Numerical polynomial reparametrization of rational curves
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/41551DOI: 10.1016/j.cagd.2019.04.002
ISSN: 0167-8396
Publisher
Elsevier
Date
2019-05-01Embargo end date
2020-05-01Funders
Agencia Estatal de Investigación
Bibliographic citation
Shen, Li-Yong & Pérez-Díaz, Sonia. 2019, “Numerical polynomial reparametrization of rational curves”, Computer Aided Geometric Design, vol. 71 (Septiembre 2019), pp. 90-104
Keywords
Rational curves
Polynomial reparametrization
Asymptote
Error analysis
Project
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-88796-P/ES/COMPUTACION SIMBOLICA: NUEVOS RETOS EN ALGEBRA Y GEOMETRIA Y SUS APLICACIONES/
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
https://doi.org/10.1016/j.cagd.2019.04.002Rights
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
© 2019 Elsevier
Access rights
info:eu-repo/semantics/openAccess
Abstract
Given a real rational parametrization P(t) of a plane curve C, we present an algorithm to compute polynomial curves to approximate C for the whole parameter domain. In this case, the denominators often have real roots in the whole interval. We decompose the interval as the union of finitely many intervals according to the real roots of the denominators. The key technique of the paper is to approximate the given curve by their asymptotes and error analysis at each interval is also presented. The asymptotes are associated with the infinity points corresponding to the real roots of the denominators. Numeric algorithms and examples are proposed to illustrate our results.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Numerical_Shen_Comput_Aided_Ge ... | 878.1Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Numerical_Shen_Comput_Aided_Ge ... | 878.1Kb |
![]() |
Collections
- MATEMATIC - Artículos [143]