Desarrollo de un sistema para la interpretación y predicción de la situación del tráfico mediante Deep Learning
Autores
Herranz Perdiguero, CarlosDirector
López Sastre, Roberto JavierFecha de publicación
2018Palabras clave
CNN (Convolutional Neural Network)
Comprensión semántica de escenas
Estimación de velocidad
Sistemas Inteligentes de Transporte
Deep Learning
Tipo de documento
info:eu-repo/semantics/masterThesis
Versión
info:eu-repo/semantics/acceptedVersion
Derechos
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Derechos de acceso
info:eu-repo/semantics/openAccess
Resumen
La comprensión semántica de una escena es un aspecto clave en múltiples aplicaciones
de inteligencia artificial, tanto para los Sistemas Inteligentes de Transporte como para los
robots. En este Trabajo Fin de Máster se diseña, desarrolla y evalúa un sistema que, basado
en la segmentación semántica de imágenes, obtenida mediante una red neuronal convolucional,
permite realizar las distintas tareas que abarca la comprensión de una escena: clasificación, detección de objetos y la propia segmentación semántica, de una manera sencilla y eficiente. Además, proponemos una solución enfocada a vehículos inteligentes, que permite, utilizando la segmentación semántica, estimar la velocidad a la que debe circular el vehículo. Para ello, hemos construido una nueva base de datos en la que poder evaluar este nuevo problema. Los resultados confirman que es posible y beneficioso confiar en la segmentación semántica para llevar a cabo las distintas tareas. Semantic scene understanding is a key aspect of multiple artificial intelligence applications,
from Intelligent Transportation Systems to robotics.
In this Final Project, we design, develop and evaluate a system that, based on the
semantic segmentation of images obtained through a convolutional neural network, allows
to carry out the different tasks comprising scene understanding: classification, object
detection and the aforementioned semantic segmentation, in a simple yet efficient manner.
In addition, we propose a solution focused on intelligent vehicles, which allows us, using
semantic segmentation, to estimate the speed at which the vehicle must be driven. To this
end, we have built a new database in which we can evaluate this challenging new problem.
The results confirm that it is possible and beneficial to rely on semantic segmentation to
successfully perform the different tasks.
Ficheros en el ítem
Ficheros | Tamaño | Formato |
|
---|---|---|---|
TFM_Herranz_Perdiguero_2018.pdf | 40.02Mb |
![]() |
Ficheros | Tamaño | Formato |
|
---|---|---|---|
TFM_Herranz_Perdiguero_2018.pdf | 40.02Mb |
![]() |