View Item 
  •   e_Buah Home
  • INVESTIGACIÓN
  • DEPARTAMENTOS
  • Física y Matemáticas
  • Unidad docente Matemáticas
  • MATEMATIC - Artículos
  • View Item
  • INVESTIGACIÓN
  • DEPARTAMENTOS
  • Física y Matemáticas
  • Unidad docente Matemáticas
  • MATEMATIC - Artículos
  • View Item
  • Biblioteca
    • English
    • español
JavaScript is disabled for your browser. Some features of this site may not work without it.

Factoring analytic multivariate polynomials and non-standard Cauchy-Riemann conditions

Show full item record
RefworksUtilizar EndNote Import
Authors
Recio, Tomás; Sendra Pons, Juan RafaelUniversity of Alcalá Author; Tabera, Luis Felipe; Villarino Cabellos, CarlosUniversity of Alcalá Author
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/20443
DOI: 10.1016/j.matcom.2013.03.013
ISSN: 0378-4754
Publisher
Elsevier
Date
2014
Affiliation
Universidad de Alcalá. Departamento de Física y Matemáticas. Unidad docente Matemáticas
Funders
Ministerio de Ciencia e Innovación
Bibliographic citation
Mathematics and Computers in Simulation, 2014, v. 104, p. 43-57
Keywords
Cauchy-Riemann conditions
Analytic polynomials
Factorization
Description / Notes
The journal version of this paper appears in Mathematics and Computers in Simulation 104 (2014) 43-57. (http://dx.doi.org/10.1016/j.matcom.2013.03.013/) ∗ Corresponding author: fax +34 942 201 402 Email addresses: tomas.recio@unican.es (Tomas Recio), rafael.sendra@uah.es (J. Rafael Sendra), taberalf@unican.es (Luis Felipe Tabera), carlos.villarino@uah.es (Carlos Villarino). URLs: http://www.recio.tk (Tomas Recio), http://www2.uah.es/rsendra/ (J. Rafael Sendra), http://personales.unican.es/taberalf/ (Luis Felipe Tabera).
Second and fourth authors belong to the Research Group ASYNACS (Ref. CCEE2011/R34).
Project
info:eu-repo/grantAgreement/MICINN//MTM2011-25816-C02-01/ES/ALGORITMOS Y APLICACIONES EN GEOMETRIA DE CURVAS Y SUPERFICIES/
info:eu-repo/grantAgreement/MICINN//MTM2008-04699-C03-01/ES/VARIEDADES PARAMETRICAS: ALGORITMOS Y APLICACIONES/
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/submittedVersion
Publisher's version
http://dx.doi.org/10.1016/j.matcom.2013.03.013
Rights
© IMACS/Elsevier B.V., 2014
Access rights
info:eu-repo/semantics/openAccess
Share
 
Abstract
Motivated by previous work on the simplification of parametrizations of curves, in this paper we generalize the well known notion of analytic polynomial (a bivariate polynomial $P(x,y)$, with complex coefficients, which arises by substituting $z \rightarrow x+\ii y$ on a univariate polynomial $p(z)\in \mathbb{C}[z]$, i.e. $p(z)\rightarrow p(x+\ii y)=P(x, y)$) to other finite field extensions, beyond the classical case of $\mathbb{R}\subset \mathbb{C}$. In this general setting we obtain different properties on the factorization, {\it gcd}'s and resultants of analytic polynomials, which seem to be new even in the context of Complex Analysis. Moreover, we extend the well-known Cauchy-Riemann conditions (for harmonic conjugates) to this algebraic framework, proving that the new conditions also characterize the components of generalized analytic polynomials.
Files in this item
FilesSizeFormat
View
CauchyRiemmanVersionRepositorio.pdf342.2KbPDF
FilesSizeFormat
View
CauchyRiemmanVersionRepositorio.pdf342.2KbPDF
Collections
  • MATEMATIC - Artículos [143]

Contact Us | Send Feedback | About DSpace
¡CSS Válido!@mire NV
¡CSS Válido!@mire NV
 

 

Browse

All of e_BuahCommunities y CollectionsIssue DateAuthorsTitlesSubjectsIn this CollectionIssue DateAuthorsTitlesSubjects

My Account

My e_BuahCreate account

Help

What is e-Buah?Guide e_BuahDeposit documentsFAQContact us

Statistics

View Usage Statistics

Information

Open Science. Open accessOpen access PolicyPublishing permissionsCopyrightResearch datae-cienciaDatos RepositoryPlan de Gestión de Datos

Los contenidos se difunden en


Contact Us | Send Feedback | About DSpace
¡CSS Válido!@mire NV
¡CSS Válido!@mire NV