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aSchool of Mathematical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
bKey Laboratory of Big Data Mining and Knowledge management, CAS, 100190, Beijing, China
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Abstract

Given a real rational parametrization P(t) of a plane curve C, we present an algorithm to compute polynomial
curves to approximate C for the whole parameter domain. In this case, the denominators often have real
roots in the whole interval. We decompose the interval as the union of finitely many intervals according to
the real roots of the denominators. The key technique of the paper is to approximate the given curve by
their asymptotes and error analysis at each interval is also presented. The asymptotes are associated with
the infinity points corresponding to the real roots of the denominators. Numeric algorithms and examples
are proposed to illustrate our results.
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1. Introduction

Rational polynomial algebraic plane curves are defined by polynomial parametrizations. The non–
existence of denominators avoids the possibly unstable behaviour of the parametrization when the parameter
takes values close to the roots of the denominators, and the analysis of the differential and integral com-
putations is much simpler. These curves play an important role in many applications, in particular in
computer–aided design (CAD) and robotics (see Timar et al. (2005); Yang et al. (2015); Lin et al. (2019)).

Polynomial curves are characterized as those rational plane curves having only one place at infinity
associated to the parameter (see Abhyankar (1990)). Thus, in general, one cannot deal globally with the
problem of computing a polynomial parametrization of a given rational plane curve (i.e. curves having
genus zero; see e.g. Sendra et al. (2007)). Nevertheless, we may try to approximate the given rational
plane curve by some polynomial parametrizations. More precisely, let P(t) = (p1(t), p2(t)) ∈ R(s)2, pi(t) =
pi1(t)/pi2(t), deg(pi1) = deg(pi2) = si, i = 1, 2, be a real rational parametrization of a plane curve C. The
problem consists in:

(i) compute a rational plane curve C defined by a rational parametrization

P(t) =

(
p11(t)

p12(t)
,
p21(t)

p22(t)

)
∈ R(t)2, pi2(t) = (t− α)si , i = 1, 2, α ∈ R

for t ∈ I := (−∞, a)∪(b,∞), and a, b ∈ R. In this case, we may compute a polynomial parametrization
of C by taking the reparametrization P(1/t+ α) (see Section 6.2 in Sendra et al. (2007)).

(ii) decompose the interval I = (a, b) as a union of finitely many intervals, Iξ = (γ, β), where pj2(ξ) = 0,
for j = 1 or j = 2, and γ < ξ < β. For each interval Iξ of the partition, consider the asymptote
xi = pi(ξ), i �= j, i = 1 or i = 2,
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(iii) analyze the error analysis and check whether the “curve pieces” defined by the input rational curve and
the output polynomial curves are “close” (we refer to Pérez-Dı́az et al. (2004) and Sonia Pérez-Dı́az
(2005) for the notion of closeness).

There exist methods to deal with the curve approximation problem. For instance, one may apply to both
rational components of P(t) the well–known Approximation Theorem of Weierstrass in combination with
Bernstein–polynomials (see e.g. H?mmerlin and Hoffman (1991)). In Sederberg and Kakimoto (1991), the
authors present a Bézier–like approach, based on the hybrid polynomials. In Shen et al. (2012), the authors
approximate an arbitrary parametric curve by a B-spline curve with certified error. Also, in Pérez-Dı́az et al.
(2007), authors present an approach based on polynomial sequences uniformly converging to the rational
functions. For a given natural number N satisfying certain minimal requirements, the algorithm computes
polynomial parametrizations which degrees are bounded by N .

These methods work well to approximate a curve segment in a finite interval where the curve segment
does not have infinity points. However, rational curves obtained from some float computing circumstances,
such as CAD and CNC (Computer Numerical Control), may have infinity points corresponding to the roots of
their denominators. Then a problem is to approximate these rational curves for the whole parameter domain,
especially keeping the important geometric features such as asymptotes associated to the infinity points. The
problem usually comes from practical computations and few existing methods can deal straightforwardly
with this problem.

In this paper, we present an easy approach to approximate a given rational parametrizations by a
polynomial one. As an important property of our method is that, when the parameter takes values close
to the roots of the denominators, our algorithm generates polynomial parametrizations that in fact are the
asymptotes of the input rational plane curve. We present an error analysis and give an explicit priori bound
of the closeness of the input and the output curves. Throughout this paper, we consider input plane curves
but all the results and the algorithm can be easily generalized for space curves.

The structure of this paper is reproduced below. In Section 2, we present some preliminaries and in
particular, we show how to decide whether a given affine rational parametrization can be reparametrized
into a polynomial parametrization by using symbolically algorithms. In Section 3, we deal with the problem
from the numerical point of view. In addition, we introduce the error analysis and we illustrate the method
with some examples. Finally, in Section 4, we conclude our paper.

2. Previous Results

In this section, we first analyze, from the symbolic point of view, whether a given plane curve admits
a polynomial parametrization, i.e. a rational affine parametrization where all components are polynomial.
We follow the reasoning scheme in Sendra et al. (2007).

Definition 1. A rational affine parametrization P(t) of a rational affine curve C is called a polynomial
parametrization if all its components are polynomial. Furthermore, the affine curve C is called a polynomial
curve if it is rational and can be parametrized by means of a polynomial parametrization.

In Definition 1, we have introduced the notion of a polynomial affine curve but not imposed on the
polynomial parametrization the condition of being proper (i.e. invertible). It is proved that properness can
always be achieved simultaneously with polynomiality. More precisely, for every polynomial curve there exist
proper polynomial parametrizations. Thus, in the following we assume the given rational curve is defined
by a proper parametrization. Otherwise, one can compute a proper reparametrization (for this purpose, one
may apply for instance the results in Pérez-Dı́az (2006) or Sendra et al. (2007)).

In Theorem 1, polynomial curves are characterized and it is shown how to compute a proper polynomial
parametrization (see Section 6.2 in Sendra et al. (2007)).

Theorem 1. If C is a polynomial curve, then every proper non–polynomial rational parametrization in re-

duced form of C is of the type P(t) =
(

p11(t)
(bt−a)r ,

p21(t)
(bt−a)s

)
, where deg(p11) ≤ r and deg(p21) ≤ s, and b �= 0.
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Furthermore, if P(t) =
(

p11(t)
(bt−a)r ,

p21(t)
(bt−a)s

)
, where deg(p11) ≤ r and deg(p21) ≤ s is a rational parametriza-

tion of an affine curve C, then C is polynomial and can be polynomially parametrized as P (a/b+ 1/t) .

In the following, we review a method for computing all the generalized asymptotes of a real plane algebraic
curve C parametrically defined. The algorithm is based on the concepts and results presented in Blasco and
Pérez-Dı́az (2014a), Blasco and Pérez-Dı́az (2014b) and Blasco and Pérez-Dı́az (2015), and it can be easily
generalized for space curves.

The notion of infinity branches which, intuitively speaking, reflect the status of a curve at the points
with sufficiently large coordinates (for more details on this notion see Blasco and Pérez-Dı́az (2014b)). The
asymptotes of some branch, B, of a real plane algebraic curve C reflect the status of this branch at the
points with sufficiently large coordinates. In analytic geometry, an asymptote of a curve is a line such that
the distance between the curve and the line converges to zero as they tend to infinity. In some contexts,
such as algebraic geometry, an asymptote is defined as a line which is tangent to a curve at infinity.

If B can be defined by some explicit equation of the form x2 = f(x1) (or x1 = g(x2)), where f (or g)
is a continuous function on an infinite interval, it is easy to decide whether C has an asymptote at B by
analyzing the existence of the limits of certain functions when x1 → ∞ (or x2 → ∞). Moreover, if these
limits can be computed, we may obtain the equation of the asymptote of C at B. However, if this branch B
is implicitly defined and its equation cannot be converted into an explicit form, both the decision and the
computation of the asymptote of C at B require some other tools.

An algebraic plane curve may have more general curves than lines describing the status of a branch at
the points with sufficiently large coordinates. This motivates the notion of generalized asymptotes. We say
that a curve C̃ is a generalized asymptote of another curve C if the distance between C̃ and C tends to zero
as they tend to infinity, and C cannot be approximated by a new curve of lower degree.

In the following, we present an algorithm that computes the infinity branches of a given parametric curve
and provides an asymptote for each of them. We assume that we have prepared the input curve C, such
that by means of a suitable linear change of coordinates, (0 : 1 : 0) is not an infinity point of C. For more
details on this method and the concepts and results related with generalized asymptotes, we refer to Blasco
and Pérez-Dı́az (2014a), Blasco and Pérez-Dı́az (2014b) and Blasco and Pérez-Dı́az (2015).

Algorithm Asymptotes Construction-Parametric Case.

Given a rational algebraic curve C defined by a parametrization P(s) = (p1(s), p2(s)) ∈ C(s)2, pj(s) =
pj1(s)/p(s), j = 1, 2, the algorithm outputs one asymptote for each of its infinity branches.
Step 1: Compute the Puiseux solutions of p(s)−tp11(s) = 0 around s = 0. Let them be �1(t), �2(t), . . . , �k(t) ∈
C � t 	, where C � t 	 is the field of formal Puiseux series.
Step 2: For each �i(t) ∈ C � t 	, i = 1, . . . , k, do:

Step 2.1: Compute the corresponding infinity branch of C, Bi = {(x3, ri(x3)) ∈ C
2 : x3 ∈ C, |x3| >

Mi}, where ri(x3) = p2(�i(x
−1
3 )) is given as Puiseux series.

Step 2.2: Consider the series r̃i(x3) obtained by eliminating the terms with negative exponent in ri(x3).

Let r̃i(x3) = mix3 + a1,ix
−n1,i/ni+1
3 + · · ·+ aki,ix

−nki,i
/ni+1

3 .

Step 2.3: Return the asymptote C̃i defined by the proper parametrization Q̃i(t) = (tni , r̃i(t
ni)) ∈ C[t]2.

In the following example, we study a parametric plane curve with two infinity branches. We use algorithm
Asymptotes Construction-Parametric Case to obtain the corresponding asymptote for each branch.

Example 1. Let C be the plane curve defined by P(s) =
(

p11(s)
p(s) , p21(s)

p(s)

)
=
(

s2−1+s3

(s−1)s3 , 2s2+1
(s−1)s3

)
∈ R(s)2.

Step 1: We compute the solutions of the equation p(s)− tp11(s) = 0 around s = 0. For this purpose, we may
use, for instance, the command puiseux included in the package algcurves of the computer algebra system
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Maple. There are two solutions given by the Puiseux series: �1(t) = 1 + 4t5 − 13t4 − t3 + 2t2 + t+ · · · , and
�2(t) = −4027/6561t7/3 − 2/3t2 − 134/243t5/3 − 28/81t4/3 + 1/3t2/3 + t1/3 + · · · .
Step 2: We apply Steps 2.1, 2.2 and 2.3 of the algorithm:

Step 2.1: We compute r1(x3) = p2(�1(x
−1
3 )) = 3x3 − 106x−4

3 − 120x−3
3 +7x−2

3 +23x−1
3 − 11+ · · · , and

r2(x3) = p2(�2(x
−1
3 )) = −3 − 3x

1/3
3 (−1)2/3 − x3 − 13/3x

−1/3
3 (−1)1/3 − 23/3x−1

3 + · · · (we may use,
for instance, the command series included in the computer algebra software Maple). The curve has two
infinity branches given by Bi = {(x3, ri(x3)) ∈ C

2 : x3 ∈ C, |x3| > Mi}, i = 1, 2, for some Mi ∈ R
+.

Step 2.2: We obtain r̃1(x3) and r̃2(x3) by eliminating the terms with negative exponent in r1(x3) and

r2(x3) respectively: r̃1(x3) = −11 + 3x3 and r̃2(x3) = −3− 3x
1/3
3 (−1)2/3 − x3.

Step 2.3: The input curve C has two asymptotes C̃i at Bi that can be polynomially parametrized by:
Q̃1(t) = (t,−11 + 3t) ∈ R[t]2, and Q̃2(t) = (t3,−3− t3 − 3t) ∈ R[t]2.

In Figure 1, we plot the curve C, and the asymptotes C̃1 and C̃2.

Figure 1: Asymptote ˜C1 (left), asymptote ˜C2 (center), and both asymptotes and the curve C (right)

3. Numerical Polynomial Reparametrization

In this section, for a rational plane curve C defined by a rational parametrization P(t), according the
roots of the denominators of P(t), we decompose R as union of finitely many intervals Ij , j = 0, . . . , s, and
we approximate each curve piece CIj = {P(t), t ∈ Ij} by a polynomial curve piece CIj = {P(t), t ∈ Ij}.
We remind that polynomial curves are characterized as those rational plane curves having only one place at
infinity (see Abhyankar (1990), and Theorem 1 in Section 2). Thus, if one considers the problem of computing
“globally” a polynomial parametrization of a given rational plane curve, one may have to approximate the
given rational plane curve by some polynomial parametrizations.

The error analysis proves that each curve piece CI = {P(t), t ∈ I} is in the “vicinity” of an output
polynomial curve piece CI = {P(t), t ∈ I}, and reciprocally. The notion of vicinity may be introduced as
the offset region limited by the external and internal offset to C at certain distance (see Pérez-Dı́az et al.
(2004) for more details, and Arrondo et al. (1997) for basic concept on offsets), and therefore the problem
consists in finding, for each interval I, a rational polynomial curve piece CI lying within the offset region
of CI , and reciprocally. For this purpose, we study whether for almost every point P on the original curve
piece, there exists a point Q on the output curve piece such that the Euclidean distance of P and Q is small.
From this fact, and using Farouki and Rajan (1988), one may derive upper bounds for the distance of the
offset region.

For instance, consider a plane curve C defined by the parametrization P(t) = (1/t2, 1/(t− 0.001)3). Note
that C is not polynomial (see Theorem 1). Our method provides as an answer the plane curve C defined
by the parametrization P(t) = (1/t2, 1/t3). Note that, by applying Theorem 1 (Section 2), we get that
P(1/t) = (t2, t3) is a polynomial parametrization of C.

In Figure 2, C and C are close in the neighbour of the origin point. However, it is clear that at the infinity
C and C will be quite different (in fact, the infinity points of both curves are necessarily different and also
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Figure 2: Curve C (left), curve C (center) and both curves (right)

its asymptotes; see Section 2). Thus, at the infinity, the input curve has to be approximated by some other
different polynomial curves.

In the following, in order to deal with this problem, we first consider a curve C defined parametrically

by (t, f(t)), where f(t) = p(t)∏s
i=1(t−ri)

∈ R(t). We analyze whether in a certain interval I = (−∞, a) ∪
(b,∞), a, b ∈ R, the curve C can be approximated by a new curve C defined parametrically by (t, f(t)),

where f(t) = p(t)
(t−α)s ∈ R(t). We compute f(t) and also provide the error analysis.

Afterwards, we consider an input curve C defined by P(t) = (p1(t), p2(t)) =
(

p11(t)
p12(t)

, p21(t)
p22(t)

)
, deg(pi1) =

deg(pi2) = si, i = 1, 2, with perturbed float coefficients. Using the ideas of above approach developed
for the rational function f(t), we show how to construct a new rational curve C defined parametrically

by P(t) =
(

p11(t)
(t−α)s1 ,

p21(t)
(t−α)s2

)
∈ R(t)2. We observe that C is polynomial since P(1/t + α) is a polynomial

reparametrization of P(t) (see Theorem 1 in Section 2). Under these conditions, we prove that almost all
points of the rational curve piece CI are in the “vicinity” of CI (and reciprocally), where I = (−∞, a) ∪
(b,∞), a, b ∈ R.

In both cases, one has to deal with the approximation problem for the curve piece CI , where I = (a, b).
We will see that the roots of the denominators of the parametrization belong to I, and thus CI corresponds
to the curve piece at the “infinity”. Here, the key consist in using the asymptotes of the given curve to
approximate CI . Observe that for this purpose, one has to decompose the interval I as union of finitely
many intervals according to the roots of the denominators of the parametrization. For each such interval,
one different asymptote is used. We also provide the error analysis of this approximation. The results
presented in this section can be easily generalized for space curves.

3.1. A particular case

Let C be the field of complex numbers and Consider a rational function f(t) = p(t)
q(t) = p(t)∏s

i=1(t−ri)
∈ R(t), ri ∈

C with perturbed float coefficients. We assume that the approximate gcd of p and q is equal to one, i.e.
ε-gcd(p, q) = 1 (otherwise, we simplify f(t) using for instance Corless et al. (2001)), and deg(p) = deg(q) = s
(for our purposes in Subsection 3.2, we here only need to deal with this special case). Furthermore, we assume
that at least one root of q(t) is in R. For the case of curve pieces without real roots, one can give a whole
piecewise approximation method by using some traditional methods (see e.g. Sederberg and Kakimoto
(1991) and Shen et al. (2012)). Finally, | · | denotes the modulus of a complex number.

We now deal with the problem of computing an approximation of the input rational curve piece CI =

{(t, f(t)), t ∈ I}, with a curve piece of the form CI = {(t, f(t)), t ∈ I}, where f(t) = p(t)
q(t) = p(t)

(t−α)s ∈ R(t),

and I = (−∞, a)∪ (b,∞), a, b ∈ R. To start with, we first show how to compute a, b ∈ R then, we construct
f(t) ∈ R(t), and finally we study how to approximate the curve pieces CI and CI respectively. Afterwards,
we present the error analysis and we illustrate the method with an example.

Decomposition of R

In order to decompose R, we compute the intervals I = (−∞, a) ∪ (b,∞) and I = (a, b) and thus, we
first need to determine a, b ∈ R. For this purpose, we distinguish some different cases:
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1. Assume that among the roots ri, i = 1, . . . , s, only one root is real, say r1. Then, let a, b ∈ R be
such that |f(a)| = |f(b)| = μ, a < r1 < b, where μ is any positive value. Under these conditions, we
consider R = I ∪ I.

2. Assume that among the roots ri, i = 1, . . . , s, two roots are real, say r1, r2. Then, let a, b ∈ R be
such that |f(a)| = |f(b)| = μ, a < r1 < r2 < b, where μ is any positive value. Thus, we decompose
the interval I as union of finitely many intervals according to the roots r1 and r2. More precisely, we
consider I = I1 ∪ I2, where I1 := (a, (r1 + r2)/2), and I2 := ((r1 + r2)/2, b). Under these conditions,
we consider the decomposition R = I ∪ I1 ∪ I2.
If there exist more than two real roots, we generalize the above process and we reason as before.
More precisely, if rj ∈ R, j = 1, . . . , �, r1 < r2 < · · · < r�, we consider I =

⋃�
j=1 Ij , where Ij :=

((rj−1 + rj)/2, (rj + rj+1)/2) (let (r−1 + r1)/2 := a and (rs + rs+1)/2 := b). Under these conditions,

we consider the decomposition R = I ∪⋃�
j=1 Ij .

Observe that we deal with the real part of the curve. In addition, we note that a, b ∈ R always exist
since f(t) has vertical asymptotes at t = ri, i = 1, . . . , s. In Figure 3, we illustrate this reasoning.

Figure 3: Rational function of degree 2 (left), and rational function of degree 3 (right)

Approximation of the curve piece CI

Once a, b ∈ R are computed, we determine the curve piece CI that will approximate CI . For this

purpose, we compute f(t) ∈ R(t) as follows: we consider f(t) = p(t)
q(t) = p(t)

(t−α)s ∈ R(t), where α ∈ R is such

that a < α < b and it minimizes |f(t) − f(t)|, t ∈ I. For this purpose, since |f(t) − f(t)| ≤ max{|f(a) −
f(a)|, |f(b) − f(b)|}, we compute α ∈ R such that g(α) =

√
(f(a)− f(a))2 + (f(b)− f(b))2 is minimum.

Let mα be this minimum. Then, it holds that |f(t)− f(t)| ≤ max{|f(a)− f(a)|, |f(b)− f(b)|} ≤ mα, t ∈ I.
Note that α ∈ (a, b) always exists (g(α) has two vertical asymptotes at α = a and α = b).

In Figure 4, we plot an example of a rational curve, C, defined by (t, f(t)), and the output rational curve,
C, defined by (t, f(t)).

Approximation of the curve piece CI

In order to determine the curve piece CI that will approximate CI , we need to distinguish some different
cases according the decomposition of the interval I. More precisely:

1. Assume that among the roots ri, i = 1, . . . , s, only one root is real, say r1. Once a, b ∈ R are computed,
we approximate the curve piece CI , where I := (a, b), by the asymptote A1 defined implicitly by
x1 = r1.
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Figure 4: Rational curves C (left), C (center), and both curves (right)

2. Assume that among the roots ri, i = 1, . . . , s, two roots are real, say r1, r2. Once a, b ∈ R are
computed, we consider I = I1 ∪ I2, where I1 := (a, (r1 + r2)/2), and I2 := ((r1 + r2)/2, b), and we
approximate the curve piece CI1 by the asymptote A1 defined implicitly by x1 = r1, and the curve
piece CI2 by the asymptote A2 defined implicitly by x1 = r2.
If there exist more than two real roots, we generalize the above process and we reason as before. More
precisely, once a, b ∈ R are computed, we consider I =

⋃�
j=1 Ij , where Ij := ((rj−1+rj)/2, (rj+rj+1)/2)

(let (r−1+r1)/2 := a and (rs+rs+1)/2 := b), and we approximate the curve piece CIj by the asymptote

Aj defined implicitly by x1 = rj , for j = 1, . . . , �. Note that CI =
⋃�

j=1 CIj .
We note that the curve is replaced by the asymptote in a small neighbourhood.

Error Analysis

In the following, we present the error analysis of the method developed above. The general strategy is
to show that almost any affine real point on the curve piece CI is at small (Euclidean) distance of an affine
real point on curve piece CI , and reciprocally. For this purpose, we compute the distance |f(t)−f(t)|, t ∈ I.

For the curve pieces CIj , one reasons similarly by considering the asymptotes Aj as the output polynomial
curves. In this case, in the proof of the theorem, we should use dehomogenizations provided by taking the
axes as lines at infinity. More precisely, if D is an affine curve defined implicitly by the polynomial f(x1, x2)
(and parametrically by (p1(t)/p(t), p2(t)/p(t))), the corresponding projective curve is defined by the form
F (x1, x2, x3) (and parametrically by (p1(t), p2(t), p(t))). Thus, we denote by D1 and D2, the affine plane
curves defined by F (1, x2, x3) (parametrically by (p2(t)/p1(t), p(t)/p1(t))) and F (x1, 1, x3) (parametrically
by (p1(t)/p2(t), p(t)/p2(t))), respectively. Note that any point on the projective curve corresponds to a
point on a suitable affine version of D.

Theorem 2. The following statements hold:

1. For every point on the curve piece CI , there exists a point on the curve piece CI (and reciprocally) at
distance at most mα.

2. Let Ij0 := (γ, β), where γ := (rj0−1 + rj0)/2, and β := (rj0 + rj0+1)/2. For every point on the curve
piece CIj0 , there exists a point on the asymptote Aj0 defined implicitly by x1 = rj0 (and reciprocally)
at distance at most max{|1/f(γ)− γ/(rj0f(γ))|, |1/f(β)− β/(rj0f(β))|}.

Proof. The first statement is proved by computing |f(t)−f(t)|, for t ∈ I. Taking into account the construc-
tion of CI , we have that for t ∈ I, it holds that |f(t) − f(t)| ≤ mα and then, for every point on the input
curve piece CI there exists a point on the output curve piece CI at distance at most mα (and reciprocally).

In order to prove statement 2, we assume that there exists only one real root among ri, i = 1, . . . , s,
namely r1. Then, we approximate the input curve piece CI by the asymptoteA1 defined implicitly by x1 = r1.
Note that A1 is defined parametrically by (r1, t). For this purpose, since we are going to measure distances
at the infinity (note that f(t) is not defined at t = r1), we use a dehomogenization to represent these points.
More precisely, we consider the curve C2 and then, the input curve piece is defined by (t/f(t), 1/f(t)), t ∈
I := (a, b), and the asymptote A2

1 is defined parametrically by (r1/t, 1/t).
Under these conditions, it holds that for every point on the input curve piece there exists a point on the

asymptote (and reciprocally) at distance at most max{|1/f(a)− a/(r1f(a))|, |1/f(b)− b/(r1f(b))|}. Indeed:
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every point of the given curve piece is defined by (t/f(t), 1/f(t)), t ∈ I, and the vertical asymptote is defined
by the parametrization (r1/s, 1/s), s ∈ C. Thus, given t0 ∈ I, there exists s0 ∈ C (s0 = r1f(t0)/t0) such
that the distance between the point (t0/f(t0), 1/f(t0)) of the given curve and the point (r1/s0, 1/s0) of the
asymptote is |1/f(t0)− t0/(r1f(t0))| ≤ max{|1/f(a)− a/(r1f(a))|, |1/f(b)− b/(r1f(b))|}.

One reasons similarly for the general case, and we obtain that for any interval Ij0 := (γ, β), where
γ := (rj0−1 + rj0)/2, and β := (rj0 + rj0+1)/2, it holds that for every point on the curve piece CIj0 , there
exists a point on the asymptote Aj0 defined implicitly by x1 = rj0 (and reciprocally) at distance at most
max{|1/f(γ)− γ/(rj0f(γ))|, |1/f(β)− β/(rj0f(β))|}.

Remark 1. From the proof of Theorem 2, one deduces that for a point (t0, f(t0)) ∈ CI , the point (t0, f(t0)) ∈
CI is at distance at most mα, and reciprocally.
In addition, for a point (t0/f(t0), 1/f(t0)) ∈ C2

Ij0
, the point (t0/f(t0), t0/(rj0f(t0))) ∈ A2

1 is at distance at

most max{|1/f(γ)− γ/(rj0f(γ))|, |1/f(β)− β/(rj0f(β))|}, and reciprocally, where γ := (rj0−1 + rj0)/2 and
β := (rj0 + rj0+1)/2.

Using Theorem 2, and applying the results in Section 2.2 in Farouki and Rajan (1988), we deduce the
following corollary.

Corollary 1. The following statements hold:

1. The input curve piece CI is contained in the offset region of the output curve piece CI (and reciprocally)
at distance at most 2mα.

2. Let Ij0 := (γ, β), where γ := (rj0−1+rj0)/2 and β := (rj0 +rj0+1)/2. The curve piece CIj0 is contained
in the offset region of the asymptote x1 = rj0 (and reciprocally) at distance at most 2max{|1/f(γ) −
γ/(rj0f(γ))|, |1/f(β)− β/(rj0f(β))|}.

Remark 2. We note that:
1. Since we are working numerically, one may assume w.l.o.g that ri �= 0, i = 1, . . . , s, ab �= 0 and
f(γ)f(β) �= 0. Thus, all the above computed distances are well defined.
2. In order to control the error bound, one may reason as follows: given a tolerance ε > 0, one needs that for
every point on the input curve piece CI , there exists a point on the output curve piece CI (and reciprocally)
at distance at most ε. Thus, one computes a, b, α ∈ R such that mα ≤ ε.
3. The effectiveness of the method presented depends on the distance of the roots ri, i = 1, . . . , s, i.e. if these
roots are “close enough”, the method developed provides “good ” approximations for CI . More precisely, let
Ij0 := (γ, β), where γ := (rj0−1 + rj0)/2 and β := (rj0 + rj0+1)/2. Given a tolerance ε > 0, one needs that
for every point on the input curve piece CIj0 , there exists a point on the asymptote Aj0 (and reciprocally) at
distance at most ε. Thus, it should be satisfied that max{|1/f(γ)− γ/(rj0f(γ))|, |1/f(β)−β/(rj0f(β))|} ≤ ε
which is equivalent to |rj0 − rj0−1| ≤ 2rj0f(γ)ε, and |rj0 − rj0+1| ≤ 2rj0f(β)ε.
If there exist two roots, say r1, r2, that are not “close enough”, one may think to approximate the given
function in I∗ := (r1 + ρ1, r2 − ρ2), for some ρi ∈ R, i = 1, 2, similarly as in the interval I. The values of
ρ1, ρ2 ∈ R, can be computed similarly as a, b ∈ R.

Example 2. Let f(t) = p(t)
q(t) = (t−4)(t−7)

(t−199/100)(t−1997/1000) ∈ R(t) be the input rational function. We apply the

above reasoning to compute approximations to the pieces CI = {(t, f(t)), t ∈ I} and CI = {(t, f(t)), t ∈ I}.
Decomposition of R: We first solve the equations |f(a)| = |f(b)| = μ = 200, where a < r1 = 199/100 < r2 =
1997/1000 < b, and we get that a ≈ 1.750484390, b ≈ 2.201274404.

Now, we decompose the interval I = (a, b) as union of finitely many intervals according to the roots r1
and r2. More precisely, we consider I = I1 ∪ I2, where I1 := (a, (r1 + r2)/2) = (1.750484390, 1.9935), and
I2 := ((r1 + r2)/2, b) = (1.9935, 2.201274404).
Under these conditions, let R = I ∪ I1 ∪ I2, where I = (−∞, a) ∪ (b,∞).

Approximation of the curve piece CI : Let f(t) = p(t)
q(t) = (t−4)(t−7)

(t−α)2 ∈ R(t), and we look for α ∈ R such

that g(α) =
√
(f(a)− f(a))2 + (f(b)− f(b))2 is minimum. We get that α ≈ 1.993506389 and mα ≈
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0.06841260609. Then, we approximate the curve piece CI by the curve piece CI defined by (t, f(t)), t ∈ I.
In Figure 5, we plot CI and CI .
Approximation of the curve piece CI : We approximate the curve piece CI1 by the asymptote A1 defined
implicitly by x1 = r1 ≈ 1.99, and the curve piece CI2 by the asymptote A2 defined implicitly by x1 = r2 ≈
1.997.
Error analysis: It holds that, for every point on the input curve piece CI , there exists a point on the output
curve piece CI , at distance at most |f(t)−f(t)| ≤ mα ≈ 0.06841260609. In fact, given (t0, f(t0)) ∈ C, t0 ∈ I,
the point satisfying the above statement is (t0, f(t0)) ∈ C (see Remark 1).

In addition, it holds that for every point on the curve piece CI1 , there exists a point in the asymptote A1

(and reciprocally) at distance at most

max

{∣∣∣∣ 1

f(a)
− a

r1f(a)

∣∣∣∣ ,
∣∣∣∣ 1

f((r1 + r2)/2)
− (r1 + r2)/2

r1f((r1 + r2)/2)

∣∣∣∣
}

≈ 0.0006017980166.

In fact, from Remark 1, we deduce that given (t0/f(t0), 1/f(t0)) ∈ C2, t0 ∈ I1, the point satisfying the above
statement is (t0/f(t0), t0/(r1f(t0))) ∈ A2

1 (we remind that since we are at the infinity, we are considering a
dehomogenization of the input curve).

Furthermore, for every point on the curve piece CI2 , there exists a point in the asymptote A2 (and
reciprocally) at distance at most

max

{∣∣∣∣ 1

f(b)
− b

r2f(b)

∣∣∣∣ ,
∣∣∣∣ 1

f((r1 + r2)/2)
− (r1 + r2)/2

r2f((r1 + r2)/2)

∣∣∣∣
}

≈ 0.0005114531918.

Similarly as above, from Remark 1, we deduce that given (t0/f(t0), 1/f(t0)) ∈ C2, t0 ∈ I2, the point satisfying
the above statement is (t0/f(t0), t0/(r2f(t0))) ∈ A2

2.

Figure 5: Curve pieces {(t, f(t)), t ∈ (−∞, a)} and {(t, f(t)), t ∈ (−∞, a)} (left), {(t, f(t)), t ∈ (b,∞)} and {(t, f(t)), t ∈
(b,∞)} (center), and both curve pieces (right)

3.2. The case of a rational parametrization

In the following, we consider the rational plane curve C defined by rational parametrization with per-
turbed float coefficients

P(t) = (p1(t), p2(t)) =

(
p11(t)

p12(t)
,
p21(t)

p22(t)

)
∈ R(t)2.

Let pj2(t) =
∏sj

i=1(t− rij), j = 1, 2, where rij ∈ C. We assume that ε-gcd(pi1, pi2) = 1, i = 1, 2 (otherwise,
we simplify the rational function pi(t)), and deg(pi1) = deg(pi2) = si, i = 1, 2 (otherwise, we consider a
linear change of variable). Furthermore, we assume that at least one root of the polynomial p12(t)p22(t) is
in R. For the case of curve pieces without real roots, one can give a whole piecewise approximation method
by using some traditional methods. Finally, || · || denotes the 2–norm.

Observe that we may assume w.l.o.g. that gcd(p12, p22) = 1 since we are working numerically. In this
case, using the results in Section 2, one may check that the asymptotes of the curve C are the vertical lines
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parametrized by (p1(ri2), t), i = 1, . . . , s2, and the horizontal lines parametrized by (t, p2(ri1)), i = 1, . . . , s1.
The goal of this section is to compute an approximation of the input rational curve piece CI = {P(t), t ∈

I}, by means of a curve piece of the form CI = {P(t), t ∈ I}, where

P(t) =

(
p11(t)

(t− α)s1
,

p21(t)

(t− α)s2

)
∈ R(t)2,

and I = (−∞, a) ∪ (b,∞), a, b ∈ R. We denote by C the output rational plane curve defined by the
parametrization P(t). We observe that C is polynomial since P(1/t+ α) is a polynomial reparametrization
of P(t) (see Section 2). Reasoning similarly as in Subsection 3.1, we first compute a, b ∈ R then, we
construct P(t), and then we study how to approximate the curve piece CI = {P(t), t ∈ I}, where I = (a, b).
Afterwards, we present the error analysis and the algorithm derived from the method developed and we
illustrate it with an example.

Decomposition of R

In order to decompose R, we compute the intervals I = (−∞, a) ∪ (b,∞) and I = (a, b) and thus, we
first need to determine a, b ∈ R. For this purpose, we distinguish some different cases:

1. Assume that among the roots rij , i = 1, . . . , sj , j = 1, 2, only one root is real, say r12. Then, let
a, b ∈ R be such that |p2(a)| = |p2(b)| = μ, a < r12 < b, where μ is any positive value. Under these
conditions, we consider R = I ∪ I.

2. Assume that among the roots rij , i = 1, . . . , sj , j = 1, 2, two roots are real, say r11, r12, and assume
that r11 < r12. Then, let a, b ∈ R be such that |pi(a)| = |pi(b)| = μ, i = 1, 2, a < r11 < r12 < b,
where μ is any positive value. In addition, |a| is the minimum and |b| the maximum of all the values
satisfying the above equations. Thus, we decompose the interval I as union of finitely many intervals
according to the roots r1 and r2. More precisely, we consider I = I1∪I2, where I1 := (a, (r11+r12)/2),
and I2 := ((r11 + r12)/2, b). Under these conditions, we consider the decomposition R = I ∪ I1 ∪ I2.
If there exist more than two real roots, we generalize the above process and we reason as before. More
precisely, we assume that among the roots rij , i = 1, . . . , sj , j = 1, 2, only � roots are real. We denote

these roots as rj ∈ R, j = 1, . . . , � and we assume that r1 < r2 < · · · < r�. Then, let I =
⋃�

j=1 Ij ,
where Ij := ((rj−1 + rj)/2, (rj + rj+1)/2) (let (r−1 + r1)/2 := a and (rs + rs+1)/2 := b). Under these

conditions, we consider the decomposition R = I ∪⋃�
j=1 Ij .

Observe that we deal with the real part of the curve. In addition, we note that a, b ∈ R always exist
since the rational functions pj(t) has vertical asymptotes at t = rij , i = 1, . . . , sj , j = 1, 2. In Figure 6, we
illustrate the above reasoning.

Figure 6: Decomposition of R: rational curve and asymptotes
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Approximation of the curve piece CI
Once a, b ∈ R are computed, we determine the curve piece CI that approximates CI . For this purpose,

we compute the output curve C defined parametrically by P(t), where

P(t) = (p1(t), p2(t)) =

(
p11(t)

(t− α)s1
,

p21(t)

(t− α)s2

)
∈ R(t)2.

Reasoning as in Subsection 3.1, we compute α ∈ R, a < α < b, that minimizes the Euclidean distance of
P(t) and P(t); that is, ||P(t)− P(t)||. Thus, we consider α ∈ R such that

g(α) =
√

(p1(a)− p1(a))
2 + (p1(b)− p1(b))

2 + (p2(a)− p2(a))
2 + (p2(b)− p2(b))

2

is minimum. Let mα be this minimum. Then, ||P(t)− P(t)|| ≤

max{
√
(p1(a)− p1(a))

2 + (p2(a)− p2(a))
2,

√
(p1(b)− p1(b))

2 + (p2(b)− p2(b))
2} ≤ mα.

Note that α ∈ (a, b) always exists and that C is polynomial since P(1/t+α) is a polynomial reparametrization
of P(t) (see Theorem 1 in Section 2).

In Figure 7, we plot an example of a rational curve, C, defined by the parametrization P(t) and the new
rational curve, C, parametrized by P(t). We plot both curves for (x1, x2) ∈ (−200, 200)× (−200, 200).

Figure 7: Curve C (left), curve C (center), and both curves (right)

In addition, in Figure 8, we plot the input curve C for (x1, x2) ∈ (−4 · 105, 4 · 105) × (−6 · 108, 6 · 108)
(left), and the curve C for (x1, x2) ∈ (−2 · 107, 2 · 107) × (−2 · 107, 2 · 107) (right). From these figures, one
deduces that one has to use new approximations to the input curve, when one is far away, at the infinity.

Figure 8: Curve C for (x1, x2) ∈ (−4 · 105, 4 · 105)× (−6 · 108, 4 · 108) (left), and curve C for (x1, x2) ∈ (−2 · 107, 2 · 107)× (−2 ·
107, 2 · 107) (right)

Approximation of the curve piece CI
In order to determine the curve piece CI that will approximate CI , we need to distinguish some different

cases according the decomposition of the interval I. More precisely:
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1. Assume that among the roots rij , i = 1, . . . , sj , j = 1, 2, only one root is real, say r12. Once a, b ∈ R are
computed, we approximate the curve piece CI by the asymptote A1 defined implicitly by x1 = p1(r12).

2. Assume that among the roots rij , i = 1, . . . , sj , j = 1, 2, two roots are real, say r11, r12, and assume
that r11 < r12. Once a, b ∈ R are computed, we consider I = I1∪I2, where I1 := (a, (r11+r12)/2), and
I2 := ((r11+r12)/2, b), and we approximate the curve piece CI1 by the asymptote A1 defined implicitly
by x2 = p2(r11), and the curve piece CI2 by the asymptote A2 defined implicitly by x1 = p1(r12).
If there exist more than two real roots, we generalize the above process and we reason as before.
More precisely, we assume that among the roots rij , i = 1, . . . , sj , j = 1, 2, only � roots are real. We
denote these roots as rj ∈ R, j = 1, . . . , � and we assume that r1 < r2 < · · · < r�. Once a, b ∈ R are

computed, we consider I =
⋃�

j=1 Ij , where Ij := ((rj−1+rj)/2, (rj+rj+1)/2) (let (r−1+r1)/2 := a and
(rs+ rs+1)/2 := b), and we approximate the curve piece CIj by the asymptote Aj defined implicitly by

xi = pi(rj), j = 1, . . . , �, where i = 1 (if p22(rj) = 0) or i = 2 (if p12(rj) = 0). Note that CI =
⋃�

j=1 CIj .
We note that the curve is replaced by the asymptote in a small neighbourhood. In addition, since we
are working numerically, we remind we are assuming that the denominators of both components of the
parametrization do not have common roots. Thus, when t tends to a root of the denominator there are only
horizontal or vertical asymptotes.

Error Analysis

In the following, we present the error analysis of the method developed above. The general strategy is
to show that almost any affine real point on the curve piece CI is at small (Euclidean) distance of an affine
real point on curve piece CI , and reciprocally. For this purpose, we compute the distance ||P(t) − P(t)||,
t ∈ I.

For the curve pieces CIj , one reasons similarly by considering the asymptotes Aj as the output polynomial
curves.

Theorem 3. The following statements hold:

1. For every point on the curve piece CI , there exists a point on the curve piece CI (and reciprocally) at
distance at most mα.

2. Let Ij0 := (γ, β), where γ := (rj0−1+ rj0)/2, β := (rj0 + rj0+1)/2, and pj2(rj0) = 0, for j = 1 or j = 2.
For every point on the curve piece CIj0 , there exists a point on the asymptote Aj0 defined implicitly by
xi = pi(rj0), i �= j, i = 1 or i = 2 (and reciprocally) at distance at most

max{|1/pj(γ)− pi(γ)/(pj(γ)pi(rj0))|, |1/pj(β)− pi(β)/(pj(β)pi(rj0))|}.

Proof. The first statement is proved by computing ||P(t) − P(t)||, t ∈ I. Taking into account the above
reasoning, we have that for t ∈ I, it holds that ||P(t)− P(t)|| ≤ mα and then, for every point on the input
curve piece CI there exists a point on the output curve piece CI at distance at most mα (and reciprocally).

In order to prove statement 2, we assume that among the roots rij , i = 1, . . . , sj , j = 1, 2, only one root
is real, say r12. Then, we approximate the input curve piece CI by the asymptote A1 defined implicitly by
x1 = p1(r12). Note that A1 is defined parametrically by (p1(r12), t). Since we are going to measure distances
at infinity (note that p2(t) is not defined at t = r12), we use a dehomogenization to represent these points.

More precisely, we consider the curve C2 defined by
(

p1(t)
p2(t)

, 1
p2(t)

)
, t ∈ I, and the asymptote A2

1 is defined

parametrically by (p1(r12)/t, 1/t).
Under these conditions, it holds that for every point on the input curve piece there exists a point on the

asymptote (and reciprocally) at distance at most

max{|1/p2(t)−p1(t)/(p2(t)p1(r12))| | t ∈ I} ≤ max{|1/p2(a)−p1(a)/(p2(a)p1(r12))|, |1/p2(b)−p1(b)/(p2(b)p1(r12))|}.

Indeed: every point of the given curve is defined by
(

p1(t)
p2(t)

, 1
p2(t)

)
, and the vertical asymptote is defined

by the parametrization (p1(r12)/s, 1/s), s ∈ C. Thus, given t0 ∈ I, there exists s0 ∈ C (s0 = p1(r12)
p2(t0)
p1(t0)

)
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such that the distance between the point
(

p1(t0)
p2(t0)

, 1
p2(t0)

)
of the given curve and the point (p1(r12)/s0, 1/s0)

of the asymptote is

|1/p2(t0)− p1(t0)/(p2(t0)p1(r12))| ≤ max{|1/p2(t0)− p1(t0)/(p2(t0)p1(r12))| | t ∈ I} ≤
max{|1/p2(a)− p1(a)/(p2(a)p1(r12))|, |1/p2(b)− p1(b)/(p2(b)p1(r12))|}.

On reasons similarly for the general case, and we get that for any interval Ij0 := (γ, β), where γ :=
(rj0−1 + rj0)/2, and β := (rj0 + rj0+1)/2, and pj2(rj0) = 0, for j = 1 or j = 2, it holds that for every point
on the curve piece CIj0 , there exists a point on the asymptote Aj0 defined implicitly by xi = pi(rj0), i �= j,
i = 1 or i = 2 (and reciprocally) at distance at most

max{|1/pj(γ)− pi(γ)/(pj(γ)pi(rj0))|, |1/pj(β)− pi(β)/(pj(β)pi(rj0))|}.

Remark 3. From the proof of Theorem 3, one deduces that for a point P(t0) ∈ CI , the point P(t0) ∈ CI is
at distance at most mα, and reciprocally.
In addition, for a point (pi(t0)/pj(t0), 1/pj(t0)) ∈ Cj

Ij0
, i �= j, the point (pi(t0)/pj(t0), pi(t0)/(pi(rj0)pj(t0))) ∈

Aj
Ij0

is at distance at most max{|1/pj(γ)− pi(γ)/(pj(γ)pi(rj0))|, |1/pj(β)− pi(β)/(pj(β)pi(rj0))|}, and re-

ciprocally, where γ := (rj0−1 + rj0)/2, β := (rj0 + rj0+1)/2, and pj2(rj0) = 0, for j = 1 or j = 2.

Using Theorem 3, and applying the results in Section 2.2 in Farouki and Rajan (1988), we deduce the
following corollary.

Corollary 2. The following statements hold:

1. The input curve piece CI is contained in the offset region of the output curve piece CI (and reciprocally)
at distance at most 2mα.

2. Let Ij0 := (γ, β), where γ := (rj0−1 + rj0)/2, β := (rj0 + rj0+1)/2, and pj2(rj0) = 0, for j = 1 or
j = 2. The curve piece CIj0 is contained in the offset region of the asymptote defined implicitly by
xi = pi(rj0), i �= j, i = 1 or i = 2 (and reciprocally) at distance at most

2max{|1/pj(γ)− pi(γ)/(pj(γ)pi(rj0))|, |1/pj(β)− pi(β)/(pj(β)pi(rj0))|}.
We note that for the case of a given rational parametrization, Remark 2 applies similarly as in the case

of a given rational function.

Algorithm and example

In the following, we propose the algorithm as well as the error bounds. We finally illustrate this algorithm
with an example. Examples show that, in general, the approximation is better than the error bound provided.

Algorithm Approximate Polynomial Parametrization.

Given a rational algebraic plane curve C defined by a parametrization P(t) = (p1(t), p2(t)) ∈ R(s)2, pj(t) =
pj1(t)/pj2(t), deg(pj1) = deg(pj2) = sj , pj2(rij) = 0, j = 1, 2, i = 1, . . . , sj , the algorithm outputs polyno-
mial curves approximating C.
Step 1: Decomposition of R. Assume that among the roots rij , i = 1, . . . , sj , j = 1, 2, only � roots are real.
Denote these roots as rj ∈ R, j = 1, . . . , � and let r1 < r2 < . . . < r�. Then, compute a, b ∈ R such that
|pi(a)| = |pi(b)| = μ, i = 1, 2, a < r1 < r2 < . . . < r� < b (μ is a given real number). In addition, |a| is the
minimum and |b| the maximum of all the values satisfying the above equations.

Thus, let R = I ∪ I, where I = (−∞, a) ∪ (b,∞) and I =
⋃�

j=1 Ij , Ij := ((rj−1 + rj)/2, (rj + rj+1)/2)
(let (r−1 + r1)/2 := a and (rs + rs+1)/2 := b).
Step 2: Approximation of the curve piece CI . Approximate the input curve piece CI by the curve piece CI ,
where C is defined by the rational parametrization

P(t) =

(
p11(t)

p12(t)
,
p21(t)

p22(t)

)
∈ R(t)2, pi2(t) = (t− α)si , i = 1, 2.
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Compute α ∈ R such that g(α) =
√

(p1(a)− p1(a))
2 + (p1(b)− p1(b))

2 + (p2(a)− p2(a))
2 + (p2(b)− p2(b))

2 is
minimum. Letmα be this minimum. Apply Theorem 1 (see Section 2), to compute a polynomial parametriza-
tion of C.
Step 3: Approximation of the curve piece CI . Approximate the curve piece CIj by the asymptote Aj defined
implicitly by xi = pi(rj), j = 1, . . . , �, where i = 1 (if p22(rj) = 0) or i = 2 (if p12(rj) = 0).
Step 4: Error Analysis.

I. For every point on the curve piece CI , there exists a point on the curve piece CI (and reciprocally) at
distance at most mα.
II. Let Ij0 := (γ, β), where γ := (rj0−1 + rj0)/2, β := (rj0 + rj0+1)/2, and pj2(rj0) = 0, for j = 1 or j = 2.

For every point on the curve piece CIj0 , there exists a point on the asymptote Aj0 defined implicitly by
xi = pi(rj0), i �= j, i = 1 or i = 2 (and reciprocally) at distance at most

max{|1/pj(γ)− pi(γ)/(pj(γ)pi(rj0))|, |1/pj(β)− pi(β)/(pj(β)pi(rj0))|}.

Example 3. Let C be the rational plane curve defined by the rational parametrization P(t) = (p1(t), p2(t)) =(
p11(t)
p12(t)

, p21(t)
p22(t)

)
=

(
(t−1)(t−5)

(t−2997/1000)(t−299/100) ,
(t−7)(t−9)

(t−2999/1000)(t−3)

)
∈ R(t)2.

In Step 1 of the algorithm Approximate Polynomial Parametrization, we observe that the roots of the
denominators of the parametrizations are all in R. Thus, in order to compute a, b ∈ R, we solve the
equations |pi(a)| = |pi(b)| = μ = 100, i = 1, 2, where a < r1 := r11 = 2.99 < r2 := r21 = 2.997 < r3 := r12 =
2.999 < r4 := r22 = 3 < b, and |a| is the minimum and |b| the maximum of all the values satisfying the above
equations. We get that a ≈ 2.453988613, b ≈ 3.443991185. Then, we decompose the interval I = (a, b) as

I =
⋃4

j=1 Ij, where I1 = (a, (r1+r2)/2), I2 = ((r1+r2)/2, (r2+r3)/2), I3 = ((r2+r3)/2, (r3+r4)/2), and I4 =

((r3+ r4)/2, b), and R = I ∪⋃�
j=1 Ij, where I = (−∞, a)∪ (b,∞) = (−∞, 2.453988613)∪ (3.443991185,∞).

In Step 2 of the algorithm, we compute the rational plane curve C defined by the parametrization

P(t) =

(
p11(t)

p12(t)
,
p21(t)

p22(t)

)
=

(
(t− 1)(t− 5)

(t− α)2
,
(t− 7)(t− 8)

(t− α)2

)
∈ R(t)2.

Now, we look for α ∈ R that minimizes ||P(t) − P(t)||. Thus, we compute α ∈ R such that g(α) =√
(p1(a)− p1(a))

2 + (p1(b)− p1(b))
2 + (p2(a)− p2(a))

2 + (p2(b)− p2(b))
2 is minimum. We get that α ≈

2.999336375 and mα ≈ 0.5715548898. We observe that by applying Theorem 1 (Section 2), one may compute
a polynomial parametrization of C by considering the reparametrization P(1/t+α). Hence, we approximate
the input curve piece CI by curve piece CI , where C is defined by P(t). In Figure 9, we plot CI and CI .

Figure 9: Curve pieces CI and CI

Now, we apply Step 3 of the algorithm Approximate Polynomial Parametrization. Since I =
⋃4

j=1 Ij,
I1 = (a, (r1 + r2)/2), I2 = ((r1 + r2)/2, (r2 + r3)/2), I3 = ((r2 + r3)/2, (r3 + r4)/2), and I4 = ((r3 +
r4)/2, b), for j = 1, . . . , 4, we approximate the curve piece CIj by the asymptote Aj defined implicitly by
x2 = p2(r1), x2 = p2(r2), x1 = p1(r3), x1 = p1(r4). In Figures 10 and 11, we plot the curve and the
approximation with the asymptotes.

We finally apply Step 4 of the algorithm to analyze the error analysis:
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Figure 10: Curve C (left), and curve C and vertical asymptotes A3 and A4 (right)

Figure 11: Curve C (left), and curve C and horizontal asymptotes A1 and A2 (right)

I. For every point on the curve piece CI , there exists a point on the curve piece CI (and reciprocally)
at distance at most mα ≈ 0.5715548898. We note that given the point P(t0) ∈ C, t0 ∈ I the point
satisfying the above statement is P(t0) ∈ C (see Remark 3).

II. We analyze the error for every curve piece CIj , j = 1, . . . , 4.
(a) For every point on the curve piece CI1 , there exists a point on the asymptote A1 (and reciprocally)

at distance at most

max
{∣∣∣ 1

p1(a)
− p2(a)

p1(a)p2(r11)

∣∣∣ , ∣∣∣ 1
p1((r1+r2)/2)

− p2((r1+r2)/2)
p1((r1+r2)/2)p2(r1)

∣∣∣} ≈ 0.07859580935.

From Remark 3, one deduces that given the point (p2(t0)/p1(t0), 1/p1(t0)) ∈ C1, where t0 ∈ I1, the
point on the asymptote satisfying the above statement is (p2(t0)/p1(t0), p2(t0)/(p2(r1)p1(t0))) ∈
A1

1 (we remind that since we are at the infinity, we are considering the dehomogenization of
curves).

(b) For every point on the curve piece CI2 , there exists a point on the asymptote A2 (and reciprocally)
at distance at most

max
{∣∣∣ 1

p1((r2+r3)/2)
− p2((r2+r3)/2)

p1((r2+r3)/2)p2(r2)

∣∣∣ , ∣∣∣ 1
p1((r1+r2)/2)

− p2((r1+r2)/2)
p1((r1+r2)/2)p2(r2)

∣∣∣} ≈ 3.997505871 · 10−6.

From Remark 3, one deduces that given (p2(t0)/p1(t0), 1/p1(t0)) ∈ C1, where t0 ∈ I2, the point
on the asymptote satisfying the above statement is (p2(t0)/p1(t0), p2(t0)/(p2(r2)p1(t0))) ∈ A1

2.
(c) For every point on the curve piece CI3 , there exists a point on the asymptote A3 (and reciprocally)

at distance at most

max
{∣∣∣ 1

p2((r2+r3)/2)
− p1((r2+r3)/2)

p2((r2+r3)/2)p1(r3)

∣∣∣ , ∣∣∣ 1
p2((r3+r4)/2)

− p1((r3+r4)/2)
p2((r3+r4)/2)p1(r3)

∣∣∣} ≈ 1.040797756 · 10−7.

From Remark 3, one deduces that given the point (p1(t0)/p2(t0), 1/p2(t0)) ∈ C2, t0 ∈ I3, the point
on the asymptote satisfying the statement is (p1(t0)/p2(t0), p1(t0)/(p1(r3)p2(t0))) ∈ A2

3.
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(d) For every point on the curve piece CI4 , there exists a point on the asymptote A4 (and reciprocally)
at distance at most

max
{∣∣∣ 1

p2(b)
− p1(b)

p2(b)p1(r4)

∣∣∣ , ∣∣∣ 1
p2((r3+r4)/2)

− p1((r3+r4)/2)
p2((r3+r4)/2)p1(r4)

∣∣∣} ≈ 0.009998594345.

From Remark 3, one deduces that given the point (p1(t0)/p2(t0), 1/p2(t0)) ∈ C2, t0 ∈ I4, the point
on the asymptote satisfying the statement is (p1(t0)/p2(t0), p1(t0)/(p1(r4)p2(t0))) ∈ A2

4.

4. Conclusion

We approximate a rational parametric curve using a polynomial one. More precisely, the method provides
a parametric polynomial plane curve C defined by a parametrization P(t) that approximates C for t ∈ I :=
(−∞, a) ∪ (b,∞), a, b ∈ R. For t ∈ I := (a, b), we use the asymptotes of C to approximate the input curve.
In addition, we present an error analysis where we prove that the curve piece defined by P(t), t ∈ I, is in
the offset region of the output curve C at distance at most 2mα, and conversely (mα ∈ R, and mα ≥ 0).
The constant mα is directly related with the values a, b ∈ R defining the interval I. It is also shown that for
t ∈ I, the approximation by asymptotes is good if the roots of the denominators of P(t) are close enough
although the method can be adapted for the case of the existence of roots not being “close enough” (see
Remark 2). All the algorithms can be easily generalized for space curves. The results are helpful in refining
the rational curves computed from the CAD/CNC process.
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