Strongly regular multi-level solutions of singularly perturbed linear partial differential equations
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/41438DOI: 10.1007/s00025-015-0493-8
ISSN: 1422-6383
Publisher
Springer Verlag
Date
2016-11-01Funders
Ministerio de Economía y Competitividad
Bibliographic citation
Lastra, A., Malek, S. & Sanz, J. 2016, “Strongly regular multi-level solutions of singularly perturbed linear partial differential equations”, Results in Mathematics, 2016, vol. 70, pp. 581-614.
Keywords
Linear partial differential equations
Singular perturbations
Formal power series
Borel-Laplace transform
Borel summability
Gevrey asymptotic expansions
Strongly regular sequence
Project
info:eu-repo/grantAgreement/MINECO//MTM2012-31439/ES/ANALISIS DE PERTURBACIONES SINGULARES: ESTUDIO ASINTOTICO, CAPAS LIMITE Y FENOMENOS MULTIESCALA/
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
https://doi.org/10.1007/s00025-015-0493-8Rights
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
© 2016 Springer Verlag
Access rights
info:eu-repo/semantics/openAccess
Abstract
We study the asymptotic behavior of the solutions related to a family of singularly perturbed partial differential equations in the complex domain. The analytic solutions are asymptotically represented by a formal power series in the perturbation parameter. The geometry of the problem and the nature of the elements involved in it give rise to different asymptotic levels related to the so-called strongly regular sequences. The result leans on a novel version of amulti-level Ramis-Sibuya theorem.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Strongly_Lastra_Results_Math_2 ... | 909.1Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Strongly_Lastra_Results_Math_2 ... | 909.1Kb |
![]() |
Collections
- MATEMATIC - Artículos [138]