Show simple item record

dc.contributor.authorYang, Li 
dc.contributor.authorGómez García, Roberto 
dc.contributor.authorFan, Maoyu
dc.contributor.authorZhang, Runqi
dc.date.accessioned2022-05-05T13:29:47Z
dc.date.available2022-05-05T13:29:47Z
dc.date.issued2021-11-13
dc.identifier.bibliographicCitationYang, L., Gómez García, R., Fan, M. & Zhang, R. 2022, "Multilayered input-reflectionless quasi-elliptic-type wideband bandpass filtering devices on diplexer-based structures”, IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 1, pp. 122-138.
dc.identifier.issn0018-9480
dc.identifier.urihttp://hdl.handle.net/10017/51668
dc.descriptionThis article is an expanded version from the 2020 Asia-Pacific Microwave Conference (APMC2020), Hong Kong, Dec. 8–11, 2020 [DOI: 10.1109/APMC47863.2020.9331419]. (Corresponding authors: Li Yang; Roberto Gómez-García.)en
dc.description.abstractClasses of input-reflectionless wideband bandpass filters (BPFs) and balun BPF with quasi-elliptic-type (QET) responses are reported. They consist of two signal-transmission parts in multilayered diplexer-based topologies, as follows: 1) a BPF channel shaped by a two-/three-port reflective-type BPF/balun on a microstrip-to-microstrip vertical transition and 2) an input-absorptive bandstop filter (BSF) channel built with a shunt resistively terminated lowpass filter (LPF) that is composed of hybrid microstrip sections and open-circuit-ended microstrip stubs. Two real-frequency out-of-band transmission zeros (TZs) are generated in these RF filtering devices using a cascaded short-circuit-ended two-section microstrip line and two shunt open-circuit-ended half-wavelength microstrip lines, respectively. Using a higher order LPF network, enhanced passband amplitude flatness and improved stopband power absorption ratio levels for the devised BPFs are attained. As design examples, two third-order BPFs with a shunt resistively terminated microstrip T-junction and a $\pi $ -shape structure, respectively, are first provided. Afterward, a higher order BPF based on two cascaded replicas of a third-order BPF unit is designed to show highly increased stopband power attenuation levels and enhanced power absorption ratio profile within the stopband-to-passband transitions. Subsequently, their application to an input-absorptive QET fourth-order wideband balun BPF is presented. The operational principles of these BPFs and balun are detailed by the developed design procedures, in which their associated impedance-type design parameters are synthetically determined. As practical validation, four microstrip prototypes corresponding to three 2-GHz wideband BPFs and one 1-GHz broadband balun BPF are manufactured and tested. These input-reflectionless wideband filtering components experimentally feature the desired merits in terms of QET responses, enhanced passband amplitude flatness, and improved stopband power absorption ratio levels.en
dc.description.sponsorshipAgencia Estatal de Investigaciónes_ES
dc.description.sponsorshipEuropean Comissionen
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherIEEE
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights© 2021 IEEE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectAbsorptive filteren
dc.subjectBalunen
dc.subjectBandpass filter (BPF)en
dc.subjectDiplexer-based topologyen
dc.subjectMultilayered circuiten
dc.subjectPower absorption ratioen
dc.subjectQuasi-elliptic-type (QET) responseen
dc.subjectTransmission zero (TZ)en
dc.subjectVertical transitionen
dc.subjectWideband filteren
dc.titleMultilayered input-reflectionless quasi-elliptic-type wideband bandpass filtering devices on diplexer-based structuresen
dc.typeinfo:eu-repo/semantics/articleen
dc.subject.ecienciaTelecomunicacioneses_ES
dc.subject.ecienciaTelecommunicationen
dc.contributor.affiliationUniversidad de Alcalá. Departamento de la Señal y Comunicacioneses_ES
dc.relation.publisherversionhttps://doi.org/10.1109/TMTT.2021.3121013
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.identifier.doi10.1109/TMTT.2021.3121013
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-116983RB-I00/ES/NEW-GENERATION MICROWAVE PASSIVE COMPONENTS FOR ADVANCED WIRELESS-COMMUNICATIONS%2FRF-SENSING PLATFORMS/en
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/754382/EU/GOT Energy Talent/GETen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.identifier.publicationtitleIEEE Transactions on Microwave Theory and Techniques
dc.identifier.publicationvolume70
dc.identifier.publicationlastpage138
dc.identifier.publicationissue1
dc.identifier.publicationfirstpage122


Files in this item

Thumbnail

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Este ítem está sujeto a una licencia Creative Commons.