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y Diego, pues porque se lo merecen. Me temo que, al igual que mi madre, todav́ıa no

iii



iv
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Resumen

Recientes estudios han identificado la inatención (incluyendo distracción y somnolencia)
como la mayor causa de accidentes, siendo responsable de al menos un 25% de ellos. La
distracción en conductores se ha estudiado menos, ya que depende de muchos factores,
aunque representa un mayor riesgo que la fatiga. Además, la distracción está presente
en más de la mitad de los accidentes causados por algún tipo de inatención. Cada d́ıa
existen más sistemas de información embarcados en los veh́ıculos (In Vehicle Information
Systems, IVIS), lo que incrementa el riesgo de provocar distracciones y modifica el com-
portamiento de los conductores. Esto hace que las investigaciones en este ámbito sean de
vital importancia.

Para abordar el análisis de las distracciones durante la conducción, distintos grupos
de investigadores han trabajo en diversas técnicas, entre las que destaca la Visión por
Computador dado que permite, mediante el uso de tecnoloǵıa relativamente barata, la
monitorización del conductor de forma no intrusiva. Mediante técnicas de visión como el
seguimiento facial se puede evaluar su movimiento con objeto de caracterizar el estado de
atención del conductor.

En esta tesis se presentan varias técnicas de visión 3D usando una cámara estéreo para
obtener en tiempo real y de forma completamente automática la dirección de la cara y de
la mirada de una persona. A partir de esta información se infieren las distracciones en el
conductor. Los métodos aqúı mostrados funcionan de forma completamente automática
e independiente del usuario.

Para detectar la dirección de la cara del conductor, primero se crea un modelo 3D no
denso usando las coordenadas de puntos caracteŕısticos de la misma, obtenidos gracias al
par de cámaras estéreo. Durante la ejecución del algoritmo, se hace un seguimiento de los
puntos caracteŕısticos, mientras el modelo se va ampliando y corrigiendo automáticamente
cuando nuevas partes de la cara, previamente ocultas, se hacen visibles a las cámaras.

Se evalúan varias técnicas para la determinación y seguimiento de los puntos del mod-
elo. Primeramente se estudia el comportamiento de un seguidor basado en descriptores
SURF, por ser una de las técnicas más ampliamente usadas en visión. Sin embargo,
debido a las condiciones de baja iluminación y lo suaves que son los contornos de una
cara, esta técnica no produce buenos resultados. Este hecho, unido al elevado coste com-
putacional de la misma, hacen que dicha técnica sea descartada. Por ello, se diseña una
técnica de seguimiento mediante correlación multisize (multitamaño), basada en el uso
de parches de distintos tamaños a una misma escala. Esta técnica ofrece una leve mejora
en el posicionamiento y tiempos de ejecución con respecto al uso de parches multiescala.
Esta técnica es robusta gracias a la aportación de los parches más grandes, y es de más
precisión gracias a los parches más pequeños.

La cara puede rotar en un rango horizontal de ±90◦, lo que hace que la apariencia de
los puntos caracteŕısticos cambie notablemente. Para abordar este problema, se introduce
una técnica novedosa de re-registering para robustecer el seguimiento de las caracteŕıs-
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ticas que forman el modelo, aprovechando las vistas que se tienen de la cara desde las
distintas cámaras. La muestra de cada caracteŕıstica que se tiene almacenada y se usa
para la localización del punto 2D sobre la cara se va actualizando conforme la cara rota,
aprovechando los puntos de mı́nimo error en la estimación de la pose. De este modo, cada
muestra solo se usa en el tracking en un rango de ±7, 5◦.

Puesto que el modelo se crea inicialmente con una vista frontal de la cara, solo se
pueden capturar puntos caracteŕısticos de la parte frontal. Cuando se producen rotaciones,
algunos de esos puntos se ocultan, por lo que se hace necesario añadir nuevos puntos al
modelo para evitar que el número de puntos visibles disminuya. Tras añadir puntos de
partes de la cara previamente ocultas, se ejecuta un Bundle Adjustment para reducir el
error acumulativo que se puede producir al añadir puntos.

El modelo 3D de la cara sirve de apoyo para reconstruir la posición 3D de la misma
usando uno de los dos algoritmos evaluados, bien sea POSIT o Levenberg-Marquardt,
siendo el primero más rápido, y LM más preciso. Además, un proceso RANSAC permite
detectar puntos incorrectos o outliers, y descartarlos para la estimación de la pose. Gracias
a la unión de todos los métodos mencionados, se consigue un sistema de seguimiento que
funciona en el rango completo de rotación de la cara, y que mejora los resultados del
estado del arte.

A la estimación de la pose de la cara se añade una estimación de la dirección de la
mirada y del punto de focalización de la misma. Estos datos aportan gran información
sobre el comportamiento del conductor y su grado de distracción.

En el desarrollo de la tesis se evalúan y comparan las distintas técnicas mencionadas,
usando para ello una extensa colección de v́ıdeos. El algoritmo de estimación de la mirada
propuesto en esta tesis se valida mediante un conjunto de experimentos de conducción en
un simulador realista, definidos por un equipo de psicólogos. Se han simulado cambios
climatológicos, maniobras y distracciones debidas a IVIS. Las pruebas han sido realizadas
por conductores profesionales.

Los resultados estad́ısticos obtenidos sobre la fijación de la mirada muestran cómo
la utilización de IVIS influye en el comportamiento de los conductores, incrementando
sus tiempos de reacción y afectando a la fijación de su mirada sobre la carretera y sus
alrededores.



Abstract

Recent studies have identified inattention (including distraction and drowsiness) as the
main cause of accidents, being responsible of at least 25% of them. Driving distraction has
been less studied, since it is more diverse and exhibits a higher risk factor than fatigue.
In addition, it is present over half of the inattention involved crashes. The increased
presence of In Vehicle Information Systems (IVIS) adds to the potential distraction risk
and modifies driving behaviour, and thus research on this issue is of vital importance.

Many researchers have been working on different approaches to deal with distraction
during driving. Among them, Computer Vision is one of the most common, because it
allows for a cost-effective and non-invasive driver monitoring and sensing. Using Computer
Vision techniques it is possible to evaluate some facial movements that characterise the
state of attention of a driver.

This thesis presents methods to estimate the face pose and gaze direction of a person in
real-time, using a stereo camera as a basic for assessing driver distractions. The methods
are completely automatic and user-independent. A set of features in the face are identified
at initialisation, and used to create a sparse 3D model of the face. These features are
tracked from frame to frame, and the model is augmented to cover parts of the face
that may have been occluded before. The algorithm is designed to work in a naturalistic
driving simulator, which presents challenging low light conditions.

We evaluate several techniques to detect features on the face that can be matched
between cameras and tracked with success. Well-known methods such as SURF do not
return good results, due to the lack of salient points in the face, as well as the low illumi-
nation of the images. We introduce a novel multisize technique, based on Harris corner
detector and patch correlation. This technique benefits from the better performance of
small patches under rotations and illumination changes, and the more robust correlation
of the bigger patches under motion blur.

The head rotates in a range of ±90◦ in the yaw angle, and the appearance of the
features change noticeably. To deal with these changes, we implement a new re-registering
technique that captures new textures of the features as the face rotates. These new
textures are incorporated to the model, which mixes the views of both cameras. The
captures are taken at regular angle intervals for rotations in yaw, so that each texture is
only used in a range of ±7.5◦ around the capture angle. Rotations in pitch and roll are
handled using affine patch warping.

The 3D model created at initialisation can only take features in the frontal part of the
face, and some of these may occlude during rotations. The accuracy and robustness of
the face tracking depends on the number of visible points, so new points are added to the
3D model when new parts of the face are visible from both cameras. Bundle adjustment
is used to reduce the accumulated drift of the 3D reconstruction.

We estimate the pose from the position of the features in the images and the 3D model
using POSIT or Levenberg-Marquardt. A RANSAC process detects incorrectly tracked
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points, which are not considered for pose estimation. POSIT is faster, while LM obtains
more accurate results. Using the model extension and the re-registering technique, we
can accurately estimate the pose in the full head rotation range, with error levels that
improve the state of the art.

A coarse eye direction is composed with the face pose estimation to obtain the gaze
and driver’s fixation area, parameter which gives much information about the distraction
pattern of the driver. The resulting gaze estimation algorithm proposed in this thesis
has been tested on a set of driving experiments directed by a team of psychologists in a
naturalistic driving simulator. This simulator mimics conditions present in real driving,
including weather changes, manoeuvring and distractions due to IVIS. Professional drivers
participated in the tests.

The driver’s fixation statistics obtained with the proposed system show how the utili-
sation of IVIS influences the distraction pattern of the drivers, increasing reaction times
and affecting the fixation of attention on the road and the surroundings.
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Notation

Face pose

Xi= (xi, yi, zi) : Coordinates in R3 of the 3D feature point i, in word coordinates

N0 : Initial number of points 3D points in the face model

N : Number of points 3D points in the face model after any extension

X
(M)
i = (xi, yi, zi) : Coordinates in R3 of the 3D face model feature point i in object coordinates

M= {X
(M)
i }i=1...N : 3D face model and set of 3D points which from the model, in object coordinates

P : (Vx, Vy, Vz, Tx, Ty, Tz) 6 DoF parametric pose vector of the face, composed of the

rotation vector V and translation T

{R, T} : Rotation and translation matrices, representing the 3D face model pose

R′ : 3× 3 corrected Rotation matrix to diminish the translation effect

I
{r,l}
t : Right/Left camera images, at frame t

I
{r,l}
0 : Right/left camera images at model creation, frame t = 0

xr
i,t= (ur

i , v
r
i ) : (R2) Projection on Ir of the 3D face model point Xi

xl
i,t= (ul

i, v
l
i) : (R2) Projection on I l of the 3D face model point Xi

T(r) : Template descriptor of feature i on image Ir, or texture for patch correlation

Ti : Model stored texture of feature i

Ci= {T
(j)
i }j=0,1,... : Cluster of model stored textures for feature i

P ′
i : Warped patch Pi → P 1

i

P r
i,t : Patch in the right camera image Irt

P l
i,t : Patch in the right camera image I lt

hr
i= (ur

i , v
r
i ) : Coordinates in R2 of a feature candidate i on Ir0

hl
i= (ul

i, v
l
i) : Coordinates in R2 of a feature candidate i on I l0

n′ : Number of feature candidates in the face model

P r
ik= P (hr

i , sk) : Patch template around projection point hr
i on Irand size sk = skx × sky

rli,k(u, v) : Correlation results on I lafter correlating patches of size sk = skx × sky

rli(u, v) : Matching result on I l, by composing all the rli,k(u, v)

ssearch : (xsearch × ysearch) ∈ R2. Search area for a feature within the image

Gaze

~g : Unitary gaze vector

Tg : Point of origin of the gaze vector

G= {Tg, ~g} : Gaze estimation (Origin and direction)

~e : Eyes direction in model coordinate frame system

~eoff : Offset to eyes’ centre with respect to the model’s centre mo, in model coordinate frame
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Chapter 1

Introduction

1.1 Motivation

Since Computer Vision beginnings, one of first challenges that researches have been trying
to solve is the Interactive human-machine interfacing. Face pose and the focus of attention
include a lot of information on human non-verbal language. People have the innate ability
to detect the orientation of a human head, and easily capture the significant and non-
verbal communication contained in these movements. Providing a robot with such ability
has been and still is an intensive field of study. The face pose gives a lot of information
in a communication process, on one hand in the intended movements, such as focusing
attention on a area or looking at someone, and in the other hand in the unintended
movement, such as face down while talking to other person. For a robot to be able to
naturally interact to a person, it first needs to be able to estimate her face pose and her
gaze. Gaze estimation can provide a user-machine interface with higher and better user
experience, since communication will no be limited to manual interaction.

Another important field for the face pose estimation systems is the automotive in-
dustry. Since its early start, manufacturers have always dedicated plenty of resources to
innovation, leading to many advances in the automotive technology. Better and more
efficient engines, reduced production cost and more comfort lead to an important increase
in the number of vehicles circulating. This situation has increased demands for safety and
manufacturers are now focusing more and more on vehicle safety.

Driving inattention is a major factor to traffic crashes. In the EU-27, 42,854 people
died in 2007 in traffic accidents [UN-ECE 07], and 44,400 people lost their lives in 2006
[Mahieu 09]. That year, over 1.25 million accidents took place and more than 1.5 million
people were injured [SafetyNet 08]. Inattention has been found to be involved in some form
in 80% of crashes and 65% of the near crashes within 3 seconds of the event [Dingus 06]. In
an effort to reduce these figures, the European Commission set up in 2003 the European
Road Safety Action Programme (2003-2010) [EC 03], which aims to halve the number
of victims in road accidents by 2010. On the other hand, the National Highway Traffic
Safety Administration (NHTSA) estimates that approximately 25% of police-reported
crashes involve some form of driving inattention [Ranney 01]. The study of American
Automobile Association Foundation for Traffic Safety (AAA FTS) showed the driving
attention status has five categories: attentive, distraction, cognitive distraction (looking
without seeing), fatigue and unknown [Ranney 01]. In this thesis, we will focus on the
distraction category.

Driving distraction is defined by the AAA FTS as occurring “when a driver is delayed
in the recognition of information needed to safely accomplish the driving task because
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some event, activity, object or person within or outside the vehicle compelled or tended
to induce the driver’s shifting attention away from the driving task” [Young 07]. Thir-
teen types of potentially distracting activities are listed in [Stutts 01]: eating or drinking,
outside person, object or event, talking or listening on cellular phone, dialling cellular
phone, using in-vehicle-technologies, etc. Since the distracting activities take many forms,
NHTSA classifies distraction into 4 categories from the view of the driver’s functionality:
visual distraction, cognitive distraction, auditory distraction (e.g., responding to a ring-
ing cell phone), and biomechanical distraction (e.g., manually adjusting the radio volume)
[Ranney 01]. Many distracting activities can involve more than one of these components
(e.g., talking to a phone while driving creates a biomechanical, auditory and cognitive
distraction). Driving distraction is more diverse and implies a more risky factor that
fatigue and it is present in over half of inattention involved crashes, resulting in as many
as 5000 fatalities and $40 billion in damages each year [Stutts 01]. Increasing use of in-
vehicle information systems (IVIS) such as cell phones, GPS navigation systems, DVDs
and satellite radios and other on-board devices has exacerbated the problem by introduc-
ing additional sources of distraction [Ranney 08]. Enabling drivers to benefit from IVIS
without diminishing safety is an important challenge.

The purpose of a Driver Inattention Monitoring Application (DIMA) is to monitor the
attention status of the driver. If driver inattention is detected, different countermeasures
should be taken to maintain driving safety, depending on the types and levels of inatten-
tion. DIMA has been an active research field for decades. A large amount of scientific
work has been done in this field, and various methods have been proposed. Some auto
companies have already installed some simple function driver fatigue monitoring systems
in their high-end vehicles. Yet, there is still a great need to develop a more reliable
and fully functional DIMA, using cost efficient methods for a real driving context. It is
believed that the development of signal processing and computer vision techniques will
attract more attention to the study of this field in the coming years. With the intention
of benefiting those interested in this field, this thesis gives a comprehensive review of the
state of the knowledge on driver distraction. It thus provides a clear view of the previous
achievements and the issues that still need to be considered.

1.2 Distraction effects on driving behavioural performance

Performing a cognitively demanding task while driving would influence the driver’s visual
and physiological behaviour and the driving performance.

1.2.1 Driver’s visual behaviour

With an increase in the cognitive demand, many drivers change their inspection patterns
on the forward view. [Angell 06] indicated that the eye-glance pattern could be used
to discriminate driving while performing a secondary task from driving alone, and could
be used to discriminate high- from low-workload secondary tasks. More facts associated
with cognitive distraction driving can be found in [Harbluk 07] - [Rantanen 99]: drivers
narrowed their inspection of the outward view and spent more time looking directly ahead.
They reduced their inspection of the instruments and mirrors, and reduced their glances
at traffic signals and the area around an intersection. [Rantanen 99] found that the visual
field shrank by 7.8% during a moderate-workload counting task and by 13.6% during a
cognitively demanding counting task. Drivers had fewer saccades per unit time, which
was consistent with a reduction in glance frequency and less exploration of the driving
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environment, and in some cases drivers shed these tasks completely and did not inspect
these areas at all [Harbluk 02]. [Hayhoe 04] showed links between eye movement (fixation,
saccade, and smooth pursuit), cognitive workload, and distraction. Fixations occur when
an observer’s eyes are nearly stationary. Saccades are very fast movements that occur
when visual attention shifts from one location to another. Smooth pursuits occur when
an observer tracks a moving object such as a passing vehicle. Saccade distance decreases
as task complexity increases, which indicates that saccades may be a valuable index of
mental workload [Greef 09]. In contrast, the amount of head movement increased when
cognitive loads were imposed. It is believed to be a compensatory action by which a
driver attempts to obtain a wider field of view [Miyaji 09]. Miyaji proposed that the
standard deviations of eye movement and head movement could be suitable for detecting
the states of cognitive distraction in subjects. Both cognitive and visual distractions
caused gaze concentration and slow saccades when drivers looked at the roadway, and
cognitive distraction increased blink frequency [Liang 10]. Liang and Lee found in their
work that visual distraction resulted in frequent, long off-road glances. A report from
the Safety Vehicle Using Adaptive Interface Technology (SAVEIT) program showed that
eyes-off-road glance duration, head-off-road glance time, and Standard Deviation of Lane
Position (SDLP) are good measures of visual distraction [Zhang 08].

1.2.2 Driver’s physiological responses

When cognitive loads (conversation or arithmetic) were imposed on subjects, pupil dila-
tion occurred by the acceleration of the sympathetic nerve [Miyaji 09]. The average heart
rate also increased by approximately 8 beats per minute. However, the average value of
the heart rate (RRI) decreased under the same situation. [Itoh 09] pointed out that per-
forming a cognitively distracting secondary task (e.g., talking, thinking about something,
etc.) during driving caused a decrease in the driver’s temperature at the tip of the nose,
and this effect was reproducible. It was reported in [Wesley 10] that a considerable and
consistent skin temperature increase in the supraorbital region could be observed dur-
ing cognitive and visual distractions. [Berka 07] found that the electroencephalography
(EEG) signal also contained information about the task engagement level and mental
workload.

1.2.3 Driving performance

Significant changes were observed in a driver’s vehicle control as a consequence of per-
forming the additional cognitive tasks while driving. [Ranney 08] found that distraction
may be associated with lapses in vehicle control, resulting in unintended speed changes or
allowing the vehicle to drift outside the lane boundaries. [Zhou 08] found the influences on
the lane changing behaviour when a secondary task was being performed, which included
a reduction in the frequency of the checking behaviour (check a side mirror or speedome-
ter), a delay in the checking behaviour, and a longer time for the checking behaviour.
[Carsten 05] found that the effects of cognitive distraction on driving performance differed
considerably from those of visual distraction. Visual distraction affects a driver’s steering
ability and lateral vehicle control, while cognitive distraction affects longitudinal vehicle
control, particularly car-following. [Liang 10] also found that cognitive distraction made
steering less smooth, but improved lane maintenance. According to them, steering neglect
and overcompensation are associated with visual distraction, while under-compensation
is associated with cognitive distraction. Overall, visual distraction interferes with driving
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performance more than cognitive distraction. An apparently anomalous finding is that
when secondary task cognitive demands increased, a driver’s lateral control ability was
found to improve [Carsten 05]. [Harbluk 07, Harbluk 02] related an increased incidence
of hard braking associated with cognitive distraction driving.

1.3 Driver distraction monitoring system approaches

In the scientific literature there are four main categories according to the measurement
signals they used to detect distractions: biological signals, driving signals, driver images
and hybrid measures. In this section, the main researches of the four main types of
measures will be explored.

1.3.1 Driver biological measures

Biological signals include electroencephalogram (EEG), electrocardiogram (ECG), electro-
oculogram (EOG), electromyogram (EMG), etc. These signals are collected through elec-
trodes in contact with the skin of the human body and consequently they are intrusive
systems [Berka 07, Skinner 07]. Only few works, focusing in cognitive distractions, have
been reported in the literature using this kind of approach. Most of them have been anal-
ysed in operational environments and not in driving ones. The reason may be that using
biological signal to analyse distraction level is too complicated and no obvious pattern can
be found. [Berka 07] tried to use EEG data to continuously and unobtrusively monitor
the levels of task engagement and mental workload in an operational environment. An
inspection on the EEG data using a second-by-second timescale revealed associations be-
tween the workload and engagement levels when aligned with specific task events, which
provided preliminary evidence that second-by-second classifications reflect parameters of
task performance. In [Liu 10], the Kernel Principal Component Analysis (KPCA ) al-
gorithm was employed to extract nonlinear features from the complexity parameters of
EEG (approximate entropy (ApEn) and Kolmogorov complexity (Kc)) and improved the
generalisation performance of a Hidden Markov Models (HMM). The result showed that
both complexity parameters decreased significantly as the mental workload increased, and
the classification accuracy reached was about 84%.

1.3.2 Driving performance measures

Vehicle signal reflects driver’s action, then, measuring vehicle signal driver’s state can be
characterised in an indirect way. Force on pedals, vehicle velocity changes, steering wheel
motion, lateral position or lane changes are normally used in this category. [Farid 06]
tried to distinguish between attentive and inattentive driving in car-following situations
by analysing the vehicle following distance and steering angle. They built a real time
model using Hidden Markov Models with Gaussian Mixtures to infer the intentions of the
driver, and this model was able to detect a lane change half a second earlier than con-
ventional approaches. In [Wakita 05], a Gaussian Mixture Model was adopted to identify
the driver based on the driving behaviour signals: forces on the pedals and vehicle ve-
locity. [Torkkola 04] adopted the steering wheel position, accelerator pedal position, lane
boundaries, and upcoming road curvature to infer driver status. First, the original signals
were preprocessed, which yielded a huge set of features. Then, the Random Forest (RF)
technique was employed to select the optimal parameters from the derived features. The
classifier was also constructed using RF, and the final accuracy reached 80%. In [Ersal 10],
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a radial-basis neural-network-based modelling framework was developed to characterise
normal driving behaviour. Then, in conjunction with a Support Vector Machine (SVM),
it was able to classify normal and distracted driving. Vehicle dynamics and driving per-
formance data such as: vehicle position, velocity, and acceleration, as well as throttle and
brake pedal positions were adopted to model normal driving. The average and standard
deviations of the residuals (the differences between the actual and model-predicted driver
actions) were chosen as the inputs for the SVM. The results showed that the accuracy
varied between individuals.

The advantage of these approaches is that the signal is meaningful and the signal ac-
quisition is quite easy. This is the reason because the few commercial systems existing
nowadays use this technique [Volvo 10, Mercedes-B. 08]. However, they are subject to
several limitations such as vehicle type, driver experience, geometric characteristics, con-
dition of the road, etc. Then, these procedures require a considerable amount of time to
analyse user behaviours and therefore, they do not work with the so called micro-sleeps
-when a drowsy driver falls asleep for a few seconds on a very straight road section without
changing the vehicle signals.

1.3.3 Driver visual measures

Approaches based on image processing are effective because of the occurrence of distrac-
tion are reflected through the driver’s face appearance and head/eyes activity. Different
kinds of cameras and analysis algorithms have been employed in this approach. We group
them according to the camera they adopted, including visible spectrum monochrome cam-
eras, IR cameras or stereo cameras.

1. Methods based on visible spectrum camera

The simplest hardware setup is a visible spectrum image acquisition system, but the
processing algorithm is relatively complicated, because the problem of face and eyes
segmentation could not be avoided. In [Rongben 04] skin colour information is used
to segment the face region. This is based on computationally expensive initialisa-
tions and is not robust to different lighting conditions and different skin colours. In
[Brandt 04] face region is detected with a boosted cascade of Haar-like features, and
eyes are extracted by assuming they are the darkest regions in the face, then eye
blinks are measured by analysing the optical flow of eye region. But it needed 5s for
processing a single image. In [Sun 07] face is detected using adaptive boosting, eyes
are located using a template matching method, and gaze is estimated by combining
Hough transform and gradient direction. Eye activities do not only contain fatigue
information but also distraction information. In [Su 06] a simple approach is pro-
posed to detect driving distraction. After facial area is segmented they perform p-tile
algorithm and k-means clustering to locate the eyes. There is a fact that different fa-
cial orientations correspond to different types of triangle consist of the locations of the
two eyes and the centre of the face. They cluster facial orientation into five clusters:
frontal, left, right, up, and down. After facial orientation is obtained, a threshold
is made to determine if distraction occurs. Besides analysis of eye activities, mouth
activities are also analysed in some researches [Rongben 04, Fan 07, Vural 07] to
estimate driving inattention level. In [Rongben 04] they use BP ANN to estimate
3 mouth states from lip features: normal, yawning and talk. [Vural 07] uses a Lin-
ear Discriminant Analysis (LDA) to classify the mouth into two states: normal and
yawning.
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Facial expressions also indicate the presence of distraction. In [Rongben 04], the
authors use Facial Action Coding System (FACS) to code facial expression. They
employ machine learning to discover what facial configurations are predictors of
distraction. This system claims to be able to predict sleep and crash episodes with
96% accuracy within subjects and above 90% accuracy across subjects. But this
system operates at only 6 frames per second on a Mac G5 dual processor with
2.5GHz.

A commercial eyetracker is also employed in some research. [Blaschke 09] uses an
off-the-shelf eye-tracker to get head pose and eye gaze signal and it models the visual
distraction level as a time dependency of the visual focus, with the assumption that
the visual distraction level is nonlinear: visual distraction increases with time (the
driver looks away from the road scene) but decreases nearly instantaneously (the
driver refocuses on the road scene). Based on the pose/eye signals they established
their algorithm for visual distraction detection: first, there is a distraction calculation
to compute the instantaneous distraction level, second, there is a distraction decision-
maker to determine if the current distraction level represents a potentially distracted
driver.

2. Methods based on IR camera

Many researches have adopted image acquisition systems based on infrared illumi-
nation (IR). The use of IR serves three purposes: firstly, it minimises the impact of
different ambient lighting conditions; secondly, it allows producing the bright pupil
effect, which makes the eye detection easier; thirdly, since near-infrared is barely
visible to the driver, this will minimise any interference with the driver’s driving.
Because of bright pupil effect the eye can be detected directly, which eliminates
the face segmentation and reduces time cost. In [Ji 02] driver’s distraction is also
detected through face pose estimation. There exists a relationship between face
orientation and seven pupil parameters: inter-pupil distance, sizes of left and right
pupils, intensities of left and right pupils, and ellipse ratios of left and right pupils.
They use eigenspace algorithm to map these seven pupil features to face orienta-
tion which is quantised into seven angles: -45, -30, -15, 0, 15, 30 and 45 degree.
Besides face orientation, they estimate gaze direction based on information of head
movement and relative position between pupil and glint. Like face orientation, gaze
direction is quantised into nine zones: left, front, right, up, down, upper left, upper
right, lower left, and lower right.

[Cudalbu 05] uses a similar image acquisition hardware. To estimate the head pose
they employ one headband with IR reflective markers, through which they get a 6
DOF head pose with the average error of 0.2 degree. Incorporated with this head-
band, they use a simplified 3D eyeball model to estimate the gaze orientation with
an accuracy varied from 1 degree to 3 degree. [Huang 07] gets the pupil location
from a single image: first, getting pupil candidates through Sobel edges, then identi-
fying pupils using SVM with a Gaussian Kernel. In [Jiao 07] a Round Template Two
Values Matching algorithm is proposed to locating the bright pupil, which gets an
accuracy of 96.4% but consumes 1.01 seconds per frame on a PIII 800MHz computer.

Some commercial products measuring driver’s states are already available on the
market, such as SmartEye AntiSleep [Zhou 08, Skinner 07] and SeeingMachines DSS
[Carsten 05, Liu 10]. Both of them use two IR illuminators to enhance their robust-
ness to lighting condition, and employ only one camera to give 3D information.
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However, they are focusing on detecting fatigue, not distraction, and they are still
limited to some well controlled environments.

3. Methods Based on Stereo Camera

Stereo cameras are also employed to estimate driver state. In [Eren 07] two standard
web-cameras are employed to make a 3D image acquisition system. They extract
face from the disparity map on the assumption that the driver face has smaller depth
than background. After face region is extracted they perform embedded HMM to
recognise the forehead, eyes, nose, mouth and chin, from which the driving fatigue
level can be estimated. The commercial products based on 3D camera technology
such as Smart Eye Pro [Skinner 07] and Seeing Machines faceLAB [SeeingMach. 10],
can provide measurements of head pose, eyebrow, eye, nose, and mouth.

In conclusion, different kinds of cameras and analysis algorithms have been employed in
this approach: methods based on visible spectrum camera, methods based on IR camera,
and methods based on stereo camera. Some of them are commercial products as: Smart
Eye [Zhou 08], Seeing Machines DSS, Smart Eye Pro and Seeing Machines faceLABr.
However, these commercial products are still limited to some well controlled environments,
so there is still a long way to go estimate driver’s distraction state. On the other hand,
most works existing in the literature were designed for visual distraction detection, less
for cognitive and none on auditory and biomechanical distraction detection.

1.3.4 Hybrid measurements

Combining driver physical and driving performance measurements could intuitively in-
crease the inattention detection confidence. On the other hand, road scene analysis and
observations of the driver’s face would make it possible to estimate what the driver knows,
what the driver needs to know, and when the driver should know it. Combining driver gaze
information with road scene information offers several potential benefits: context relevant
information selection, unnecessary information suppression, and anticipatory information
selection.

In [Zhou 08], the standard deviations of eye gaze, head orientation, pupil diameter, and
average heart rate (RRI) were combined to improve the accuracy of the driver cognitive
distraction detection. The eye and head parameters were obtained using faceLAB, while
the RRI data came from ECG. In their work two machine learning techniques, SVM and
Adaboost, were implemented under the same conditions. The results showed that the
classification performance of Adaboost was slightly better than that of SVM, while the
recognition time of Adaboost was approximately 1/26 that of the SVM.

[Sathyanara. 08] tried to detect distraction by combining motion signals from the leg
and head with vehicle signals. The motion signals included the 3-axis acceleration of the
right leg and 2-axis orientation of the head. The vehicle signals adopted included vehicle
speed, braking, acceleration, and steering angle. Then, a group of features were derived
from these signals based on the nature of the signals. Next, these derived features were
analysed using LDA to reduce the dimension. Then, a K-Nearest Neighbours classifier
was trained and verified.

In order to cope with the variability that exists between drivers and manoeuvres
[Sathyanara. 10] utilised a Gaussian Mixture Model (GMM)/Universal Background Model
(UBM) and likelihood maximisation learning scheme to first identify the driver through an
audio signal and then recognise the manoeuvres (right/left turn and lane change) through
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CAN-bus signals. Finally, the CAN-bus signals were also used to detect distraction for a
particular driver and particular manoeuvre. It was reported that this system could reach
an accuracy of 70% for distraction detection. [Doshi 09] fused head orientation detection
and a saliency map of the surroundings to determine whether there was a salient object
in the driver’s view, which gave an indication of whether a driver’s head turn was mo-
tivated by the goal in his mind or some distracting object/event in the environment. It
is known that road geometry influences gaze behaviour and this aspect was taken into
account by including road geometry as an additional factor when detecting driver distrac-
tion in [Weller 09]. They utilised an analysis of variance (ANOVA) and binary logistic
regression to analyse and establish a model for distraction detection based on gaze vari-
ables and driving data: fixations (number and duration), scan path, standard deviation
of gaze location, speed (minimum, maximum, average and percentage change in speed),
lateral acceleration (maximum), and longitudinal deceleration (maximum). The results
showed that the road geometry does influence the accuracy of distraction detection based
on driving data, but gaze behaviour is mainly influenced by distraction, with little or no
influence by road geometry.

[Liang 07] tried to detect the driver cognitive distraction caused by interacting with
IVIS in real time by fusing eye movement and driving performance using an SVM. The
measured signals included fixation, saccade, smooth pursuit of eye (calculated from raw
gaze vector obtained using faceLAB [Skinner 07]), steering wheel angle, lane position,
and steering error. These measurement were summarised over various windows to create
instances that became the SVMmodel inputs. After training, the SVMmodel could detect
driver distraction with an average accuracy of 81.1% (sd = 9.05%). [Lee 07b] utilised
the same conditions as [Liang 07] but adopted a Bayesian network to detect cognitive
distraction, showing that compared to an SVM model, the Dynamic Bayesian Network
produced better accuracy.

[Markkula 05] concentrated on processing head/eye and vehicle performance informa-
tion to estimate both visual and cognitive distractions. The head/eye information derived
from stereo cameras included head position, head orientation, gaze orientation, saccade,
and blink identification, as well as confidence values. The vehicle performance information
included lane position, vehicle speed, etc. Based on the head/eye information, they devel-
oped Gaze-World Mapping and Eyes-Off-Road Detection, which could detect momentary
visual distraction. Another algorithm, visual time sharing detection, was developed to
measure longer term visual distractions. For cognitive distraction, they used 3 indica-
tors to classify the cognitive tasks with an SVM: the standard deviation of gaze angle,
standard deviation of head angle, and standard deviation of lane position. However, in
the Gaze-World Mapping phase, which mapped gaze and head angles onto actual world
targets of visual attention, the road-ahead target was static and determined offline by in-
specting the distribution of gaze angles for road-ahead data, and then manually enclosing
the distribution in a rectangle.

[Tango 09] proposed a method to derive the distraction level from relevant vehicle and
environment data using the Adaptive Neuro-Fuzzy Inference System (ANFIS). Rather
than a binary“yes”or“no”, they chose Reaction Time as the output to train, validate, and
test their ANFIS model. The candidates to be selected as input for the ANFIS included
the environment visibility, traffic density, and the standard deviations in speed, steering
angle, lateral position, lateral acceleration, and deceleration jerk. After preprocessing,
the level of difficulty of operating an IVIS and the standard deviation of steering angle
were found to have the highest correlations with the reaction time. Thus, they were
selected as the input. However, no accuracy information was provided. [Fletcher 05]
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utilised faceLAB to obtain information such as eye gaze direction, eye closure, and blink
detection, as well as head position information. In this system, upper and lower bounds
were placed on the percentage of time the driver spent observing the road ahead, called
the Percentage Road Centre (PRC) [Victor 05]. A percentage that was too high (>90%)
could indicate a fatigued state (e.g., vacant staring). A percentage that was too low (
<20%) might indicate a distracted state (e.g., tuning radio). Similar to the PRC metric,
they analysed driver gaze to detect even shorter periods of driver distraction. They used
gaze direction to reset a counter. When the driver looked forward at the road scene,
the counter was reset. If the driver’s gaze diverged, the counter began timing. When
the gaze had been diverted for more than a specified time period, a warning was given.
The time period for the permitted distraction was a function of the vehicle velocity.
As the speed increased, the permitted time period would decrease, either as the inverse
(reflecting time to impact) or the inverse squared (reflecting the stopping distance). They
tried to integrate driver’s gaze information into other driver assist systems to make the
system more acceptable and safer. The framework is shown in figure 1.1. They also spent
a significant amount of effort on integrating driver gaze information into lane tracking
and sign reading systems. The lane tracking system was used to orient the driver gaze
information. A strong correlation was found to exist between the eye gaze direction and
the curvature of the road during normal driving [Apostolo 02], with low correlation being
a potential indicator of inattention. [Fletcher 05] integrated driver visual information with
sign detection to implement a Sign Driver Assist System. This system recognised critical
signs in the environment. At the same time, the driver monitoring system verified whether
the driver looked in the direction of the sing. If it appeared that the driver was aware
of the sign, the information could be made available passively to the driver. In contrast,
if it appeared that the driver was unaware of the information, it could be highlighted in
some way.

A driver’s body posture information is potentially related to driver intent, driver af-
fective state, and driver distraction. [Tran 10] explored the role of 3D driver posture
dynamics in relation to other contextual information (e.g., head dynamics, facial features,
and vehicle dynamics) for driver assistance. It focused on head pose and upper body
posture extraction, but no significant results on driver assistance were found.

Figure 1.1: Systems integration with gaze information [Fletcher 05].
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1.4 General objectives of this thesis

From this review of the State of the art we can conclude that in-vehicle and portable
information and entertainment technologies are emerging rapidly, making it increasingly
difficult to determine the scope of the potential distraction problem. To date, naturalistic
scenarios providing incidence data on distracting activities have been small-scale studied.
An effort is needed to study distraction problem using naturalistic situations.

There are different proposals to detect distractions but, to date, they are focusing
in some kind of distractions and they do not solve the problem in a general way. Few
works has been reported for distraction detection using Driver Biological Measures. This
is because using biological signal to analyse distraction level is too complicated and no
obvious pattern can be found. Then, individual patterns vary between individuals.

Driver Physical Measures and Driving Performance Measures are the most promising
methods in the real driving context, because neither rely on intrusive measurements that
might affect the driver. Vehicle signal reflects driver’s action and the driver’s action is the
end stage in the driver’s information process. But when the brain’s automation function
works the driver could drive the vehicle as normal even inattention distraction occurs,
which means when distraction occurs the vehicle signal may not reflect the occurrence.
Then, this is a driver dependable approach. On the other hand, many of the researches
claimed very high detection accuracies, which are true only for their particular hypothesis
of distraction definitions. These definitions usually cover a limited region of the whole
distraction definition.

On the other hand, since most of the occurrence of distraction can be reflected through
the driver’s face appearance and head/face activity, the Driver Physical Measures based
on Image Processing are effective to detect distraction level. Different kinds of cameras
and analysis algorithms have been employed in this approach, and two main stages exist:
the first one is producing 2D/3D space information of the driver’s head/face organs by
image processing, the second one is producing fatigue/distraction level by analysing these
2D/3D information. So far the first stage could produce acceptable result, the research
on this stage would focus on improving its robustness, speed cost effectiveness, reducing
calibration process , etc. There is large room for the research on the second stage. Same
to the other approaches, study on driving distraction is far less active than that on fatigue
detection.

As to distraction detection using Image Processing techniques, mouth activity, gaze
activity and facial expression are employed. Mouth activity is employed to detect distrac-
tion of using cell-phone, while gaze activity is employed for visual and cognitive distraction
detection.

Starting 2004, the RobeSafe Research Group1 from the University of Alcalá, has been
working on driver’s assistance and safety projects, such as driver drowsiness estimation
[Bergasa 06], hazardous conditions [Alcantarilla 08], and driver’s face tracking [Nuevo 09].
In the last of these works, Nuevo exposed a novelty method to robustly track the face
of the driver, using monocular vision. However, the algorithm developed by Nuevo only
works for narrow face rotation angles. To accomplish a correct study on the distraction
sequence and behaviour patterns, it is necessary to accurately track the driver’s face
and gaze over wider rotation angles. This can be achieved with the introduction of a
stereo vision system. Other previous works in the group [Bergasa 06] showed that active-
illumination system could be applied to face tracking and fatigue detection, based on the

1http://www.robesafe.com/

http://www.robesafe.com/
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red-eye effect on the drivers’ pupil.
During the last decades, the number of works related to face tracking and pose estima-

tion has increased, making of this aim a very active research field now a days [Yang 02a].
However, this is still an open problem. Little publications refer to driver distraction pat-
tern and behaviour during real driving. There are only some few commercial companies
offering their products for face pose estimation [SeeingMach. 10, SmartEye 09]. However,
no technical information on their algorithms has been published. Only in recent years
methods tested in real driving conditions have appeared, with some of them using video
sequences that feature drivers in a vehicle. From this, two closely related problems can
be considered. First, to develop pose estimation and tracking techniques able to work
properly on drivers’ faces in real driving situations, and second, to infer distraction level
by analysing gaze estimation.

This thesis presents an unobtrusive driver’s distraction system based on image process-
ing approach. Driver’s gaze direction is obtained from a stereo camera and focalisation
of the gaze in the scene over the time is analysed in order to estimate driver distraction.
Different distraction activities will be inferred in a naturalistic simulator and a study of
the incidence of these distracting activities in the driver will be carried out.

1.5 System requirements

The work of this thesis is focused on generating the necessary tools to estimate drivers’
face pose and gaze on a naturalistic simulator so that some experts in psychology can
analyse driver distractions. This goal implies that the result must be an out-of-the-box
component, easy to work with. Since it is intended for a simulator, an initial installation
and calibration process by qualified personnel is allowed, but after that the system must
be easily operated by non technical personnel. Consequently, operation after installation
must be fully automatic, without requiring any specific driver calibration.

In addition, simulators usually present low light conditions to increase the user immer-
sion feeling. The developed method must work on low light conditions and with a good
precision. We propose to use cameras with high sensibility and an external IR light source
to obtain good face appearance without annoying the driver. However, it’s well known
that IR illumination can produce visual fatigue. To minimise this effect our proposal is
to synchronise an active illumination system with capturing using a relatively low level
intensity. Finally, the system must be able to operate in presence of wide head turns and
must be robust to partial occlusions, different users —with and without glasses— and
slight illumination changes.

As conclusion, the requisites of the system to be developed are the following:

• Two cameras, of visible spectrum with high sensitivity to near-IR, able to provide
at least 30 frames per second.

• Synchronisation hardware to drive both cameras and IR illumination.

• Real-time operation, at the frame rate of the camera.

• Automatic operation with any user.

• Night-time operation.

• Automatic face model generation.
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• Robust operation in presence of wide head turns and movements.

• Robust operation in presence of partial occlusions, either by the driver’s hands
or any other external element.

• Automatic and fast localisation of the face after tracking losses.

• Analysis of the gaze focalisation in the scene.

• Distraction inference from the gaze analysis.

1.6 Document structure

This document is divided in chapters, of which this introduction is the first one.
Chapter 2 reviews the State of the art on face pose estimation techniques, as well as

3D reconstruction and tracking methods.
Chapter 3 introduces the general architecture of the method proposed in this thesis for

face pose estimation. The details of the proposal are explained in chapters 4 and 5, which
describe how a 3D face model is created and the methodology to estimate the pose based
on that model, respectively. The gaze estimation calculation, as a composing vector of
face and eye direction is presented in chapter 6.

Chapter 7 explains the testing methodology, the video sequences used for evaluation
and ground-truth, and the results obtained by the method for face pose estimation, gaze
direction and distraction parameters inference. Finally, chapter 8 contains the conclusions,
summarises the main contributions of this work, and presents future research lines that
could help to improve performance and results.



Chapter 2

State of the Art

Face pose estimation has been a very active researching subject for more than two decades.
During this period, the techniques have evolved together with the increasing computa-
tional resources of modern computers. Along with this evolution, the objectives of face
estimation systems have also became more enterprising. The first proposed works only
aimed to detect a few predefined poses, just enough to allow a coarse pose estimation.
Those systems would enabled a machine to discriminate the interlocutors of a conversation
inside a room with a controlled light environment.

Nowadays, as the basic objective of getting a fine pose estimation is being met, new
requisites would be desired depending on specific applications. The technique and tech-
nology have evolved, but still there is room for improvement. New systems are much more
ambitious. Some modern pose estimators have errors as low as 2◦, but new applications
may require the systems to work in real-time, or changing or low light condition, user
independently or other similar very challenging requisites. This new challenges must be
addressed by more intelligent face pose estimation systems which are yet to come. Often,
the pose estimation algorithm is just a necessary previous step for a gaze estimation. It
is actually the gaze what gives the real information of the point of attention of a subject.
Having an accurate gaze estimation requires a very precise face pose estimation.

Automotive industry provides two examples of very challenging scenarios: driver’s be-
havioural study and driver’s inattention monitoring. The former, requires a very accurate
gaze pose estimation, the collection of time statistics, good level of system integration
with other IVIS (on-board and off-board applications), and often low light conditions to
work inside driving simulators. Inattention monitoring is probably the worst possible
lighting scenario. A user can be driving in a sunny morning, late at night, or throw a
forest that projects impossible shadows over the driver’s face. In addition, inattention
monitoring requires as well requisites such as accuracy and good integration. Added to
this, a consumer on-board application would require completely independence of the user,
no matter age, gender or raze, no calibration step, and fast initialisation.

The work presented in this thesis focused on providing a system for distraction analysis
and driver’s behavioural study inside a simulator. To date, it is not possible to find a
system which endorses all the mentioned features, and consequently which could be eligible
for an on-board distraction monitoring system, which could be commanded by a group of
psychologists and other non-technical qualified personal. Providing such a system is the
main goal of this thesis.

This chapter presents a review of the most notable methods used for face pose estima-
tion during the last two decades. Several authors have published extended surveys of the
literature [Murphy-Ch. 09, Hansen 10]. Main referenced works will be presented below.

23
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For a deeper explanation of the face pose estimation techniques we refer the readers to
that surveys. The literature concerned with 3D pose estimation of a generic object is very
large and a survey is beyond the scope of this thesis. A review of some existing databases
is also presented for reference, since many of the works discusses below base their results
in any of these databases.

2.1 Face pose estimation methods

The pose is generally described as a rotation and a translation transformation. This trans-
formation defines the pose with respect to an initially predefined position and orientation
of the observer.

Many publications refer to that problem as head pose estimation, while many others
name it as face pose estimation. More precisely, the term face pose is most commonly
used for every technique that involves detection or recognition of a human face, while the
term head pose is more typically used when only pose estimation is needed. However, the
face and the head pose are joined together in all sense, since it is assumed that the human
head can be modelled as a disembodied rigid object. Consequently, both terms, face pose
or head pose, are interchangeable for any practical purpose. In this thesis we will use the
term of face pose, which actually means the same of head pose.

First, it is important to analyse the motion range of a human head in order to know
the range that a vision system must cover. Restricting the motion to only the neck, the
range of head motion for an average adult encompasses a sagittal flexion and extension
(i.e., forward to backward movement of the neck) from -60.42◦ to 69.6◦, a frontal lateral
bending (i.e., right to left bending of the neck) from -40.9◦ to 36.3◦, and a horizontal axial
rotation (i.e., right to left rotation of the head) from -79.8◦ to 75.3◦ [Ferrario 02]. This
ranges are represented on figure 2.1. However, the head can also be affected by other
rotations, and specially by translations directed from the chest, so the coverage area of
the system must be wider. Indeed, different individuals may perform the same movements
with peculiar modalities and diverse contributions from dorsal spine and thoracic girdle.
The total range of movement that the system must be capable of depends on the user,
the application and the environment where the user is being monitored.

It is possible to classify the different approaches to face pose estimation attending
to many different criteria. But the important aspect to which this State of the art is
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2.1. Face pose estimation methods 25

focused is the output range and the technical approach used. To start off, systems can be
differentiated by its output range in two groups:

1. Coarse head pose estimation systems, for which output is within a discrete range
of positions called poses. The output pose is one of a finite set of a priori defined
poses. In early years many pose estimation systems of this type were designed. For
instance, they were capable of distinguishing interlocutors in a conversation. These
systems are not adequate for gaze estimation, since they are not able to represent the
nature of the continuously moving gaze and consequently do not meet the conditions
requested in System requirements, section 1.5. To provide a comprehensive overview
of the State of the art, a sort review of those systems will be presented, although
they are out of the interest of this thesis.

2. Fine head pose estimation systems. In this case, the output pose is a continuous
and fine output range, i.e., the estimated pose is an analog non-discrete solution.
To this group belong most of the solutions which give better accuracy, and they are
well suitable as a previous step for gaze estimation. This is the group in which the
work of this thesis can be included.

Attending to technical aspects, Murphy-Chutorian and Trivedi [Murphy-Ch. 09] clas-
sified head pose estimation systems in eight categories. This arrangement is done by the
fundamental technical approach behind the implementation of each system. Following are
the most representative works for each of the different approaches.

2.1.1 Appearance template methods

These methods try to locate the head by comparing the face patch image to patterns of
labelled poses learnt in advance. This technique has the advantage of its simplicity and
ability to process low resolution images. However, it can only produce discrete predefined
poses, one for each of the templates used. Some characteristic examples include the use of
normalised cross-correlation at multiple image resolutions [Beymer 94] and mean squared
error (MSE) over a sliding window [Niyogi 96]. The common problem to this approach is
that two different subject with two different poses can have very similar appearance, and
thus the system outputs the same pose estimation for both, one of them being obviously
wrong. In general, pose estimation is inaccurate for many users. Experimenting with
some image transformations, such as a Laplacian-of-Gaussian filter, can emphasise some
of the more common facial features, improving the algorithm accuracy [Gonzalez 02].
This technique usually requires a previous manual and tedious image labelling to identify
templates with output poses. The output is often a coarse head pose estimation.

A typical human head depicts a cylindrical shaped structure, so the face can be ap-
proached to a vertical oriented cylinder. Based on this, many authors apply cylindrical
texture mapping to deal with appearance variation of the face due to rotation [Lin 09].
This technique, depicted in figure 2.2, has been successfully applied for this and many
other different approaches. However, it requires an accurate head detection and localisa-
tion step in order to be able to calculate the correct cylinder projection which best fits
the face.

2.1.2 Detector arrays

These methods train a discriminant classifier in advance, such as an Artificial Neural
Network [Rowley 98], and process the input image with it. This technique is similar to
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Figure 2.2: Examples of the 3D texture mapped cylinder rotated and rendered with OpenGL
libraries. The notation under graph denotes (pitch, roll, yaw). [Lin 09]
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Figure 2.3: Detector array classifier for local face detection [Zhang. 07]

the previous one, except that instead of using image matching with all the cases in the
training database to find the most likely pose, it uses a binary classifier trained with all
the faces sharing a same pose withing the database. It allows to train the detector to
distinguish not only the different head poses, but also the presence or not of a face, and so
the face localisation and pose estimation process can be achieved in one step. An recent
work on this technique was proposed by Zhang et al. [Zhang. 07]. In this paper, a set
of 5 multi-view face FloatBoost classifiers are applied to estimate head pose in seminar
room scenario. Figure 2.3 depicts the classifier array used in their work. Naive Bayesian is
used to fuse estimation of head pose from four camera views, and Hidden Markov Model
is used to model the temporal change of the pose in the video sequence. This system is
able to work on low resolution images and it can be used to detect coarse poses for many
interlocutors inside a monitored room. Other typical approaches is using Support Vector
Machine (SVM) as the classifier [Li 02, Seo 04, Li 04]. As in the previous group, the main
disadvantages of this approach is that only coarse poses can be accurately obtained and
a tedious training process is needed.

2.1.3 Nonlinear regression methods

The basic idea of nonlinear regression methods is the same as that of a linear regression,
namely to relate the pose response i.e., one or more angle of rotation, to a vector space
formed by a set of input images, which works as the predictor variable. This method can
provide a reliable output for any new input image if an appropriate input set of labelled
data is provided. This input set can be trained online, notably easing the process of
training. Success using nonlinear regression has been demonstrated using Support Vector



2.1. Face pose estimation methods 27

Machine (SVM) [Li 04], Support Vector Regression (SVR) [Murphy-Ch. 07] or Neuronal
Networks [Seemann 04]. Figure 2.4 depicts an example using this approach. Murphy-
Chutorian’s et al. approach overcomes the difficulties that arise with varying lighting
conditions in a moving car by means of Localised Gradient Orientation Histograms to
tolerate deviations caused by scale, position, rotation, and lighting. Using this represen-
tation, they reduce the dimensionality of the input data, providing a stable input to a SVR
for robust head pose estimation in two degrees-of-freedom [Murphy-Ch. 07]. In general,
the accuracy of the nonlinear regression methods depends heavily on the results of the
previous head localisation process. Despite the output estimated pose being continuous,
the regression curve is made up with a finite set of poses. If a given input pose happens to
be in between two of the poses used to estimate the regression curve, it is not clear how
well the regresor can relate this input pose to the response curve. This implies that accu-
rate estimation can only be obtained for discrete poses. Moreover, the estimation speed is
related to the dimensionality of the regression tool used. In general, time increases nearly
linearly with the increase of dimension, and a poor real-time performance is observed
owing to the large number of dimensions needed for an accurate approach. Chutorian’s
system, for example, runs at approximately 5 frames-per-second1, limited primarily by
the time required to process the Adaboost cascades.

-90o +90o
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Figure 2.4: Nonlinear regression from face image to pose estimation [Li 04]

2.1.4 Manifold embedding methods

A recent tend in head pose estimation research has been the use of manifold learning
techniques to capture the underlying geometry of the images. Face images with varying
pose angles can be considered to be lying on a smooth low-dimensional manifold of the
higher dimensional image space [Balasubrama. 09]. Some approaches tested using this
method include Principal Component Analysis (PCA) [Artac 02], and its variation KPCA,
which uses nonlinear kernels [Wu 08], Locally Linear Embedding (LLE) [Balasubrama. 07]
or Locally embedded analysis (LEA) [Fu 06], among others. Remarkable is the work
proposed in [Fu 06], with an yaw error lower than 2◦. They minimise the local reprojection
error by constructing the manifold graph applying a supervised LLE approach, formally
LEA. The head pose is finally estimated by a K-nearest neighbour classification. The
manifold graph they build can be observed in figure 2.5. Although they obtain a very low
error, their algorithm is only applied in one degree-of-freedom (DOF): yaw rotation.

With real-world face images, manifold learning techniques often fail because of their
reliance on a geometric structure, which is often distorted due to many variants. Embed-
ding techniques trend to include in the different training data subjects’ identity into the
manifold space, which lead to a pose estimation not totally independent on the subject.
The same as the previous methods, this technique requires training of a database. The
linear versions, such as PCA, for instance, can only handle linear spaces, which do not
represent the problem of a 3DOF rotation very well. Its nonlinear variation, KPCA, on

1Hardware platform is not specified
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Figure 2.5: Linear embedding and subspace projection of 181 view rotating images of a face,
constructed using a supervised variation of LLE: LEA [Fu 06]. The curve represent the structure
of the manifold embedding in the reduced, low-dimensional space

the other hand, can not be applied using matrix multiplication, what makes it slower.

2.1.5 Flexible models

These techniques are based on fitting a flexible model to the structure of the face. Ac-
tive Shape Models (ASM) [Cootes 02, Cootes 05] are deformable models that have been
demonstrated with good results. The shape is used to search faces and estimate its pa-
rameters, i.e., the pose. ASM has been later extended by other researchers to include
robust fitting functions [Rogers 02] and stacked models [Milborrow 08]. Advances in late
years have increased their robustness and precision to remarkable levels [Milborrow 08].
In most works, models are 2D. Extensions of ASM that include modelling of texture have
been presented, of which Active Appearance Models (AAM) [Cootes 01a] are arguably
the best known. Few tests employed images recorded on cars [Baker 04b], but these se-
quences were short and did not contain challenging scenarios. Both ASM and AAM are
linear models, and have difficulties in tracking faces under partial occlusions by external
objects, or self-occlusions during head turns. [Xiao 04] use AAM with a 3D shape model,
such as the one depicted in figure 2.6, which improves pose estimation accuracy, but still
it needs most of the face visible, and deal badly with occlusions and wide head turns.
Moreover, training a model such as AAM or ASM is a time consuming task, as it usually
involves introducing landmarks by hand in hundreds or thousands of images.

In this group we can also include the non-rigid structure-from-motion approaches.
These methods creates an online model of the face, assuming from the beginning that the
face is not rigid, and its structure can change during the execution, after the initialisation
process. This is somehow very similar to an ASM, except that ASM uses an a priori model
definition, unless deformable, and the former starts creating it from scratch. Paladini et
al. [Paladini 10] use an incremental non-rigid Structure from Motion (nr-SfM) model by
adding new deformations incrementally when the current can not model the face well
enough. They consider the image reprojection error to decide when to update, and use
bundle adjustment to estimate the new mode to be added. An advantage of this approach
is that it does not rely on prior knowledge of the model. However, it is not clear if this
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method could work on real time, due the time consuming task of creating new modes.
In addition, the non-rigid model approach is in any case based on an underlying initial

rigid model, to which the deformable modes are added. Errors on the initial model are
carried out during the whole execution. Another still challenging task for non-rigid models
is how to differentiate tracking errors from deformations.

(a) Face flexible
shape model

(b) Face Appearance
model

(c) 2D deformations vectors
applied to the model

(d) 3D deformable model fitted
to a face for pose estimation

Figure 2.6: A face flexible AAM model [Xiao 04]

2.1.6 Geometric methods

Tracking a face using the most salient parts of it has a greater chance of success than
relaying on any other less defined parts. Geometric methods exploit this to get a relatively
good accuracy and robustness. One of the most common approaches is to use templates
to track these prominent face parts. A typical set of landmarks can be the nose, mouth
and eye corners. [Wang 07] presented a method for computing head pose from a single
image by using projective invariance of the point at infinity. This last approach assumes
full perspective projection camera model. An analytic solution was derived and the pose
is determined uniquely when the ratio of the length of the eye-line segment to the length
of the mouth-line segment is known (See figure 2.7). This technique achieves very good
accuracy, with an error as low as 1.67◦ on small yaw rotations. However, estimation
relays on very little key face features, and so deal very badly with occlusions and noise.

(a) Geometric model, based on
geometric relations of face

landmarks

(b) Pose estimation using
the six point geometric

model

Figure 2.7: Geometric model based on six face landmarks: Two outer eye points, E1 and E2,
two inner eye points, E3 and E4, and two mouth corners, M1 and M2 [Wang 07]
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A limitation of these approaches is that they require that all the facial features, including
the eye and mouth corners, are visible in all frames, restricting rotations to no more than
30◦. For instance, the work presented by Wang only covers rotations of bellow 30◦. The
allure of this approaches is that this is a simple and incredible fast algorithm compared to
any other, since it only requires finding a small set of prominent face features and some
geometrical calculations. On the other hand, any small error on the localisation of any of
the few features used will generate a big estimation error.

These methods are probably the weakest in terms of robustness and reliability. The
pose is based on the initial geometric assumption of the model, which usually is acquired in
the first frame. Any small error due to initialisation, landmark localisation, user gestures,
occlusions or rotations lead to a high pose estimation error.

2.1.7 Tracking methods

These methods estimate the pose parameters by using feature correspondences between
two frames. This is somehow similar to the geometric methods explained above, except
that none of the former considers the problem of large motion, specially for yaw rotations.
Tracking techniques handle this problem following the head rotations along its whole
range, by individually tracking selected features of the face.

Some of the methods detect new features frame to frame and calculate the rotation
and translation variations. In this case, the pose would be given by the accumulation of
the step by step pose variations frame to frame. This approach is very sensitive to local
errors, since the error of a frame estimation accumulates to the next. This is typically a
major problem to solve in a Simultaneous Localisation And Mapping (SLAM) system. To
avoid this accumulative error, other typical approach is based on tracking the same set of
features frame to frame since the beginning, and estimates the pose always referencing to
the first frame. This is possible since the total head movement is much smaller than that
showed on SLAM problems. [Sheerman-C. 09], for instance, presented a facial feature
tracker that works without a priori knowledge of the appearance of the face, using Lukas-
Kanade (LK) [Tomasi 91] tracking points, and an online learning scheme to update the
tracking points templates. Similar techniques are widely applied by many authors since
they have some advantages. First, a model can be constructed with the features, allowing
for a further correction step based on a higher level, model-based algorithm. Second, as
mentioned above, they do not present accumulative error because of the frame to frame
pose estimation. On the other hand, they suffer from template drifting. As the faces
rotates it is necessary to update the templates used for tracking. Smalls error in updating
accumulate, so the real features being tracked may differ from the original ones after a
while.

[Zhao 07] tracked face pose frame to frame by means of Scale Invariant Feature Trans-
form (SIFT) based registration algorithm. Salient SIFT features are first detected and
tracked between two images, and then the 3D points corresponding to these features
are obtained from a stereo camera. With these 3D points, a registration algorithm in a
RANSAC framework is employed to reject the outliers and estimate the head pose using
full perspective projection. Performance evaluation showed an accurate pose recovery (3◦

RMS) when the head has large translations and rotations in the range of ±45◦. One major
drawback of this tracking method is that correct correspondences can only be obtained
when the pose variation between two frames is small enough. This is actually one of the
weakness of the tracking methods. In general, features must be tracked frame to frame.
If the face experiments a big appearance variation from one frame to another, the feature
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tracker may be lost, and the algorithm must be restarted from a predefined position.

Another commonly used approach of these methods is the model tracking. Unlike
[Zhao 07], which follows different and new features frame to frame, a model approach
generates global features which will be followed across frames during the whole execution
time. These features make a model which can be fitted after individual feature locations
have been found. In this sense, quite different formations are possible. [La Cascia 00] used
a manually initialised cylindrical model and recursive least squares optimisation to track
the head. Their idea consists on composing and warping the face images from different
view points to a cylindrical surface model to approximate the head, accounting in this way
for self-occlusions and to approximate head shape. Then, they use image registration in
the texture map to fit the incoming data. [An 08] built an ellipsoidal texture model of the
head and determined pose by matching projections to live images. This avoids dependency
on high-resolution images while tracking the full range of orientations, but nevertheless
requires initialisation for each subject and static illumination. To solve the illumination
problems, [Wu 00] used a similarity metric by means of an ellipsoidal model of points,
where each point maintains probability density functions of local image edge density based
on training images. [Xiao 02] also used a cylindrical head model and recovered motion
using perspective projection. They included the more robust image gradient information
instead of edges. The face tracking is implemented by means of a texture based template
fitted to the cylindrical model, as in [La Cascia 00], with the improvement of dynamically
updating the template to meet the appearance variations due to back-projection and
illumination. [Murphy-Ch. 08] use a 3D face model to track the face with a particle filter
and a dual state movement model: a dynamic movement model when the face is detected
to be moving, and a static one otherwise.

A 3D model with stereo tracking is also possible. [Jiménez 09] use an stereo rig to
automatically create it out of 3D features from the face. This model allows the detection
of tracking errors that otherwise, with a 2D one, would not be perceptible. They extend
the model during execution including new features from previously concealed parts of the
face, as new features are exposed to camera. Figure 2.8 shows a functional schema of this
system.

Many of the works using tracking and a face model assume it is rigid, which do not
completely satisfy the nature of a human face. Deformations produced by gestures can
lead to pose errors. The tracking methods approach typically suffer from another common
error: the pose offset at initialisation. The initial pose estimation offset is a consequence
of the position held by the user at the initialisation frame. The pose estimation on every
frame is referenced to that of the first, so if the pose at the initial frame has an offset

Face poses

Feature

tracking

Figure 2.8: Stereo tracking method to estimate face pose based on a incremental 3D model
[Jiménez 09]
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error, this offset is carried over the whole algorithm execution.

2.1.8 Hybrid methods

Other approaches combine different methods from those mentioned above. Those can be
considered as hybrid methods. Mixing together different approaches can help to overcome
the problems of any single method. Many of these limitations have been previously
discussed. The most typical combination is a coarse pose estimation method to provide a
robust initialisation, followed by a tracking loop, which allows for better accuracy than any
other. The coarse estimator can be any of PCA or other embedding methods, geometric
methods or appearance templates, among others. This coarse estimator is responsible for
the correct initialisation and for pose checking over time to correct the accumulative error
on the pose estimation.

[Morency 03] presented a method based on an a priori model of intensity and depth
viewbased eigenspaces, built across multiple views of the head. Given an initial frame with
unknown pose, they reconstruct a prior model for all views represented in the eigenspaces.
To track more robustly over time, they added an extension by integrating the prior model
approach with an adaptive differential tracker. They demonstrated very good accuracy on
face pose tracking using stereo cameras. Their approach is user independent and the prior
model can be automatically initialised from any view point of the view-based eigenspaces.

[Murphy-Ch. 08] use a classical tracking method based in a 3D model to perform the
fine face pose estimation, while a nonlinear regression detector is run periodically to check
the consistency of the estimation.

More sophisticated hybrid methods are also possible. In [Krinidis 09], a tracking tech-
nique that utilises a 3-D deformable surface model to approximate the facial image in-
tensity is used to track the face in the video sequence. Pose estimation is then achieved
by means of a Basic Radial Function neuronal network. This method produces very good
results for relative frontal faces. However, the deformable intensity model can not adapt
in case of partial occlusions or fast head movements. Moreover, the RBF makes the
algorithm very slow, being able to run at 4 fps2.

2.2 Existing video databases

With the purpose of providing a common framework to compare the different publications
and methods for face pose estimation, several video datasets have been created and are
commonly used in the literature. Some of these datasets were created for international
workshops held in last few years. Others have been created by institutions to provide
ground-truth data for researchers.

[Murphy-Ch. 09] described the most common video databases for head pose estimation
evaluation. This section introduces a short description of the most representative ones,
which have been used for performance evaluation on different works mentioned in this
chapter.

A. CHIL-CLEAR06/07: [Mostefa 07] This video dataset consists of 15 videos shot
from different cameras, inside seminar rooms and lectures, where some few people are
interacting. The ground-truth was captured using magnetic sensors, but the database
also contains manual annotations on interlocutors every second. The goal for the head

2No code optimisation, running a Pentium 4, 3GHz, and 1.5GB of RAM
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estimation systems is to continuously track the presenter’s horizontal viewing direction
in the global room coordinate frame. The dataset is aimed to human interaction
applications, such as interlocutor detector, areas of attention, etc.

The images provided by the wide-angle field-of-view camera vary in resolution and
speed, from 640 × 480 to 1024 × 768, and from 15 to 30 fps. The cameras are located
on the four corners of the room, looking inwards.

The video dataset also provides audio records, two more videos from a fish eye camera
and a pan-tilt-zoom (PTZ) camera3, and annotations on audio, tracking persons and
face detection and identification. This data base is available online on the CLEAR web
site at http://www.clear-evaluation.org/?The_Evaluation:Sample_data. The face resolu-
tion is very low, and consequently the dataset is not adequate for this thesis.

B. BU Face Tracking: La Cascia et al. collected a video dataset for the evaluation
of their work [La Cascia 00]. They collected two sets of video sequences, one under
uniform illumination conditions and another under time varying illumination. The
former contains five different subjects, and the second three. For each subject, 9
sequences of 7 seconds at 30 fps were recorded. The video size is 320×240. All of
them depict free head motion in rotation and translation. The ground-truth was
captured by a 3D magnetic tracker attached to the head which provides an accuracy
of ±2.5 mm in pose and ±0.5◦ in rotation.

The dataset is available online at http://www.cs.bu.edu/groups/ivc/HeadTracking/. How-
ever, the rotation range of the face in the videos is very small.

C. CVRR LISAP-14: [Murphy-Ch. 08] The CVRR LISAP-14 dataset contains 14 video
sequences of an automobile driver while driving in daytime and nighttime lighting
conditions (eight sequences during the day, four sequences at night with near-IR il-
lumination). Each sequence is approximately 8-minutes in length, and includes head
position and orientation as recorded by an optical motion capture system. The videos
are 640x480 pixel grayscale, at a frame rate of 30fps. More information may be found
on request at http://cvrr.ucsd.edu.

D. IDIAP Head Pose: [Ba 04] This data set was created in 2003. It is part of a series of
datasets containing head pose, speech and people interacting. The main objective of
the dataset is to provide a common framework to researchers for rigorous algorithms
comparison.

It provides to different types of videos, from which the seconds is focuses on head
tracking on Augmented Multi-party Interaction (AMI). It consists on videos recorded
on meeting rooms, where at least two people are always in front of the camera. This
set contains 8 videos of a duration of 1 minute each, taken from a single camera. Two
people are sited in from of the cameras, and perform pitch and yaw rotations of up to
±90◦ in both directions.

The ground-truth contains pitch, yaw and head position information, and was captured
with magnetic sensors. This video dataset can be downloaded from the Idiap web page,
https://www.idiap.ch/dataset. However, no roll rotation is provided.

Note that none of the datasets described above provides stereo images, and conse-
quently are not suitable for performance evaluation in this thesis. Moreover, most of

3A PTZ camera is a motorised unit, usually controlled by an Ethernet connection, capable of zooming and
rotating its field of view

http://www.clear-evaluation.org/?The_Evaluation:Sample_data
http://www.cs.bu.edu/groups/ivc/HeadTracking/
http://cvrr.ucsd.edu
https://www.idiap.ch/dataset
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them capture low resolution images, in a good illuminated environment. These conditions
differ from those present in a naturalistic simulator, hence these datasets are not suitable
to evaluate the algorithms developed in this thesis.

2.3 Discussion

The huge number of works described above shows that there is an intensive effort by
researches worldwide on this area, who have developed a wide range of approaches. Despite
this, it is hard to find works focused in the study of drivers distractions, which is the
intended application of this thesis, as stated in the introduction. Tables 2.1 and 2.2
resume the most significant works, its main characteristics and their limitations.

Many of the works of the State of the art do not provide a fine pose estimation
output. Those systems are not suitable for the scope of this thesis, since they do not allow
for an appropriate gaze estimation for a driver distraction monitoring application. The
methods which produce a coarse output have the advantage that do not rely on tracking
systems, minimising the possibility of tracking losses. Those would be very suitable for
human-human or machine-human applications, such as identifying the interlocutor of a
conversation, or switching panels of an interface. However, their lower accuracy makes
those approaches unfeasible for gaze estimation. Generally, this is achieved by composing
the face pose estimation with the eye directions [Hansen 10]. Consequently, if the pose
estimation is no precise enough, the gaze estimation will be inaccurate as well. From the
literature described above, template methods, detectors arrays and nonlinear regression
methods must be discarded for this reason. In most cases, the error for the listed methods
is higher than 10◦ in the pose estimation [Brown 02]. Only [Grest 09] show an error close
to 5◦, with a maximum range of ±20◦ in yaw and pitch. Another important fact which
should be pointed out about these methods is that there are very little published works
during the last 5 years. Appearance methods were the most active research in the 90’s.
The most recent publication using detectors arrays date to 2006, and present an important
lack of accuracy.

More recently, one of the most used methods are manifold embedding techniques, such
as PCA. It became very popular, specially in hybrid architectures, used in conjunction
with other approaches such as flexible models [Cootes 95, Lanitis 97] or more recently with
tracking methods [Huang 04, Tu 06]. These dimensionality reduction methods require
training and often manual labelling. Consequently, these are usually not user independent.
The more users included in the training data set, the more user independent the system
might be, but the less accurate the output. Manifold embedding techniques have their
main disadvantage in the inability to separate identity and pose estimation, as the number
of users in the training dataset grows. This means that the pose estimation can vary for
different users [Balasubrama. 07], if the training database is big enough. Moreover, PCA
is a linear approach, and consequently is not well suited for the nonlinear problem of a 3D
rotation appearance variations. Some authors applied the Kernel-PCA [Wu 08] variation
to address this non linearity. PCA and KPCA are also expensive techniques in terms
of training requirements. On the other hand, these methods are a good option for low
resolution images, where the little texture information available is well exploited by the
dimensionality reduction provided by the embedding.

The non-rigid models also present some problems. The process of calculating new
modes for a deformable model is slow. If many modes are allowed, there is a chance that
tracking errors of rotations are interpreted as deformation. But as the number of allowed
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modes is decreases, the system gradually loses it non-rigid capability. [Paladini 10], for
instance, saturate the number of modes to 10, what is likely to happen during the first
minutes of operation. This avoids increasing execution times, but actually limits the
learning process in time.

Much faster algorithms may use flexible models, such Active Appearance Models, AAM,
or Active Shape Models, ASM. Many related works on this line also include an underlying
PCA for computing the appearance of face landmarks from training images [Baker 04b],
having similar problems than the pure based PCA approaches. Flexible models require
extensive manual labelling of various face landmarks. Using an extensive database, those
methods are user independent. [Nuevo 10] showed that it is possible to achieve very low
computational cost using a patch clustering approach. However, the main disadvantage
is that they are not suitable for wide head rotations. Related works, such as [Xiao 04,
Gui 06], do not show rotations wider than 45◦. In addition, the shape, models, even 3D
models, often tend to learn small rotations as deformations, not providing an accurate
pose estimation.

The same rotation limitations observed at flexible models is present if geometric meth-
ods are used. These methods are extremely fast since they only require tracking a few
face landmarks. However, the few reference points they use makes these systems sensible
to tracking errors, gestures, occlusions and wide rotations. [Wang 07] show results for
rotations below 30◦. Most of the literature using this approach is focused on applications
requiring low resolution images, such as detecting meeting room interlocutors interaction
[Cordea 01, Xiong 05, Canton-F. 07].

Tracking methods, whether only tracking or hybrid systems, provide better accuracy
than previous approaches. This technique is user independent, and its implementation
can easily meet real-time requirements. Examples are [Xiao 02, Oka 05, Zhao 07] among
others, which have errors below 3◦. [Xiao 02] presents results only for rotations up to 75◦,
with an accuracy of yaw about 3.8◦. In a recent publication [Sheerman-C. 09] presented an
online learning model proposal, achieving 3.8◦ and 4.2◦ error for pitch and yaw rotations.
However, their results were only evaluated in a range of ±40◦ and ±20◦ respectively. The
same way, [Oka 05], while showing very good results, with an error as low as 2◦ for yaw
rotations, only evaluates the systems for sort sequences, and small rotations. They create
an static model at the initialisation step, so no wider rotations are possible. It is not clear
how well the system can deal with the drifting problem, for longer video sequences. Many
use SIFT or SIFT-like features [Yang 02b, Ohayon 06, Zhao 07], however, the low light
conditions in a simulator are not appropriate for SIFT-like matching techniques, as it will
be shown in the results on chapter 7.

The more prominent results are obtained using a 3D face model [Wu 00, La Cascia 00,
Xiao 02, Krinidis 09]. Having the possibility to use a stereo rig, this is probably the solu-
tion that provides the best accuracy. Using a 3D face model notably improves robustness,
since it makes possible to detect tracking errors due to similarity appearance of different
parts of the face under some rotation. Some authors have used generic dense face mod-
els, such as cylindrical [Lin 10] or ellipsoidal [An 08] ones, and the whole face or feature
textures are mapped to the model shape. However the wider rotation ranges are provided
by sparse models formed from feature 3D coordinates.

Despite the variety of related works, the face tracking problem is still open, and none
of the detailed solutions deal with the problem of having at the same time a full-range,
accurate, user independent, real-time and calibration free pose estimation system. Many
of the model-based systems rely on generic models, which do not fully adapt to individual
geometry. On the other hand, other methods, based on appearance and requiring train-
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ing, do not generalise well enough to be classified as user independent. A dynamic 3D
model can be fitted to any user and give an accurate estimation while being user indepen-
dent. However, it needs being updated under different user poses, both in geometry and
appearance, in order to maintain performance on the full rotation range and illumination
changes.

2.4 Aim of the thesis

The aim of this thesis is to develop an algorithm to accurately estimate on real-time the
driver’s gaze, focusing on the pose of the driver’s face. This system will be used in practise
to analyse, from the gaze fixation information, driver’s distractions inferred in a natural-
istic simulator. The results generated for pose and gaze estimation and derived data such
as distraction statistics will be used in the simulator as a tool to study distractions and
driver’s behaviour inside the cabin. The developed method must be able to detect and
track the driver’s face over wide rotation angles, under low light conditions and accu-
rate enough to allow for a further study of the driver’s gaze, creating an automatic and
adaptive 3D face model online.

After the review of the State of the art and considering the requirements presented in
the introduction, the aims of this thesis are as follows:

1. To study the tracking techniques for low light conditions and wide tracking range.

2. Using an automatic 3D model adapted to each user, and online refinement during
execution.

3. To develop an algorithm capable of an accurate calculation of the face pose and gaze.

4. To generate coarse fixation information on the environment —scene and cabin— to
infer driver’s distraction behaviour and statistics.

5. To evaluate the proposed algorithm performance using a video dataset and its
ground-truth.

6. To design different exercises focused on driver’s distraction in a naturalistic simulator
and study the adequateness of the proposed system for a group of psychologists to
extrapolate information from the designed exercises.



Chapter 3

Face Pose Estimation Architecture

Following the discussion of the State of the Art, this chapter presents the general archi-
tecture of the proposed face pose estimation algorithm.

The face pose estimation approach in this thesis is based on tracking methods, since
it was shown that they obtain the best accuracy. The system here presented is based on
tracking a set of features which are automatically detected on the subject’s face, with a
calibrated stereo rig. Since one of the requirements of the system is that it must be user
independent, the feature selection process does not use a priori information. Instead,
the features are selected upon high contrasted regions of the face with an interest point
detector.

Many of the tracking approaches reviewed above use a face or head 3D model. Some
apply a model which coarsely approaches the form of the head, such as a cylindrical
model, while others build a more precise 3D model adjusted to the face surface. Here, the
features are arranged in the form of a sparse 3D face model, using the 3D coordinates of
each feature, obtained from a stereo rig. The model allows for a better feature tracking
support: it makes possible to detect errors in the location of the features in the images, if
any of them are far from the expected projection of the 3D model points. These detection
errors can appear by the similarity of the features to different parts of the face under
rotation or illumination changes. This kind of errors are much harder to detect using a
2D model. Our proposal is also able to adapt the model over time, and it works over the
full range of head rotation and under low-lighting conditions.

3.1 General architecture

The algorithm presented in this thesis is designed to automatically extract the interest
points and to build the 3D model of the face, just requiring the driver to look straight
ahead at the initialisation frame.

To follow features appearance variations due to rotation, a feature template selective
re-registering technique is carried out using a novel mixed-views technique using both
cameras. This way, one camera is used to anticipate what the other will see, whereas this
other camera is used for tracking, avoiding appearance variations of the features due to
the projection on the 2D image plane. During yaw rotations, the selective re-registering
chooses the frames in which pose uncertainty is minimal to avoid the template drifting
problem. For roll and pitch rotations, a feature warping is performed to diminish the
projection variation. Incorrectly tracked points (outliers) are detected based on their Eu-
clidean distance to the model point projections after pose estimation, and discarded using
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a RANSAC [Fischler 81] process. In addition, a pose uncertainty can also be estimated
based on the sum of this Euclidean distance for the inliers. 3D pose is recovered from the
set of 2D points assuming weak camera projection, using POSIT [Dementhon 95] or the
Levenberg-Marquardt algorithm [Lourakis 04]. Finally a bundle adjustment algorithm
(BA) [Triggs 99] is used to correct the model.

Initially the model only contains features from a frontal face, which will self-occlude
under wide rotations. To increase the range of rotation, it is extended with the addition
of new features, when the number of non occluded ones falls bellow a minimum. The
same way the initial model creation is completely automatic, the model extension is also
automatically performed when the algorithm requires it, and the conditions are appropri-
ate for this. However, the 3D coordinates of a new added feature heretic the specific error
related to the poses in which the feature is being added. To correct this, a bundle adjust-
ment background process constantly corrects the model 3D points at some key-frames.
This allows for accurate point addition to the model, and the algorithm works reliably for
the whole yaw rotation range, ±90◦ degrees.

The main blocks of the system architecture are shown on figure 3.1 and can be sum-
marised as follows:

(a) Initially, a sparse 3D model is automatically built with features extracted from sub-
ject’s face using a stereo rig.

(b) From frame to frame, the model pose is estimated from the features located applying
a novel camera mixed-view re-registering approach.

(c) At some key-frames, re-registering is performed. The 3D model might be extended to
previously occluded parts of the face and corrected with bundle adjustment.

Automatic 3D face model of features

Mixed-view tracking and Model pose estimation

Template re-registering and Model extension and correction

Frame-to-frame:

At initialization:

At some key-frames:

(a)  

(c)  

(b)  

Figure 3.1: Main blocks of the face pose estimation algorithm.

On model creation, the initial set of features is chosen based on their saliency, so
their frame to frame matching fails with low probability, minimising localisation errors in
subsequent steps. In this sense, three techniques are tested as interest point detectors:
SURF [Bay 06], Harris [Harris 88], and multiscale Harris [Triggs 04]. For this purpose,
the face is initially detected on the frames of both cameras using Viola & Jones algorithm.

Once the features are selected and their 3D coordinates recovered using epipolar geom-
etry restrictions, they must be filtered to reject those which have clearly been incorrectly
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stereo matched. A geometric constraint of maximum face size is also applied. In addi-
tion, some authors demonstrated that the face can be assimilated to a cylindrical model
[La Cascia 00, Xiao 02, Lin 09]. Here, a horizontal-oriented cylinder is fitted to the face
using an optimisation method, and those features which are far from the cylinder surface
are also rejected. This way, the model can include points from salient parts of the face
(nose, ears, etc.), which are not on the cylindrical surface that includes the majority of
points. This relaxed contraint allows to create a more realistic model, and represents an
improvement with respect to previous works in the State of the art. Furthermore, we use
the information obtained from the fitted cylinder to estimate the angle of each feature to
the cylinder geometric centre, information which can be used to estimate self-occlusion.

Self-occlusion is a drawback of creating the 3D model from a initial single pair of
frames. Taking into account that the required rotation range for the system is ±90◦ in
yaw angle, under a wide rotation some of the features detected with a rotation of 0◦ will
surely be hidden behind part of the face or head, making the system lose track of them.
The accuracy of the pose estimation depends on the number of features, and thus a model
extension procedure is needed. New features are added to the model when all of the next
conditions are met:

1. New parts of the face are exposed to the cameras.

2. Pose estimation uncertainty at the current frame is low.

3. Bundle adjustment has finished correcting the 3D coordinates of previously added
points.

4. The number of visible features is higher than a minimum, to ensure algorithm ro-
bustness.

Since no other a priori information is used at the initialisation step, the face rotation
at initialisation represents the pose rotation reference, and it is arbitrarily assigned a
rotation of 0◦, with unitary director vector ~u = (0, 0, 0). Following rotation estimations
are relative to this reference. If at this initial frame the actual user rotation is different
from zero, the reference includes an offset error, and all the subsequent estimations show
the same offset.

All these steps are executed in a completely automatic way. The only previous process
required is the initial stereo calibration of the stereo camera rig. An accurate calibration
improves the 3D points estimation, model accuracy, and consequently error correction.
Figure 3.2 shows the general architecture of the proposed algorithm. It consists of the
following steps:

0. Initial system layout (offline): A calibrated stereo-rig is placed in front of the
user, looking at the subject’s face, typically between the driving wheel and the
wind-screen of the vehicle. This step is only carried out once when the cameras are
installed. All other operations are fully automatic.

1. Face detection: User’s face is detected on the initial image of both cameras using
the Viola & Jones algorithm.

2. Interest points detection and features extraction: An interest point detector
algorithm is applied on one of the cameras in the area where the face has been
detected.The interest points are matched over the two cameras’ images using epipolar
geometry restrictions to establish putative pairs used to calculate the 3D coordinates
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Figure 3.2: General architecture of the face pose estimation algorithm.

of the detected features. The interest points that do not match or do not meet the
required quality are discarded.

3. Automatic model construction: An initial 3D face model is created automati-
cally. The model is defined by a set of features, each composed of the 3D coordinates
of the feature point and a patch or descriptor containing the feature texture. The
model’s origin, to which subsequent pose estimation is relative to, is set to the 3D
geometric centre of all the features, and all of them are moved rigidly with the model.
The initial rotation reference is set to 0◦ and initial translation reference to a zero
vector. Model points are filtered attending to some geometrical restrictions.

4. Features matching and tracking : Model feature points are tracked frame to
frame on the image of the same camera. No stereo information is used for tracking.
Correspondences are obtained via thresholded matching between stored patches of
the model containing the feature templates and the patches from the current image.

5. Features re-registering: On demand, when the proper conditions are met, the
stored feature patches of the model are updated to follow appearance variations. A
clustering of multiple-view patches acquired from both cameras selects the best one
to be used for matching depending upon rotation.

6. Pose estimation: The pose of the face is estimated from the feature locations with
either the POSIT algorithm or Levenberg-Marquardt, within a RANSAC process to
reject unsuccessfully tracked points or outliers derived from the tracking step. The
3D face model is used by RANSAC to guide the correct point distribution.

7. 3D Model extension: When rotation takes place, if conditions are met, the 3D
model may be extended with new features detected over the face using the same
technique described at step 2, to include previously occluded parts of the face in the
model.

8. Bundle adjustment: A background bundle adjustment optimisation process re-
fines the model, including the existing and the newly added 3D points of the model.
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This process is executed in parallel to the rest of the algorithm, at some key-frames,
and stopped when no further corrections are required.

Chapter 4 presents the model creation algorithm. Feature tracking, pose estimation
and model correction are described in chapter 5.





Chapter 4

Automatic 3D Face Model Creation

The face pose estimation system presented in this thesis is based on the tracking of a set
of face features structured as a sparse 3D model. Although the 3D model formation takes
place during the whole execution of the algorithm, there is an initial draft model which is
automatically created on the first frames of the algorithm. After initialisation, the model
will continuously be improved with corrections during execution, and extended with new
features. The purpose of this model is to track the user’s face in a robust way and to
provide a reference from which the pose can be extracted from 2D feature projections on
the camera images.

Figure 4.1 depicts the different steps involved in the model creation. The model
comprises of the 3D coordinates of features and a cluster of its appearance descriptors
associated with each feature, which are used for 2D tracking and later pose estimation.

Stereo image acquisition

Viola & Jones face detectors

Detection?
no

 Yes

Feature points 3D reconstruction

Geometrical constraints filtering

3D Model

Interest points detection

Descriptors stereo matching

Figure 4.1: General layout of the model creation process

45



46 Automatic 3D Face Model Creation

There is not any prerequisite about the election of the features. They will be interest
points from the point of view of the detection algorithm.

The rest of this chapter shows some comparisons between different methods to obtain
the model features and discusses the technique used in each step of the model creation.

4.1 Initial Features detection and stereo matching

To create the model, features must be detected within the bounds of the face. The first
step of the process is to detect a frontal face, using the Viola & Jones algorithm in the
right and left initial camera frames.

At this step, the user is asked to look forward, right to the centre of the stereo rig,
so the V&J can detect an almost frontal face in both images. This will be the only
initialisation process the user will be asked to perform. V&J loops frame to frame until
the face is detected in both images. The current frames are set as the initialisation images,
Ir0 and I l0.

Typically, V&J detects a bounding box that can leave outside its bounds part of the
face, e.g., ears, specially when the face exhibits a small yaw angle with respect to any
of the cameras, as we can see in figure 4.2. Due to the base line of the stereo cameras,
this is sure to happen at least for one of the cameras, if not for both. This effect can
lead to a small part of the face located outside the initial area for feature extraction,
and consequently not generating interesting 3D points for the model in the rejected area.
Although the model will be increased later, as it will be explained in Section 5.4, it is
desirable that the initial model creation encloses as much part of the face as possible. For
this purpose, the detected V&J bounding box is widened 50 pixels to the left on the right
camera image, and to the right for the left camera image, to ensure that the whole face
is within in both cases. This value has been obtained experimentally. On the contrary,
it is not widened up-down since from experimental results it have been found that the
jaw and hair do not provide much reliable information to the model. This widened box is
the detection area of the face where the features are searched for. Figure 4.2 depicts the
original V&J and widened detection box.

(a) Il0 (b) Ir0

Figure 4.2: Viola & Jones detection box (inner box) and 50 pixels widened feature search area
(outer box). The widened search area includes part of the face that V&J leave outside its
detection box
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4.1.1 Features extraction and matching methods

Once the face has been located in the images, the next step is the feature extraction
process. A feature i is represented by its appearance template or descriptor, Ti, its 2D

position on both camera images, x
{r,l}
i , and its 3D coordinates, Xi. The 2D position in

the images actually can be computed as the projections of Xi over each camera as follows:

x
{r,l}
i = H{r,l}Xi, (4.1)

where Hr is the projection matrix to the right camera image, and H l to the left one. The
template or descriptor is extracted from a patch on one or both camera images, located
around xi.

To obtain a feature i, it is first necessary to obtain its 2D projections on each camera,
establish the correspondence of xr

i to xl
i and then compute Xi by stereo recovery. Each

x
{r,l}
i is obtained from a set of interest points in the image. These interest points repre-

sent parts of the image which are likely to be easily matched to their counterpart interest
point on the other camera image, and on subsequent frames over time. Consequently,
interest points must be easily differentiable from other parts of the image. These differ-
entiation process involves the point extraction itself, and the process of establishing the
correspondences to the same point on other image, that is, the matching process.

The matching process relates two interest points in two different images. If for any
reason, an interest point can not be matched with any other from the other image, it
is discarded and consequently does not become a feature. Although the extraction and
the matching are two different subsequent processes, they are strongly related, and are
considered and studied together in the literature. Each matching technique comes along
with its own extraction algorithm.

To generate the features which will form the model, interest points are extracted over
the widened V&J boxes on the right or on both images, depending on the technique used.
As a system requirement, described in section 1.5, the feature extraction process must be
user independent, i.e., it must not use any a-priory information.

Different authors have published comparatives on detectors [Mozos 07, Moreels 07]
and image registration methods [Zitova 03, Brown 92]. Most of them cover the general
case of well defined objects, full of corners and normal lighting conditions. The following
sections study the appropriateness of different detectors and matching techniques existing
in the literature to find the stereo correspondences of the face features under low light
conditions.

SURF features and Matching

Speeded Up Robust Features (SURF) is a fast scale-invariant feature detector and descrip-
tor. It was introduced by Bay et al. in [Bay 06] and revisited in [Bay 08]. SURF features
can be used in computer vision tasks like object recognition or 3D reconstruction. In-
spired by the highly influential Scale-Invariant Feature Transform (SIFT) [Lowe 99], the
standard version of SURF is several times faster than SIFT and claimed by its authors
to be more robust against different image transformations. SURF is based on sums of
approximated 2D Haar wavelet responses and makes an efficient use of integral images
(see [Viola 04]). The main advantage of SURF over SIFT and other competitors, relies
on the fact that SURF features can be computed faster due to the use of integral images,
allowing a faster matching.
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In order to apply SURF, first many interest points are extracted from the region of
interest, the face search box, from both camera’s images. Since an interest point must be
detected on both images to establish a correspondence between them, it is important for
the detector to offer a high repeatability rate. The repeatability measures the reliability of
a detector for finding the same physical interest points under different viewing conditions.

SURF uses a Fast-Hessian detector to locate interest points. They are detected at
locations where the determinant of the Hessian matrix is maximum. Given a point x =
(u, v) on an image I, the Hessian matrix H(x, σ) in x at scale σ is defined as

H(x, σ) =

[
Luu(x, σ) Luv(x, σ)
Luv(x, σ) Lvv(x, σ)

]
, (4.2)

where Luu(x, σ) is the convolution of the Gaussian second order derivative ∂2

∂u2 g(σ) with the

image I at point x. The term ∂2

∂u2 g(σ) can be approximated at a very low computational
cost using integral images [Simard 99]. Integral images allow for fast computation of box
type convolution filters. The entry of an integral image I∑(x) at a location x = (u, v)
represents the sum of all pixels in the input image I within a rectangular region formed
by the origin and x.

I∑(x) =

i≤u∑

i=0

j≤v∑

j=0

I(i, j). (4.3)

Gaussians are optimal for scale-space analysis [Lindeberg 98], but in practise they
have to be discretised and cropped. This leads to a loss of repeatability under some image
rotations. However, since in this case the two images are taken from the calibrated stereo
rig at the same time, they are known not to have any rotation one to the other.

Interest points hi must be found on I
{r,l}
t at different scales in order to preserve re-

peatability, and are extracted after a non-maximum suppression in a 3 × 3 × 3 in the
space-scale neighbourhood [Neubeck 06] after applying the Fast-Hessian detector. The
64-dimensional descriptors are calculated within an interest points neighbourhood from
the first order Haar wavelet responses in u and v directions. The area depends on the
scale being used. Fast matching of interest points is performed by means of Euclidean
distance between two 64 dimension descriptors. For each interest point in an image, only
those which are proximal to its epipolar line on the other image are compared. An interest
point hr

i in Ir0 is matched to other hl
j in I l0 if it satisfies

j = argmin
k

(T
(r)
i −T

(l)
k ), (4.4)

where T
(r)
i and T

(l)
j are the SURF descriptors for interest points i and j on Ir0 and I l0

respectively. For improved robustness, the matching process is performed as well in the
opposite direction, and if i and j are not the same, then the interest point is rejected.
That is, in minimisation of equation (4.4), now let k be the sub-index of the term T(r):

i2 = argmin
k

(T
(r)
k −T

(l)
j ) (4.5)

The resulting i2 must be the same i than in equation (4.4). Figure 4.3 depicts all the
interest points detected on a face, while figure 4.4 shows the stereo correspondences for
the face features obtained from the successfully matched interest points.
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Figure 4.3: SURF detected interest points for right and left camera images

Figure 4.4: Stereo correspondences of face features obtained using SURF

Harris detector and cross-correlation matching

The Harris corner detector [Harris 88] is a popular interest point detector due to its strong
invariance to rotation, scale, illumination variation and image noise [Moreels 07]. Without
going into details, it is based on measuring the variations of the autocorrelation function of
the intensity image, c(u, v), under small patch shifting in vertical and horizontal directions.
Interest points are extracted at image points where the variation of the autocorrelation
function has local maximums. This indicates that c(u, v) changes significantly for both
∆u and ∆v, meaning that the position (u, v) is a corner. For a wider explanation and
Harris detector equations, we refer the reader to [Harris 88] and [Moreels 07].

In order to achieve a spread distribution of initial features candidates, the face on
image I l0 is divided into a regular grid as it is shown in figure 4.5(b), and each cell is
required to contain two to five interest points. If a frame does not fulfil this condition,
the stereo frame set is rejected and the algorithm loops, starting all over again with the
V&J over a new frame set, until conditions for model creation are met.

Let hr
i = (ur

i , v
r
i ) ∈ R2, i = 1 . . . n′ be the n′ candidate points on Ir0 , derived from

Harris corner detector, as shown in figure 4.5(b). Correspondences hl
i on I l0 are obtained

via normalised cross correlation matching of the 2D patch around hr
i over its corresponding

epipolar line on I l0.
A point is considered matched to its correspondence if the correlation maximum is

higher than a threshold, initially set to 0.5. Only N0 points (out of the set of n′) will
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(a) Il0 and Viola & Jones box (b) Ir0 and Harris points, hr
i , i = 1 . . . n′

Figure 4.5: Viola & Jones boxes for left (a) and right (b) camera images, and initial distribution
of feature candidates {hri } detected using Harris (b).

be valid since some points will be discarded due to incorrect matching and/or wrong 3D
point estimation.

Multiscale detector and matching

Although the Harris corner detector is reasonably scale invariant, sometimes there are
interest points in an image which are detectable in a certain image scale, but not in others.
To maximise the number and quality of interest points detected, Harris can be applied to
detect scale-space features [Baumberg 00]. This technique extracts a set of interest points
at different image scales, and associates the scale with the point. The matching step is
then performed at the corresponding scale at which the point was detected.

The power of multiscale image analysis comes from the ability to choose the resolution
at different parts of the image dynamically. The image area around the eye, for example,
presents more details than cheeks. Thus, using different scales it is possible to extract
proper features from both sharp and smooth parts of the face. This is very similar to
the idea below the SURF feature detector explained above. But in this case, the feature
extraction is done by means of a Harris Detector, using the same face image at different
resolution scales.

To apply a multiscale Harris, a Gaussian pyramid reduction process is computed to
resize the image. This process involves lowpass filtering and downsampling the image
pixels. At each step of reduction, first the source image is convolved with a Gaussian
filter and then it is downsampled by a factor of two rejecting even rows and columns. The
reduction of an image I to a smaller image fk using a Gaussian kernel of size s can be
expressed as

f0 = I0, Gk = fkgs(m,n) = fke
−xT x/2σ2

,

fk(u, v) =
s∑

m=1

s∑

n=1

gs(m,n) ·Gk−1(2u+m, 2v + n) (4.6)

where gs(m,n) is a squared Gaussian kernel of size s. Figure 4.6 shows a scheme of this
process, and figure 4.7 depicts the results applied to driver’s face.

Generally the same characteristic is detected at different scales, and so all the local
maximums at different scales must be related to a single interest point. [Baumberg 00]
solved this by ordering the maximums in a neighbourhood in function of its strength at
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different scales, and comparing the vector of maximums on the image being correlated.
Since for the specific problem of establishing stereo correspondences only one scale per
feature is needed, as there is no scale variation from left to right image, in our case we
apply a neighbourhood maxima suppression on the scale-space dimension to obtain the
interest point at the strongest scale.

f0 G0 f1 G1 f2

Blur BlurDown sample Down sample

Figure 4.6: Decomposition step for two-level Gaussian Pyramid. The finished pyramid for each
scale step consists of the images {f0, f1, f2}.

(a) Original image (b) Image scaled down twice (total
scaled down by a factor of 4)

(c) Image scaled down three times
(by a factor of 8)

Figure 4.7: Multiscale images of a driver’s face and detected features at each scale

Results and Discussion

Stereo correspondences of a feature are obtained by means of a stereo matching process,
using any of the three methods previously described. Features are extracted from the
face in one or both camera images and their correspondence searched. Each of the stereo
matching techniques is associated with a feature detection technique, and they are not
generally interchangeable.

The overall performance of the different methods can be tested in terms of the number
of correct correspondences. For each interest point, there are three possibilities. In the first
case, it is not matched to any other interest point or descriptor in the other image because
of the distance in the descriptor space (SURF descriptor or appearance) is higher than a



52 Automatic 3D Face Model Creation

required threshold. The interest point is rejected. In the second case, based on descriptor
distance, it is matched to other feature, but the matching is incorrect, i.e., the match does
not correspond to the same feature on both images. This is called a false positive or false
alarm. In the third alternative, a match is established and the correspondence is correct.
This is called a detection. The detection rate is the ratio between detections and the total
number of extracted interest points.

Using data extracted from the ground-truth (obtained as explained in section 7.2), we
have measured the repeatability rate of SURF and the general performance of the studied
matching techniques under the conditions present in the simulator. Figure 4.8 shows the
detection rate as the number of extracted interest points increases. To collect these data
several users have been tested under different illumination conditions, and the number of
incorrect correspondences have been hand-marked. Inside the simulator cabin, part of the
illumination is produced by the light coming from the projection panels which simulate
the road and environment. This light is back-projected to the panels located in front
of the cabin, and slightly illuminates the user’s face. To increase this illumination, IR
leds are arranged around the cameras. However, it is known that long exposure to IR
illumination causes fatigue to the driver’s eyes [Agilent 99, Koons 03], and consequently
the IR kept as low as possible.

For SURF detection, the number of interest points is changed by adjusting the thresh-
olds for the Hessian image in equation (4.2). Graph 4.8(a) shows that best performance
is obtained when around a hundred and fifty interest points are extracted. Note that the
ratio rapidly decreases when the mean intensity illumination in the images gets poor. This
means that SURF is not an appropriate technique to be used for images taken in a driv-
ing simulator. Graph 4.9 shows the detection rate using Harris plus template correlation
techniques, at a single scale or multiscale. It can be observed how multiscale performs
slightly better than single scale. In this case, the number of interest points is increased
by reducing the minimum quality required for detection in the Harris algorithm.

ROC curves, in figures 4.9(a) and 4.9(b) also show that Multiscale matching slightly
outperforms the other techniques in terms of number of false alarms, although the different
is not remarkable.

Typically, face features are not as highly contrasted or textured as those used in
other 3D structure-from-motion applications, like for example [Davison 07]. A face does
not typically present corners, and features are exposed to illumination variations and
shines. Moreover, the limited illumination leads to dark images, where features are even
less contrasted. Another important issue derived from low illumination conditions is the
poorly focused images. The iris of the camera must be wide open to allow the maximum
light into the sensor, which drastically reduces the depth of field. This produces that some
parts of the face, specially if the driver moves forward or backwards, might not be well
focused.

All this makes that a technique such as SURF descriptors does not give good results,
mainly because the feature candidates extraction fails to choose correct candidates for
matching due to the absence of corners. Incrementing the number of feature candidates
for matching directly affects computational cost and real time performance.

SURF uses a fast interest points detector and a fast matching technique to compare
many candidates found on both images. The repeatability rate is an important parameter,
since a correspondence over a feature can only be established if the same feature is detected
in both images. If this happens, the matching is more likely to be positive for wider
rotations than using template correlation, since the SURF rotation invariance is better.
In the case of correlation, the repeatability is not an issue, since in this case, interest
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(b) Template correlation

Figure 4.8: Comparison of the detection rate using SURF or template correlation, versus the
total number of extracted interest points on both images. Results are shown for various image
mean intensity
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Figure 4.9: Comparison of the detection rate using SURF or template correlation, versus the
false alarm rate. Results are shown for various image mean intensity

points are not extracted in the second image. Instead, these are only obtained in one
of the images, and the features searched within a predefined area on the other. On the
other hand, template correlation is slower than comparing two SURF descriptors, so less
candidates are used for matching.

Although the model will be extended during execution, the correctness of this first step
of model formation is vital for a later correct and accurate face pose estimation process.
The 3D model should initially be composed with at least 20 features, and preferably 25, to
have a consistent coarse model for face pose estimation. If the images have mean intensity
level of 80, in a scale from 0 to 255, the graphs on figure 4.9 show that using SURF, the
false alarms reach an average of 10 to obtain at least 20 correct features, and it is difficult
to get 25 correct ones. Using Multiscale correlation the situation is not much better. It
is only possible to get enough correct features at the cost of a high false alarm rate.

Thus, the technique used for matching in this thesis is a modified template correlation,
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based on using various patch sizes, instead of different scales.

4.1.2 Multisize matching proposal

Feature matching performance is sensible to different effects depending on the size of the
patches used. If a feature changes its appearance because of projection, it works better to
match small patches of the image, for which the changes will be more homogeneous than
for bigger ones. On the other hand, if the image is not well focused, using bigger patches
is more adequate, in order to reduce the number of incorrect matches due to repetitive
texture patterns in the face.

As a convenient solution, we characterise each feature texture by three different size
patches centred on the feature. The matching method is based on the addition of the
matching result for the three different size visual patches.

Let hr
i = (ur

i , v
r
i ) be a feature candidate or interest point on the initial right image, Ir0 ,

and P r
ik = P (hr

i , sk) be a patch on Ir0 around hr
i of size sk ∈ R2. To find its correspondence

hl
i on image I l0, three patches of different sizes are defined, P r

ik, k = 1 . . . 3. Then, the
three patches are matched over a search area of size ssearch on I l0, producing matching
results rli,k(u, v) respectively, all of them of the same size. The search area ssearch, and
consequently the size of the correlation results, is defined as a region seven pixels wide
around the epipolar line on I l0 corresponding to the point hr

i , and it is independent of the
size sk of the patch. The correlation result is expressed as

rli(u, v) =
k=3∑

k=1

rli,k(u, v). (4.7)

The template matching problem can then be formulated as finding the location (u, v) in
the image I l0 that maximises the objective function,

hl
i = (ui, vi) = argmax

u,v
(rli(u, v)). (4.8)

To ensure the robustness of the feature and to minimise matching error, candidate points
which do not meet the condition

rli,k(u, v) > htc, k = 1 . . . 3, (4.9)

are rejected, where htc is the matching threshold, set to 0.5 at the stereo matching step.
This restriction helps reducing the number of false alarms.

Figure 4.10 depicts the matching results for two different interest points. (a) is
correctly detected and matches its correspondence, while (b) depicts a failed matching
and consequently the interest point is rejected. The three concentric boxes in (a.1) and
(b.1) are the three patch sizes for the texture on I l0. These are the patches which are
correlated over the search area in (a.2) and (b.2) to find the stereo correspondence location
on I l0. Since we are looking for stereo correspondence, the search area is restricted to the
epipolar line (horizontal line in the images) of the interest point. The three graphs in
(a.2) represent the correlation result of the three patches over the epipolar line, being
the x axis the u coordinate in the image, and y the intensity of the correlation. The
curves on figure (a.2) shows how local maximums lay approximately at the same u pixel
location. The matching result is given by the maximum of the black circle marked line.
The better patch size to be chosen will be discussed in section 7.4. Here, the sizes chosen
are s1 = 25× 25, s2 = 61× 61 and s3 = 91× 91.
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(a.1) hri on Ir0 (a.2) hli on I l0 (b.1) hrj on Ir0 (b.2) I l0

Figure 4.10: A feature candidate hri on image Ir0 (a.1), and its correspondence hli on image I l0
over the epipolar line (a.2). The graph in (a.2) shows the results of rli,k(u, v), k = 1 . . . 3 and

s1 = 25× 25 (red), s2 = 61× 61 (green), s3 = 91× 91 (blue), and rli(u, v) (black), all restricted
the epipolar line. (b) Matching is not correct and point is discarded.

Multiple instances of patch matching, one for each camera, are run simultaneously,
frame by frame. These two processes do not currently interact, but it might be possible
to improve the accuracy by implementing a mixed camera matching in the future.

Results and discussion

By using the patch correlation at three different sizes, the feature matching process is
optimised for a structure-from-motion application where we wish to ignore unreliable
matches at the expense of reducing the number of feature matches. For this purpose the
newly designed multisize matching method applies much restrictive conditions to validate
a correspondence.

Although this proposal has the side effect of reducing the total number of extracted
features, these are more reliable, allowing for a better subsequent outlier detection and
filtering of the incorrect ones. Figure 4.11 shows the detection rate using the Multisize
template correlation. In this case, for an image average intensity level of 80, to obtain
25 features in the model, the false alarm rate is around 8, lower than using the previous
methods.

4.2 3D Face Model

Given the stereo correspondences calculated in the previous step, the next one is to cal-
culate the 3D coordinates of the features.

Using stereo equations and calibration parameters of the stereo rig, it is possible to
calculate the 3D coordinates of a feature, knowing its 2D projection points on the two
camera images. This process is known as the stereo 3D reconstruction, although the
algorithms to solve this are also called triangulation algorithms. In this thesis, we use an
invariant method to the projective space. The equation between a 3D point and its 2D
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Figure 4.11: Comparison of the detection rate using multiscale template matching or multisize.
Results are shown for various image mean intensity levels

image projection can be expressed as
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where m11, . . . ,m34 are the projection parameters dependent on the stereo rig calibra-
tion, and s is an scale factor. These 2D projections are the two points on right and left
image which form the feature correspondence pair. Let xr

i, and xl
i, be the 2D projections

of the feature i on Ir0 and I l0. Using the relation between a 2D projection and Xi stated
on equation (4.10), we can write Xi as
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where f(xr
i,,x

l
i,, p) is a function of m11, . . . ,m34, the camera parameters and x

{r,l}
i . The

3D coordinates Xi can be computed minimising the system on equation (4.11).
Minimisation is applied to all the feature correspondences, obtaining a initial set of n′

3D points
{Xi}i=1...n′ . (4.12)

From the initial set of n′ points, some correspondences may be false alarms, that is,
erroneous matched interest points, and must be filtered out before generating the model.

The filtering process takes into account face geometrical constraints, like shape and
position to ensure the rejection of points outside the face bounds.

4.2.1 Cylinder model fitting and feature self-occlusion

One of the common problems to face pose estimation systems based on tracking methods,
as stated on chapter 2, is the self occlusion. The face model features can self-occlude when
the head turns over a certain angle, so some of the model points may not be visible. To
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detect these features in advance, a hidden-point pattern is created during model initiali-
sation. Each feature is associated to two limit rotation angles within it is visible. When
the face rotation angle is over the limit angles of a point, it is considered to be hidden
and it is not used for tracking and pose estimation.

To create the hidden-point pattern, a vertical-oriented cylinder is adjusted to the
{Xi}i=1...n′ feature coordinates [Eberly 03], as shown in figure 4.12. The minimisation
is implemented inside a RANSAC loop to avoid fitting the cylinder to the most salient
points, such as those of the nose. The outliers threshold hCyl RANSAC is chosen small
enough so that nose points are outliers to the initial minimisation. On each RANSAC
iteration t, a group N (t) of seven random points is generated, and a cylinder is adjusted
to minimise the error function

E(θ(t)) = min
θ

∑

k∈N (t)

Ek(θ), (4.13)

where
Ek(θ) =

√
(x− xk)2 + (z − zk)2 − r

2
(4.14)

is the individual 3D point error function and θ = (x, z, r) is the parameter list in the
minimisation, and the parameters represent the centre in the (X, Y ) plane and the radius
of the fitted cylinder. After each iteration, inliers are calculated as

I(t) = {Xi} : Ei(θ
(t)) < hCyl RANSAC , i = 1 . . . n′, (4.15)

and the best iteration is chosen to maximise the number of inliers. After the RANSAC
has found the largest set of inliers I, a new minimisation is executed using all these inliers
to find the best set of parameters θo = (x0, z0, r0):

θo = argmin
θ

∑

k∈I

Ek(θ). (4.16)
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Figure 4.12: Circle fitted to the face to get the limit angles

After minimising (4.16), the point mo = (xo, zo) is defined as the model geometric
centre. All the angles have an offset inherited from the initial model rotation offset. Each
point of the model is considered hidden when its angle with respect to the initial model
rotation vector ~V0 exceeds ±60◦ degrees.
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After computing the model geometric centremo, those 3D points for which the distance
di to mo is outside a given range are rejected, i.e., the points are far from the 3D cylinder
surface, typically 50mm < di < 120mm, since these points are probably outliers.

The self-occluding model of the face has several advantages. Although the exact oc-
cluding angle for each feature is not known, since detailed geometry of the face is not
computed, the self-occluding model gives a prediction about when this is likely to hap-
pen. This prediction allows to reduce the number of erroneous feature matches at the
tracking stage caused by features that are occluded.

Figure 4.13 shows the appearance similarity variation of a feature texture over rotation
compared to its frontal, initial appearance. Zero-mean normalised cross-correlation was
used to compare the patches. It shows how correlation similarity decrease when the
rotation angle increases. Although a new re-registering technique will be introduced in
the next chapter to overcome this issue, we choose to discard features for pose estimation
when their similarity is likely to be low, in order to reduce the probability of tracking
errors.
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Figure 4.13: Feature appearance similarity for different face rotations. The plot shows how
similar is the appearance of a feature under different view-points, for the average case, or taking
into account the 10% best and worst cases

Finally, the self-occluding model also reduces the computational cost, since all the
features that are occluded are not processed.

4.2.2 Model formation

Initially, n′ correspondences were extracted, of which only a set of N0 are correct and
used to form the model M. The model centre is set to mo = (xo, yo, zo), where (xo, zo)
are obtained from the cylindrical model fitting, and yo is set to

yo =
1

N0

i<n′,i∈M∑

i=0

yi (4.17)

The correct correspondences are sorted and translated from camera coordinate frame to
object coordinate frame reference system to form the model.

X
(M)
i = Xi −mo (4.18)
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Each model feature i is formed by the 3D point coordinate X
(M)
i and a cluster Ci of

appearance descriptors obtained from the 2D location of the interest points from which
the feature was extracted on each camera. Since correlation is being used for feature
tracking, following discussion in section 4.1.2, the appearance descriptors which form the
clusters are the patches captured from the images, and will be called textures hereinafter,

denoted as {T(r)
i ,T

(l)
i }. These, however, are not the only features which form the model,

since it expects new ones, up to N , to be added during tracking to reveal parts of the face
initially occluded. Therefore, the model is formed as

Ci = {T(r)
i ,T

(l)
i }, (4.19)

M = {X(M)
i +Ci}i=1...N0,...N , (4.20)

where M is the 3D face model and X
(M)
i are the 3D points of the model in the object

coordinate frame. Initial object pointing vector is defined as ~V0 = (0, 0, 0), with origin in
the model centre m0, and referenced to the right camera frame system.

The coordinates of the model {X(M)
i } are initially set rigidly, and distance between

them is constant, as represented by the blue lines in figure 4.14. However, methods to

dynamically adjust {X(M)
i } and {Ci}, that is, model structure and appearance, and to

extend the model will be presented in chapter 5.

Figure 4.14 depicts the projections x
{r,l}
i over the camera images Ir0 and I l0 respectively

of the model points X
(M)
i . Projection points are calculated applying equation (4.10).

Figure 4.15 shows and example of an automatically generated model from the images

showed on figure 4.14. Each vertex is a 3D model point, X
(M)
i .

(a) Set of projections {xl
i,} over Il0 (b) Set of projections {xr

i,} over Ir0

Figure 4.14: Projections xl
i, and xr

i, of model points over the left and right images, Il and Ir

4.3 Conclusions

The main purpose of the 3D model is to provide a reference from which the pose can be
extracted from 2D feature projections on the camera images. However, it can also help
to detect and correct tracking errors and feature self-occlusions.

This chapter proposes a method to automatically generate a 3D coarse face model
formed by 3D points and their appearance descriptors in the images using a stereo rig. This
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Figure 4.15: 3D face model showing the set of points, M = {X
(M)
i }i=1...N

is done by automatically extracting and matching face features from both camera images.
No matter the matching method being used, including incorrectly matched features in
the model is an issue that must always be addressed. For this purpose, an improved
matching scheme has been proposed, based on matching feature patches of different sizes.
This technique takes advantage of the precision provided by smaller patches, and the
robustness of using bigger ones.

To deal with self-occlusions, we have defined a self-occlusion limit angle for the model
points. This provides an a priori knowledge of which points are not visible, and also
allows to reject those features that might appear too distorted to be correctly tracked
when the face has an angle close to a feature self-occlusion angle.



Chapter 5

Face Pose Estimation with Model
Corrections

This chapter presents the frame to frame execution of the algorithm, which involves the
face tracking and pose estimation processes. After an initial face model has been created
as explained in chapter 4, the algorithm described in this chapter executes in a loop frame
to frame to achieve the final goal: to accurately determine the pose of the face on each
frame. The steps involved in this task are described in the next sections. Figure 5.1
depicts a flow chart of the execution of the different processes.
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Figure 5.1: Schematic flow chart of the face tracking and pose estimation algorithm
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5.1 Feature Tracking

As we described in chapter 3, the next step after the model creation is the frame to
frame tracking of the feature set which forms the model. This tracking allows fitting the
model to the face in the frame being processed. Since the appearance of the features
can drastically change as the head rotates or due to illumination, the tracking technique
to be used must be capable of dynamically updating the features descriptors to account
for these changes. However, any dynamic updating process also involve the possibility of
drifting due to the accumulation of small errors over time. To address this problem, the
tracking is supported on the 3D face model, to provide a correction method for drifting
points.

The reasoning behind the usage of the 3D face model as a correction mechanism is that
obtaining an a priori appearance model is a difficult task: it requires comprehensive image
databases of enough objects under different deformations (and sometimes illumination
conditions), hand or semi-automated marking of the images, and may also involve post-
processing. Obviously, a different model needs to be created for each kind of object.
Consequently, if a priori information on the features can not be used, the only initial
information available for tracking is the first frame appearance and the 3D model itself.

Several methods that work without a priori information have been presented in the
literature. Most of them have focused on tracking image descriptors on a video sequence.
The classic approach is to use patches extracted on the first frame of the sequence to search
for similarities on the following ones. Lukas-Kanade method [Lucas 81] was one of the first
proposed solutions and it is still frequently used. This algorithm uses Newton’s optimisa-
tion method to find the best matching patch. More recent approaches include works that
relay in more complex modelling of the image descriptor to increase the robustness and
precision of the tracking. Jepson et al. [Jepson 03] presented a system with appearance
based on three components: a stable component that is learnt over a long period based on
wavelets, a 2-frame tracker and an outlier rejection process. This method works robustly
for large patches, but not so well for smaller ones. Its computational requirements are
also high, and it does not work in real time. [Moreels 07] showed that the repeatability
performance of this State of the art detectors slowly degrades with increasing change of
viewpoint. Typically, face features are not highly contrasted or textured, in contrast with
those used in other 3D structure from motion applications such as [Davison 07]. A face
does not typically present corners, and it is exposed to illumination variations and shines.
Moreover, the limited illumination leads to dark images, which makes features even less
contrasted. Another important issue derived from low illumination conditions are the
poorly focused images. The iris of the camera must be wide open to allow the maximum
light into the sensor, drastically reducing the depth of field. This produces that some
parts of the face, specially if the driver moves forward or backwards, might not be well
focused.

Several other techniques can be used for tracking. Yin and Collins [Yin 07] made a
successful approach to object tracking without a priori information by means of tem-
plate correlation on the camera 2D projection space. The patches were selected using
a Harris Corner detector. Yin and Collins showed that template correlation techniques
with Harris corners are able to extract and match more features than descriptor matching
algorithms, such as SURF or SIFT. Moreover, the detection step is only needed once at
the initialisation step.

Four different approaches were studied on section 4.1 for the process of finding the
correspondences across camera projections: SURF, simple patch correlation, multiscale



5.1. Feature Tracking 63

correlation and multisize matching. The schemes tested and used for frame to frame
feature tracking are the same.

In addition to the discussion held in the previous chapter, the techniques used now
for tracking have the requirement of real-time performance. Moreover, since a feature
descriptor is stored at the first frame and tracked along face rotations, the rotation range
is now much wider than in the stereo matching stage. SURF proved very bad results due
the low repeatability rate caused by the difficult lighting conditions, while in addition is
the slowest of all the mentioned techniques. On the other hand, the multiscale scheme did
not perform as expected either. Due to the much wider rotation range, there is a higher
uncertainty on the scale on which it is going to have better performance after some wide
rotation. Moreover, the smallest scales have an intrinsic localisation error due to the low
resolution of the scale where the feature is located.

For these reasons, and for simplicity, the matching technique that we have used for
frame to frame feature tracking is the same used for stereo matching: the multisize patch
correlation, explained in section 4.1.2. The only difference is a more restrictive correlation
threshold to minimise tracking error and outliers. In equation (4.9), htc is now set to 0.7.

However, as the threshold htc is increased, tracking of a feature fails at smaller ro-
tations, when its dissimilarity to the original stored texture is big enough. A smaller
threshold, on the other hand, would increase the tracking errors and the number of out-
liers to the subsequent pose estimation step, reducing the algorithm capability to detect
and reject these outliers. As an attempt to solve this problem, we have tested a feature
template warping technique.

5.1.1 Warping of feature points projections

The main problem to solve when tracking 3D objects is the changing appearance of the
feature points as its pose changes. To deal with this problem, many authors apply a patch
warping technique [Dornaika 04, La Cascia 00, Xiao 02]. Consider a feature texture that
has been first captured and stored with a face pose P0. For any given pose of the face P1,
other than the initial pose P0, the feature has a different projection angle. This makes it
maybe have a very different appearance than that initially captured with P0. If the 3D
surface of the feature patch were known, its projection could be warped or mapped from
the patch with view-point P0 into the patch with view-point P1 as a piece-wise affine
transformation [Baker 04a], W . Formally, the warping process applied to an input patch
I0 captured with pose P0 is denoted

I1 ≈ I ′0 = W(I0, b), (5.1)

where I1 is the patch with view-point P1; I
′
0 is the approximation to I1 obtained from

warping I0 as it would be seen from a point of view with pose P1; and b denotes the
geometrical parameters of the transformation from P0 to P1. It is necessary to find the
transformation that makes I ′0 as similar as possible to I1.

Three classes of warping have been considered. The most generic case is when the
patch to be warped represents the projection of a generic 3D surface. In this case, an
arbitrary warping is needed, generally applied by splines defining the curvature of the 3D
surface. However, the 3D surface of the face is roughly represented by the model, with
only a few values at the positions where each feature has been detected, but not in a
near neighbourhood around each feature itself. This class of warping could be applied if a
dense matching of the face is performed and the 3D surface around each feature is known.
If this is not the case, a feature patch can be assimilated to a planar surface if the patch
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is small enough. Two classes of warping are possible for planar surfaces. A more realistic
case is the projective warping, which emulates a camera projective model. If the scale of
the patch compared to the distance to the camera is small enough, this can be simplified
to an affine warping, which assumes an orthogonal projection model. Figure 5.2 depicts
the three warping approaches.

Arbitrary

Projective

Affine

Figure 5.2: Warping classes

We use an affine warping model for tracking face features since patches are very small
to have any noticeable perspective deformation because the scale of the scene compared
to the distance to the camera is small. Moreover, the errors caused by assuming a planar
surface are far greater than those from assuming an orthogonal camera model. In an
affine transformation, straight lines remain straight and parallel lines remain parallel, but
distances and the angles between intersecting lines may change. Equation (5.1) can be
expressed as an inverse pixel mapping relation x′ → x, which maps any pixel in the
destination patch I ′0 from subpixel positions in the source I0 as

x = W−1(x′, b) (5.2)
(
u

v

)
= W



u′

v′

1


 , (5.3)

where W is the inverse warping matrix. Equation (5.2) maps any integer pixel x′ =
(u′, v′)T in I ′0 from x = (u, v)T in I0, and can be calculated as

u = m00 ∗ u
′ +m01 ∗ v

′ +m02

v = m10 ∗ u
′ +m11 ∗ v

′ +m12.
(5.4)

In equation (5.4), the resulting source image pixel x = (u, v)T points to a non-integer
pixel position. The intensity value for that position is computed using an interpolation
method, such as bilinear or bicubic from the surrounding pixels within I0.

A transformation matrix Wi has to be inferred for each feature i of the model from
the limited knowledge of the 3D structure of the face. For a given point of the model,
Xi = (xi, yi, zi), we do not know how the 3D surface is around the feature. What we
know is the position of surrounding features, which gives a rough idea of the orientation
of the surface Si ∈ R3, assumed planar and centred in the 3D point Xi. Let Xj, and
Xk be the two 3D face model points closest to Xi. The set (Xi,Xj ,Xk), with known
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projections (xi,xj,xk) over the camera image, form a triangle in R3, which is enough to
calculate the coarse orientation of the surface Si. The normal vector to Si is know as the
pseudo-normal vector to Xi, i.e., it represents an approximation of the normal pointing
vector of a 3D surface centred at Xi. When the face moves to pose P1 the set of points
(Xi,Xj ,Xk) moves to (X1

i ,X
1
j ,X

1
k), Si moves to S1

i , projection points over the camera

image move to (x1
i ,x

1
j ,x

1
k), the patch associated with the feature changes from Pi to P 1

i .
The objective of the warping is to find the transformation Pi → Pw

i which minimises

Pw
i − P 1

i , assuming Si is planar. To calculate the transformation matrix W
P1
i which

transforms Pi to Pw
i , it is necessary to obtain the new positions of (X1

i ,X
1
j ,X

1
k) and its

corresponding 2D projections (x1
i ,x

1
j ,x

1
k) over the camera image. Now we can set x′ from

equation (5.2) as x1
i , x

1
j and x1

k in a system of three equations. Equation (5.4) is applied

to the three points together to form a system of the form A · M
P1
i = B which can be

expanded as follows to solve W
P1
i :




u′
i v′i 1 0 0 0
0 0 0 u′

i v′i 1
u′
j v′j 1 0 0 0
0 0 0 u′

j v′j 1
u′
k v′k 1 0 0 0
0 0 0 u′

k v′k 1




·




mi,00

mi,01

mi,02

mi,10

mi,11

mi,12




=




ui

vi
uj

vj
uk

vk




. (5.5)

Figure 5.3 shows the projection of feature points and the patch transformation.

Pi

xi

xj

xk

R0

x′
i

x′
j

x′
k

R1

P ′
i

W(Pi, b)

Figure 5.3: Warping process of a feature i. View in R2

Similarly, the same process, using four points instead of three could be inferred if a
perspective warping were to be applied. However, the approach above is based on the
assumption that the pseudo-normal to the surface Si at model points Xi is correctly
computed. The closer the other chosen points used to calculate Si are to Xi, the better
the approximation would be, but since a face is an irregular surface and the 3D model
is not a dense structure, there is some error on the calculation of Si. Most of the times,
this error is much bigger than that derived from using affine transformation instead of
projective. Consequently, for simplicity and time performance, applying a perspective
transformation is not advisable.

In practise, we apply the template warping between a stored model texture of a feature
Ti, and the feature patch at the current frame, Pi,t. To calculate Wi the pose Pt has to
be known at frame t, but it is unknown because it is calculated after the tracking step.
We can, therefore, either predict it using techniques such as a Kalman filter, or use Pt−1
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instead, assuming ∆P is small enough since the system is working at 30 fps. Furthermore,
warping can be applied in any of two directions: Ti → Pi,t or Pi,t → Ti. In the first case,
the stored Ti is warped to create T′

i, and this is compared to Pi,t at the correlation stage.
In the later case, the current feature patch on the image, Pi,t is warped to create P ′

i,t, and
compared to Ti.

The factors which determine how to do the warping are the feature localisation ac-
curacy after the matching stage, and the real time performance. An exhaustive testing
have been carried out. To obtain the error in feature localisation, Pt is extracted from
the ground-truth (GT), and the real feature location calculated projecting the feature 3D
points using the GT pose. The ground-truth is explained in details in the results chap-
ter, section 7.2. The warping transformation matrix Wi is also computed using the data
calculated from the GT, to isolate the warping error from feature localisation error. This
assumes that the feature input position is correct for the comparison.

The curves in figure 5.4 shows the error for three of the possible warping combinations.
It can be observed how there is very little different between them. Consequently, for
simplicity the warping approach applied in the proposed system in this thesis is Ti → Pi,t.
Figures 5.5 and 5.6 show some examples of warping for various face features under different
rotations. The first figure shows the results applying the warping Ti → Pi,t, and the
second applying Pi,t → Ti.
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Figure 5.4: Comparison of localisation error for various template warping alternatives

Due to pseudo-normals calculation errors and feature not being planar surfaces, the
template warping works reliably for small rotations. However, it does not solve the fea-
ture dissimilarity problem produced for wide rotations. To deal with this, we propose a
technique to capture or re-register feature textures as the head rotates. The re-registering
happens at some certain frames at which the uncertainty of the pose estimation is likely
to be very low. This allows us to re-register the new appearance of the features as the face
rotates, so the textures used for correlation are not always the ones captured at initial-
isation. This reduces the dissimilarity while using a high threshold htc for the matching
as we indicated in equation (4.9).

5.2 Feature re-registering

As the head rotates, feature appearance changes to levels at which it is impossible to
establish a correspondence using any matching algorithm over the initially registered
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Figure 5.5: Warping for various face features under different small rotation angles. For each
feature i there are three rows. The first row depicts the patches on the camera image, Pi,t, under
different rotations. The last row shows the unwarped texture of the feature, Ti, as it is stored
in the model. The second row shows the stored texture in the third row, warped to simulate the
first one, T′

i = Ti → Pi,t
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T3
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P ′
4,t
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P ′
5,t

T5

Figure 5.6: Warping for various face features under different small rotation angles. Now, the
inverse wrapping have been tested, and the middle row for each feature depicts P ′

i,t = Pi,t → Ti
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feature textures. Some algorithms proved to deal better with rotations than others, but
none is capable of finding the correspondences under wide rotations if no extra information
is provided by other means. As face features are not planar in shape, in general it is not
a good solution to try a template warping to correct changes in appearance. Moreover,
this process is costly, and often needs some a priori information about the orientation of
the patch in the 3D space.

To deal with this appearance variation we have developed a new re-registering tech-
nique based on using different view-angles of the face from the two cameras to try to
estimate the appearance that a feature will have after some rotation. The main idea
behind our re-registering technique is to capture new textures from feature patches and
to store them in the model when we know that the pose estimation error is the lowest
possible. At the model creation step, images patches with different view-points are cap-
tured from both cameras, and stored in the model. Instead of using disjointed appearance
models for each camera, the stored textures are grouped together for each feature in a
cluster. At the tracking stage, some elements of the cluster are correlated in the image,
and the one giving better correlation results is used for feature localisation [Nuevo 10].

Figure 5.7 makes a comparison of the mean feature localisation error with one camera
using for matching the initial feature patches, stored in the model as feature textures. One
curve shows the error using for correlation only the initial texture captured with this same
camera. The other curve shows the error if we take the best result of the correlation of
the textures initially captured on the each of the cameras. It shows how localisation error
is drastically reduced using for tracking a cluster containing the stored texture captured
from both cameras . The dashed vertical line shows the angle between the two cameras
from a distance of approximately 90cm, at which the face is usually located. Localisation
error has a minimum precisely at these rotation angle, because the view-point of the
face from one camera is the same as the view-point from the other after a rotation of
approximately 15◦.
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Figure 5.7: Comparison of localisation error using the textures from one or the two cameras in
a cluster

Figure 5.7 shows that the optimal angle to perform re-registering is equivalent to the
camera separation, because with this yaw rotation the localisation error is minimal. At
these rotations, new textures from the feature patches on the image can be captured and
stored in the model, since it is at this rotation when the localisation error of these patches
is likely to be minimal. Repeating this process all over the yaw rotation range, tracking
error can be kept very low under full range rotations.

Following this scheme, new features appearances are stored in clusters at certain angles

αj, from both camera frames. Let T
(j)
i be a stored texture for feature i and view-point

angle αj, no matter from which camera it was captured. For each feature point belonging
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to the model, a cluster of textures Ci is also stored along with Xi with feature textures
from different angles αj ,

Ci = {(T(j)
i , θ

(j)
i )}, j = ±1, j = ±2, . . . . (5.6)

The texture T
(t)
i used for correlation at a certain frame t to search for the feature location

in the tracking process is

T
(t)
i = argmin

j
(T

(j)
i − Pi,t). (5.7)

Let P0 be the 3D model pose at t = 0. From this pose, a model point Xi projects
with view-point angle α0 at x

r
i,0 on image Ir0 . P

r
i,0 is the patch around this point seen from

camera Cr. We assume that P0 is correct by definition, since it is the initial 3D model

pose. The texture T
(0)
i = P r

i,0 from feature i is stored to the cluster, which is also correct
since we are at the initialisation, i.e., has no drifting. Similarly, β0 is the projection angle

of the feature to the left camera, and T
(1)
i = P l

i,0 from image I l0 is also stored to the
cluster. This process can be followed in figure 5.8 1©, which illustrates the re-registering
mechanism.

Now, let the face rotate to its left for a certain time after initialisation and model
creation have finished. Let P1 be the pose at a time t1 for which the projection angle,
β1, of model point Xi into the other camera image I lt1 is similar to α0, or more precisely,
lower than an error threshold

ǫ > β1 − α0. (5.8)

If such is the case, the patch P l
i,1 should be very similar to the stored T

(0)
i , previously

captured from the other camera, since the projection angles to the respective cameras are

the same. Thus, now T
(0)
i can be used to track the new position of xl

i,1 on image I lt1 more

accurately since T
(0)
i has the same view-point than P l

i,1, and we previously assumed that
this texture is correct. (Figure 5.8 2©)

At this time, the localisation error is expected to be minimal, and consequently it is

convenient to re-register the texture of feature i. A new T
(3)
i = P l

i,1 is stored to the cluster,

captured from the left camera, which should be very similar to T
(0)
i , except for rotations

in the roll and pitch angle and lighting conditions.
The angles αj and βj are not the same for all the features at a certain frame, so a new

sub-index should be introduced, to denote the specific angle for each feature i at a time,
(αj,i, βj,i). However, in practise they are very similar since the size of the face compared
with the distance to the camera is small. This means that the frame t1 can be chosen so
that condition in (5.8) are met for all the features,

t1 :
i=N∑

i=0

|βt1,i − αt0,i| < ǫ′. (5.9)

Error plot on figure 5.7 shows that there exists a pose P1 which satisfies this average
minima in localisation error. A minima in average localisation error leads to a minima in
pose estimation error, at the cost of a slight higher error in the captured Ti, since t1 does
not minimise (5.8) for every single feature at a single frame, but minimise the sum of all
of them. This condition implies that P1 error is also minimal at t1.

Although the P1 error is not zero at frame t1, it is minimum, so it is the best moment
to register a texture from camera Cr. The 2D position xl

i, of the feature is translated to
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the right camera frame system, xr
i,, knowing P1. From this location in the right camera,

another new texture T
(2)
i = P r

i,1 is also stored to the cluster.
Again, after some rotation, there is a time t2 with pose P2 for which equation (5.9) is

minimal,

t2 :
i=N∑

i=0

|βt2,i − αt1,i| < ǫ′, (5.10)

and the last stored texture from camera Cr, T
(2)
i can be used to accurately search for P l

i,2

in image I lt2 on camera Cl (Figure 5.8 3©).
This process repeats over the whole yaw rotation range. If the face is rotating to its

left, the camera Cl is mostly used for tracking and Cr to anticipate the view-point that Cl

will have after a small further yaw rotation. Similarly, the process repeats in the opposite
directions, when Cr mostly tracks and Cl anticipate the view-point of the features.

The described procedure generates a cluster as described in equation (5.6) of stored
textures at discrete angles

αj ≈ j × θc, j = 0,±1,±2, ..., (5.11)

where θc is the average driver’s view-point angle separation of the two cameras. For the
stereo rig using is this thesis, θc ≈ 15◦.

Figure 5.8: Re-registering process when the face is rotating to its left

Figure 5.9 shows the evolution of the correlation results for the tracking of xr
i,t and

xl
i,y of a feature Xi over the right and left images when the face is rotating to the left.

The graph shows the correlation peaks produced for xr
i,t when re-registering takes place,

at steps of approximately 15◦. As for the graph of xl
i,t, its minimums represent the points

at which the texture used for tracking switches from T
(j)
i to T

(k)
i , j 6= k. This happens at

±7.5◦ from the re-registering rotations.
Similarly, if the face were rotated to the right, figure 5.9 would be symmetric, inter-

changing the functions acquired by the cameras.
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Figure 5.9: Correlation result of a feature patch for right and left images in a video sequence
in which the face rotates to the left after initialisation. In the graph, times advance as the
rotation angle increases. The peaks in the right image graph represent the moments at which
re-registering happens

5.3 Pose Estimation

After the position of the tracking points have been updated for left and right frames, the

3D face pose has to be estimated using the putatives (X
(M)
i ⇔ x

{r,l}
i,t ) of each feature,

that is, the correspondences of the 3D points and their projections over one or both of
the camera images.

Whether {xr
i,t}, {x

l
i,t} or both will be used to extract the pose depends on the pose

estimation uncertainty for each frame and tracking error derived from the previous track-
ing step, as shown in graph 5.9. In the previous section, it was explained how the face is
tracked mostly using only one of the cameras, depending if it is rotating left or right. If
this is the case, the pose must be estimated based mainly in data from the frame which
has been used for tracking. If the head is rotating left, then the tracking and subsequent
pose estimation is performed over the left image. When the condition in equation (5.10)
is met, the resulting pose is translated to the right camera, used to project the features
3D points over Irt to accurate obtain {xr

i,t}, and the textures from the patches around
{xr

i,t} in the image are re-registered. Similarly happens if the head is rotating right. If
the head is moving randomly or it is static, pose is estimated from both frames, and the
results averaged.

Two techniques to recover 3D face pose have been tested in this thesis, POSIT and
Levenberg-Marquardt.

5.3.1 POSIT

Three-dimensional pose can be obtained using DeMenthon’s four point iterative pose
estimation algorithm (POSIT) [Dementhon 95]. The POSIT algorithm calculates the
pose of a 3D rigid object from its 2D projection on a single image. It estimates the pose
by first approximating the perspective projection as an scaled orthographic projection,
and then iteratively refining the estimation until the distance between the projected points
and the ones obtained with the estimated pose falls below an error threshold.

The pose P = {R, T} indicates the position of the central point of the model regarding
to the camera coordinate system, and its rotation from the initial model given.
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Let ν
{r,l}
t be the set of visible features each frame for the right and left cameras. The

3D face pose is computed individually for each camera frame in a RANSAC framework
as

Pr
t = fPOSIT ({Xk}, {x

r
k,t}), k ∈ νr

t , (5.12)

Pl′

t = fPOSIT ({Xk}, {x
l
k,t}), k ∈ ν l

t, (5.13)

where Pr
t is the pose estimation using the right camera, and Pl′

t is the estimation using
the left one, and referred to the left camera frame system. This has to be translated to
the right camera frame system, which is the reference frame,

Pl
t = RcP

l′

t + Tc, (5.14)

where {Rc, Tc} are the rotation and translation from left to right camera.
The two poses, Pr

t and Pl
t are merged after the RANSAC process, depending on the

output error of each estimation.

5.3.2 Levenberg-Marquardt algorithm

Levenberg-Marquardt (LM) algorithm [Marquardt 63] was first introduced by Donald W.
Marquardt in 1963. It is an extension to the Gauss-Newton method, and can be inter-
preted as an intermediate method between Gauss-Newton and gradient descent. This
addition makes Gauss-Newton more robust, meaning it can start far off the correct min-
imum and still find it. But if the initial guess is good, then it can actually be a slower
way to find the correct pose. It works by dampening the parameter change that happens
each iteration to make sure that Gauss-Newton always descends in parameter space.

Given the correspondences between 3D-points pi , and its projections into a camera
image at position p′i (see 5.10). Pose estimation from these 2D-3D correspondences is
about finding the rotation and translation between camera and object coordinate systems.

Figure 5.10: Geometric approach to pose estimation using LM.

LM estimates the relative rotation and translation of an object from an initial position
and orientation (initial pose) to a new pose. The correspondences (pi, p

′
i) are given for the
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new pose. The algorithm can be formulated as a nonlinear least squares problem, which
minimises the cost function

fLM = argmin
{R,T}

∑

k∈ν{r,l}

||x{r,l}
k − proj(RXk + T )||2, (5.15)

where proj() is the camera projection function and (R, T ) are the rotation and translation
matrices to be estimated.

The 3D face pose is computed individually for each camera frame in a RANSAC
framework as

Pr
t = fLM({Xk}, {x

r
k,t}), k ∈ νr

t , (5.16)

Pl′

t = fLM({Xk}, {x
l
k,t}), k ∈ ν l

t, (5.17)

As it is done when using POSIT, the two poses Pr
t and Pl

t are merged after the RANSAC
process.

5.3.3 RANSAC

The matching process may not succeed for all points, and can result in errors or drifting
for some of them. These errors negatively influence the accuracy of the estimated pose.
Thus, a robust optimisation method is required to estimate the best fitting 3D face pose,
that would detect as outliers the points that have been incorrectly tracked, so they can
be safely discarded. The RANSAC algorithm is used to eliminate the outliers.

In each RANSAC iteration, seven points are randomly selected from the model, and
used to calculate the pose (R and T matrices) using either POSIT or LM. With this R

and T , all 3D visible points of the model, ν
{r,l}
t , are projected over the image plane, and

the Euclidean distance from the tracking point to the corresponding projected point is
calculated. If this distance is less than a threshold, this point is considered to be correct,
and marked as an inlier. RANSAC iterates until the reprojection error drops bellow 3
pixels, or until is has been iterating for approximately 15 ms, so real time performance is
not compromised.

This process is performed over the frame used to track the points. In case both frames
are used, the final pose estimation is calculated for each one, and the result given as the
weighted sum, according to the next expressions:

R =
Rr · Inl

Inl + Inr

+
Rr

l · Inr

Inl + Inr

, if Inr, Inl > Inmin (5.18)

T =
~Tr · Inl

Inl + Inr

+
T r
l · Inr

Inl + Inr

, if Inr, Inl > Inmin (5.19)

where Inl and Inr are the number of inliers from the left and right pose estimations, as
determined with RANSAC. R and T are the resulting pose estimation. Rr and Tr are
the pose estimation from Ir, and Rr

l and T r
l are pose estimation from the left camera,

translated to the right one using the corresponding stereo equations and calibration pa-
rameters. In case the number of inliers of any of the images is less the Inmin threshold,
that estimation is discarded and the estimation of the other camera is used.

Figure 5.11 depicts the effect of RANSAC, and compares POSIT and LM algorithms.
The RANSAC error threshold is set to 35 pixels. The maximum feature localisation error
in the curves not using RANSAC has been manually set to twice the RANSAC error
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threshold, to 70 pixel. Other way, it is not possible to obtain any reasonable result for
comparison because the tracking and pose estimation simply do not work. The graph
compares the pose estimation error as a function of the feature localisation error, which
is the output of the previous step.

LM algorithm is relatively stable for low to medium localisation error. For a mean
localisation error of 20 pixels, the pose estimation error is still lower than 5◦. Moreover, the
presence of outliers —recall that the localisation error for the outliers is set to 70 pixels—
do not degrade too much the pose estimation. POSIT, on the other hand, is more sensible
to localisation error, and even more to outliers. To keep the POSIT measurements below
an error of 5◦, a localisation error no greater than 10 pixels is necessary. On the other
hand, each LM execution needs as much as twice the time of a POSIT iteration. This
means that during the approximately 15 ms that RANSAC is allowed to run, POSIT can
perform much more iterations. In the even of many outliers, POSIT can detect and reject
more outliers than LM, and so it deals a little better to occlusions than LM. If the number
of outliers is low, POSIT gives more error than LM. In conclusion, LM is more accurate
than POSIT, but the second is faster, allowing more RANSAC iterations.

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Mean tracking localization error [pixels]

P
o
s
e
 e

s
ti
m

a
ti
o
n
 e

rr
o
r,

 |∆
R

| 
[°

]

POSIT vs LM error on Pose estimation, |R|

 

 

LM+RANSAC

LM (max error=35px)

POSIT+RANSAC

POSIT (max error=35px)

Figure 5.11: Comparison of pose estimation error using POSIT or LM, with and without
RANSAC. The error threshold is set to 35 pixels. For the curve without RANSAC, the max
feature error is also set to 35 pixels

5.4 Model extension and correction

The 3D model was initially created using a single pair of stereo images of a frontal face.
This model is incomplete and the points may contain noise. During the execution of
the algorithm, this model is extended and corrected adding new information that can
be extracted from successive pairs of stereo frames. As head rotates it presents different
points of view to the camera, which allows for acquiring much information from the face
than that obtained from the initial pair of images.

5.4.1 Model extension with new feature points

The 3D model is initially created using a frontal view of the face. Consequently, for yaw
rotations wider than ±400 approx, most of the points of the model are occluded. This
makes necessary to augment the model with new points from parts of the face which
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were initially occluded. When the number of visible points from a camera falls below
a threshold, usually 10, new points are searched for. The same technique explained in
section 4.2 is used to detect and obtain the 3D coordinates of the new points to be added.
The search area for candidates is predefined. Many point candidates may lay outside
the head itself. Those points are filtered attending to face shape and size constraints
mentioned above.

The 3D coordinates of the new points to be added are referenced to the camera coor-
dinate system. We first convert their coordinates to the model reference system, which is
now defined as its estimated pose, Pt. This pose Pt includes an estimation error, which
thus is included in the position of new points inside the model.

5.4.2 Model correction based on bundle adjustment

The 3D points taken during model creation and added later are subject to error derived
from stereo correspondences. In addition, the newly added points to the model also inherit
the error of the pose estimation at the frame of addition. In order to get a better fitting
of the model to the face, a bundle adjustment (BA) optimisation [Triggs 99] is used to
refine the 3D model. This corrects the 3D point coordinates of the model and the poses at
which any point has been added. To save on computational load, this stage is only applied
at certain keyframes, tk when a minimum movement has been detected in the pose, and
only during certain time after model creation. The process is also executed after points
have been added to the model. Each keyframe’s pair of images are saved, along with the
2D projection xr

i,tk
,xl

i,tk
of the model points and the estimated pose Pt.

The BA process refines the values of the 3D model points Xi, the past pose estimations
Pi, i = 1, 2, . . . , as well as the 2D projections of model points on the images. The input
to BA at each keyframe tk is

Pk = [Pt0
, . . . ,Ptk

]
Xk = [Xt0 , . . . ,Xtk ]

~xk = [x
{r,l}
i,t0

, . . . ,x
{r,l}
i,tk

], i = 1, . . . , N.

(5.20)

The error function to minimise in BA is

ǫ = ~xk − ~̂xk, with

~̂xk = [
̂
x
{r,l}
i,t0

, . . . ,
̂
x
{r,l}
i,tk

], i = 1, . . . , N.
(5.21)

where x
{r,l}
i,tj

is the measured 2D projection of point Xi at keyframe tj, and
̂
x
{r,l}
i,tj

is the

prediction of its position after re-projection of Xi,tj over the camera images I{r,l}. The
process extends until the re-projection error ǫ falls below a desired threshold.

After the model is increased on both sides and no more attempts to add new points
are needed, the bundle adjustment is stopped. At this point, the residual error in the
3D model estimates is small enough that we can use the corrected model for accurate
pose estimation. Figure 5.12 shows the initial model, the extended, and the corrections
carried out to the model by the bundle adjustment. It can be noticed how corrections are
specially needed for the new added points on the laterals of the face. The pose estimation
improvement can be observed in figure 5.13. It is especially noticeable for rotations over
30◦, when new points have already been added to the model.
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(a) Initial model (b) Extended model (c) Corrected model

Figure 5.12: Initial 3D model, extended one, and bundle adjustment optimisation. The red lines
shows the corrections done by bundle adjustment. It can be observed how the lateral points
suffer bigger corrections. Points 39, 43 and 44 on the right lateral has important corrections
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Figure 5.13: Comparison of pose estimation error using BA and without, both for POSIT and
LM algorithms

5.5 Conclusions

In this chapter, a novel technique of re-registering was proposed, based on the view-point
of a feature from both cameras. It avoids the typical drifting problem by anticipating
its appearance by using textures previously captured with one camera and tracking with
the other. This technique allows to maintain feature localisation accuracy on the full yaw
rotation range.

For rotations in pitch and roll a template warping simulates the patch appearance
variation under 3D rotations on a 2D image.

Two techniques have been tested for pose estimation. POSIT is a very fast method,
although LM demonstrated much better accuracy. This makes LM algorithm preferable
for offline processing, while POSIT can be used if strict real time requirements exist.

Finally, the 3D coarse face model created at initialisation is extended with new points,
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adding new parts of the face that were not visible at model creation. To refine the initial
model and reduce the error that the points added later may have, a bundle adjustment
correction process is executed. BA is especially important to correct the pose with wide
rotations. It is also noticeable how the BA can improve pose estimation when a non-robust
estimator such as POSIT is being used.





Chapter 6

3D Gaze Estimation

Chapters 4 and 5 presented methods to estimate the pose of the driver’s face. However,
the information on where the face is pointing does not take into account the user’s eyes,
which indeed have a very important role in the individual’s perception and attention to the
visual world. In chapter 2 it was explained that a comprehensive study of the user’s gaze
fixations necessarily needs taking into account both the face pose and the eye direction.
This chapter describes a method to obtain this eye direction and the composition of it
with the face pose to obtain the final gaze pose estimation.

Gaze is defined as the line of sight of a person and represents the person’s focus of
attention. For an average rested individual, the movement of the eyes is much faster than
that possible by the head [Henderson 03]. Moreover, in a general human behaviour, when
the person already knows the location of an area of interest well, focusing of gaze on that
area is mainly done by moving eyes as far as the field of view allows for it. On the other
hand, if the area is somehow new to the user or implies a high movement of the eyes,
the fixation is mostly accomplished with a head movement, so that the eye direction is
closer to the face direction, providing a wider range of eye movement around the area
being explored [Henderson 98]. This means that while driving many of the undertaken
actions to focus attention on different well-known areas of the vehicle or the environment
are performed by eye movement, trying to leave the face as static as possible, pointing
to the front. This is the case of the rear mirrors and IVIS such as GPS, tachometer
or hands-free. Looking at the road, outside the cabin, where the environment is much
unpredictable, involves much head movement. Looking at the rear mirror on the laterals
of the cabin also forces the user to move the head because they are outside range for the
eyes. However, since they are at very well known locations, many drivers turn the head
as little as possible, moving eyes as much as they can feel comfortable. These behaviours
also depend on the experience of the driver [Mourant 72].

All this makes eye direction a very important component of the gaze, because it is not
possible to infer a relation between face pose and eye direction. [Henderson 98] cited a
few important facts to understand eye movements in scene viewing. At least two of them
are relevant to the case of study. First, eye movements are critical for efficient and quick
acquisition of visual information during complex visual tasks. Second, eye movement data
provide an unobtrusive, online measure of visual and cognitive information processing.

Analysing gaze data and the eye scan path over the scene, it is possible to determine
which regions were looked at. However, we cannot be fully confident that these specific
regions were fully perceived. To date, there is not a simple way of knowing what the brain
is doing during a particular visual scan of the scene. Ideally, we would have to record not
only the point of user’s gaze, but also user’s brain activity [Duchowski 02]. This means
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that, even thought gaze is very accurately estimated, we can not be sure of what part of
the scene within a narrow field of view is really the area of interest. It is possible to visually
fixate on one location while simultaneously diverting attention to another. To establish
an accurate point of fixation within less than 1◦ of accuracy, it would be necessary to
study not only the eye direction, but also the saccadic eye movements which ultimately
define the focusing region of interest [Hoffman 95]. Studying saccadic movements is a very
complex task which is far behind the area of interest in this thesis.

The reasoning of developing a gaze estimation on top of the face estimation in this
thesis is to provide a correction algorithm respecting the face in order to be able to identify
where, within a set of a priori defined landmarks locations, the driver is looking at. The
psychologists who command the simulator define these landmarks or areas of interest from
the point of view of the driver’s behaviour study. Typically, these refer to the road (road
itself, overtaking vehicles, intersections), off-road locations (traffic signals and lights),
lateral rear mirrors and IVIS (GPS, hands-free, tachograph, on-board computer, radio,
etc). Thus, the accuracy of the gaze estimation algorithm must allow to distinguish which
of these landmarks is the driver’s point of interest or fixation area.

Gaze fixation is not considered a main contribution in this thesis. The objective of
this chapter is not to create an accurate gaze estimation system, but to provide a mean to
obtain a coarse gaze estimation in order to accomplish the objective of providing driver
distraction behaviour statistics. The rest of this chapter explores the developed algorithm
to obtain the coarse eye direction, and how to infer the landmark of attention joining this
information with the face pose estimation. Simulator test scenarios, exercises defined by
the team of psychologists and results are presented in the next chapter.

6.1 Eye direction estimation

To obtain the fixation areas, it is necessary to take into account both the face pose
and the eye directions. We calculate the eye direction, ~e, with respect to the model
coordinate system. Consequently, the gaze G is computed as the composition of the both
measurements. This composition gives a 3D gaze, which can be defined as an unitary 3D
vector in the scene and an origin point. This origin lays within the face, and is typically
defined as the centre point of both eyes. In our case, we compute the gaze origin as the
3D face model central point mo plus a known offset to the centre of the eyes, ~eoff , which
is calculated at initialisation. At the gaze estimation step, face pose is already known
because it has been calculated during the previous stage, and mo is given by the face
pose translation vector. Figure 6.1 shows the difference between gaze and face pose, and
figure 6.2 depicts the face with different fixation points with the same pose.

The steps of the coarse algorithm for gaze estimation are shown in figure 6.3. It consists
of the following steps:

* Initial 3D face model creation: 3D face model is first created, as explained in
chapter 4.

1. Initial eye detection: At the model creation stage, some characteristic points
around eyes are detected within the face on both images.

* 3D face pose estimation: In a loop, face pose is estimated from frame to frame
as described in chapter 5.
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Figure 6.1: Difference between gaze and face pose

(a) Traffic light (b) Road

(c) Overhead signal (d) On-board computer

Figure 6.2: Gaze with fixation at different locations

2. Eyes 2D tracking: The 3D coordinates of the characteristic points are added to
the 3D face model. These points are not used for face tracking and pose estimation,
but for pupil localisation only.

3. Pupil tracking: At each frame, after the face pose estimation stage, a new stage
calculates the eye direction, and composes gaze. First, the pupils, and rest of char-
acteristics around the eyes are tracked from frame to frame, in a similar way 3D face
features are tracked.

4. Pupil centre localisation: Pupils exact centre position is located for each eye
using the integral projections algorithm and a Gaussian approximation.

5. Pupil displacement calculation: The eye direction is calculated as the relative
displacement of the pupils centre with respect to the 3D coordinates of themselves
and the rest of the characteristic points around the eyes.

6. Gaze estimation: Gaze is computed rectifying the face pose estimation with the
eye direction estimation.

7. Fixation classification: The fixation point is classified based on the gaze estima-
tion, to infer to which of a set of interest areas the subject is looking at.
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3D face pose estimation

2.  

Eye features localisation1.  

Automatic 3D face model creation

3.  Pupil centre localisation

4.  Pupil displacement calculation

5.  Gaze estimation

Fixation classification

Eye tracking

6.  

Figure 6.3: Main blocks of the gaze estimation algorithm.

These steps are explained in the following sections.

6.1.1 Initial eye features location

The eye direction is computed comparing the pupil position on each frame with the original
position it had when the model was initialised. After the 3D face model has been created,
a set of predefined eye features corresponding to characteristic points around the eye,
typically eye corners and pupil, are located on both frames using Stacked Trimmed Active
Shape Models (STASM) [Milborrow 08]. The 3D coordinates of these features are stereo
reconstructed based on this information, and stored along with the 3D model information.
Three features are obtained, as shown in figure 6.4.

Figure 6.4: Eye features positions obtained using the STASM algorithm
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6.1.2 Eye tracking

Frame to frame, eye features are located within the face in the same way the rest of the
model features are searched for, as explained in section 4.1.2. The only different is that
the pupil patches identified during the initial eye features location step are smaller, so
that the patch only slight bigger than the pupil. Specifically, only the two smaller patches
of the three sizes following the multisize matching scheme (see section 4.1.2) are used.

If the tracking fails for any eye then it is considered either closed of occluded, and
consequently the rest of steps are not accomplished. If the failure occurs for only one eye,
the measure of the other is considered. In case both eyes fail, the previous measurement is
applied as eye direction. The tracking can fail for two reasons: the pupil feature correlation
result is too low, typically below 50%, or the localisation point is too far from the model
projection location after pose estimation, that is, the reprojection error is high, and the
feature is considered an outlier.

6.1.3 Pupil centre localisation

After all eye features are located, pupil is located so it can be compared with the initial
position stored in the 3D model.

To obtain the exact pupils centre location, we apply the following steps to the image
patches around each eye, P r

e and P l
e, for the right and left eyes respectively.

Eye image preprocessing

The objective of this stage is to improve the image quality needed to extract the exact
pupils centre position. Image eye is filtered by a hat transform [Jalba 04]. This transform
subtracts from the original image an image to which a closing operation is applied. The
hat transform erases most of the bright little parts inside the eye and smooths the images.
To improve robustness against illumination variations, an uniform equalisation is then
used. Eye features can be analysed more easily in the equalised image than in the original
one. Figure 6.5 depicts three different images: The first one is the original image detected
by patch correlation with the texture stored in the model, the second one is the result of
the hat transformation, and the third one is the equalised image.

(a) Original eye
detection

(b) Hat transform (c) Equalised image

Figure 6.5: Eye images preprocessing steps for gaze estimation

Integral projections and Gaussian model

We define the integral projection of an image as the average of the pixels along parallel
straight lines on the image, disposed in a particular direction. Given an eye patch Pe with
dimensions W × H, the horizontal integral projection PH(v) is the average of each row
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v, and the vertical integral projection PV (u) is the average of each column u. These are
defined as

PH(v) =
1

W
·

W−1∑

u=0

Pe(u, v); ∀v = 0, . . . , H − 1, (6.1)

PV (u) =
1

H
·

H−1∑

v=0

Pe(u, v); ∀u = 0, . . . ,W − 1. (6.2)

The eye patches have a circular intensity distribution due to the pupil characteristics.
This makes the projective integrals in both axes have a Gaussian distribution with different
variance, median and mean, depending on the pupil size and eye openness. For this reason
we use a Gaussian function to model the pupil. The Gaussian function to model PV (u)
is defined as

fV (u) =
1√
2πσ2

V

e
−(u−µV )2

2σ2
V , (6.3)

where µV and σV are two parameters that determine the open eye shape, and are deter-
mined each frame. The Gaussian mean µV indicates the vertical position of the centre of
the pupil, and σV gives a measurement of its vertical size. The mean µV and variance σV

are calculated as

µV =
∑

uPV (u), (6.4)

σV =
∑

(u− µ)PV (u). (6.5)

The Gaussian function fH(v) that models PH(v) and its µH and σH are defined in an
equivalent way.

The pupil positions are given by the maximums of the Gaussian approximation to the
integral projections on the u and v directions.

Figure 6.6 shows the results of applying integral projections to an eye patch.

Figure 6.6: Pupil centre localisation using integral projections

Evaluation of pupil opening

People blink and close their eyes very frequently, and specially when changing their fixation
point from one location to another. These blinks must be detected to avoid the eye
direction error while the eye is closed or partially open.

The eye opening or the pupil height is evaluated measuring the standard deviation of
the Gaussian that models the PH(v). Figure 6.7(a) shows a wide open eye. To evaluate the
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eye opening percentage, the initial opening is calculated at model initialisation. With this
value it is possible to evaluate the instantaneous percentage of eye opening from the ratio
between the pupil’s height in the current frame and the one obtained in the initialisation.
Figure 6.7(b) shows another example, where the eye is open to a lesser extent.

When the eye is detected to be 50% closed or more, the eye direction is not determined,
and we use the last measurement before closing. When driver’s head turns and the
algorithm does not detect any pupil the gaze is set to point to the rear mirrors, depending
on the face pose estimation.

(a) (b)

Figure 6.7: Sample of aspect-ratio of the eye opening, showing two different eye opening

6.1.4 Pupil displacement

The pupil horizontal and vertical displacement on the image, dH and dV , are calculated
as

dV = µV − ue,0, (6.6)

dH = µH − ve,0, (6.7)

where (ue,0, ve,0) = xe,0 is the initial pupil centre on the image stored in the model.
However, dH and dV do not only depend on the pupil position, but also on the pose Pt

at the frame being evaluated because the point of view of the eye changes with pose, and
consequently the projections distances dH and dV . Since the 3D face pose is known from
previous algorithm stages, it is possible to rectified dH and dV to obtain the displacements
across pose, dHp and dV p, which suppose the face is at the same frontal position than at
the initialisation. The displacements across pose are computed as

xze = (RtX
(M)
e + Tt) · ~vz, (6.8)

dHp =
dHxze

fc cosαy

, (6.9)

dV p =
dV xze

fc cosαp

, (6.10)

where X
(M)
e is the initial eye 3D position in the model, {Rt, Tt} is the pose at the current

frame, ~vz is the unitary vector in the perpendicular direction to the camera, αy and αp

are and the yaw and pitch rations of the face, · denotes the product vector, and xze is the
distance to the camera if the pupil where at its original model position. These equations
give an approximation of the pupil 3D position relative to its initial 3D position stored in
the model, as shown in figure 6.8.
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Figure 6.8: Transformation from dH to dHp. The radius r of the eye is user dependent

6.1.5 3D Gaze vector

Eye direction is defined as a yaw and pitch offset angles over the face pose, ey and ep.
The offsets are function of the horizontal, dHp, and vertical, dV p, deviation across pose of
the pupil centre from its original model position:

ey = f(dHp, r) = sin−1(
dHp

r
), (6.11)

ep = f(dV p, r) = sin−1(
dV p

r
), (6.12)

where r is the radius of the ocular globe, and it is different for each user, and unknown. It
must be determined experimentally. Figure 6.9 depicts two different eye directions vectors
~e and ~e′ for users with different ocular radios, r or r′.

e e0

r

r'

(a) Eyes looking front, dV = 0

e

e0

e'

dvp

ep
e'p

r

r'

(b) Eyes with a pupil displacement dV

Figure 6.9: Effect of the different ocular radio r to the eye direction estimation

To calculate the ocular radius r, a calibration process is done during the first minutes
of operation, based on saliency fixation areas locations. During the first minutes of
execution, the driver will look to both rear mirrors, the road and the on-board computer,
as he is forced to do so by the driving exercises, defined in section 7.5.1.

The position of these elements is well known in the 3D space around the cabin. The
moments in which the user is looking at these points are given by the face pose estimation
and pupil variation from central position. When the user is looking at any of these
points, we obtain the values dHp and dV p. Since the 3D fixation positions and the face
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pose are also known, we can also calculate ey and ep. For each measurement of the
parameters (dHp, dV p, ey, ep), an estimation ri is obtained. With these values we compute
the parameter r using recursive mean squares. The calibration time extends until the
RMS error of ri drops below a threshold. It usually takes around 2 minutes, although it
depends on how often the driver looks at the mirrors and at the computer.

The gaze G can be specified as a parametric line by its point of origin, Tg = (xt, yt, zt),
an unitary vector, ~g = (vx, vy, vz), and a free parameter s. Recall that ~eoff defines the gaze
origin within the model reference system, and that it is subject constant and calculated
at model initialisation. Then

Tg = T +R · ~eoff , (6.13)

~g = −RRx(ey)Ry(ep)|V0|, (6.14)

G = Tg + s~g, (6.15)

where {R, T} is the face pose at the current frame, Rx() and Ry() are the rotation matrices

around the x and y axis, and ~Vo is the initial face offset vector, defined in section 4.2.2.

6.1.6 Gaze fixation and classification

The objective of this chapter is to determine the fixation areas of the driver, to know
where of a set of key areas is she/he looking at. The possible key fixation areas are shown
on figure 6.10, and are:

• Front : the road itself and traffic ahead. Victor and Joanne, based on experiments
on various simulators and on real traffic, defined this as an area between 16◦ and
20◦ in diameter centred on the road [Victor 05].

• Left and right signals : denote the signalling on sides of the road, overtaking cars,
crosses or other objects present in the proximity of the truck. When the driver is
looking at any of these points, the fixation is slightly diverted horizontally to the
left or to the right.

• Lateral rear mirror : the external rear mirrors located at both sizes of the cabin.
Many times it is not possible to localise the pupils when the driver is looking there,
but it is easily recognisable when the driver looks at these points because he/she
needs to turn largely the head horizontally.

• On-board computer, GPS and Hands-free: These are the on-board IVIS. Usually the
driver tries to look at them with very little head movement, to not lose attention to
the road.

• Tachograph: This IVIS is located overhead, over the windscreen, and looking at it
requires head movement.

• Overhead signalling and near road : Looking at these points requires no head move-
ment and very little vertical pupil displacement, so it is difficult to distinguish when
the driver is looking there from the front road itself.

The cameras position inside the cabin is fixed, and the geometric layout of the si-
mulation room, cabin and projection panels are known, so the 3D centroid Yk in the
scene of each of the regions described above, can be measured and referenced to the right
camera frame system. The fixation area is calculated as the closest key fixation centroid
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(a) 2D view of the key fixation areas
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Figure 6.10: View of the set of key fixation areas

to the gaze line. Following equation (6.13), the minimum Euclidean distance between a
3D centroid Yk = (xk, yk, zk) and the line defined by the gaze can be expressed as

dk =
|~g × (Tg −Yk)|

|~g|
, (6.16)

where × denotes the vector product. Once the minimum distances to each key fixation
area are computed, a classification is performed based on this parameters and area sizes.

6.2 Conclusions

In this chapter we have presented a simple method to calculate a coarse eye direction
based on the pupil positions compared to their initial positions at the model creation.
This eye direction can be added to the face pose to generate a gaze estimation.

A calibration process must be carried out during the first minutes of execution in order
to calculate the ocular radius, which is user specific. This calibration is transparent to
the user, thanks to some scheduled movements that the driver is required to do during
the driving exercises.

Extended testing methodology and results for the gaze estimation are presented in
section 7.5.



Chapter 7

Tests and Results of the Driver
Distraction Monitoring Application

This chapter presents the results of the algorithm proposed in this thesis, applied to the
available database of videos taken from a naturalistic truck simulator, under the facilities
of the CABINTEC project [CABINTEC 11]. It is divided in two main parts. First, we
carry out an analysis of our face pose estimation proposal. This analysis focuses on some
of the parameters that can be adjusted in the algorithm, such as the feature patch size
and thresholds. It also compares the error for the different techniques seen in sections 4.1,
5.1 and 5.3. As one of the requirements is real-time performance, processing times for
the different configurations are also examined. Finally, the addition of gaze to the pose
leads to the analysis of distractions in the video sequence, where the drivers’ behaviour is
studied.

7.1 Hardware and software description

The test environment is a naturalistic truck simulator, as shown in figure 7.1, which very
accurately recreates day and night time driving conditions. The simulator itself is a real
truck cabin, motorised with actuators to simulate driving motion. Three wide projectors
outside the cabin show the scene. The two lateral rear mirrors are also screened, so the
driver can look at them to check the traffic behind.

The stereo cameras have a base line of 20 cm, and are located over the dashboard
behind the driving wheel, at a distance of between 60 to 100 cm to driver’s head. The
view of both cameras is not parallel, but have a little convergence towards the centre, to
point the driver’s face, making and angle of 15◦ between them. The stereo rig is calibrated
using the Camera Calibration Toolbox [Bouguet 10] for MATLABr.

The capture system is formed by two synchronised Basler Scout family FireWireTM

cameras and two pulsed IR illuminators synchronised with the cameras. The captured
video is high resolution grey scale data at 30 frames per second. Each camera has a 9mm
lens on a 2/3” sensor. Although the face size is only around 300× 350 pixels under these
conditions, the images size are 1392× 1040 pixels, allowing for a wide range of movement
inside the camera field of view. Most of the face images shown in this document have
been cropped for convenience.

The algorithm has been tested in a Intelr CoreTM2 Quadr Processor running by
Kubuntu 9.10, and equipped with a ATI RadeonTM HD 4500 Series graphic unit from
AMD. All code is written in C++, and parallelised using threads. Most of the specific
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vision operations have been programmed using the OpenCV library [Bradski 08]. The
bundle adjustment and Levenberg-Marquardt algorithms are coded using the libraries
provided by Lourakis and Argyros [Lourakis 09, Lourakis 04].

(a) truck simulator used to evaluate the
algorithm under real night time driving

conditions, showing camera layout.

(b) View of the road, cameras and GPS from
the driver’s position

Figure 7.1: Track simulator used to record the video sequences

7.2 Ground-truth

The ground-truth (GT) data has been obtained for six different users, using video se-
quences more than ten minutes long each. The sequences were recorded within a very
high immersion environment and simulating common driving disturbances, such as phone
calls, handling the GPS and takeovers, which result in frequent head movements.

Two different methods have been used to generate the GT data. In some of the videos,
we obtain the GT using a light pattern installed on a coronet or tiara placed on the user’s
head, as shown in figure 7.2(a). On other videos, a calibration pattern similar to those
used for camera calibration was attached to the head, used a hat. See figure 7.2(b). The
GT is calculated using MATLABr, and its output is estimated to have an error below
0.5◦. In both cases, the pattern is adjusted to the head, and treated as a disembodied
rigid object.

(a) GT using a light tiara (b) GT using a calibration pattern

Figure 7.2: Ground-truth methods
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7.3 Performance evaluation

In this section we study the performance of the different methods presented in this the-
sis: model creation presented in chapter 4, the feature tracking algorithm described in
section 5.1 and pose estimation methods, which are introduced in section 5.3. Note that
the different parts of the algorithm are executed sequentially and in a loop, and would
not work on their own. This means that it is difficult separate the error only caused by a
single step. Where possible, the ground-truth has been used to generate the input data
off a part of the algorithm, isolating its error from previous steps of execution.

7.3.1 Model creation error evaluation

Techniques for model creation are evaluated in terms of the number and the quality of the
extracted features. An evaluation comparing different approaches in terms of the number
of correct features and putatives has been presented in 4.1.1. Multisize Harris showed the
best results. The quality of the features also refers to how well the features performs in
the subsequent algorithm steps while processing such features. It can not be evaluated
right after model creation, and has to be tested in terms of how those features performs
during the tracking step. The testing procedure is presented in the following sections.

7.3.2 Feature tracking error evaluation

The error of tracking methods depends on several variables, of which the most impor-
tant are the features being tracked. Consequently, the different approaches must be all
evaluated with the same set of features.

A review of the literature on face pose estimation shows that few authors perform
an evaluation of the performance of each step of their pose estimation algorithms. To
evaluate the steady-state error of the tracking step separately from the entire system,
[Murphy-Ch. 08] isolated the tracking error using the GT data. To find more specific
methods for tracking error evaluation, it is necessary to review related works on face track-
ing. A quick review of published works [Cootes 01b, Cristinacce 04, Dowson 05, Nuevo 09]
shows that all authors consider the performance of their face tracking algorithms as a func-
tion of the distance between the estimated position of the features and their GT position
in the camera images. However, as explained in section 7.2, the GT does not provide data
on local face features. In the case of the face tracking methods mentioned above, GT
values are usually hand marked by a human operator.

Here, it is possible to extrapolate this data from the pose registered on the videos. The
process is as follows: once the 3D model is created, we reproject the model features over
the camera image using the GT pose. The reprojected positions are then used as the GT
of the features localisation. Because the 3D coordinates of the features may change after
the correction step (see section 5.4), the localisation error is not calculated right after the
processing of a frame. Instead, the GT for the feature position is carried out by a two pass
algorithm execution using the pose in the GT: first, we calculate the 3D coordinates for
the features, using the techniques shown in chapter 4 and section 5.4, then we determine
their projections over the image using the pose GT. This method assumes a rigid face
model. Variations of the face due to gestures changes are treated as tracking errors.

Several functions have been used in the literature to evaluate the tracking error. Some
authors use the Root Mean Square of the distance between points and their corresponding
GT values. [Cootes 01b] denotes is as RMS-PE. Others use the mean of the point-to-point
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Euclidean distance as the error measurement:

me =
1

n

n∑

i=1

di, di =
√
(xi − x̄i)T (xi − x̄i), (7.1)

where xi = (ui, vi) is the position on the image for feature i, estimated by the tracking
algorithm, x̄i is the projection of the calculated GT coordinates for feature i, di is the
error measurement, and n is the number of features. [Stegmann 05] used two different
distances: between the points and their GT, and between the points and the curve that
links the GT values. The calculation method used in this thesis is the same used by
[Cristinacce 06] and [Nuevo 09]. They introduce a scaling factor in the measurements,
which depends on some reference size of the object. In their work, they use the distance
in pixels between the eyes of the person on the image when the face is frontal to the
camera.

This scaling factor compensates for the apparent variation in size when the person is
closer or further away from the camera, and for the different size of the face of different
subjects. However, this distance may not be accurate when the face rotates around the
vertical axis. Since we use a stereo camera in this thesis, it is possible to convert pixels
to a distance in millimetres, making the error figure independent of the distance to the
camera and of the face size. Equation (7.1) can be expressed in millimetres as

me =
1

n

n∑

i=1

di, di =
√
(Xz

i − X̄i)T (Xz
i − X̄i), (7.2)

where X̄i = (x̄i, ȳi, z̄i) is the calculated GT position and Xz
i = (xi, yi, zi) is the 3D

coordinate of feature i estimated from xi in (7.1) applying the 3D conversion equation,
assuming zi = z̄i. The condition zi = z̄i must be applied since xi is estimated over the
camera image projection, and there is no zi information. Since the tracking step assumes
planar images at all times, it makes sense imposing the condition that the located feature
is at the same z plane than the GT coordinate.

7.3.3 Pose estimation error evaluation

Most authors calculate the pose estimation error as the mean pose distance between the
estimated pose and the GT, over the whole test set. In some cases, specially for sys-
tems that identify discrete poses (see chapter 2. State of the Art), the error is given as
a percentage of correctly estimated poses, for some predefined thresholds. As for the
tracking methods described in 2.1.7, it is possible to give a percentage of pose estima-
tion success, calculated as the amount of time that the algorithm generates a valid pose.
[Murphy-Ch. 08] quantified the invalid poses as the frames where the tracked head orien-
tation deviates more than 30◦ from the true pitch, yaw, or roll. In such case, the pose
is not included in error computations. On the other hand, the error is calculated as the
mean difference between the estimated parameter and the GT value, for any of the six
degrees of freedom of the face pose (x, y, z, yaw, pitch and roll). However, for a better
comparison of errors, it is easier to show the pose error as a single value. We calculate
the error pe as

pe =
√
α2
p + α2

y + α2
r , (7.3)

where αp is the pitch angle error , αy is the yaw angle error and αr is the roll angle
error. In this formula, pe only takes into account the rotation error. Although this is
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not a full error measurement, it can be used for comparison and plotting, since the error
derived from translation estimation is typically much smaller than that from rotation. All
measurements in related literature and in this thesis are given in degrees for rotations,
and centimetres for translations.

7.4 3D Face pose estimation results

The analysis of the system performance has been carried out using the available videos
from the database with GT information. Generally, rotation gives much of the information
about the system accuracy, so most of this section focuses on the frame to frame rotation
changes ∆R, and in the absolute rotation with respect to the initial face position, R. To
compare different rotations, it is necessary to take the translation into account, applying
a pose correction first as it is shown in figure 7.3. The purpose of this transformation
is to make the output error independent of the face translation as it is not going to be
used in the comparisons. The idea is to translate the model under all the poses to be
compared to a common reference, while maintaining the rotation variations with respect
to the camera i.e., transform the pose variation to pure rotations. This way, translation
can be safely discarded from comparison.

Rotation

correction

T0

R

T

T'

R'

T0

Rc0

Figure 7.3: Correction from a model pose {R, T} to {R′, T ′} in order to make T ′ similar to the
initial pose T0

Let P0 be the initial pose of the face, and P = {R, T} the face pose, rotation and
translation at certain frame t. If T 6= T0, although R were equal to R0 the face has
an apparent rotation with respect to the camera because the point of view changes. A
transformation {R, T} → {R′, T ′} could be applied so that the point of view of the face
from the camera is the same than with translation T0, except for the distance to the
camera. Then, R and R′ has the same rotation with respect to the camera. This way,
R′ accounts for appearance variation caused by the translation T . To express it in other
way, let Rc be the right camera rotation, which is indeed the world coordinate frame
system. A camera rotation Rc → R′

c could be applied so that the face is at the centre
of the image, that is, T ′ ≈ T0, except for the distance. If camera distortion is discarded,
the appearance of the face with camera rotation Rc or R′

c is very similar, if not equal,
since this transformation does no involve a 3D projection transformation of the object.
This safely discards T and only R′ can be used to rotation comparison charts. Formally,
{R′, T ′} can be defined as

R′ = RRd

T ′ = TRd.
(7.4)
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A rotation matrix Rd must be found which satisfies

TRd · T0 = 0, (7.5)

where · denotes the vector dot product. In practise, it is much easier to calculate R′

experimentally. Before applying the 3D pose calculation algorithm, whether POSIT or
LM, the set of projection points of the features are centred to the camera image. This
makes the POSIT or LM to only calculate the face rotation.

In the rest of the chapter, the pose estimation parameter used is R′, calculated this
way, unless otherwise noted.

7.4.1 Performance analysis for different patch sizes

We test the performance of out system with several sets of parameters. The first parameter
to be tested is the patch size. There is a compromise in selecting the patch size. Smaller
patches are more specific and are less sensitive to illumination changes. However, when
movements take place, smaller patches are more difficult to track, specially if motion blur
appears. Blur is likely to appear if the user moves the face even slowly, due to the low
ambient illumination. On the other hand, bigger patches are less error-prone since they
use more information, but are also less specific to a feature characteristic texture, i.e.,
with sufficient size, a patch centred around the eye may include part of the eyebrow,
which may not be desirable. For a bigger patch size, feature appearance changes more
under viewpoint variations. The face is normally around 300 × 350 pixel in the image.
All the videos have been batch processed with different patch sizes, from 41 to 91 pixels,
in steps of 10 pixels. Those sizes represent a range of 1.5% to 10% of the face area. All
patches in the model are squared. The different patch sizes have been evaluated based
on the performance of the feature localisation process. For each feature, a patch on the
frontal view of the face, for the given size, is stored. This patch contains the feature initial
appearance, and is correlated though a search area of 101 × 101 pixels (10% of the face
area) around the real position of the feature in the frame.

The real position is calculated using the GT pose estimation, and reprojecting the 3D
model using that pose. Error is then calculated as the Euclidean distance from the repro-
jected points to the localised ones. All the other corrections of the algorithm (RANSAC,
outlier reprojection, feature re-registering and BA) are deactivated for the tests.

The localisation error with respect to the GT for the different patch size configurations
is shown in figure 7.4. Results are only shown up to 30◦. During normal algorithm
operation, a stored feature template is normally going to be tracked only for 15◦, which
is the angle between the two cameras, before feature re-registering occurs. This limit is
represented by the vertical dashed line in the plot 7.4(a). As for 7.4(b), the curve for
rotations |R′| < 30◦ is unlikely to be reached by the system under normal operation.
The plots show that patch size has little effect on overall tracking performance, specially
for rotations under ±7.5◦. They also show that below that limit the localisation error is
relatively low, and thus the tracking can succeeded with no further corrections such as
re-registering. The key factor to choose a patch size turns then to be the execution time.
Obviously, the smaller the patch is, the faster the matching process is. Consequently, a
patch size no bigger than 61 pixel is chosen, as real time performance is a requisite for
this thesis.

The plots in figure 7.4 show the mean localisation error. While the error is stable and
relatively low for rotations below 7.5◦, the variation of the error for different features is
very high. Some features perform very well, like those on figures 7.5, but others rapidly
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(a) Localisation error against rotation, for different
patch sizes
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|R’| < 7.5°

|R’| < 15°

|R’| < 30°

(b) Localisation error against patch size, for different
rotations

Figure 7.4: Comparison of the matching error during the feature localisation process, for different
viewpoints, |R′|, and patch sizes.

degrade as rotation angles increase. Figure 7.6 shows an example of this, for different
configurations.

7.4.2 Performance analysis for different patch matching techniques

In section 4.1.2 we described the multisize matching method. Using multisize matching
effectively reduces the feature localisation error variation, as shown in figure 7.7. We use
squared patches of size spatch = {21 × 21, 41 × 41, 61 × 61} pixels. The correlation of
the three patches are aligned and accumulated to build the resulting matching surface,
rli(u, v), where the maximum is searched for. The correlation is undertaken over a search
region of the face of size ssearch. However, the region of the face involved in each correlation
operation itself must be bigger, as denoted by

scorr = ssearch + spatch − 1, (7.6)

where spatch is the size of the feature patches (here 21, 41 or 61 pixels), and scorr denotes
the size of the area of the face involved in the correlation operation. From equation (7.6)
it should be noted that the bigger the feature patch is the bigger the correlation area,
scorr. This gives increased stability for the bigger patches, as more information is used.
The smallest patches, on the other hand, give better performance under rotations. As
a drawback, mean matching error slightly increases for rotations below 6◦. This mainly
happens because of the influence of the smallest patch size in the less contrasted features.
A small patch contains very little texture information, while a low contrast feature also
contains less information than those with better contrast. The result of the correlation of
the small patch is averaged with the other patches, producing a degradation to the result.
For wider rotations this effect is over passed by the sharpener correlation provided by the
small patches.

Figure 7.7 also shows the reduced error variation, proving that matching with patches
of different sizes is more robust for all the different features than using patches of a
single size. This increased robustness makes this matching method more appropriate for
feature tracking. Attending to execution times, since the smaller patches are really small
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Figure 7.5: Sequence of feature views under different rotations and patch sizes. The first column
shows the feature localisation results. Each row corresponds to a different feature

1 2 3 4 5 6 7 8 9 10 11

(a) Tracking sequence. Single-size. Patch size spatch = 61× 61

(b) Tracking sequence. Multisize. Patch sizes spatch = {61× 61, 41× 41, 21× 21}

(c) Tracking sequence. Single-size. Patch size spatch = 91× 91

(d) Tracking sequence. Multisize. Patch sizes spatch = {91× 91, 61× 61, 41× 41}

Figure 7.6: Sequence of another feature view for various small rotations, and localisation results.
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— 21 and 41 pixels — the three correlations do not have a big impact in the real time
performance.
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Multisize patch matching error vs single−size matching

 

 

Single patch size = 61

Multisize. sizes= 21, 41, 61

Figure 7.7: Comparison of patch correlation results using only one patch size or using the
Multisize patch scheme. In the multisize matching, three sizes of squared patches are used: 61,
41 and 21 pixel

In section 5.1.1 we described the patch warping and other matching techniques. The
stored feature templates are warped to the current frame rotation, according to the pseudo-
normals extracted for each feature. Since now the intention is to obtain the error in
matching introduced by warping alone, the rotation R′ to apply to the warping is extracted
from the GT, only for testing purposes. That way it is possible to isolate the error
exclusively related to the correlation of patches, which are assumed to be correctly warped.
The error would be due to the assumption of planar feature surface. The warped texture
is correlated over the designated search area of the face using the multisize matching
technique. Figure 7.8 depicts the localisation error using multisize matching with and
without patch warping. Single size correlation error is included for reference. It can
be observed how the warping technique improves matching in the interval of 2◦ to 10◦

approximately. For very small rotations it offers no improvements since there is not
actually almost any noticeable transformation. For wider rotations, the assumption of a
planar surface ceases to be valid, and more error is introduced by 3D deformation.

However, the real error introduced by warping is also affected by two more factors:
the error in the pseudo-normals calculation, and the error in the pose estimation for the
current frame, R. The former is also included in the figure 7.8(a), since the GT and the
available face data do not allow for a better calculation of the pseudo-normals by any other
method than manual labelling. The warping error including that added by pose estimation
is compared in figure 7.8(b). The localisation error increases noticeably, specially for the
wider rotations, where the pose estimation error might be bigger. For small rotations, the
warping still performs slightly better than multisize matching without warping, however,
the difference is negligible. Moreover, as depicted in figure 7.8(c), warping drastically
increases execution time and decreases robustness. Consequently, we do not use warping
for feature tracking if there is only rotation in the yaw direction.

Figure 7.8(a) also shows that the error variance for warping is higher, which indicates
that while some features do really increase reliability if warping is used, others perform
worst. This is due to the errors in the calculation of the pseudo-normals and the different
between nearly planar features and non-planar ones.
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Figure 7.8: Comparison of matching results using patch warping.

7.4.3 Performance analysis for different feature detectors

We now turn to study the incidence of the feature detectors on the tracking performance of
the algorithm. Features may be detected and tracked using a combination of the methods
described in section 4.1. We test three combinations. The first uses SURF for feature
detection and matching. The second uses Harris and multisize matching, while the third
uses a multiscale Harris detector and multisize matching.

Figure 7.9 shows that SURF does not produce good results, and is clearly outperformed
by the other two combinations. This is due to the low illumination of the images and
the little edges present on the face. Even so, SURF provides increased stability to face
rotations. Its descriptors are more robust to rotations than the correlation templates.
Figure 7.9(a) shows the result with re-registering corrections deactivated, and localisation
compared to GT. Although the overall SURF error for a slightly rotated face is higher,
it can be observed how this error grows more slowly than those of template correlation
as the face rotation increases, to the point that for wide rotations SURF outperforms the
other two techniques. However, when re-registering is enabled the template correlation
techniques improves noticeably, as it is shown in figure 7.9(b). The curves indicates how
the error slightly decreases at rotations where the re-registering occurs (for the stereo
rig used, approximately at ±15◦,±30◦, . . . ,±90◦). Under this operational conditions,
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correlation clearly outperforms SURF. In part, the low performance of SURF is related
to the low illumination and the repeatability of the detector under wide rotations. The
re-registering process imposes that a feature is used for tracking along the whole rotation
range. However, the feature projection might not be a good interest point under certain
rotation. From that moment on, SURF does not extract the feature as a interest points,
and fails to track it. This effect is more likely to happen if the repeatability rate is low.

Another important effect that should be noted is that, despite the re-registering, fea-
ture localisation error is a monotonically increasing function. This is due to the accumu-
lated error and pitch or roll rotations.

As for the comparison of the two template correlation techniques, it can be observed
that accuracy is very similar, being slightly better for the multiscale Harris. For wide
rotations over 60◦, single scale matching achieves the lowest error, partly because of the
effect of the biggest scale features, which deal badly with wide rotations. Since the
results for these two techniques is very similar, further testing has been carried out.
Figure 7.10 shows a time slice of the processing of a video sequence. This processing has
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Figure 7.9: Comparison of tracking errors for different feature detectors
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Figure 7.10: Comparison of error and execution times for the multiscale and multisize matching
vs. the single-scale, multisize matching. All corrections enabled
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been undertaken with all the algorithm corrections enabled, so it depicts the final pose
estimation error, using multiscale tracking or multisize tracking. The error for the former is
slightly bigger. But the highest difference resides in the error variation: it is much smaller
for the multisize, meaning that it’s more robust than multiscale. However, the execution
time is also slightly bigger, because it uses bigger patches for correlation. The multiscale,
on the other hand, simple requires a scale conversion operation as a previous step. With
multiscale, the complete execution takes around 11 ms, while with the multisize the time
rises up to 14 ms to track 30 features. Since robustness is an important parameter, the
use of multisize is preferred.

7.4.4 Performance of the pose estimation with model correction

The last steps of the algorithm are the pose estimation and model correction process.
Figure 7.11(a) depicts a comparison between LM and POSIT. As it was expected, LM
performs better than POSIT. For both algorithms, RANSAC is allowed to run while
real-time performance is not compromising. This makes an average of 18 ms, for an input
image buffer of 1 second, and taking into account the time consumed by the tracking step.
If there are successive frames with very low error, less RANSAC iterations are required
and the image buffer empties. This allows for higher iteration time if the tracking step
is producing more outliers, until the buffer is full again. POSIT needs around 1.4 µs

for iteration in the given hardware platform, allowing an average of over 10K iterations.
Meanwhile, LM needs around 2.7 µs, so it can do roughly 5K RANSAC iterations.

Figure 7.11(b) shows the correction effect of the underlying bundle adjustment process,
which can be compared to figure 7.11(a) where BA is not applied. corrections is especially
visible for yaw rotations over 30◦. This is because it is the approximate rotation angle
where model extension occurs. It can be observed in both graphs that error increases
suddenly at that point, even when using BA, because of the addition of new points to the
model also adds some error.

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25
System accuracy comparison, LM/POSIT, without Bundle Adjustment

Face rotation angle, |R’| [°]

M
e
a
n
 p

o
s
e
 e

s
ti
m

a
ti
o
n
 e

rr
o
r,

 ∆
R

 [
°
]

 

 

LM

LM with losses

POSIT

POSIT with losses

(a) Without bundle adjustment

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25
System accuracy comparison using BA, for LM and POSIT

Face rotation angle, |R’| [°]

M
e
a
n
 p

o
s
e
 e

s
ti
m

a
ti
o
n
 e

rr
o
r,

 ∆
R

’ 
[°
]

 

 

LM

LM with losses

POSIT

POSIT with losses

(b) With bundle adjustment

Figure 7.11: Pose estimation improvement applying the BA algorithm. The error results are
shown using POSIT and LM. Results are calculated with no outlier from tracking, and in case
of up to 25% of outliers (losses). The outliers are errors not detected from tracking

Pose estimation error in the three direction angle rotations are shown in table 7.1.
Mean error is computed by rotation ranges for each direction, as shown in the different
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columns of the table.
In table 7.2, the performance of our proposal is compared with the most significant

works showed in the chapter 2, State of the Art, and in table 2.2. For comparison, the full
range mean errors of our proposal are also shown in the first column. Each full range mean
error has been calculated as the mean of the error plot as a function of the face rotation. If
the mean errors were averaged over time (average of all individual error measurements),
the influence of the most common poses error would be higher in the final mean error
values. Note that other authors do not specify how they calculate this error to account
for the fact that the face is most of the time looking forward.

The face pose estimation system has a very low error thanks to the BA corrections. The
error remains low for the full range ±90◦ of yaw rotations. These results show lower error
than other works in the literature, presented in chapter 2. Because the re-registering
technique can not be applied under pitch variations, the system error is higher in this
direction, and it can be observed how it increase for pitch angles αpitch > 30◦. Still, the
BA slightly improves the results. Even when it is not possible to apply re-registering for
roll rotations, the patch warping works very reliably, since it is equivalent to applying a
simple 2D image rotation to feature patches. Consequently, the roll error is lower than
pitch error. It was not possible to evaluate the error in a wider pitch and roll range
because while driving big rotations are not typical nor natural. Figures 7.12 and 7.13
depict some results for small pieces of videos. Figure 7.14 depicts a sequence of video in
which the driver moves generating bright illumination in the face, and talks through a
microphone to the instructors, generating occlusions and face deformation.

Rotation α < 15◦ 15◦ ≤ α < 30◦ 30◦ ≤ α < 45◦ α >= 45o

yaw 1.92 2.44 6.72 12.83
yaw with BA 0.98 1.54 3.04 8.54

pitch 3.82 7.86 8.59 -
pitch with BA 1.81 4.70 6.34 -

roll 1.27 2.06 - -
roll with BA 1.16 1.75 - -

Table 7.1: Mean face pose estimation error. The error is divided into yaw, pitch and roll, and
evaluated in different ranges of the absolute rotation angle in the ground truth, α

Proposal
Rotation mean error Max rotation

yaw pitch roll yaw pitch roll

Automatic incremental 3D model 3.8◦ 4.26◦ 1.71◦ 90◦ 45◦ 30◦

LK & online learning [Sheerman-C. 09] 4.2◦ 3.9◦ 3.1◦ 20◦ 40◦ 30◦

3D Deformable models [Krinidis 09] 2.2◦ 2.6◦ 0.5◦ 60◦ 30◦ 15◦

Relevance Vector Machine [Lin 09] 4.1◦ 2.3◦ 2.4◦ 80◦ 25◦ 10◦

3D model & PF [Murphy-Ch. 08] 3.39◦ 4.67◦ 2.38◦ 90◦ 45◦ 45◦

SIFT [Zhao 07] 2.44◦ 2.76◦ 2.86◦ 45◦ 45◦ 45◦

Particle Filters [Oka 05] 2.86◦ 2.34◦ 0.87◦ 40◦ 20◦ 10◦

Table 7.2: Face pose estimation error comparison with other approaches
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Figure 7.12: Example of pose estimation. Ground-truth data is shown for comparison
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Figure 7.13: Yaw estimates over fragments of four different video sequences. Positive and
negative peaks on yaw indicates when the driver is looking at the right or left mirror respectively.
The fist image shows the light pattern affixed to the head, used as ground truth. The pose
estimation is divided in rotation and translation. This results were obtained using the best case
parameters, after the BA has optimised the 3D model.



7.5. Distraction analysis using gaze estimation 103

(a) Illumination (b) Looking computer (c) Occlusions (d) Talking

8520 8540 8560 8580 8600 8620 8640 8660

−15

−10

−5

0

5

10

15

20

25

30

frame

 

 

R
 [

°
]

yaw

GT yaw

pitch

GT pitch

(a)

(b)

(c)

(d)

Figure 7.14: Sequence depicting illumination changes, occlusions and talking

7.5 Distraction analysis using gaze estimation

This section presents the tests and results of the non-intrusive approach to driver’s gaze
estimation presented in chapter 6. From this information, fixation in the scene is calcu-
lated in order to infer driver distraction state. Different distraction tasks or activities are
inferred in a realistic simulator and a study of the incidence of these distracting tasks
in the driver’s behaviour is carried out. Experiments layout, driver’s behaviour studies
results and conclusions are presented.

To test the gaze estimation system, experiments where carried on the truck naturalistic
simulator. There, many professional drivers were invited to drive the truck through a few
scenarios carefully designed by a team of psychologists from the Safety and Human Factors
Investigation and Training (ESM) centre [ESM 11], who later examine the generated
data to extrapolate behaviour. The scenarios were designed and prepared to require a
high level of attention from the driver, and some tasks are intentionally programmed
during the driving activity to stress the driver in order to study his/her behaviour under
such conditions. The simulator cabin is fully equipped with a variety of IVIS, included
the face pose and gaze estimation system presented in this thesis. The gaze estimation
system, along with other on-board sensors and experimental capturing systems, provides
invaluable information to the psychologists who generated the experiments.

7.5.1 Experimental environment

Different aspects must be considered in the experimental environment: the camera vi-
sion system for gaze estimation, the physical simulator layout, the experiments setup,
the subjects and the experiments validation. All of them have been developed under
the CABINTEC project [CABINTEC 11] and supported by the MICINN (Ministerio de
Ciencia e Innovación).
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The camera vision system is described in section 7.1 at the beginning of this chapter.
It is located inside the cabin, over the dashboard, between the windscreen and the driving
wheel, and facing the driver. The physical simulator layout is the naturalistic truck driving
simulator and covers the simulation room configuration, hardware available and geometric
constraints. The experiments setup refers to all other aspects beyond the simulator layout,
available hardware and information systems: the driving scenarios, road selection, inserted
events while driving, schedule, etc. The experiments are formed by a set of exercises or
tests, each having its own setup. These are necessary aspects to obtain good results
from the exercises, and are fully designed by the team of psychologists. The subjects are
the professionals who drive during the experiments, and whose behaviour is under study.
Finally, whole experimental environment is validated, before starting the exercises with
the subjects.

Naturalistic truck driving simulator

The experiments are accomplish in Research Facilities at CEIT [CEIT 11], San Sebastián,
in a room with controlled light and sound environment.

The naturalistic simulator TUTOR [Lander 10], shown in figure 7.15, consists of a real
truck cabin, motorised to simulate movement and equipped with common IVIS. The cabin
is assembled on a movement platform with 6 degrees of freedom on which drivers can feel
the vehicle accelerating, braking, its centrifugal force, etc. The devices send information to
the host, located at the Instructor Position (PI ), where the psychologists can control the
whole simulator, analyse all the data and reproduce stored simulations. Main computers
are placed in the PI, located behind the cabin. A dedicated computer processes face pose
and gaze estimation using the algorithms presented in this dissertation, and sends this
information to the PI, where the psychologists can access to the data.

(a) Motorised simulator cabin, and projections panels (b) Instructor position (PI ) and host computers

Figure 7.15: Naturalistic truck cabin simulator

The visualisation system is made of three back-projection panels with a total surface
of 22 m2. The fact that the screens have no marked separation plus the geometry of the
image system makes for a flawless overall impression. Moreover, two monitor screens are
used as rear mirrors, attached to both sides of the cabin.

The cabin is fully equipped, and contains a GPS, a hands-free, the on-board computer
and a tachograph. These are some of the key locations that the gaze estimator must
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differentiate. Figure 7.16 shows a representative diagram of the devices setup.

(a) View of the gaze coverage area (b) Diagram of IVIS communications

Figure 7.16: Host and visual area setup

Experiments setup

To design the experimental protocol, the team of psychologists built on the following
initial hypothesis: “The potential driver distraction due to IVIS is determined by the
level of attentional demand required by them while driving, decreasing the effectiveness
of the primary task: driving.”

By analysing the professional drivers behaviour, the basic and most representative
features in the context of this activity are identified [Kay 98]. Some scenarios, types of
vehicles, incidents, on-board systems utilisation and critical situations are selected to infer
distraction in drivers. Thus, the professional drivers behaviour should be generically rep-
resented. Taking into consideration this basis, which involves observing and information
recording during the activity of driving, the next step is to define the basic simulation
exercises.

Experiments have been designed with the goal of refuting the initial hypothesis of
the research regarding the potential distraction of four different on-board systems which
are commonly used in professional driving. These devices are digital tachograph, GPS,
hands-free and on-board computer. Under these conditions, four scenarios have been
created: mountain, inter-city, urban and long-distance. Different exercises setup have
been prepared for each scenario, each containing different tasks, events, weather conditions
and IVIS requirements.

According to [Victor 05], three different tasks are of special importance to study dis-
traction: visual tasks, auditory tasks, and cognitive tasks. During the experiments, visual
tasks require to use the GPS. Auditory ones can be created by making a call to the hands-
free telephone, and enforcing a trivial conversation. For the last one, a cognitive task is
enforced in one of the exercises by making a cognitive phone call, in which the driver is
asked to describe the route from one point to another or a city she/he knows. During the
exercises, the inserted events proximal to tasks, include motor, tires or ABS breakdown
and other vehicles such as sudden brake of the precedent vehicle, broken down vehicles
on the road, vehicles running a red light, etc. A summary of the different exercises setup
is shown in table 7.3.

These tests were implemented using 16 different exercises: five of them were based on
the inter-city scenario, four on the mountain scenario, three on the urban and the last
four on the long-distance one. The defined procedure to evaluate these exercises consists
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S
ce
n
ar
io

Exercise Events IVIS

A
.
In
te
r-
ci
ty

1 Control exercise

2 GPS guidance

3 Faulty GPS guidance

4 Telephone guidance

5 GPS guidance
Distorted voice call

A vehicle running a STOP.
Mechanical fault in air filter†‡.
Cyclists on road.
Sudden speed down of preceding
vehicle.
Slow vehicle on road.

GPS
Hands-free

B
.
M
ou

n
ta
in

1 Control exercise

2 GPS guidance

3 Telephone guidance

4
GPS guidance
Faulty voice call
Tachograph speed warning

Obstacle on road
A vehicle running a STOP.
A vehicle stopped on road.
Sudden speed down of preceding
vehicle.
Slow vehicle on road.
Tyre blowout‡.

GPS
Hands-free
Tachograph

C
.
U
rb
an

1 Control exercise

2 GPS guidance
tachograph error

3 GPS Guidance
Distorted voice assistance call

ABS fault†

A vehicle running red light.
Mechanical fault in air filter†‡.
A pedestrian crossing the street.
A dog crossing the street.

GPS
Hands-free
Tachograph
Computer

D
.
L
on

g-
d
is
ta
n
ce

1 Control exercise

2 Phone calls
On-board computer warnings

3
Phone call
Cognitive phone call∗

Tachograph warnings

4 Phone call
On-board computer data

Obstacle on road
A vehicle running a STOP.
Vehicles stopped on the road.
Slow vehicle on road, and a car
overtaking a bus downhill.

Hands-free
Tachograph
Computer

†Marked on the on-board computer
‡Truck dynamic model changes
∗Phone call with important cognitive charge: The driver is asked to explain a route within a
known city.

Table 7.3: Exercises setup
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on different drivers driving through different scenarios.
The first exercise of each scenario is the “Control exercise” which corresponds to the

exercise undertaken by each driver in the different scenarios without external perturba-
tions. It is important to have these control exercises, because using them, the behaviour
at different points of the scenarios in the subsequent tests of each driver can be compared
and correlated with the distraction sources. Once the chain of exercises is finished, enough
information is provided about the drivers behaviour while driving in order to generate a
distraction pattern for each one.

The Figure 7.17 depicts the scenario and a view of the truck for the exercise B.2.

(a) Exercise scenario (b) Example of the view of the truck from the PI

Figure 7.17: Exercise B.2

Subjects

According to the previous considerations, the number of tests and their configuration, a
minimum number of participants of 12 was set, in order to have one participant for each
test configuration to detect the dependent behaviour variables.

It is important to highlight that every participant needs to pass a test to exclude people
with propensity to suffer simulator-sickness. Previous studies with similar conditions used

Exercises:
Inter-city Mountain Urban Long-distance

A.1 A.2 A.3 A.4 A.5 B.1 B.2 B.3 B.4 C.1 C.2 C.3 D.1 D.2 D.3 D.4

Subjects:

1 x x x x x x x x

2 x x x x x x x x

3 x x x x x x x x

4 x x x x x x x x

5 x x x x x x x x

6 x x x x x x x x

7 x x x x x x x x

8 x x x x x x x x

9 x x x x x x x x

10 x x x x x x x x

11 x x x x x x x x

12 x x x x x x x x

Table 7.4: Test configuration



108 Tests and Results of the Driver Distraction Monitoring Application

groups from 7 to 30 participants [Ting 08, Lee 07a]. All subjects were informed of the
purpose of the experiment and the security procedures in the simulator facilities. Table 7.4
depicts the subject and exercise relation for each test configuration.

Experiment validation

The experimental model is validated following a three-stage strategy:

• STAGE 1 : A group of drivers with information about the technological tools and
distraction sources while driving. In this stage, the exercises and experiments have
been designed based on the analysis of tasks and taking into account the objectives
and the underlying assumptions of the investigation. The main objective of this
stage is the validation of the designed tests.

• STAGE 2 : Professional drivers group. At this stage a group of 5 professional drivers
who know the objectives of the research and the simulation environment advise the
researchers to improve the exercises and tests to set up a simulation environment
that feels more realistic to them.

• STAGE 3 : Final drivers group. A representative sample of drivers are selected
for this group. It is composed of at least 12 drivers from different gender, age,
experience, etc to obtain conclusions about distraction and driver’s behaviour.

7.5.2 Gaze estimation performance evaluation

Prior to further analysis on the data obtained by the gaze estimation system, the re-
searchers and psychologists who are going to work with these data require an assessment
of its reliability and accuracy. Obtaining ground-truth data for these experiments is more
complex than for the face pose. As a coarse ground-truth, we have used the simulator
cabin itself and a pattern image projected on the frontal projection panel, as shown on
figure 7.1(b). A voice record asks the subject on the driver’s seat to consecutively look at
different key-points on the simulator and screen, in a random sequence. Synchronously,
the video system records a video and annotates the locations where the user is asked to
look at. Since the geometry of the simulator is known, it is possible to calculate the angles
at which each key-point is located, and compare these positions with those resulting from
the gaze estimation of the videos sequences.

This procedure does not take into account the reaction time and the small variations
on fixation that any subject experiments during focalisation and during extended fixation
periods. For this reason, the user is asked to look at each key-point during three seconds,
but only one second is averaged to compute fixation and compare it with the ground-truth
data. Figure 7.18(a) shows a test gaze pattern compared to its GT for one of the user.
This procedure was repeated by four subjects, and the average error for each key-point is
depicted in figure 7.18(b).

7.5.3 Gaze estimation results

The gaze estimation system proposed in chapter 6 is evaluated using the resources available
in the simulator, placed in the CEIT Research Facility, and following the experimental
environment described above. Generating a complete report of the results of the tests
accomplished in the simulator is out of the scope of this thesis. Thus, detailed results for
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Figure 7.18: Gaze and focusing estimation error

one test are presented in this section, and summary tables will contain statistics for all of
the tests.

Figure 7.19 shows a view of the gaze estimation data and fixation classification as it is
visualised by the psychologists. It depicts a driving sequence on exercise D.2, at a moment
where a few events collide, requiring a high degree of interaction to the driver. The graphic
represents the classification of the area of attention based on the gaze estimation.

Figure 7.19: Driver’s gaze estimation and fixation areas classification during driving

Figure 7.20 shows the moment on exercise D2 when three events intentionally collide.
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A car appears stopped on the right margin of the road, and at the same time, another
vehicle is overtaking the truck. The figure clearly depicts how the subject repeatedly looks
up to five times to the left mirror first, before changing to the other lane, how he follows
with his eyes the passing car, and how he looks to the right mirror to come back to the
right lane. After passing the stopped car, the subject receives a phone call through the
hands-free device. This sequence can help the psychologists understand and study the
behaviour of the driver under this stressful situation.

The graphic on figure 7.20 show that the subject needed 7 seconds to realise that a
car ahead on the road is actually stopped and it is not just a slow vehicle. The driver
previously had simply checked the speed to slow down. At this moment, the driver
starts the needed actions to overcome the obstacle (looking at the mirror to overtake the
obstacle). Later on, he receives a phone call, but being busy, he takes up to 10 seconds
to answer. While taking to the telephone, he loses attention to the road for at least
4 seconds, even though he is using a hands-free. As for figure 7.21, it shows that the
roadwork operations generate a high level of distraction to the driver, who overpasses
speed limit when approaching the round-about at the end of the road.

After the experiments, a similar comprehensive analysis was done over the whole video
dataset recorded at the simulator to extrapolate the subjects’ behaviour from the gaze
and other data generated by the simulations. Table 7.5 shows these results. It compares
the reaction times needed before or after an inserted event in the case of the control
exercise or when the subject is forced to a distractive driving by requiring a high degree
of devices utilisation. Each scenario has a set of scheduled events, as shown in table 7.3, so
an undistracted driving (in the control exercise) can be compared to the other exercises,
which add GPS and phone distractions on the same journey than the control one. Table 7.5
shows some important statistics inferred after the complete evaluation of the gaze for all
the subjects and exercises. As an example, on exercise D3, few drivers are unable to
avoid hitting an on-road obstacle, while they perfectly do it up to 12 seconds in advance if
they were not distracted. Many of them overpass speed limits more often, and need more
time to notice a mechanical failure. One of the subjects needs more than two minutes to
notice that he is driving a fully loaded truck on a mountain road with a flat tyre. Being
undistracted, he needed a few seconds to notice the same anomaly. The gaze estimation
system allows to study what was the subject doing before noticing the anomaly, and why
he wasn’t aware of that for such a long period.

To give a better understanding of the distraction pattern of a driver, two more different
ways of measuring distraction can be applied, apart from reaction time. Traditionally, a
glance-based measure has been used. This measures the duration of individual fixations
on different areas, the frequency, number of glances or total task duration. However,
this measurements heavily depends on the task, the driver experience and other factors.
[Victor 05] found that the Percent Road Centre (PRC) measurement is much more stable
across users and different experiments. PRC measures how much time is spent monitoring
the road centre area while performing a task. This area includes the road, signalling and
other visual elements proximal to the road. We have analysed these parameters in our
experiments.

Figure 7.22 shows the focusing time percents during the execution of a tasks. This
figure was generated after the analysis of the results obtained with the gaze estimation
algorithm and tasks schedule during the exercises. The first column shows the average
percents for the control experiments (exercises A1, B1, C1 and D1). The second column
depicts visual distraction using the GPS, obtained from exercises A2, A3, B2, B4 and
C2. The third column depicts auditory distractions inferred by tasks requiring talking
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Figure 7.20: Exercise D2. Sequence of the video in which a car is stopped on the road, but
another vehicle is overtaking the truck. Then the driver receives a phone call
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Scenario Exercise

Overpass Reaction time to an event [seconds]

speed Obstacle‡ Mechanical fault∗ Answer a call∗

limit [#] max min min max min max

Inter-city
A1 0 25 5 (1) 5 9 1.5 5

A[2-5] 2 15 3 32 81 2 9

Mountain
B1 2 19 5 (2) 0.6 2 1 3

B[2-4] 6 13 2 24 2min 11s 2 11

Urban
C1 0 16 3 (3) 4 11 2 8

C[2-3] 0 4 0 † 4 43 4 miss

Long-Distance
D1 1 34 12 (4) - 1 4

D[2-4] 4 20 0 - 3 miss

∗ Reaction time after the event.
‡ Reaction time before the event. Moment at which the subject is aware of the obstacle and
takes an action before colliding. (The higher the better)
† Do not have time to react before hitting the obstacle. Collision produced.
(1) Mechanical fault in the air filter. Warning marked on the on-board computer, smoke visible
in rear mirror, and truck dynamic model changes.
(2) Tyre blowout. Marked trough audible sound and truck dynamic model changes.
(3) ABS fault. Warning marked on the on-board computer.
(4) No mechanical faults scheduled.

Table 7.5: Driver behaviour and reaction time statistics

by the hands-free phone, on exercises A4, A5, B3, D2 and D4. The last one represents
a cognitive task on exercise D3, which induced distraction with a phone call to explain a
route.

We have found PRC to be very correlated with the level of distraction of the driver.
Moreover, we also found that the characteristic pattern of visual, auditory and cognitive
distractions ones are different. While the former shows an important reduction of PRC,
auditory tasks does not reduce PRC, rather instead, it slightly increases. On cognitive
tasks, we could not infer any important variation of this parameter. However, the time
used looking at the signalling and road proximities is reduced for all tasks. This behaviour
is clearly observable on figure 7.22, and it is in line with the conclusions presented by
[Victor 05].

It can be observed how the time that the driver spends looking at the mirrors, signals
and on-board computer is drastically reduced for any of the task, in comparison with the
control exercises. During auditory tasks, the drivers increases the time in which he/she
is looking to the front, but reduces the fixations on the mirrors and signals. This means
that although the driver is looking forward, he/she is not paying attention to the rest of
the scene, as a normal responsible driving would require.

7.6 Conclusions

In this chapter we have evaluated the performance of the face pose and gaze estimation
approaches. The comparison of the video processing results with the ground-truth data
shows that the error of the face pose estimation is fairly good, showing better results than
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Figure 7.22: PRC statistics

other approaches presented in the State of the art. It is especially remarkable the low error
that the algorithm presents under yaw rotations, being a full-range and full-automatic
system. This demonstrates that the re-registering process, the model extensions and the
bundle adjustment processes collaborate well to produce a robust and accurate estimation.
The error estimation is obtained for the typical range of movement presented by a driver
on the seat.

After reviewing the results presented, the user of the face pose estimation system can
choose a more accurate estimation using the LM algorithm, or a faster approach using
the POSIT algorithm. Both solutions present good accuracy, robustness and full range
estimation. The algorithm to use would depend on the system requirements.

In addition to the pose, the gaze gives a very valuable information about the driver
behaviour. Using the gaze and focusing estimation from the videos recorded in the TU-
TOR simulator, it was also possible to study how the distraction patterns induced to
the drivers changes the distribution and duration of focalisation periods on the different
devices and how this affects their reaction times. The analysis of this information by a
team of psychologists can help to improve driving teaching and safety.



Chapter 8

Conclusions and Future works

Driver distraction is one of the main causes of traffic accidents, which cost many lives
and money every year, everywhere in the world. It is known as one of the main causes
of dead in young people. Many of these accidents happen only few seconds after the
distraction started, and could have been avoided easily if the driver were paying attention
to the road. At this point is where an automatic monitoring system can help reducing the
number of accidents. Driver monitoring is a complex task, and involves many parameters
of behaviour and physiology. Analysing head movements, facial expressions and actions
like blinking or gaze fixation using computer vision can help to estimate the state of
attention of the driver.

The objectives of this thesis are to create, using computer vision, a face pose and a
gaze estimation algorithm, to assert the reliability of the 3D model creation process, the
multisize matching and the re-registering technique, and to test the proposed algorithm in
a simulator to study a person distraction behaviour while driving. These studies provide
very valuable information to instructors and professional drivers, and will help for a better
understanding of the distraction sources inside a vehicle. In addition, this algorithm can
also be used on-board of utility vehicles, where the system can rise a warning when it
detects that the driver has not been paying attention to the road for a relatively long
period.

We have implemented a real-time 3D face pose estimation system. The proposed
algorithm is a fully-automatic and user-independent system based on a set of face features.
The only calibration required is the stereo camera rig calibration, which is done offline.
A sparse 3D model is automatically created during the first frames of execution, but a
technique to refine and improve the model during the whole execution time has been
evaluated. This model creation extended in time generates a very accurate model of
the face of the subject, providing a very precise pose estimation. In this sense, we have
evaluated how to initially create a good model and how to extend it with new features of
the face. Adding new points to an existing model at a given pose introduces error in the
model, because the error in the estimated pose at the moment of addition is transmitted
to the new points, and consequently degrades the whole pose estimation. To overcome
this problem, a bundle adjustment algorithm [Triggs 99] has been tested to correct the
model after points addition. The final result is an accurate sparse 3D model with very
low error.

In this thesis, we have studied different methods to extract adequate face features and
establish stereo correspondences. We found that the well-known and extensively used
SURF [Bay 08], does not provide good results due to the lack of irregularities and corners
in the face, and the low ambient illumination. Instead, we implemented a novel multisize
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matching technique, based on Harris interest points [Harris 88] and patch correlation.
This technique joins the goodness of different patch sizes for correlation. Smaller patches
give better performance under rotations, while being less sensitive to illumination changes.
Bigger ones, on the other hand, are more robust although less accurate.

A typical problem which limits the rotation range of many pose estimation systems
is how to deal with the changing appearance of a feature under 3D rotations. We im-
plemented a new re-registering technique which takes advantage of the stereo cameras
disposition, and allows for a full range and very accurate face tracking from -90◦ to +90◦

yaw rotations. In this technique, as the face rotates, we use the forward camera in the
direction of rotation to capture new texture patches of the features, and the backward
camera to track using the patches that were previously captured. This means that a
texture patch needs to be tracked only for a range of ±7.5◦. For pitch and roll rotation,
where the developed re-registering technique can not be applied, we tested patch warping.

The system has been evaluated under low light conditions and proved good results.
Even so, results for the proposed pose estimation algorithm show a yaw mean rotation
error below 1◦ for rotations in the ±15◦ range, and 1.54◦ in the ±30◦ range, improving
the results of other works in the literature.

The face pose estimation is enhanced with a coarse eye direction to obtain the gaze
estimation. The gaze estimation system has been extensively tested in a driving simulator
[Lander 10] and used by a team of psychologists experts on driving behavioural, to evaluate
the distraction pattern of subjects under some stressing conditions. The experiments
accomplished in the simulator have provided an extensive video dataset with more than
10 users and hours of driving. These videos and a ground-truth have been used to test
and evaluate the system performance.

The algorithm proved an adequate classification of the focusing area. This information,
together with the driving parameters provided by the simulator are used by psychologist
to obtain important results about how the utilisation of In Vehicles Information Systems
(IVIS) affects the distraction pattern of the drivers. The statistic obtained show how
reaction times increase, and gaze fixation patterns change according to visual, auditory
and cognitive distractions. In conclusion, distraction caused by IVIS can become an
important hazard while driving.

8.1 Main Contributions

From the results obtained in previous chapters, we consider that the main contributions
of this thesis are the following:

1. Automatic and incremental 3D face model. A method to create a fully-
automatic coarse 3D face model has been presented. The model is built incremen-
tally, with the addition of initially occluded parts of the face, and with corrections
during execution.

2. Feature matching techniques. The performance of different matching techniques,
with the specific challenges that a face and low light conditions present, has been
evaluated. As a result, SURF and patch correlation have been discarded, and a novel
multisize patch correlation has been implemented.

3. Full range rotation. To cope with the problem of appearance changes due to
rotation, a new re-registering technique has been implemented in order to obtain
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a feature robust tracking. Using this technique, the pose estimation is robust and
accurate for full range yaw rotations, in the range of ±90◦.

4. Face pose estimation. Two different algorithms for 3D pose estimation have been
tested. Levenberg-Marquardt gives very good accuracy, whereas POSIT is faster. A
RANSAC algorithm and the usage of the 3D face model permit outliers detection
and robust pose estimation.

5. Classification of focus of attention. Fixation areas classification system based
on the gaze allows to detect the focusing or fixation point of the drivers withing a
set of possible focusing areas previously known.

6. Distraction behaviour. Using the gaze estimation system, the distraction pat-
tern and inattention statistics have been computed for a set of experiments held
in a driving simulator. Some visual, auditory and cognitive distractions have been
analysed. Parameters as reaction time and gaze fixation patterns over time have
been identified as interesting for distraction analysis.

8.2 Future work

From the results and conclusions of the present work, several lines of work can be proposed.

• Better initial feature extraction. Although the initially created 3D face model
and the online corrections proved to generate an accurate 3D pose estimation, a
more comprehensive feature extraction process can help improve the results. More
comprehensive means than the extracted features are associated with a meaning, that
is, to know if a feature belongs to the nose, the eye, the mouse, etc. This can help
treating each feature in a different way depending on their associated information,
and consequently improving algorithm aspects such as occlusions, optimum patch
size, calculating the pseudo-normals, or non-rigid deformations. This would produce
an even better and more robust face pose estimation.

• Deformable models. A deformable 3D model can adjust to temporal 3D face
structure variations, and adapt to gestures or speaking. By implementing a de-
formable 3D face model the pose accuracy could improve in these cases. Providing
more information about the face features, and a dynamic model of the face would
help on the task of implementing a non-rigid model pose estimation. Great care
must be taken to prevent the degeneration of the model and to obtain a real time
application.

• Feature occlusions. A cylindrical model is used to pre-calculate the occlusion
angles of each feature. However, this information could also be updated online, by
observing when the different feature points occlude. This requires implementing
a method to detect when a feature has been occluded by other object or whether
it is a self-occlusion. This could be done by similarity techniques, such as local
histograms or optical flow, and a consensus though repeatability along few frames,
and neighbour features and rotation angles.

• Texture warping. A texture warping technique is applied in this thesis. The test
results showed that it only improves feature localisation for a small range of rotation,
mainly because of incorrect calculation of the feature 3D orientation within the face.
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Improving this calculation would allow to apply warping for a wider range, what
would increase accuracy and range for pitch and roll rotations.

• Improved calibration. An accurate stereo rig calibration improves the 3D point
estimation, model accuracy and feature tracking. In many cases the camera calibra-
tion can also be corrected with bundle adjustment, which is a common technique
applied in SLAM problems. The bundle adjustment could be applied to correct
calibration parameters in addition to the 3D structure of the model.

• Better eye direction estimation. In this thesis we implemented a coarse eye
direction estimation algorithm, as a mean to provide driver’s gaze and calculate
focalisation. The eye direction estimation is not so accurate as the pose estimation,
and consequently degrades the final gaze. A necessary step to increase the gaze
accuracy to the levels of the pose estimation would be to implement an accurate eye
direction estimator using the two high resolution stereo cameras.

• Single camera face pose estimation system. The re-registering technique de-
veloped in this thesis could work with a single camera, although with less reliability.
This re-registering could be paired with a 3D model built with a structure-from-
motion algorithm [Paladini 10] to create a mono-camera solution able to work in the
full yaw rotation range.

• Distraction parameters. More effort would be needed in the identification of new
parameters calculated from the gaze direction and focalisation to help the psychol-
ogists to detect distractions in an easy way.

• Inattention monitoring system. With all the information provided by the pose
and gaze, and taking advantage of the high resolution cameras and the eye analysis
accomplished for eye direction estimation, it would be possible to implement as
well a driver inattention detector on top of the gaze estimator. This would provide
comprehensive information about the inattention state (drowsiness and distractions)
of the driver.
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