030503 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.uri | http://hdl.handle.net/10017/43126 | |
dc.description.abstract | The interest in fisheye cameras has recently risen in the autonomous vehicles field, as they are
able to reduce the complexity of perception systems while improving the management of dangerous driving situations. However, the strong distortion inherent to these cameras makes the usage of conventional computer vision algorithms difficult and has prevented the development of these devices. This paper presents a methodology that provides real-time semantic segmentation on fisheye cameras leveraging only synthetic images. Furthermore, we propose some Convolutional Neural Networks (CNN) architectures based on Efficient Residual Factorized Network (ERFNet) that demonstrate notable skills handling distortion and a new training strategy that improves the segmentation on the image borders. Our proposals are compared to similar state-of-the-art works showing an outstanding performance and tested in an unknown real world scenario using a fisheye camera integrated in an open-source autonomous electric car, showing a high domain adaptation capability. | en |
dc.description.sponsorship | Ministerio de Economía y Competitividad | es_ES |
dc.description.sponsorship | Comunidad de Madrid | es_ES |
dc.description.sponsorship | Dirección General de Tráfico | es_ES |
dc.format.mimetype | application/pdf | en |
dc.language.iso | eng | en |
dc.publisher | MDPI | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Fisheye | en |
dc.subject | Intelligent vehicles | en |
dc.subject | CNN (Convolutional Neural Network) | en |
dc.subject | Deep Learning | en |
dc.subject | Distortion | en |
dc.title | Real-time semantic segmentation for fisheye urban driving images based on ERFNet | en |
dc.type | info:eu-repo/semantics/article | en |
dc.subject.eciencia | Electrónica | es_ES |
dc.subject.eciencia | Electronics | en |
dc.contributor.affiliation | Universidad de Alcalá. Departamento de Electrónica | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s19030503 | |
dc.type.version | info:eu-repo/semantics/publishedVersion | en |
dc.identifier.doi | 10.3390/s19030503 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2015-70501-C2-1-R/ES/VEHICULO INTELIGENTE PARA PERSONAS MAYORES/ | en |
dc.relation.projectID | SPIP2017-02305 (Dirección General de Tráfico) | |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM//S2013%2FMIT-2748/ES/ROBOTICA APLICADA A LA MEJORA DE LA CALIDAD DE VIDA DE LOS CIUDADANOS, FASE III/RoboCity2030-III-CM | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en |
dc.identifier.publicationtitle | Sensors (Basel) | |