Show simple item record

dc.contributor.authorCarbó, Jorge J.
dc.contributor.authorGómez Pantoja, María
dc.contributor.authorMartín Alonso, Avelino 
dc.contributor.authorMena Montoro, Miguel 
dc.contributor.authorRicart, Josep M.
dc.contributor.authorSalom Catalá, Antoni
dc.contributor.authorSantamaría Angulo, Cristina 
dc.date.accessioned2019-09-06T06:15:40Z
dc.date.issued2019-08-26
dc.identifier.bibliographicCitationInorganic Chemistry, 2019, v. 58, n. 18, p. 12157-12166en
dc.identifier.issn0020-1669
dc.identifier.urihttp://hdl.handle.net/10017/38966en
dc.description.abstractTreatment of the dinuclear compound [{Ti(η5-C5Me5)Cl2}2(μ-O)] with allylmagnesium chloride provides the formation of the allyltitanium(III) derivative [{Ti(η5-C5Me5)(μ-C3H5)}2(μ-O)] (1), structurally identified by single-crystal X-ray analysis. Density functional theory (DFT) calculations confirm that the electronic structure of 1 is a singlet state, and the molecular orbital analysis, along with the short Ti −Ti distance, reveal the presence of a metal −metal single bond between the two Ti(III) centers. Complex 1 reacts rapidly with organic azides, RN3 (R = Ph, SiMe3), to yield the allyl μ-imido derivatives [{Ti(η5-C5Me5)(CH2CH=CH2)}2(μ-NR)(μ-O)] [R = Ph(2), SiMe3(3)] along with molecular nitrogen release. Reaction of 2 and 3 with H2 leads to the μ-imido propyl species [{Ti(η5-C5Me5)(CH2CH2CH3)}2(μ-NR)(μ-O)] [R = Ph(4), SiMe3(5)]. Theoretical calculations were used to gain insight into the hydrogenation mechanism of complex 3 and rationalize the lower reactivity of 2. Initially, the μ-imido bridging group in these complexes activates the H2 molecule via addition to the Ti −N bonds. Subsequently, the titanium hydride intermediates induce a change in hapticity of the allyl ligands, and the nucleophilic attack of the hydride to the allyl groups leads to metallacyclopropane intermediates. Finally, the proton transfer from the amido group to the metallacyclopropane moieties affords the propyl complexes 4 and 5.en
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades Universidad de Alcalá Generalitat de Catalunyaes_ES
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)en
dc.rights© 2019 American Chemical Societyen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en
dc.titleA Bridging bis-Allyl Titanium Complex: Mechanistic Insights into the Electronic Structure and Reactivityen
dc.typeinfo:eu-repo/semantics/articleen
dc.subject.ecienciaQuímicaes_ES
dc.subject.ecienciaChemistryen
dc.contributor.affiliationUniversidad de Alcalá. Departamento de Química Orgánica y Química Inorgánica
dc.date.updated2019-09-06T06:13:52Z
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1021/acs.inorgchem.9b01505en
dc.relation.projectIDPGC2018-094007-B-I00 CCG2018/EXP-026 2014SGR199es_ES
dc.date.embargoEndDate2020-08-27
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.identifier.uxxiAR/0000031435en
dc.identifier.publicationtitleInorganic Chemistryen
dc.identifier.publicationvolume58
dc.identifier.publicationlastpage12166
dc.identifier.publicationissue18
dc.identifier.publicationfirstpage12157


Files in this item

Thumbnail

This item appears in the following Collection(s)

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Este ítem está sujeto a una licencia Creative Commons.