Unsupervised intrusion detection
through skip-gram models of network
behavior

Rafael San Miguel Carrasco, Miguel-Angel Sicilia
University of Alcald, Madrid, Spain

Keywords

Skip-gram modeling, Neural networks, Anomaly detection, Intrusion detection, Unsupervised learning,
Word2vec, Unknown attacks

Abstract

Detecting intrusions is one of the main objectives of computer security. Attacks have become overly sophisti-
cated over the years in order to remain effective and stealthy. Major breaches are typically perpetrated using
techniques that are polymorphic, multi-vector, multi-stage and targeted, that is, adopting forms that were never
seen before. Anomaly detection, which doesn't make any assumption about the shape of a potential attack but
instead on legitimate behavior, seems to be a suitable approach in order to defeat sophisticated intrusions. Skip-
gram modeling, a word2vec algorithm variant, was leveraged to model systems’ legitimate network behavior.
The resulting model was then used to spot intrusions in a test dataset. The optimal configuration led to 99,20%
precision, 82,07% recall, and 91,02% accuracy, with a false positive rate of 0,61%, which is significantly lower
than most state-of-the-art methods. These metrics were achieved under a fully unsupervised setting, that is,
without any prior knowledge of what constitutes an attack. Furthermore, the approach provides benefits in
terms of interpretability and log storage requirements, as it requires a small amount of input features. It also
produces information about systems behavior and their relationships, that can be reused by other analysis
techniques to obtain further insights.

1. Introduction

Computer and network intrusion detection is a popular research field. One of their objectives is to design and
implement intrusion detection techniques with high detection rates and low false positive rates [1]. As cyber
attacks become more sophisticated, the main challenge becomes deploying techniques that can recognize un-
known attacks [2], that is, those for which an statistical or signature-based pattern doesn't exist. Another related
issue is the need to handle huge amounts of data that are collected [3] from multiple data sources, and the fact
that not all data might be relevant and relevant data might not be present. Multiple general-purpose algorithms
have been re-engineered for intrusion detection. They fall into one of these categories: misuse detection and
anomaly detection.

Misuse detection detects attacks by comparing current activity with the expected actions of an attacker [4]. In
contrast, anomaly detection builds a normal activity profile for a system [5]. Misuse detection requires training
observations to be labeled as normal or malicious activity. In anomaly detection, only legitimate behavior is
considered during training. Behavior that significantly deviates from modeled legitimate behavior in the test
data is then flagged as an anomaly. Labeled data for misuse detection might not be easy to obtain for the
following reasons:

e A record might or might not constitute an attack depending on the context. Likewise, an attack might
relate to multiple records. These relationships cannot be captured by record-level labels.

e Related records required to recognize an attack might have been triggered by different data sources.



e No datasets containing real-life traffic are generally available. Moreover, cyberattacks rates and impact
metrics remain unavailable to researchers [6].

In contrast, anomaly detection focuses on finding patterns in data that don’t conform to expected behavior [7].
It is suitable for the intrusion detection field for the following reasons:

e Evading anomaly detection mechanisms might be much harder than traditional signature-based systems
for an attacker.

e Technology diversity doesn’t interfere with general principles used in anomaly detection.

e Anomaly detection is generally resilient to new threat vectors, because the availability of a new vector
doesn't change the expected legitimate behavior of a system or network vulnerable to that vector.

Previous work [8] identified the following pros of anomaly detection: ability to detect unknown attacks, lower
dependency on OS, and accurate detections of privilege abuse. However, building profiles from data is not
trivial [9], given huge network traffic volumes, highly imbalanced attack class distribution, complex decision
boundaries to distinguish normal and abnormal behavior, and the need to adapt to a constantly changing
environment that is therefore subject to concept drift [10].

The cons of anomaly detection [8] can be summarized as follows: alerts not being triggered on time, unavaila-
bility when updating normal profiles, and profiles becoming obsolete due to ever-changing network traffic. It
might also be vulnerable to attacks against profile learning features [11]. However, these techniques rely on
prior knowledge about the algorithm and the possibility to inject data during the training phase. Lastly, training
data might contain malicious actions, and legitimate activity might not be frequent [12].

Our work has focused on developing a technique that leverages the pros of anomaly detection. Particularly, we
have designed, implemented and tested an approach based on skip-gram modeling that learns the relationships
among the entities of a network and their respective behavior.

The information learnt in the training process allows to measure the degree of departure from expected behavior
and spot malicious activity in the detection phase. This approach is has low log storage requirements, as it
requires just four network-related features to be modeled. Compared to other intrusion detection techniques
[43] that require the 49 features of the UNSW-NB15 dataset, our approach requires 82,7% less storage to achieve
comparable results. It’s also interpretable, and it provides insights that can be exploited by other techniques,
such as Peer Group Analysis.

Tested against the UNSW-NB15 dataset [13], it achived 99,20% precision and 82,07% recall.

The rest of this paper is structured as follows. In Section 2, previous related research is summarized, and the
skip-gram modeling is presented, along with a number of successful Use Cases in other fields. In Section 3, the
methodology followed to re-engineer the skip-gram modeling algorithm for intrusion detection is explained.
Section 4 covers our experimental setup to test the effectiveness of the modified algorithm. Finally, Section 5
includes a discussion of the results and relevant conclusions.

2. Background

Here we present previous research directly related to the approach reported later, and then cover the funda-
mentals of the techniques applied.

2.1. Previous research

Multiple algorithm types and techniques have already been used to implement anomaly detection for intrusion
detection, with different degrees of success. Recent surveys [1] [8] [53] have developed taxonomies of these
techniques and also describe them in detail, referencing the related papers and comparing their performance.
Other surveys [7] on anomaly detection have put focus on successful applications to the intrusion detection
domain.

From the techniques described in the aforementioned surveys, those implemented through neural networks are
the ones receiving further attention in the research community [14].

Self-Organizing Maps (SOM), that provide an neural-network based clustering algorithm, have proven to effec-
tively detect intrusions by modeling legitimate behavior, under multiple scenarios [15] [16] [17] [18]. Tested
against the 41 features of the KDD dataset, it achieved a false positive rate of 1.38% and detection rate of 90.4%



[19]. Adaptive Resonance Theory (ART) is also a neural network-based clustering technique whose underlying
logic is very similar to SOM. From 27 features extracted from IP, TCP, UDP and ICMP headers of a network
traffic dataset, with 27 different attack types, an ART-based IDS obtained 97% accuracy, while the SOM-based
IDS achieved 95% [20].

Recurrent Neural Networks (RNN) can learn sequences of normal user behavior during a session, and predict
the most probable next action afterwards [21]. Legitimate behavior leads to accurate predictions, while high
prediction errors are a signal of anomalous behavior.

Recent research [22] has leveraged a neural network-based NLP (Natural Language Processing) algorithm for
intrusion detection. This research was based on Paragraph Vector algorithm, that produces document-level
embeddings, as opposed to the word embeddings used in our work, that are easier to compute. The proposed
method targets C&C (command-and-control) detection, that is, malware communications, and it requires sample
malicious traffic to train a SVM (Support Vector Machine) classifier. The method achieved varying values of
precision (0.77-0.99) and recall (0.69-1.00), depending on selected training method and test data. Authors state
effectiveness relies on having good training data, which is a strong requirement in any supervised setting. Our
proposed approach is based on an unsupervised setting instead. Therefore, prior knowledge about intrusion
tactics is not required to make it effective.

Finally, there have been attempts to perform intrusion detection with neural networks under supervised settings,
that is, by classifying instances based on their labels or otherwise including attack traffic in the training phase.
Convolutional Neural Networks (CNNs) [23] have been used to detect malicious URLs, file paths and registry
keys, with 97,8%-99,3% detection rates. CMAC (Cerebellar Model Articulation Controller) neural network [24]
has been combined with Reinforcement Learning feedback to detect variants of DoS attacks after training the
system with a given DoS attack type and benign traffic. The system achieved an error of 3,28E-05% when
identifying a priori attack patterns.

2.2. Skip-gram modeling

Word2vec is a technique used for learning vector representations of words, or embeddings. There are two
variants of word2vec: Continuous Bag-of-Words (CBOW), that predicts a target word from its context words,
and skip-gram, that predicts context words from a given target word. The loss function is minimized when the
model produces high probabilities for words that are part of the target word’s context, and low probabilities to
other words (noise).

The differences between CBOW and skip-grams is that the latter works better for large datasets because it treats
each context-target pair as a single data point. Therefore, skip-gram is more suitable in the context of intrusion
detection, where large security log files are typically required to be processed in order to spot attacks. Exten-
sions to the original algorithm were added [26] after the original paper was published to improve the quality of
the vectors and the training speed. Related words have vectors with a high cosine similarity, and a low similarity
otherwise. It’s therefore able to accurately predict the context of a word after the training process has been
completed.

In our research, skip-gram algorithm has been re-engineered to make it suitable for network intrusion detection,
under the initial hypothesis that systems and their network connections can be effectively represented as words
from a text for behavior modeling purposes.

2.3. Existing Use Cases

Both word2vec and skip-gram modeling have been very recently applied to several use cases outside the com-
puter security field. For instance, in the medical field, skip-gram has proven to help in finding relationships
between cancer patents [27], as well as modeling medical words to encode its semantic information [28]. In
biology, it has been used for protein classification [29]. In the marketing field, it has been used in food sensory
evaluation analysis for predicting consumer acceptance [30], and for sentiment analysis from movie reviews
[31]. Other use cases include modeling harmony [32], human judgment evaluation [33], and psycholinguistic
properties inference [34].

Skip-gram has also been leveraged in the anomaly detection field, particularly to spot deviations from normal
state in log files [47]. In the computer security field, word2vec was used as a feature engineering tool, training
classifiers with the word embeddings generated for both normal traffic and intrusion instances [48]. A similar



approach has been proposed to find the semantics of particular attack types, which could then be fed as input
to classifiers as Convolutional Neural Networks [49].

3. Methodology
3.1. Dataset description

The dataset used for our research is the UNSW-NB 15 dataset [13]. Data was created with the security product
IXIA PerfectStorm [35] in the Cyber Range Lab of the Australian Centre for Cyber Security (ACCS). The objective
was to generate a hybrid of real modern normal activities and synthetic contemporary attack behaviours.

This dataset has been reported to address several issues found in the KDD99 and NSLKDD datasets. Particularly
those regarding obsolete attack types, obsolete legitimate traffic scenarios, and the unbalanced of training and
testing instances [36]. Other datasets like IDEVAL have also been heavily criticized [37], despite still being very
commonly used to measure anomaly detectors’ performance.

In UNSW-NB15, the tcpdump command was used to capture 100 GB of raw traffic in PCAP format. The dataset
contains nine attack categories: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shell-
code and Worms. Argus, Bro-IDS and a set of twelve custom algorithms were used to generate 49 features that
are enumerated in Annex A. The class label indicates whether the record is normal traffic or an attack. The
dataset contains 2,540,044 records stored in 4 CSV files: UNSW-NBI15_1.csv, UNSW-NB15_2.csv, UNSW-
NB15_3.csv and UNSW-NB15_4.csv. These were first merged into a single file to generate the required training
and test dataset.

3.2. Feature engineering

Our features selection criteria relied on the general assumption that in order to perpetrate an attack, an intruder
that has compromised a system must access systems and services in a way that differs from normal behavior
seen before.

From the 49 features available in the dataset, only four were required for our skip-gram modeling purposes.
These are the four main variables that characterize network accesses: source IP address (srcip), target IP address
(dstip), target port (dport) and network protocol (proto). The remaining features have been discarded for the
reasons stated below:

e Features derived from aggregations of raw features. These features are expensive to compute in a pro-
duction environment, and including them would also prevent real-time detection.

e Protocol-based features. These features are not available from many network-related data sources, and
so including them would make our approach less generally applicable.

e Application-based features. These features, if included in the analysis, would limit the scope of detection
to the related applications, preventing the algorithm to generalize.

e Time-based features. An attacker could easily imitate time-related behavior of legitimate users, and so
these values can’t reliably characterize malicious activity.

UNSW-NBI15 features are enumerated in Appendix A in order to let readers understand how the aforementioned
reasons apply to the related features.

In general, our aim is to avoid developing a technique that relies on features not generally available or whose
synthesis process is not either scalable or representative of real-world datasets. This leads to lower log storage
requirements to deploy the algorithm, compared to other techniques that require all dataset features [43]. Par-
ticularly, the storage requirements drop from 586,4MB (49 features) to 101,2MB (4 features plus the label), that
is, 82,7% less. This feature addresses one of the key issues of detecting intrusions [50]: the need to handle huge
amounts of data, where not all data might be relevant.

Target port feature was simplified to only hold values of most popular ports, or a default value (arbitrarily set
to 9999) for any other port. This approach serves the purpose of letting the algorithm focus on what is more
relevant for network behavior modeling: whether a system is connecting to a well-known or uncommon service.
This assumption was later confirmed by running the skip-gram modeling exercise against the original and the
extracted features and comparing the results. Using the simplified dport feature led to higher accuracy.

3.3. Neural network design



TensorFlow [38] is an open-source framework developed by Google that allows to design and execute machine-
learning algorithms. It has been used for research across multiple fields: speech recognition, robotics, computer
vision, information retrieval, and NLP, among others. In our research, TensorFlow was used to implement skip-
gram modeling through a neural network. The neural network architecture is composed of three layers: an
input layer, an embeddings layer and a softmax classifier that produces the output.

This is visually depicted in the following figure:
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Figure 1. Skip-gram neural network architecture.

The matrix of embeddings is randomly initialized with values between -1 and 1 that are drawn from a uniform
distribution. The loss is defined in terms of a logistic regression model leveraging negative sampling. Therefore,
a matrix of weights and biases is also defined and initialized. The biases are initialized to zero, while the weights
are initialized with values draw from a normal distribution. To our knowledge, no other network architecture
has proven to perform better for skip-gram modeling. In any case, the design is still subject to parameter fine-
tuning, which has been implemented in our setting through grid search, as explained in Section 4. We have
also redesigned the microbatch function, as explained in Section 3.5, to ensure that inputs are provided in a
format suitable for a NLP neural network like this.

Stochastic Gradient Descent (SGD) is used to update weights. Particularly, Adagrad optimizer was chosen, as it
dynamically adjusts the learning rate according to how frequent a given parameter is. This is the best choice
for sparse data like the one hot encoding vectors used in skip-gram. After all epochs have been run, the nor-
malized embeddings, suitable for calculating cosine similarity between entities, are returned.

3.4. Re-engineering approach

word2vec implementations are designed to work with words in a text. In the neural network implementation of
this algorithm, microbatches containing pairs of a target word and some of its context words are repeatedly
generated in the training phase in order to learn progressively more accurate embeddings reflecting existing
relationships. The end goal is being able to accurately predict what words belong to the context of a given
word, and which don’t, from what it’s called a negative sample. This is shown in the following figure.
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Figure 2. Skip-gram modeling goal in text classification and in intrusion detection.

In our setting, aimed at network behavior modeling, target words represent sysfems that initiate network con-
nections, while words related to them (context) represent connection types, that are characterized by a desti-
nation IP address, a network protocol and a target port. A given connection belongs to a connection type if its
target IP address, port and protocol matches the values for that connection type.

In this scenario, context (i.e. related words) in which a given target word (system) is found represents the most
frequent connection types (target IP, port, protocol) initiated by that system. Therefore, the learning process
aims at obtaining locations (numerical representations) in a hyperplane of both systems and connection types,
that satisfy the following three conditions:

1) Systems that are close in the hyperplane connect to similar IP addresses and ports.
2) If a system is close to a connection, it means that that type of connection is frequent for that system.
3) If two or more connections are close, it means that they are initiated by the same set of systems.

In other words, short distances represent high similarity, that is, two systems with similar behavior or a con-
nection type that is frequently initiated by a system. Likewise, long distances can either represent connection
types that are unlikely to be initiated by a system, that is, connections that are no expected for that system, or
systems whose behavior is very different.

In the training phase, embeddings are calculated and recorded. In the detection phase, each event is processed
by obtaining the distance between the embedding of the system initiating the connection and the embedding
of the connection profile used. This distance can be used to discover when a system is deviating from expected
behavior. Multiple connections initiated by a system translating into long distances constitute a reliable indica-
tor of an anomalous behavior.

This is represented in the following figure:
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Figure 3. Examples of normal and anomalous interactions.

On the other hand, producing numerical representations of systems and connection types reduces false positive
rate, because the likelihood of a connection type being initiated by a given system doesn’t only depend on the
behavior of that system in the training phase, but also on the behavior of other systems with which it exhibits
a high similarity. In other words, the behavior profile considered legitimate for a system is inferred from ob-
served behavior and the behavior of similar systems.

Therefore, if some legitimate behavior is not captured during the training phase for a system, but it is for related
systems, that behavior won’t be considered anomalous in the detection phase.

3.5. Microbatch building function

For the skip-gram modeling process to work for our network traffic dataset, the microbatch generation function
originally designed for NLP tasks had to be reengineered. Each record in our dataset is a list of items, whose
first item represents a system, and the rest are connection types observed for that system in the training data.
Multiple instances of the same connection type can be found in each record if the system has initiated multiple
connections of that type in the training period. In other words, there are as many occurrences of a connection
type in a system’s record as connections of that type were observed in the training data. Therefore, each record
encapsulates all the connection types seen for a given system, and the number of times that they have been
seen.

Our redesigned microbatch function runs through all the records by taking consecutive non-overlapping sam-
ples of the dataset, as determined by bafch_size parameter. For each record, it produces a target word and a
set of related words (context). The target word can be a system (p = 0.8) or a connection type (p = 0.2). In the
first case, the objective is to learn the relationship between a system and its connection types. In the latter case,
the objective is to learn the relationship between a connection type seen for a given system and other connec-
tion types also seen for that system. This stochastic feature was introduced because it led to more accurate
embeddings.

In both cases, context is comprised of connection types found in that record, randomly selected. The number
of items picked up to build the context is determined by the num_skips parameter, which represents the band-
width or depth of the context.

3.6. Distance measurement

Skip-gram produces a vectorial representation of a word (system or connection type) that allows to find related
words, which are those whose distance to the word in the hyperplane is short. The measure of distance pro-
duced by our skip-gram modeling implementation is cosine similarity.
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Cosine similarity values fall into the interval [-1, 1], with 1 being the highest similarity (shortest distance) and -
1 being the lowest (longest distance). Vectors representing related words will have an angle close to 0 degrees
(i.e. cosine similarity close to 1), and those of unrelated words will have an angle between 90 and 180 degrees
(i.e. cosine less than 0). Cosine similarity is calculated for all events processed in the detection phase.

similarity = cosf =

In our implementation, the similarity formula is translated into a matrix multiplication operation. The normal-
ized embeddings of the systems are multiplied by the trasposed embeddings of the connection profiles, resulting
in scalar products that produce a similarity value for each event.

3.7. Visual inspection technique

Formal performance measurement criteria were defined to check the accuracy of our proposed technique.
However, before getting to that final stage, it’s useful to inspect the results of the skip-gram modeling exercise.
This inspection also allows to gain a better understading of data structure. Particularly, visual inspection is
used to confirm whether clusters of systems and connection profiles are formed. That would be the expected
outcome, because systems in a network tend to behave according to the role of the user that uses them (work-
stations), or according to the businnes function assigned to them (servers).

For this purpose, the obtained embeddings, whose number of dimensions ranges from 4 to 16, are transformed
into vectors of 2 dimensions using tSNE, so that they can be plotted in the screen. t-Distributed Stochastic
Neighbor Embedding (tSNE) is a dimensionality reduction technique used for visualization of high-dimensional
datasets [39] [40] [41]. It’'s made available to Python environments through the scikit-learn package. The pa-
rameters used for plotting the embeddings are shown in Table 1. The resulting scatter plot obtained for the
optimal configuration (Cl) of the neural network is depicted in Figure 4. The plot provides support to the
hypothesis that there are systems in the network performing similar activities.

Table 1. tSNE parameters.

Parameter Value
perplexity 50
n_components 2

init pca
n_iter 5000

20 ..,.{ :!:‘
»® °
10 ® ege ® 4 % e o.:
q' . \‘.-...':g o.'-'u:‘:: ':o
,"Q.' ° o e % Se o..".\
. . e o d
0 ® . rJ .:‘ '.. v av
w o *
.
2 o . 4 . L3 ]
-10 '.‘?'% '-_.:“:‘ o °
. o * g3 o® 2% o .:'.. .
%y 0 00 0,0, * .."0
o" . o "“o
- ® % o,
-20 - ® s o .

-20 -15 -10 -5 0 5 10 15 20

Figure 4. Scatter plot of obtained embeddings.



3.8. Performance evaluation criteria

Our performance evaluation criteria is based on the most common performance metrics in the intrusion detec-
tion field: precision and recall [42]. These are the related formulas:

. . tp
Precision =
tp+ fp
t
Recall = p
tp+fn

The F-score, also popular in this domain, can be calculated from precision and recall values:

precision - recall
F,=2"

precision + recall

True positives (Zp) are events classified as an intrusion that are an indeed an intrusion. Likewise, false positives
(fp) are events classified as intrusions that are legitimate traffic, and false negatives (/) are intrusions classified
as legitimate traffic. Precision measures the proportion of true positives detected among the events classified
as intrusions, while recall measures the proportion of intrusions detected among the total events.

4, Experimental setup
4.1. Training and test datasets

The full UNSW-NB15 dataset contained 2,540,044 events. It was produced by merging the content of these four
files: UNSW-NB15_1.csv, UNSW-NB15_2.csv, UNSW-NB15_3.csv, and UNSW-NB15_4.csv, that can be down-
loaded from the following URL:

https://www.unsw.adfa.edu.au/australian-centre-for-cyber-security/cybersecurity/ADFA-NB15-Datasets/

1,938,119 events (76,3%) were sampled from the full dataset to train the neural network. The training dataset
contained no attacks, as expected under an unsupervised paradigm setting. 601,928 events were sampled from
the full dataset to test the accuracy of the model, which represents approximately 23,6% of the full dataset.

280,645 events in the test dataset were attack-free, and 321,283 events represented actual attacks, belonging
to the aforementioned attack categories.

4.2. Parametrization

Grid search was used to find the optimal parameters for the neural network. In our context, optimal configura-
tions is defined as the one having higher precision and higher recall, with recall having higher priority. The
following table describes the relevant parameters of the neural network.

Table 2. Neural network parameters.

Parameter Value

batch_size Number of records supplied by the batch generation function to the neu-
ral network in each epoch.

num_skips Number of words included in the context of a given target word when
generating a micro batch.

valid_size Number of records used for validation.
num_steps Number of epochs.
embedding_size Number of dimensions of the vector representing each word.

4.3. Results and discussion

In our setting, an event was considered to represent an attack if the distance (cosine similarity) from the system
to the connection profile shown in the event was lower than zero. Likewise, an event was considered to repre-
sent legitimate traffic if the cosine similarity value was zero or positive. 2,830 unique combinations of system
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and connection profile were extracted from the test dataset and classified as either normal or attack. The
following table shows the results obtained with each configuration. The following information is included:

e Configuration parameters
o batch_size
o num_skips
o hum_steps
o embedding_size
e Number of true positives, negatives and also false positives and negatives.
e Average loss reported by TensorFlow after running the last epoch
e Lastly, precision and recall metrics, used for performance evaluation
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C2 16 2 90,000 4 1,103 | 7 1,456 | 264 99.01 0.360984 | 0,9936 0,8068
C3 32 2 90,000 4 1,109 | 8 1,455 | 258 99.18 0.626274 | 0,9928 0,8112
C4 16 4 90,000 4 1,114 | 7 1,456 | 253 98.48 0.364535 | 0,9937 0,8149
C5 16 4 90,000 8 1,119 | 9 1,454 | 248 97.55 0.367023 | 0,9920 0,8185
C6 16 4 90,000 16 1,118 | 14 1,449 | 249 97.79 0.366863 | 0,9876 0,8178
C7 16 4 180,000 | 4 1,103 | 6 1,457 | 264 98.89 0.355693 | 0,9945 0,8068
C8 16 4 360,000 | 4 1,096 | 7 1,456 | 271 99.30 0.359761 | 0,9936 0,8017
C9 32 4 360,000 | 8 1,088 | 5 1,458 | 279 99.30 0.624516 | 0,9954 0,7959

Table 3. Configuration parameters and results.

Table 3 shows that bigger batch sizes, skips lengths or embedding sizes didn’t significantly influence the algo-
rithm’s performance. Also, the algorithm quickly achieved convergence: increasing the number of epochs didn’t
lead to better performance. This circumstance might not hold for bigger datasets though.

According to our performance evaluation criteria, C1 was the optimal configuration, with 99,20% precision and
82,07% recall (detection rate), leading to an F-score of 89,82%. The accuracy was 91,02%, and the false positive
rate 0,61%. Higher precisions were obtained by other configurations, but at the expense of a higher recall.
These metrics were achieved without any prior knowledge of what constitutes an attack.

Other researchers have also tested their intrusion detection technique against UNSW-NB15 dataset [43]. The
following table summarizes how our proposal compares to other supervised and unsupervised techniques based
on neural network implementations [1]:

Technique Dataset Requires prior False positive rate Accuracy Detec-
knowledge tion
rate
Skip-gram UNSW-NB15 No 0,61% 91,02% 82,07%
MLP-BP KDD Cup’99 Yes 8,61% - 81,96%
RBF KDD Cup’99 Yes 1,2% - 99,2%
SOM KDD Cup’99 No 1,38% - 90,4%




ART KDD Cup’99 No 3,86% - 96,13%
LSTM-RNN KDD Cup’99 No - 96,93% 98,88%
DBN KDD Cup’99 Yes 0,76% 93,49% -

Ramp-KSVCR UNSW-NB15 Yes 2,46% - 98,68%

Table 4. Performance comparison with other neural network-based techniques.

Our approach outperforms all these techniques in terms of false positive rate, which remains to be one of the
main challenges in intrusion detection systems [44], while still providing a comparable accuracy and an ac-
ceptable detection rate. It does so without any prior knowledge about the attacks and using a small amount of
network-related inputs that are available from any network device.

Also, our approach has been tested against a recent dataset (2015) that doesn’t suffer from the issues found
[61][52] in datasets from 1999 used by other techniques in Table 4. These issues include: redundant records in
the test dataset leading to biased evaluation results [51], and the fact that randomly selecting subsets of the
training and testing data allows to achieve unrealistically high accuracies [52].

5. Conclusions and outlook

The optimal configuration of our proposed intrusion detection algorithm led to 99,20% precision, 82,07% recall,
and 91,02% accuracy, with a false positive rate of 0,61%, which is significantly lower than most state-of-the-art
methods. These metrics were achieved under a fully unsupervised setting, that is, without any prior knowledge
of what constitutes an attack.

Furthermore, the proposed algorithm makes several contributions. First, it requires a small number of features
that can be easily obtained from a network or security sensor in order to accurately model systems behavior.

This in turns results in less storage required to store the data and run the algorithm. Also, results can easily be
interpreted. The reason why an event was classified as an attack can be explained in terms of how infrequent
that behavior is, not only for that system, but also for systems exhibiting a similar behavior. Lastly, the model
shows what clusters of related systems behavior exist, which can be used as input to further techniques and
analyses, particularly those that leverage Peer Group Analysis [45] [46].



Appendix A. UNSW-NB 15 dataset feature set

Name Description

srcip Source IP address

sport Source port number

dstip Destination IP address

dport Destination port number

proto Transaction protocol

state State. Protocol-dependant. Examples: ACC, CLO, CON, ECO, ECR, FIN, INT, MAS, PAR, REQ, RST, TST, TXD,
URH, URN, and (-) (if not used)

dur Total duration

sbytes Source to destination transaction bytes

dbytes Destination to source transaction bytes

sttl Source to destination Time To Live (TTL)

dttl Destination to source Time To Live (TTL)

sloss Source packets retransmitted or dropped

dloss Target packets retransmitted or dropped

service http, ftp, smtp, ssh, dns, ftp-data ,irc, and (-) (unusual service)

sload Source bits per second

dload Destination bits per second

spkts Source to destination packet count

dpkts Destination to source packet count

swin Source TCP window advertisement value

dwin Target TCP window advertisement value

stcpb Source TCP base sequence number

dtcpb Destination TCP base sequence number

smeansz Mean packet size transmitted by the src

dmeansz Mean packet size transmitted by the dst

trans_depth Pipelined depth into the connection of HTTP request/response transaction

res_bdy_len Size of uncompressed data transferred from the server’s HTTP service

sjit Source jitter (ms)

djit Destination jitter (ms)

stime Start time

Itime Last time

sintpkt Source interpacket arrival time (ms)

dintpkt Destination interpacket arrival time (ms)

teprtt TCP connection setup round-trip time: sum of ’synack’ and ’ackdat’

synack TCP connection setup time: time between SYN and SYN_ACK packets

ackdat TCP connection setup time: time between SYN_ACK and ACK packets

is_sm_ips_ports 1 if source and destination IP addresses and ports equal, O otherwise

ct_state_ttl Number for each state according to specific range of values for source/target TTL

ct_flw_http_mthd = Number of flows with methods such as GET and PORT in HTTP service



is_ftp_login 1 if FTP session is authenticated, O otherwise

ct_ftp_cmd Number of flows with a command in the FTP session

ct_Srv_src Connections that contain the same service and source IP address in 100 connections, according to last time
ct_srv_dst Connections that contain the same service and destination IP address in 100 connections, according to last time
ct_dst_Itm Connections with the same destination IP address in 100 connections, according to last time

ct_src_ Itm Connections with the same source IP address in 100 connections, according to last time

ct_src_dport_Itm | Connections with the same source IP address and destination port in 100 connections, according to last time

ct_dst_sport_Itm | Connections with the same destination IP address and source port in 100 connections, according to last time

ct_dst_src_ltm Connections with the same source and destination and IP address in 100 connnections, according to last time
attack _cat Attack category: Fuzzers, Analysis, Backdoors, DoS Exploits, Generic, Reconnaissance, Shellcode and Worms
label 0 for normal traffic and 1 for attacks
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