Show simple item record

dc.contributor.authorDíez Pascual, Ana María 
dc.date.accessioned2021-10-15T08:29:26Z
dc.date.available2021-10-15T08:29:26Z
dc.date.issued2019-11-11
dc.identifier.bibliographicCitationPolymers, 2019, v. 11, n. 11, p. 1790-1816en
dc.identifier.issn2073-4360
dc.identifier.urihttp://hdl.handle.net/10017/49664en
dc.description.abstractThermosetting polymers derived from vegetable oils (VOs) exhibit a wide range of outstanding properties that make them suitable for coatings, paints, adhesives, food packaging, and other industrial appliances. In addition, some of them show remarkable antimicrobial activity. Nonetheless, the antibacterial properties of these materials can be significantly improved via incorporation of very small amounts of metal oxide nanoparticles (MO-NPs) such as TiO2, ZnO, CuO, or Fe3O4. The antimicrobial efficiency of these NPs correlates with their structural properties like size, shape, and mainly on their concentration and degree of functionalization. Owing to their nanoscale dimensions, high specific surface area and tailorable surface chemistry, MO-NPs can discriminate bacterial cells from mammalian ones, offering long-term antibacterial action. MO-NPs provoke bacterial toxicity through generation of reactive oxygen species (ROS) that can target physical structures, metabolic paths, as well as DNA synthesis, thereby leading to cell decease. Furthermore, other modes of action-including lipid peroxidation, cell membrane lysis, redox reactions at the NP-cell interface, bacterial phagocytosis, etc.-have been reported. In this work, a brief description of current literature on the antimicrobial effect of VO-based thermosetting polymers incorporating MO-NPs is provided. Specifically, the preparation of the nanocomposites, their morphology, and antibacterial properties are comparatively discussed. A critical analysis of the current state-of-art on these nanomaterials improves our understanding to overcome antibiotic resistance and offers alternatives to struggle bacterial infections in public places.en
dc.description.sponsorshipUniversidad de Alcalaes_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en
dc.subjectmetal oxide nanoparticlesen
dc.subjectvegetable oilsen
dc.subjectthermosetting polymersen
dc.subjectantibacterial propertiesen
dc.subjectnanocompositesen
dc.subjectreactive oxygen speciesen
dc.titleAntibacterial nanocomposites based on thermosetting polymers derived from vegetable oils and metal oxide nanoparticlesen
dc.typeinfo:eu-repo/semantics/articleen
dc.subject.ecienciaChemistryen
dc.subject.ecienciaQuímicaes_ES
dc.contributor.affiliationUniversidad de Alcalá. Departamento de Química Analítica, Química Física e Ingeniería Químicaes_ES
dc.date.updated2021-10-15T08:28:43Z
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.3390/polym11111790
dc.relation.projectIDCCG2018/EXP-011 (Universidad de Alcala)es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.identifier.uxxiAR/0000032197en
dc.identifier.publicationtitlePolymersen
dc.identifier.publicationvolume11
dc.identifier.publicationlastpage1816
dc.identifier.publicationissue11
dc.identifier.publicationfirstpage1790


Files in this item

Thumbnail

This item appears in the following Collection(s)

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Este ítem está sujeto a una licencia Creative Commons.