
 

 

Player-centric networks in League of Legends 

Abstract 

Online competitive gaming has become one of the largest collective human activities globally 

and understanding motivations and social interaction is still not fully achieved. The aim of this 

study is to develop a basis for a systematic classification of player-centric networks in 

competitive online games based on structural network criteria. Using data extracted from 

League of Legends players, their matches and machine learning techniques, a classification of 

personal player networks in League of Legends is proposed. Results show the resulting egonets 

can be potentially grouped in four clusters related to their egos playing habits, ranging from 

solo to team players. 
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1. Introduction 

Quantification of human behaviour and social dynamics has been a long-lasting challenge for 

social sciences, hindered by two main factors (Szell and Thurner, 2010): first, dynamics of 

societies constitute a complex system, characterized by strong and long-range interactions (not 

treatable, in general, by traditional mathematical methods) and, second, data is of comparably 

poor availability and quality (Lazer et al., 2009; Watts, 2007).  

Both factors are, however, played down when looking at massive multiplayer online games 

(MMOGs) (Castronova, 2005). In the age of Web 2.0 and, more recently, the era of big data 

(Chen and Storey, 2012), a great deal of social and relational data is routinely generated and 

recorded in the course of everyday life. This is the world that Thrift labelled as the world of 

‘knowing capitalism’: a world inundated with complex processes of social and cultural 

digitalization, with generation, mobilization and analysis of social data becoming ubiquitous 



 

 

(Thrift, 2005). It is also a world where sociologists need to rethink their methodological 

practices in radically innovative ways, as many assumptions that were central in the 1960s and 

1970s no longer pertain in the early years of the 21st century (Savage and Burrows, 2009). 

These changes go even further, as this digitization reworks the very meaning of social relations, 

as emphasized by Bruno Latour (2007). 

This is especially true in online competitive gaming environments, where a wide range of 

predefined actions for supporting social interaction reflects either positive or negative 

connotations among game players, and they are in some cases unobtrusively recorded by game 

servers (Kwak et al., 2015). Often, data is easily available and can be used to study human and 

player relations as well as behavioural patterns, providing an unprecedented opportunity to 

observe social interaction on the large scale (Pobiedina et al., 2013). Stenros et al. (2011) 

distinguished between different kinds of in-game social interaction and reflected how 

massively multiplayer games were characterized by the formation of both micro and macro 

communities, complex communication channel hierarchies and diverse degrees of player 

involvement in social interactions. Taking into account that online gaming has become one of 

the largest collective human activities globally, we depart from the assumption that “such 

games provide for both sufficient participation numbers and careful control of experimental 

conditions, unlike any other social science research technology” (Castronova, 2006). 

Castronova contrasts this unique chance to replicate entire societies to the small-scale 

experiments that are often extrapolated to whole populations and communities. When studying 

MMOGs, the number of subjects can reach over several hundred thousands and their related 

actions can be counted by millions. The measurement process is also benefited by how 

information is extracted; players are not consciously of participating in a research-oriented data 

gathering process, thus minimizing bias. 



 

 

As video games evolve and MMOG’s popularity grows, video game and player culture also 

grow, but do so supported by the relationships that arise from their social activity (both online 

and offline) (Adamus, 2012).  Connection is not only a constitutive fact of social life, but also 

the pillar where online gaming stands. Players influence each other by means of competition 

or collaboration, exchange experiences and, sometimes, become involved in longer and 

meaningful relationships, forming teams or communities. Data extracted from online 

competitive games such as League of Legends can help understanding online players and their 

habits by looking at the structure of their connections and networks during online play. 

As finding stable typologies of player networks based on structural criteria becomes critical 

when little information other than the network is provided by data generated by online activities, 

this paper aims to develop a basis for a systematic classification of player-centric networks in 

competitive online games based on structural network indicators. In particular, every player 

(ego) will be related to all the teammates he or she had over a year, obtaining a player-centric 

egonet where two alters are connected by an edge if they played together in at least one match. 

The resulting egonets can then be analysed according to their structural indicators and 

categorized (if such a division exists). 

Thus, the objectives of this study are: 

1. To discover the hidden structure behind the resulting indicators, if any. 

2. To define a limited number of indicators that characterize the resulting structure. 

To reach them, the following steps will be followed. First, in section 2, background will be 

presented, reviewing previous research and providing further detail about what League of 

Legends is and how it is played. In section 3, participants, indicators and methods applied to 

extract and build the player-centric networks will be explained. The resulting network dataset 

will contain the relationships among hundreds of thousands of players so, in order to infer 

whether a hidden structure from the resulting indicators exists, a machine learning clustering 



 

 

algorithm will be applied in section 4. This algorithm will be finally optimized (reducing its 

complexity) until a satisfactory classification of player-centric networks is achieved. The 

resulting segmentation is then going to be discussed and illustrated. In the final section, the 

implications of the results will be summarized, practical applications deduced and limitations 

and future work acknowledged.   

 

2. Background 

2.1 Related work 

The most explored MMOGs among researchers are in the category of Massively Multiplayer 

Role-Playing Games (or MMORPGs). Games such as World or Warcraft (WoW) can be linked 

with the much older MUD (Multi-User Dungeon) text-based games, as they fill a similar niche 

in the gaming world and, at least to some players, provide a fully social experience (Mortensen, 

2006). Zhong (2011) examined the impact of collective MMORPG play on gamers' social 

capital in both the virtual world and the real world. Ang and Zaphiris (2010) used WoW to 

investigate the social roles that emerged from the users' behaviour and interaction within its 

guilds (roughly equivalent to in-game clubs) from an analytical perspective and found that the 

core members of this communities were highly social-oriented players. In spite of this, 

Ducheneaut et al. (2006) showed that while MMOGs were clearly social environments, joint 

activities were not as prevalent as they expected. In particular, social network degree densities 

for in-game guilds were surprisingly low, forming “sparsely knit networks.” Other popular 

games explored include, for example, EverQuest (Castronova, 2006) or Pardus (Szell and 

Thurner, 2010). 

In spite of the emergence of studies focused on MMORPG in the last decade, few studies have 

approached massive multiplayer online games from other genres or subgenres such as MOBA 

(Multiplayer Online Battle Arena) games. Despite its vast enthusiast community and influence 



 

 

on contemporary game designers, remain under-explored by academics, as existing studies 

acknowledge (Ferrari, 2013). But few games exhibit a greater need for socially-aware services 

than this relatively new genre (Iosup et al., 2014), as it brings new ways of collaboration and 

competition on the table, gender and cultural challenges and even new social networks which 

need to deal with the inherent toxic behaviour that arises in these contexts. MOBA games such 

as League of Legends provide the same opportunity as other MMOGs: namely the scale 

(League of Legends is one of the most played online games globally), data (which is recorded 

in its servers and accessible using an API) and relevancy (McDonald, 2017). e-Sports are a 

related phenomenon. Taylor (2012) conducted extensive ethnographic research in this regard, 

while Trepte, Reineke and Juechems (2012) used an e-Sport portal to recruit online participants 

for their work on how offline factors impact online social capital, thus recognizing the 

relevance of online gaming for research, now that “online gaming has become a major leisure 

time activity”. Carrillo Vera (2015) claims that the impact achieved by League of Legends calls 

for academic and scientific analysis from a range of disciplines, including sociology, economy 

or communication; taking into account the amounts of data generated every day, however, 

computer science should also play an important role. This consideration is echoed by Mora-

Cantallops and Sicilia (2018), who identified a research opportunity behind MOBA games as 

a whole, while calling for “future research to include innovative approaches that combine the 

traditional and common surveys and interviews with data and computer science techniques.” 

2.2 The game 

League of Legends is a multiplayer online battle arena game that follows a freemium model, 

but where in-game transactions do little to impact a player’s performance or ability. In essence, 

MOBA games are a subgenre of real-time strategy games in which two teams, typically 

consisting of five players each, compete against each other with each player controlling a single 

character. Contrary to real-time strategy games, there is no unit or building construction in a 



 

 

MOBA game, so much of the strategy revolves around individual character development and 

cooperative team play in combat (Yang et al., 2014). 

In every League of Legends match, two teams face each other in a single map (the Summoner’s 

Rift) with a clear goal: to destroy the opposing base (called nexus). As in most MOBA games, 

teams are composed by 5 players that interact during the game with the aim of optimizing 

resources, taking advantage of the opponent’s errors and destroying other objectives such as 

towers (that protect the path to the nexus) and neutral monsters (that provide players with 

rewards).  

Although each team in League of Legends is composed by five human players, these can be 

joined in multiple different combinations, from “solo” (which means that the player enters the 

queue alone and the matchmaking system finds the rest of the team to play with) to a full team 

composition. Furthermore, each player takes a role in the team. Current matchmaking system 

allows players to express their preferences and assigns them to a role, which also has an effect 

on the range of avatar characters (known as Champions in the game) that the player will choose, 

as some are better suited for a role than others depending on the meta-game at the time 

(Donaldson, 2015). Role definitions have evolved from season to season, but stabilized at five 

main roles. Three players control the lanes (Top, Mid and Bottom) while Support provides 

utility to the team (spending most of the game paired with Bottom) and Jungle makes use of 

the resources in-between lanes (see Figure 1).  Players can also choose to “Fill”, which means 

that they will take any free role. League of Legends is a team game; all five roles are relevant 

for the team’s success. Even though cooperation is critical for success, communication tools 

are rather limited: natively, the game only allows text chat and pings (pre-set simple sounds or 

symbols that can be used as a rough system of communication). Thus, some players that join 

with friends opt to use external conference tools such as Skype to communicate using voice 

chat.   



 

 

 

Figure 1 - Typical MOBA map (with labelled lanes) for illustrative purposes. Original PNG version by Raizin, 
SVG rework by Sameboat. (file:Map of MOBA.png (CC 3.0), CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=29443207) 

In League of Legends, players are ranked accordingly to their skill level. There are seven tiers 

in the so called “ladder”, in increasing order of skill: Bronze, Silver, Gold, Platinum, Diamond, 

Master and Challenger. After a few placement matches, players get placed in competition 

categories (League tiers), and subcategorized into Divisions. The main objective becomes then 

to climb the ladder by continuously winning matches. Rank distribution changes over the 

season and can be different depending on the region, but in general, Silver is the most populated 

division followed by Bronze and Gold. Altogether, these divisions include between 70% and 

90% of the player base. Less than 0.1% players are in Master or Challenger; this last one, 

actually, is limited to 200 players. Behind this ranking (and using an undisclosed calculation 

in the case of League of Legends) there is an “Elo” rating system similar to the one originally 

used for chess players. In short, it is assumed that a player’s performance has a normal variation 

among games; the mean of that distribution is the Elo rating, which is determined by the 

win/loss statistics. Therefore, a player with a high Elo performs, in average, better than a player 

with a lower Elo, and this measure is used to match players of similar skill together.  

For the current article’s purpose it is also relevant to note how League of Legends developer 

Riot Games provides players with free access to the API, a set of tools that can be used to 



 

 

extract player and game data for further research. The available and useful data for this study’s 

purposes, however, is limited to information about their matches and rank. 

               

3. Materials and Methods 

3.1 Participants 

Between July and September 2016, five hundred and forty-seven participants completed an 

online survey that was distributed (via email) through 20.000 active ranked users in the LVP 

(“Liga de Videojuegos Profesional”) database. The LVP database contains players that are 

registered in their website and, at the time of the study, it had 68.410 ranked players in it. With 

over 250,000 registered players, the LVP - Spanish Pro League is the biggest eSports 

organization in Spain, leading the industry with both online and live tournaments. Manages the 

most prestigious competitions (Division of Honour), tournaments and other amateur 

competition systems (LVP Arena) and also broadcasts international events in Spanish such as 

the League of Legends Championship Series and Call of Duty World League. The LVP also 

covers gaming technology services, events production, online advertising and audio-visual 

production covering all aspects of the e-sports ecosystem. 

The survey was originally intended to extract information about player habits outside the game 

(such as media consumption and learning habits), so the questions were irrelevant to the 

purpose of this study. Summoner name, however, is personal information; thus, participants 

were asked for agreement on using their player ID to extract information about their match 

history, which was intended for the current work.  

The study targeted ranked players specifically because of two main reasons. First, players 

achieve ranked status only after they get past the thirty level game tutorial. Therefore, there is 

no “novice” effect that could have an impact on results. Second, the League of Legends API 

only fully records data for ranked matches, converting unranked data in technically unreachable. 



 

 

As Summoner name is considered personal information, it was entered optionally and manually 

in the questionnaire, reducing the final number of complete entries to four hundred and thirty-

nine. Final demographics were, therefore, N=439, age between 13 and 35 years of age (average 

at 19.4 with a standard deviation of 3.45). 93.8% were male (N=411, average 19.2 years of age, 

SD=3.36) and 6.2% were female (N=27, average 21.96 years of age, SD=3.87). 

3.2 Network generation 

All matches played in 2016 by each of the 439 respondents (referred as egos from this point) 

were extracted through the League of Legends API1 provided by Riot. As a result, a total of 

228.117 matches were obtained, with a mean of 520 matches per ego (SD = 424).  

When a player joins a match, he or she does so in a match lobby, where the player is joined by 

other players until a team of five components is formed to play against five other players. 

Therefore, for each ego and for each match, the relationship between all team members is 

registered. Every relationship is counted as many times as it appears; thus, the weight of the 

link reflects how many matches two players have played together. Weight will be required for 

the modularity algorithm in section 3.3.5 and will only be used for graphical representation in 

Figure 10. 

After processing all egos, the average number of alters per network is 1535 alters, for a total of 

674.205 nodes (egos and alters – but players in the end) overall, but with considerable 

differences: the smallest network has 18 nodes while the largest has 7896. Approximately 80% 

of the networks have a number of nodes between 200 and 3500, however. Due to the described 

construction, all nodes are connected through the ego. Thus, before the subsequent analysis, 

the ego is removed from the network, highlighting the underlying alter to alter structure under 

the ego effect. 

 
1 Application Programming Interface. More League of Legends API information is available at 
https://developer.riotgames.com/. 



 

 

In summary, the resulting networks are one-mode projections of the two-mode networks 

connecting players to matches. Matches have, however, one restriction: its degree in the 

bipartite network is always equal to four. As a result, after removal of the ego, the one-mode 

network is a network of overlapping four-cliques or K4 complete graphs. 

For reference, as shown in Figure 2a, if an ego played a single match, the network would be a 

K5 complete graph (a five-node graph in which every pair of vertices would be connected). If 

an ego played two matches with the same team, the network would still be the same (with 

double weight in its links), but if an ego played the second match with a complete different 

team, then the resulting network would look like two K5 graphs linked by a bridge – the ego 

(Figure 2c). Removing the ego in the first case would keep the network connected (Figure 2b); 

doing the same in the second case would leave two disconnected components (Figure 2d). The 

generalization of this example will become key to understand the indicators that follow and 

their impact in the player networks. 

 

Figure 2 - Network generation. (a) Ego with a single team (b) Alter network from (a) after ego removal (c) Ego 
after two matches with complete different players (d) Alter network from (c) after ego removal. 



 

 

3.3 Indicators 

Mathematically, networks are described by graphs (Wasserman and Faust, 1994). An 

undirected graph G is described by a set of nodes N = {n1, n2,…, ng} and a set of links (also 

called edges) L = {l1, l2,…, lL} between pairs of nodes, where lk = (ni, nj). A large number of 

structural indicators can be computed on a network, some with a clear meaning and others with 

a more technical one, but in any case all features have an implication when used in the context 

of the social network analysis. 

As League of Legends is a team-based game with a relevant social component, for the current 

analysis purpose it was assumed that the most relevant structural features would be those 

related to node relevancy (as it was expected to find “friends” as relevant nodes) and to 

cohesion (as social players would see highly knitted networks as opposed to disperse 

components in non-social users). Node relevancy will be measured through degree and 

betweenness, while node density, component measures and modularity will represent structural 

network cohesion.  

 

3.3.1 Degree 

The degree of a node, denoted by d(ni), is the number of edges that are incident with it. 

Equivalently, it’s the number of nodes that are adjacent to it. Degrees are easy to compute and 

informative; alters with a small degree will indicate players that played with few other of the 

ego’s alters, while a high degree will show the opposite. In this case, therefore, degree will 

become a measure somehow related to the ego’s social circles: the higher the degree, the closer 

to the core of the ego’s playing community that alter is. For this application, the mean nodal 

degree (or average degree) will be used to summarize the degrees of all the actors in the 

network. For a network with g nodes and L links, mean degree �̅� can be calculated as: 
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3.3.2 Node density 

Every processed match can add up to four different players to the ego network (the fifth player 

is always the ego). If any of them already exists, the number of new nodes will be less than 

four. Therefore, by construction, the maximum possible number of nodes gmax equals four times 

the number of matches (m) the player joined. Node density for a player-centric graph with g 

nodes is then defined as follows: 

 𝑛𝑜𝑑𝑒	𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = &
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3.3.3 Betweenness centrality 

Interactions between two nonadjacent nodes might depend on the nodes that lie on the paths 

between the two. When this happens, these in-between nodes might have some control over 

their interactions (Wasserman and Faust, 1994). This becomes especially relevant in the player-

centric network, as it’s highly possible that the ego reaches new players through his or her 

frequent colleagues or friends. Betweenness centralization (cB) for a node 𝑛, ∈ 𝐺  can be 

defined as the number of shortest paths between ni and nj that pass through nk  (𝜎#𝑛! , 𝑛"&𝑛#') 

divided by the total number of shortest paths between ni and nj (𝜎#𝑛! , 𝑛"') (Brandes, 2008). 

Formally: 

 𝑐-(𝑛,) = ∑
./𝑛0 , 𝑛12𝑛,3

.4$!,$(6$!,$(∈8  (3) 

By convention, this definition applies to disconnected graphs without modification (Freeman, 

1977). Although the distance between two disconnected nodes is undefined, the number of 

shortest paths between them is defined and equal to zero. The resulting contribution to 

betweenness centrality is then established as zero. The mean betweenness centrality measure 

is then the average of cB across all nodes. Additionally, the number of nodes with cB above 



 

 

three times the average will be counted in each network as it will give an indication of the 

number of players with a relevant flow control.    

  

3.3.4 Components and largest connected component 

A graph is connected if there is a path between every pair of nodes in the graph. Else, every 

maximal connected subgraph is a component. Note that if there is only one component the 

graph is connected. In graphs with infinitely many nodes, the emergence of a giant component 

is observed after crossing a certain threshold (Dorogovtsev and Mendes, 2003). The same 

concept can be applied to finite graphs, where the component with the highest number of nodes 

is called the largest connected component. 

For the purpose of this study, an additional measure is calculated. Let g be the total number of 

nodes in G and g’ the number of nodes in the largest connected component. It’s then possible 

to calculate the largest component proportion as g’ divided by g. While the number of 

components might give an indicator of the different groups of play that the ego has, this 

proportion will provide an indication of how large is his or her main playing group. 

 

3.3.5 Modularity 

A key feature of social networks is high transitivity, meaning that if ni is connected to nj and nj 

is connected to nk, there is a high chance of having a connection between ni and nk too. This 

property leads to the formation of clusters called communities, “with groups of nodes within 

which connections are dense but between which they are sparser” (Newman, 2003). Multiple 

community detection algorithms have been described (Blondel et al., 2008; Clauset et al., 2004; 

Girvan and Newman, 2002; Pons and Latapy, 2006) but the result is always some division of 

the vertices into communities. The quality of this division is often measured by the modularity 

of the partition (Newman, 2003), a scalar value between -1 and 1 that measures the density of 



 

 

links inside the obtained communities as compared to the links between them. This quality 

function Q, modularity, is defined as follows. Let 𝑒9: be the fraction of edges in the network 

that connect nodes in group s to those in group t, and let 𝑎9 = ∑ 𝑒9:: . Then: 

 𝑄 = ∑ (𝑒99 − 𝑎9')9  (4) 

is “the fraction of edges that fall within communities, minus the expected value of the same 

quantity if edges fall at random without regard for the community structure” (Newman, 2003). 

Note that the expected modularity for a random partition would be 0 and any other value 

reflects a deviation from pure chance. According to Newman, values greater than 0.3 appear to 

indicate relevant community structure. In the current study, the Louvain method for community 

detection will be used as defined by Blondel et al. (2008) and implemented using the  

NetworkX 2.1 (Python 3.6) libraries and the Gephi tool. The Louvain method is an efficient 

community detection algorithm broadly used that features a modification on (6) (in order to 

consider weights) as the function to optimize.  

 

3.4 Cluster analysis 

Cluster analysis is a category of unsupervised machine learning techniques that allow to 

discover hidden structures in data where the ground truth is unavailable (so, where the right 

answer, if any, is unknown) such as the one in question. The goal of this technique is, therefore, 

“to find a natural grouping in data such that elements in the same cluster are more similar to 

each other than those from different clusters” (Raschka, 2014).   

Many clustering algorithms exist. The standard Python scikit-learn library has implemented 

the most popular and it was the package used in this analysis. One of the most used methods is 

the K-means algorithm (Arthur and Vassilvitskii, 2007), that clusters data by trying to separate 

samples in n groups of equal variance. For the current sample, however, K-means presented 

two drawbacks. First, it requires the number of clusters to be specified. Therefore, one should 



 

 

have an idea of how many clusters are expected in the data before applying it, which wasn’t 

the case. Second, due to its implementation, K-means expects a certain normality in the input 

data, which couldn’t be assumed in the player-centric dataset. K-means is also unstable, and 

clustering depends on initialization, which was undesirable. 

The affinity propagation algorithm (Frey and Dueck, 2007) is a newer method that has some 

advantages over K-means: the number of clusters doesn’t need to be specified beforehand, non-

symmetric dissimilarities are supported and it is stable over runs. The affinity propagation 

algorithm identifies exemplars among data points and forms clusters around these exemplars. 

It operates by simultaneously considering all points as potential exemplars and exchanging 

messages between them until a good set of exemplars and clusters emerges. As its 

characteristics are more appropriate to classify the player-centric network dataset, affinity 

propagation is going to be the method used for clustering.  

Still, two parameters need to be set in advance. Damping is set in all calculations to 0.8 in order 

to avoid undesired oscillations while computing. Preference is defined as the suitability of a 

particular data point to serve as an exemplar. High preference values will result in many 

exemplars found (many clusters), while lower values will lead to a small number of exemplars. 

When preferences rise above a certain value, it becomes beneficial for multiple subsets of data 

that have approximately the same intra-subset similarities and approximately the same inter-

subset similarities to form distinct clusters simultaneously, so the number of clusters obtained 

quickly rises. Thus, “different plateaus would correspond to the extraction of different levels 

of structure” (Frey and Dueck, 2007). Therefore, preference value will be need to be analysed 

and chosen in each particular instance of the analysis, looking for these “plateaus” in Figure 4 

and Figure 6. 

A whole different branch of SNA is devoted to blockmodelling, another alternative for analysis. 

In essence, blockmodelling compares patterns of connection between nodes to cluster them 



 

 

into “blocks” of nodes that enjoy similar position or roles within the network. The goal of 

blockmodeling is to reduce a large, potentially incoherent network to a smaller comprehensible 

structure that can be interpreted more readily. In spite of this, blockmodelling techniques are 

“very unusual in ego-net analysis because ego-nets are generally too small to merit 

blockmodelling” (Crossley et al., 2015). There are exceptions, however, as ego-nets might be 

big enough to merit its use, as in the work by Edwards and Crossley (2009). 

 

4. Results and discussion 

4.1 Variables 

For each player-centric network, the following properties were calculated after removal of the 

ego: average degree, node density, average betweenness centrality, percentage of nodes with 

betweenness centrality over three times the mean, number of separate components, largest 

component proportion and modularity. As the number of separate components is affected by 

the number of matches played, it was divided by the total number of matches for every 

particular player. Once this was done, all variables were standardized by removing the mean 

and scaling to unit variance. The resulting dataset contained 439 observations with seven 

indicators per row. 

To address the first objective, a clustering algorithm (affiliation propagation) will be used. 

Although there might be alternatives to using clustering techniques, they allow to discover 

hidden structures in data where the ground truth is unknown and are thus appropriate for this 

duty.    

4.2 Bivariate correlation 

Before proceeding to clustering, the bivariate correlation table between indicators or variables 

of interest is presented in Figure 3 as reference. Two groups can be distinguished; the first 

one containing measures related to node cohesion and the second one related to node 



 

 

relevancy. All variables will be included in the initial clustering model, which will be 

optimized later to reduce the number of indicators. 

 

Figure 3 - Bivariate correlations between variables of interest. 

4.3 Clustering 

An affiliation propagation model was build using the obtained dataset. Before proceeding, 

however, the preference parameter had to be set. To do so, the influence of this parameter to 

the number of clusters obtained by the model was plotted in order to find a significant plateau 

(Figure 4). 



 

 

 

Figure 4 - Number of clusters derived from affiliation propagation versus shared preference (all indicators 
included) 

A long plateau between [-60, -45] can be observed, resulting in a seven cluster structure. 

Affinity propagation is then used with preference equal to -45.    

 

Figure 5 - Graphical representation of clusters resulting from the affiliation propagation algorithm with 
preference -45 and all indicators included. This is only a 2D slice of a 7 dimension space for illustration 

purposes. 

As displayed in Figure 5, seven clusters are formed. To assess the goodness of fit, the average 

silhouette width (ASW) (Kaufman and Rousseeuw, 1990) is computed and results in 𝐴𝑆𝑊 =

0.533. ASW assesses the optimal ratio of the intra-cluster dissimilarity of the objects within 

their clusters and the dissimilarity between elements of objects between clusters. According to 

Kaufman and Rousseeuw, an ASW between 0.51 and 0.7 indicates that “a reasonable structure 



 

 

has been found,” so, with 0.533, the present clustering shows a reasonable preliminary 

classification of player-centric networks. 

 

4.4 Optimizing indicators 

The second objective was to reduce the number of indicators that defined the hidden structure 

that emerged from the networks. A series of ordered cuts in the variables was executed, 

iterating as follows: remove indicator, assess preference parameter, run affinity propagation, 

compare ASW. The final and best result was obtained using only the modularity, the 

standardized number of components and the largest component proportion, thus reducing the 

number of indicators from seven to three.  

 

Figure 6 - Number of clusters derived from affiliation propagation versus shared preference (best three 
indicators only) 

With preference set at -30 (see Figure 6, although using the same value as in the previous run 

wouldn’t change the result), the affiliation propagation algorithm results in four clearly defined 

clusters (Figure 7 and Figure 8) that assimilate the three small additional clusters that appeared 

in Figure 5 into them. The ASW also improved notably and equals 0.641, still in the same 

reasonable structure interval but with a simpler cluster split and closer to the 0.71 that would 



 

 

be the threshold to obtain an excellent fit. From largest to smallest, the number of observations 

per cluster is 65 (C1), 125 (C2), 129 (C3) and 120 (C4). 

 

Figure 7 - Graphical representation of clusters resulting from the affiliation propagation algorithm with 
preference -30 and restricted to the best three indicators. This is a 2D slice of the 3D space. 

 

Figure 8 - 3D representation of the resulting clusters. Note that figure 7 is the 2D view from above. 

 

4.5 Network attributes by cluster 



 

 

Another way to check whether the final proposed clustering has a good fit is to look at the 

distribution of the indicators per each cluster and compare them. To do so, four violin plots are 

drawn in Figure 9. 

 

Figure 9 - Violin plots for total games, modularity, components and largest component proportion per cluster 

Before anything else, a quick test is run on the total number of games per player; the graph 

shows that they are similar among clusters so size-related side-effects can be discarded. A 

Kruskal-Wallis test followed by a Dunn’s test is then run for all three indicators. Differences 

are found for all three at p-value ~	0, and all pairs of clusters present statistically significant 

differences with p-values ≪ 0.001.  

Cluster C1 contains player-centric networks that have low modularity (so few communities 

emerge), a low number of components in proportion to their size and the largest component 

contains, in average, more than 80% of the total nodes. 



 

 

Cluster C4 networks have high modularity (close to the highest possible value), a massive 

number of components in proportion to their size and the largest component contains, in 

average, less than 20% of the total nodes. 

In-between these two extremes, clusters C2 and C3 are found. Both have higher modularity 

and component counts than C1 but notably lower than C4. Moreover, both have largest 

components with less nodes than C1 (around 60% and 40%, respectively) but with a significant 

increase versus C4. Although these similarities, they are still quite different, and it is assumed 

that they represent two distinct groups of players. 

An observation is chosen at random from each cluster to illustrate the described typology. For 

both visualization and comparison purposes, it’s selected randomly from similar sized 

networks (range between 500 and 800 games played). Their dimensions and indicators can be 

found in Table 1, while the graphical representation is presented in Figure 10, where thicker 

edges represent higher weights. 

 Matches Nodes Modularity Standardized Number 
of Components 

Largest Component 
Proportion 

C1 693 1335 0.323 0.059 0.878 
C2 668 1606 0.598 0.178 0.690 
C3 699 2069 0.775 0.383 0.423 
C4 699 2641 0.992 0.816 0.058 

Table 1 - Indicators extracted from sample player-centric networks 

- C1 would correspond to a “team player”. The alter network (without the ego) is not 

only highly connected and with a huge largest component, but also exhibits strong 

connections between some alters. This implies that the ego a) almost always plays with 

the same players and b) they do so together. As many matches are played sharing alters, 

the total network contains notably less nodes than the other clusters (as can be noted in 

Figure 10). These players often join the game with a team full of known people (or, at 

least, players with whom they already played in the past). 



 

 

- C2 would then correspond to a “group player” instead. Compared to C1, there are fewer 

strong links between alters (in this particular case it’s basically a triangle), the largest 

component is smaller and there are more disconnected components. This kind of player 

a) regularly plays with two or three friends and b) occasionally plays with people in 

other circles or alone. Therefore, “group players” (whenever possible) join with a group 

that is not enough to cover a full team. Else, they play with smaller groups or even solo 

as a last option. 

- C3 shows much less strong relationships between alters, so this cluster could be labelled 

as “cell players”. The largest component covers less than half of the network and 

connections inside are weaker. Two tendencies are found: strong dyadic relationships 

in the alter network are translated into matches played in “trios” (but note that these 

trios are not fully connected between them; if they were, they would become C2). 

Additionally, many small star-shaped components outside the largest one represent 

games played in “duo” (therefore sharing only one player between matches). Players in 

C3 join the game in small and variable cells of two to three members; they also go “solo” 

more often than the previous two types. 

- C4 would then be the “solo” player. Their graphs show how the largest component is 

almost inexistent, no relevantly strong links are present with any other player and the 

landscape is mostly composed of spare components of four unknown players that the 

ego will never met again. This is the least social of all players. Therefore, not only their 

games are always automatically filled with four strangers by the matchmaking system, 

but also rarely results in links established between them. 



 

 

 

Figure 10 - Graphical representation of sample player-centric networks 

4.6 Clusters and player rank 

Although the official League of Legends API provides little information about player’s 

attributes, rank is available. Therefore, it is possible to enhance the obtained clustering with a 

few insights about their skill level (as determined by the game). Figure 11 displays rank 

distribution within each cluster. 



 

 

 

Figure 11 - Rank distribution per cluster. C1 has less high ranked players than other clusters. C3 and C4 are 
disproportionally higher ranked. 

Taking into account that bronze, silver and gold are the lowest ranks and platinum and diamond 

are the highest ones before the exclusive master and challenger (none in the sample): 

• The first cluster, C1, formed by team players, presents notably less high ranked players 

than the other clusters. 

• On the other hand, C3 and C4, the duo and solo players, have a higher proportion of 

platinum plus diamond players, even over the expected distribution across all player 

base. 

At first sight, this is somehow contradictory, as collaboration and trust between team members 

in League of Legends is crucial for success so it would make sense to see better collaboration 

(and, therefore, better performance) in teams formed by friends. In spite of this, two reasons 

why this happens could be suggested. 

First, the higher the rank the less players there are. When a player climbs in the ladder, not only 

there are less players available, but less friends too, as players need to join the games with 

players either in their own division or one up/down. This keeps true until platinum, where 



 

 

restrictions apply, as only highly ranked platinum players can join games with diamond players. 

Diamond gets more extreme, as there are even restrictions within its divisions. Therefore, 

higher ranked players are forced to be solitary players in regard to their friendships. 

Second, in ranked competition all games matter. It is not only important to play well, but also 

to keep winning in order to advance. A bad streak can bring a player down in the ladder and 

promotions are long and difficult. It is thus likely that friendly team playing is left for lower 

categories (suggesting more “casual” playing) while higher ranked players might tend to select 

their teammates more in detail. It is even possible that, in order to prevent disputes and negative 

feelings, joining with real-life friends is avoided in these almost professional ranks of skill. 

5. Conclusions 

Typologies are useful to compare networks systematically and player-centric networks become 

more and more relevant as online gaming grows. Although data in games such as League of 

Legends is recorded by game servers, demographic data is not available, so this article has 

limited its scope to the purely structural characteristics of the ego-networks formed by 439 

players (439 egos and 673.766 alters) and all their matches (228.117) over a period of a season 

(all matches in 2016).  

First of all, player data was extracted using the API provided by Riot (League of Legends 

developer) and networks were built in Python using NetworkX.  The resulting networks were 

then analysed and eight structural indicators were computed for each of them. In order to infer 

the underlying hidden structure, machine learning techniques were used, applying an affinity 

propagation algorithm. After a few iterations and removal of individual variables, the best 

clustering was achieved with three indicators.  

The player-centric networks obtained in the current study were complex and heterogeneous, 

but their underlying structure can be described and typified using the following three features: 

modularity, number of components (standardized) and the proportion of nodes covered by the 



 

 

largest emerging component found in the network. Together, they establish four degrees or 

categories that describe how social the ego (or the player) is in his or her gaming habits.  

The proposed presented typology provides an intuitive and systematic method to characterize 

the social behaviour of League of Legends players looking only at the structure of their player-

centric network. Even though only the most popular online competitive game was assessed, 

this methodology can be generalized to any online competitive game that provides enough data 

to compute its player-centric networks.  

The obtained information can then be used for player segmentation, both to improve player 

experience (by adapting the game to their structural social needs) and to improve the game 

(adapting its matchmaking system). Players that go “solo” are focused in the game; they need 

quick access to their matches so team formation or discussion might be less important for them, 

but they would expect to be paired against other “solo” or isolated players. On the other side, 

pure “team players” could need access to additional social features to empower their social 

relationships, to better means of communication (that are natively limited to text chat in League 

of Legends) and to fair matchmaking against other “team players” instead of spare groups of 

“solo” players or “cell players”.  

This typology, however, could be influenced by ego or alter attributes. Rank, for example, 

seems to have an influence on the structural characteristics of the resulting player-centric 

networks. Higher ranked players are more often “duo” or “solo” players, while “team players” 

are overrepresented in the lower categories. This suggests that other attributes that were not 

captured in our study (or were not available for extraction) could also present a relevant 

influence, so further research is required.   

Implications of these findings also go beyond the scope of the game. For the industry it is not 

only relevant to dimension their players’ egocentric networks but also to be able to find patterns 

that cluster them together. MOBA games such as League of Legends are always played against 



 

 

the developer’s servers, so this profiling could then be used to improve service, clustering 

players that show either similar or complementary patterns together. Loyalty rewards could 

also be adapted according to player’s behaviour. As of today, players receive rewards 

individually; this might be enough for solo players, but team players might be more satisfied if 

rewards were matched across the team (for example, with matching themed skins for their 

characters). Matchmaking could also see a social improvement: if a regular team player (so, a 

highly social player) joins the game alone for once, it might be more appropriate to match him 

or her with a four player team which misses one player than with four solo players, as his or 

her experience will then be similar to the one he or she is used to. This is the kind of socially-

aware services that are needed as online gaming becomes more and more popular. 

 

6. Limitations and future work 

While results show the potential of retrieving game data to understand player-centric networks 

and to profile player social behaviour systematically in any online competitive game, additional 

work would be needed to assess whether the conclusions of this study could be extrapolated to 

other online MOBA games or other genres. At least initially, one could extrapolate these results 

to other online competitive games, as long as configuration is similar (teams of five 

collaborating players facing five other players). The general idea is that, through the player-

centric network described by his or her matches, a player can be classified as a more or less 

social player, which might need additional features in order to keep playing or to improve his 

or her experience. For example, we noticed that in League of Legends, most social players are 

ranked low. This brings additional questions. Are teams formed by friends more frustrated than 

solo players? Are they more prone to abandon the game? This study does not have enough data 

to verify whether this happens, but at least it is something that the developer (or developers of 

future games) could take into account when designing their rank system. Would it make sense, 



 

 

for example, to have separate ranks or ladders by type of social player? Could rank depend on 

more than pure results (e.g. playing with honour, being a good teammate, helping others)? 

Players might have a better experience and feeling of fairness if ranking systems adapted to 

their preferences and, as a result, they might spend more time in the platform which could 

translate into additional purchases or loyalty. 

Another limitation (due to the method used for extraction of data) is the unavailability of 

demographic or personal information about the players. Sensitive personal data cannot be 

obtained from the API so this study has been limited to purely structural network information. 

Future work should find a way to include individual attributes of the egos or alters (e.g. gender, 

age, nationality, studies, other games played, etc.) to fine-tune the proposed typology or to link 

the findings to “real-world” issues, such as the relationships among the player-centric networks 

and the players offline social circles. 

As discussed, online games such as League of Legends represent an unprecedented chance and 

a unique opportunity to study complex social systems on an entirely different scale. The scale 

is so massive, however, that the study of hidden structures and systematic classification 

becomes critical for their understanding. If this study has been able to find a non-trivial 

structure related to the playing habits of each ego, further structures could be found, showing 

the potential of this method to get closer to a comprehensive understanding of the complex and 

unscaled social interactions happening online among players at every moment.   
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