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A B S T R A C T

Space domain systems must go through different types of ground testing. For system-level black-box functional
testing, ground support equipment is built ad hoc, customized for each different mission. Building any of
this specific equipment involves considerable engineering effort that can be diluted using techniques that
allow reusing configurations of the test setup environment without recodification. These techniques can be
merged into a hierarchical checking process based on independent filters to compare the received outputs
with the expected ones. The hierarchical checking allows the separate definition of several layers or levels of
validation, from the lowest protocol packet levels to the logical abstractions at the highest application level.
This paper introduces a solution based on Model-Driven Engineering for Low-Code Ground Support Equipment.
It uses the abovementioned mechanisms to reduce the effort to develop and customize ground support systems
for different missions. This solution is integrated within an environment called MASSIVA, which allows the
automatic configuration and definition of system-level test procedures. This environment has been used in the
software verification and validation process of the Instrument Control Unit of the Energetic Particle Detector
on board Solar Orbiter.

1. Introduction

Verification and validation processes of space systems require ex-
haustive ground testing using customized equipment called Ground
Support Equipment (GSE). Typically, the GSE consists of specific hard-
ware with a harness compatible with the device under test and spe-
cialized software called Ground Support Software (GSS). This software
controls the hardware, monitors the system activities, and may execute
validation procedures, generating reports that are used for system
verification. In order to carry out these functions, the GSS usually runs
in a dedicated machine, part of the GSE’s hardware. Since the GSS
is used in the development, debugging, verification, and validation
processes, it is advantageous that it can support different options and
configurations depending on the test scenario used in each case. Thus,
GSS can be used for both verification and validation testing, i.e., to
verify, on the one hand, that the tested system is valid and, on the
other hand, that the tests have been successfully performed and all
requirements have been verified.

The model philosophy of space systems [1], as well as the differ-
ent simulation and fault injection environments used to complete the
validation of flight software, has led to an increase in the number of
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deployment alternatives to be managed by the GSS. In addition, the
current trend for space engineering teams to develop multi-mission
platforms [2] requires the recurring use of hardware and software
between missions. This approach can benefit from test environments
that systematically reuse and reconfigure tests associated with the
product line.

Model-Driven Engineering (MDE) [3] is a discipline that employs
models as the basic unit of systems development. Models store and rep-
resent relevant information about abstractions or concepts inherent to
the problem domain to be solved. They are defined using a meta-model,
i.e., a model specifically defined to describe other models.

The other fundamental element of the MDE methodology is trans-
formations. Starting from at least one model, they allow obtaining
different products such as source code, input files for analysis tools, or
other models of different levels of abstraction. If a given transformation
has as a product another model, it is called a Model-to-Model (M2M)
transformation. In addition, if the transformation generates a text file,
such as a code file, it is a Model-to-Text (M2T) transformation.

Nowadays, there are many tools and frameworks that allow us to
define models and transformations. One of the most widely used tech-
nologies is the Eclipse Modeling Framework (EMF), integrated within
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the Eclipse Development Environment (Eclipse IDE). EMF defines its
meta-model, Ecore, and integrates different tools to perform M2M and
M2T transformations. Furthermore, it also includes Xtext, a toolset that
can be used to define domain-specific languages from the different
models and generate textual editors that can be added seamlessly to
the Eclipse IDE.

All software development processes are living processes that can
vary over time. The implementation of test procedures that require
software validation is usually based on descriptions and definitions
taken from requirement documents and other applicable and reference
documents that detail the interfaces and formats involved. If these
documents and references change, the test procedures shall change,
and those changes are usually done manually by the software V&V
team with the support of the developers. At worst, if any part of the
test is hard-coded in the GSS, any minor modification would require
updating and modifying the GSS itself. In summary, project changes
involve activities that drastically affect the V&V process. These changes,
moreover, are prone to occur as space developments are complex.
Sometimes, due to unforeseen circumstances, these changes are even
made at later stages of the project.

The Space Research Group of the University of Alcalá (SRG-UAH)
has developed the Instrument Control Unit (ICU) of the Energetic
Particle Detector (EPD) instrument of the Solar Orbiter mission of the
European Space Agency (ESA), and NASA [4]. Within this project’s
scope, a fully configurable Ground Support Software called MASSIVA
was conceived. MASSIVA has been designed for the verification and
validation process of the operational procedures and is capable of
performing all test procedures in any PC with the proper testing equip-
ment, i.e., hardware devices and drivers. It uses plain XML files for
configuration, which are human-readable and easily editable.

This approach allows working with multiple test scenarios, which
made it possible to address the validation of the ICU software against
different EPD models. Four different scenarios were defined for validat-
ing the EPD’s ICU, three for an EBB (Elegant Breadboard) model, and
the last for an Electrical and Qualification Model (EQM), making all
test procedures fully testable on dedicated computers at the UAH facil-
ities in Alcalá. As MASSIVA only relies on available operating system
drivers, it can also be used on any computer that has compatibility with
the test equipment, making any computer a potential GSE. In addition
to all this, MASSIVA also has several useful tools for test development
and manual testing.

General settings are contained in an XML configuration file, and
every different test procedure is configured within its own XML test
procedure file. Every scenario used within the test campaign must also
be configured using its own XML scenario configuration file. Making
changes and fixing bugs is easier using this approach when compared
to hard-coded tests in closed systems. Besides, the same test can be
performed in different scenarios by keeping the test procedure file and
changing only the XML scenario configuration file.

Testing operations are generally defined as a sequence of steps
containing inputs and outputs, which are telecommands to be sent and
expected telemetries. As expected outputs are defined in their own
XML test procedure file, the verification process can be performed
autonomously by GSS if required. However, sometimes when dealing
with concurrent data sources such as sensors, some operations are not
performed sequentially but concurrently. GSS must also be aware of
concurrent operations for verifying them autonomously, and GSS must
be able to alternate concurrent with sequential steps.

All those configuration files can be created manually and were
done so at the beginning of the V&V process. Subsequently, a Model-
Driven approach compliant with ECSS-E-ST-E40 standard was adopted,
defining models corresponding to the software specifications and re-
quirements at the system level, along with the models that support
the detailed description of the validation procedures that fulfill the
requirements, including the TM/TC (Telemetry/Telecommand) format
definitions. Then, through a set of model-to-text transformations, the

GSS was integrated so that all the information provided by the models
was used to automatically configure the GSS and perform the system-
level test campaigns according to the procedures defined within the
models. Finally, the test logs reported by the GSS are also processed
to integrate their data into the corresponding verification models. A
detailed description of this model-driven approach can be found in [5].

The case study of this work comprises the black-box functional tests
of the verification and validation process of the on-board software of
the EPD’s ICU. Several projects were developed from that one, and
all of them were used to test the versatility of MASSIVA for low-
code reconfiguration and reuse, oriented to product line development,
demonstrating that it is feasible to generate the correct reports and
checks automatically by using this tool.

The rest of the paper is organized as follows. Section 2 covers the
related works, followed by Section 3 describing the verification and
validation process as defined in the ECSS-E-ST-40 standard. Section 4
describes the MASSIVA tool, focusing on XML files, mainly config-
uration and test procedures. Later, Section 5 describes the models
created for supporting MASSIVA features. Next, Section 6 describes
the proposed model-based test procedures and their relationship to
MASSIVA in the context of the Verification and Validation processes.
Then Section 7 summarizes the proposed case study. Finally, Section 8
contains the conclusions.

2. Related works

Several tools developed for space missions’ verification and valida-
tion processes provide support at the test and integration phases. They
usually use scripting languages for creating the command sequences,
and they should have a database connection for the definition of the
telecommands and telemetries.

An example of these tools is GSEOS [6], a software package de-
signed to be used in any space mission’s integration and tests phase. It
was originally devised for NASA’s MESSENGER mission development
in 2003. The application suite built from the GSEOS software package
runs on Microsoft Windows. It has a modular architecture, so new
components can be easily added, such as new hardware drivers or
connections to databases. It uses the Python language to create scripts
that can be used for improving processes.

Another software tool is CMDVS (Control, Monitoring, Data pro-
cessing, and Visualization Software) [7], a software package produced
by Celestia-STS (previously known as SSBV Aerospace & Technology)
for the construction of GSEs. It also runs on Microsoft Windows and
is modular, with different GUIs for monitoring the embedded system
under testing. For scripting, it uses Tcl/Tk along with TOPE, and it
is compatible with SCOS-2000 database format MIB, containing all
telecommands and telemetries in CCSDS/ECSS defined formats, along
with the implementation of PUS services. SCOS-2000 [8] is the generic
Mission Control System (MCS) of the ESA, which must be tailored for
each mission, and MIB (Mission Information Base) is the format used by
this MCS, so this software tool is full-compatible with ESA’s database.

TERMA is a company in The Netherlands that has developed differ-
ent solutions for the space domain. One of their products is called TSC,
an SCOE (Specific Check-Out Equipment) created for the development
of instruments or other subsystems. For more extensive activities, at the
spacecraft or system level, they offer CCS5, a multi-user Central Check-
out System (CCS) [9]. Both share several features, such as the sequence
language called uTOPE, which is a reimplementation of the original
TOPE, based in turn on Tcl, which is used in SCOS-2000, and the use of
SCOS-2000 database format MIB. Another system called VOSSCA [10]
is also based in CCS5 and uses TOPE. Still, it adds some automation
modules and a GUI based on a web application for facilitating the
operation.

Similarly, the German Space Operations Center (GSOC), the mission
control center of DLR (Deutsches Zentrum für Luft- und Raumfahrt/Ger-
man Aerospace Center), has developed its own MCS, called GECCOS
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(GSOC Enhanced Command- and Control System for Operating Space-
crafts) [11], based in SCOS-2000 Release 3.1, and compatible with MIB
database. GECCOS supports several different spacecraft and satellite
platforms. It is not an MCS limited only to the operation phase but also
a CCS that can be used in the AIT (Assembly, Integration, and Test)
phase.

Another tool for software validation is MaTeLo [12], developed
by Alena Spazio starting in 2002. It has a different approach, as the
testing process is based on Statistical Usage Testing (SUT) using Markov
chains. It was designed with a Use Case model instead of test sequences
like the other products, but it can also be used for defining a test
campaign, focusing on automation as the final goal.

Apart from specific tools, embedded software is a prevalent topic
nowadays. The survey carried out in [13] performed a systematic
literature review. Their results showed, for example, that since 2001
the number of papers related to testing methods and techniques has
increased almost exponentially, and the ones regarding test tools and
platforms also have experienced a significant increase. Also, the num-
ber of papers proposing a solution has increased, and most articles
cover real (not simulated) systems under test. Most of the papers belong
to the automotive and industrial auto business, with aviation and space
in third place. Finally, among the most used words in the titles, they
found expected terms such as automotive and real-time. Still, there are
ones like generation, automated and automatic, and most prominently
model-based that show the future trends on this topic.

Another study [14] is not focused on reviewing papers but on
directly interviewing embedded software professionals. Specifically,
they pay attention to the information flow in software testing, asking
for challenges and improvement approaches. Among the challenges,
they talk about feedback, root cause, and traceability, and when talking
about approaches, they cite test report automation and visualization of
results, among others.

Other review studies focus on model-based testing and requirements
-based tools [15,16]. This first one classifies the tools depending on
the kinds of modeling languages used, such as state-based, transition-
based, or stochastic models. The other approach can be seen as a guide
for creating system models in a model-based space system context. The
focus this time is on three different elements: the modeling language,
including semantics; the methodology for obtaining data specification;
and the Conceptual Data Model (CDM) for formalizing the system itself,
finally proposing the SCDML (Semantic Conceptual Data Modeling
Language).

In line with these model-based solutions, a test process model
solution was proposed for testing embedded software [17]. This model
is based on a V-Model diagram, and it goes from user requirements to
final acceptance testing, describing all the steps needed in the proposed
process.

Among the solutions that use modeling instead of coding test defini-
tions, even a framework based on XML markup language was proposed,
called TSVF (Testing Specification Validation Framework) [18]. It was
used to validate the software of the Meteosat Third Generation (MTG)
satellite on-Board computer. The architecture of TSVF consists of the
core and the drivers. The core performs the test cases while the drivers
communicate the different elements in the test scenario.

Back in 2010, [19] studied the future of space programs, proposing
virtualization for the future GSEs. This approach uses blade servers with
a virtualized testing environment for easier maintainability and higher
availability, and thin desktop clients connected remotely.

Apart from solutions and studies used in the space domain nowa-
days, embedded systems are present in other engineering domains and
share several features related to testing and verification. Thus [20] is
focused on the automotive industry and the ECU (Electronic Control
Units) and proposes CANoe+ for generating and executing test proce-
dures. This tool is based on CANoe, but it includes randomness by using
GraphWalker for generating random test sequences.

MCAPI (Multicore Communications API) [21] standard can be used
not as a process or a simple model but as a software solution, which
also includes a GUI and uses serial COM ports for communication.

Finally, another solution is Ball Aerospace COSMOS [22]. It is an
open-source suite of several applications for developing and testing
embedded systems. It can be used to show real-time telemetry display
and graphing and to create and send commands. However, all the
testing functionality relies not on scripted procedures or application
configuration files. Dealing with telemetries and telecommands as a
whole, it lacks the support of a multi-level approach that could be easily
integrated into a MDE environment. Besides, using scripts instead of
textual languages makes it difficult for COSMOS to generate automatic
file generation from validation sources.

Our solution is an all-in-one tool called MASSIVA (Monitoring and
Analysis System for Software Inspection, Verification/Validation, and
Assessment) that can perform any test campaign on different setups
with different levels of log reporting information automatically. It uses
models for all the components needed for the campaign: procedures,
steps, telecommands, and telemetries. All of them can be generated
automatically from the Functional Test document and manually edited,
as all are human-readable XML files. Recodification can be avoided
using reusable XML files, as it is only needed to select the desired
configuration and procedure to be launched once it has been created.

Apart from the test campaign performing and log reporting, MAS-
SIVA offers several options for manually debugging or performing
different operations on any defined setup, such as loading the software,
showing the values from the housekeeping data in real-time (including
the calculation of values with mathematical formulas when available
like currents or voltages). All the options can use all the available
interfaces and be edited on the fly, resulting in a robust but extensible
software tool.

3. ECCS-E-ST-40 software verification and validation process

Fig. 1(a) shows the normal development of the software verification
and validation (V&V) process following the ECSS-E-ST-40C [23] and
ECSS-Q-ST-80C Rev.1 [24] standards. Every different document has to
be defined by various experts with different roles.

The software development process starts at the leftmost top when
the Requirements Engineer writes or compiles the SSS (Software System
Specification). Based on this document, the Software Architect writes
the SRS (Software Requirement Specification) and defines the software
architecture as a part of the SDD (Software Design Document) or as a
separate document named ADD (Architecture Design Document). After
that, the SDD is completed by the Software Developer, which can
also be done through a separate document called the Detailed Design
Document (DDD), and the software coding starts. In parallel to this
specification, design, and coding process, the software V&V process is
carried out at different levels.

Working at the lowest levels, the Unit & Integration Tests Designer
writes the Software Unit Integration Test Plan (SUITP) to be compliant
with the SDD. At the upper level, and to validate the requirements de-
fined in the SRS, the Functional Tests Designer writes the SVS (Software
Validation Specification), where the system-level software validation
procedures are defined. Based on this document, the Functional Tests
Developer carries out the Test Campaign, implementing these pro-
cedures on a defined setup by the Functional Tests Conductor. This
same Functional Tests Conductor annotates the Log reports, basically a
checklist containing the results of all the tests after the Test Campaign.

Finally, using the traceability between the SSS specifications and
SRS requirements, together with evidence both from the log reports and
from the analysis, inspection, and demonstration reports, the Product
Assurance Engineer writes the SVR (Software Verification Report) con-
taining all the matrices that prove the software has been verified and
validated.
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Fig. 1. Verification and validation process in ECSS standards.

Our approach reduces the intervention of human actors, as can be
seen in Fig. 1(b). First of all, the SSS, SRS, SVS, and SVR are not
documents but model instances that will be transformed into the final
deliverable documents in Office Open XML (OOXML) format [25], and
for this reason, are shown with a dotted instead of a solid line. The
SDD and SUITP are not system-level documents and, thus, are outside
the scope of this paper and remain represented as documents and not
models in the current version of the proposed workflow. In comparison
to the traditional process, the Model Driven approach reduces the effort
to maintain consistency between the documents that are part of the
process, avoiding direct editing by the different human actors.

All the models have been implemented using the Ecore meta-model
defined in the Eclipse Modeling Framework (EMF) [26]. Then they are
instanced using textual editors generated by Xtext [27].

Then the Test Campaign is generated through a QVTo transfor-
mation and launched using a GSS (Ground Support Software), which
can perform the validation tests in the given format and automatically
return the Log document. This Log document is transformed using
QVTo again, together with information from the SSS instance, to create
the final SVR.

This scheme also motivates reusing the test procedures and set-ups
which have already been defined. The different test procedures for the
test campaign are written for the current software developments. Still,
as their structure is based on different levels, every piece of a designed
test campaign can be used at another one.

4. MASSIVA technical features and capabilities

MASSIVA (Monitoring and Analysis System for Software Inspection,
Verification/Validation, and Assessment) is a software tool designed to
perform test campaigns defined on different scenarios using a single
piece of software that can be deployed on multiple operating systems.
MASSIVA is based on a low-code approach that relies on human-
editable XML files. These input files allow modeling and configuring the

test scenarios and defining the procedures that make up the black-box
validation tests in a hierarchical form that fits with the multilevel data
used during the operation of the on-board software [28]. The XML files
are also suitable to be automatically generated, so the whole approach
enables the tool’s integration within a Model-Driven Engineering (MDE)
workflow that facilitates the automatization of the procedures and the
reuse at multiple levels of the different input models.

MASSIVA was initially designed to validate and verify the on-board
software of the Instrument Control Unit (ICU) of the Energetic Particle
Detector (EPD) in the Solar Orbiter mission, which was launched in
February 2020.

The original idea for the creation of this environment arose from
previous experiences in our research group when developing the GSE
(Ground Support Equipment) for Nanosat −01 [29] and Nanosat −1B
[30]. The main objective was to replace scripting programming lan-
guages with a markup language that would allow the definition of test
procedures with a syntax similar to that of the ECSS test procedure
specification. If test procedure definition models are created from the
standard using MDE techniques, then the test procedure definition files
can be generated automatically by instantiating those models.

In addition, the main objective was to avoid the system rebuilding
every time new test procedures or new data monitors were added to
the test campaign. On the other hand, it was proposed that the data
validations were performed hierarchically, thus treating independently
the different lower communication levels and their physical protocols
and the higher application levels which define the data logic structure.
This way, various communication protocols could be used while reusing
the same application logic, and the different data structures could be
used with the same physical ports.

For each project, each of the available options can be fixed or left
open for future dynamic configuration at runtime. In the latter case,
using human-readable languages, such as XML, to perform the final
assignment of values is common.

By combining these ideas, the final approach could be used without
recompiling for different testing phases, campaigns, or projects. Any
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Table 1
MASSIVA components reusability.

Component Reusability How to reuse

Debug information verbosity Yes low-code edition (XML)
List of interfaces required Yes low-code edition (XML)
Interface configuration Yes File reference
Interface control No –
Plot chart design Yes File reference
Test campaign monitors and global variables Yes low-code edition (XML)
Special packet configuration Yes low-code edition (XML)
Test campaign procedures list Yes low-code edition (XML)
Test procedures definition Yes File reference
TM/TC formats and filters Yes File reference

Fig. 2. Main MASSIVA GUI.

configuration or procedure has to be configured only the first time it is
being used, and then any other setup can reuse it.

Besides, existent ECSS documented standards lead to defining a
textual language where procedures can be defined similarly to the
standard structure, using steps, inputs, and outputs. This way, a domain
expert can define and edit procedures without the knowledge of any
scripting language used in other similar tools.

MASSIVA has been developed to have a flexible structure, as it is
intended to be used in different scenarios, models, and projects. There
are also several useful features to use along with tests, which are helpful
for test developing and debugging, but they are not compulsory.

The main goal is to promote reuse in the testing process. Once a test
campaign has been defined, any of its component parts can be reused
in future developments without recoding. For example, test procedures
and interface configurations are defined in different files than those
of the primary test campaign. Thus, they can be individually reused
directly in any test campaign. In addition, any file already developed
can be easily edited, or automatically generated, since all configuration
files are written in XML. This low-code approach allows anybody to be
the test conductor, as nothing needs to be known about the software
under test. Even another machine can launch any test campaign, as
shown below. Table 1 shows the different components and how they
can be reused.

4.1. Graphic user interface

As most visualization features in the MASSIVA GUI (Graphic User
Interface) are configurable, the displayed information can vary from
project to project by customizing the configuration files.

The most important areas of MASSIVA main GUI have been num-
bered in Fig. 2:

1. This area shows all the test procedures defined in the main MAS-
SIVA configuration file. When there are too many procedures,
scrolling is automatically enabled.

2. This area contains all the buttons helpful in loading and launch-
ing tests, along with menu options.

3. This area contains the name of the test procedure currently
loaded and, when loading or launching a procedure, the current
number of steps and inputs/outputs.

4. This area shows the last packet sent from GSS and the last
three packets received. The numbers on the left are counters for
packets sent and received.

5. This is the Special Packets area information. Special Packets are
periodically received packets filtered for special treatment, typ-
ically housekeeping and scientific data packets with no relevant
testing information. They will be explained later in Section 4.1.1.

6. Finally, this other area is also related to Special Packets. There
is an option in the configuration file for displaying the content
of any packet payload if the packet structure is known.

4.1.1. Special packets
Special Packets are an important feature of MASSIVA, as they are

essential in the test automatization process. In every software made
for the space domain, several telemetries usually are sent periodically
with information about the space system. Most of these telemetries are
housekeeping packets with data from all the subsystems. In scientific
missions, there are also scientific packets with meaningful data for the
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Fig. 3. Special packets in test flow.

mission’s scientists. But in both cases, this information has to be taken
into account by the test designer.

All housekeeping and scientific telemetries must be identified, and
test cases and procedures for their validation must be defined. How-
ever, in other test scopes or when testing other features, the test
procedure flow may be interrupted by these housekeeping or scientific
packets since, in many cases, they are received asynchronously (i.e., not
in response to a telecommand). Since MASSIVA processes all received
packets, the test will fail if any of the housekeeping or scientific data
is received when another response packet is expected in the test flow.
Even so, the target software may have worked correctly. Fig. 3(a)
shows a simple test procedure flow that disables and re-enables an
item of housekeeping telemetry, the so-called ‘‘hk id 0’’. In this test
procedure, it should be verified that housekeeping packets are not re-
ceived when disabled, so they will not be configured as special packets.
Next, Fig. 3(b) shows another test procedure that only performs 2
test connections, expecting a ‘‘test ack’’, ‘‘test reply’’ and ‘‘test exec’’
telemetry for each ‘‘test connection’’ telecommand. In this procedure,
any ‘‘hk id 0’’ telemetry received will cause the test procedure flow to
fail since it is not an expected telemetry response for ‘‘test connection’’,
so it must be configured as a Special Packet.

To circumvent this undesired behavior, the packets that do not
belong to the test flow and thus are not expected to be received must be
taken out of the test flow. And this is what Special Packets are helpful
for.

When configuring the Scenario (see Section 5.1), one of the optional
features which can be configured is ‘‘Special Packets’’. When a Special
Packet is configured, it will be shown in the main MASSIVA as afore-
mentioned. There is also a counter for each Special Packet, and the time
since the last one was received is also shown. All the Special Packets
are not written in the main test campaign log report to keep the log
reports as simple as possible.

Sometimes a given telemetry must be configured as a Special
Packet in most tests in the test campaign, but there may be some

tests for checking this particular telemetry. For this reason, all the
pre-configured Special Packets can be disabled or can have their
information written back in the test campaign log report. Both options
can be enabled/disabled using the two checkboxes in the interface or
in the test procedure definition, as shown in Section 5.3.

Finally, there is another area in the MASSIVA interface for Special
Packets. As already told, these packets contain information about the
system that may not be useful for testing but interesting to be shown.
Because of that, when configuring a Special Packet, MASSIVA can be
configured to display the content of its different fields if the packet has
a well-known format.

4.1.2. Dynamic interface
Most of the functions are fully configurable via XML configuration

files. At least one Main Interface must be configured; including several
basic protocol options, but apart from that, any other options are not
mandatory. Fig. 4(a) shows a minimally configured MASSIVA, without
several of the areas described above, without several menu options, and
without tests in the list of test procedures. This minimal configuration is
a valuable scenario for testing communications at the most superficial
level. All packets received from the corrected device will be shown
(and written in the log report file). Commands can always be sent via
the ‘‘Send Raw Commands’’ menu using plain text files containing the
commands.

The configuration can be as flexible as necessary. The most straight-
forward setup for a test campaign includes only a list of test procedures.
Adding some ‘‘Protocol Packets’’ for debugging is very useful but is
not mandatory for the campaign itself. For more information about
Protocol Packets, see Section 4.2.2. Fig. 4(b) shows a MASSIVA instance
configured with only tests and a Protocol Packets configuration file,
with no Special Packets and no monitoring.

As mentioned in the previous subsection, the Special Packets feature
is a configuration attribute to display information about packets that
do not belong to the test flow but may contain useful information.
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Fig. 4. Main MASSIVA GUI basic configuration.

Fig. 5. Main MASSIVA GUI with special packets.

Housekeeping telemetries are an excellent candidate to be configured
as Special Packets.

The test procedures list can be configured independently from the
Special Packets feature, as they are separate components in the MAS-
SIVA configuration architecture. Both MASSIVA instances shown in
Fig. 5 have Special Packets configured (on the right side). Fig. 5(a)
shows MASSIVA without any test procedure, and Fig. 5(b) shows both
features configured.

Finally, the last area mentioned above is also related to Special
Packets. For any Special Packet defined in the configuration file, you
can select its packet structure to be displayed. Like the main Special
Packets feature, this option can be configured without any list of test
procedures. If several packet structures are configured to be displayed,
each will be in a different tab.

4.2. Features for development and debugging

Several other features are included in MASSIVA for test develop-
ment and debugging, namely:

• Sending packets from an external file that contains data in hex-
adecimal format.

• Sending any predefined telecommand manually directly from the
interface.

• Sending predefined steps autonomously. A test procedure consists
of steps with inputs and outputs (see Section 5.3).

• Periodic sending of any telecommand automatically.
• Live monitoring and telemetry filtering, including plots.
• Command-line options.

All these features will be summarized in this section.

4.2.1. Raw commands
MASSIVA has several functions to send/command the test target

manually. This is a handy feature to develop and debug the tests
themselves and to more easily control the flow of the tests in case any
manual action needs to be performed.

The first sending option is to send a command in raw format, i.e., a
list of hexadecimal values. As shown in Fig. 6(a), the menu will display
all available interfaces, and clicking on any one will display the ‘‘Send
raw command’’ dialog, shown in Fig. 6(b).

Input files can contain not only a single command but any number
of commands, one per line. The interval between commands can be
selected when there is more than one. In addition, there is a ‘‘Send in
loop’’ option to send the telecommands repeatedly in a loop.

4.2.2. Protocol packets
The second sending option uses the available predefined TM/TC for-

mat files to create a list of formatted packets that can be sent manually.
Each configured packet will be available in the ‘‘Send Protocol Packets’’
menu, as shown in Fig. 7(a).

When the selected Protocol Packet has any fields, the dialog shown
in Fig. 7(b) will be displayed. This dialog allows the user to set the
values of the fields and supports variable packet formats.

4.2.3. Predefined steps
The last sending option of MASSIVA allows sending not a single

command but a complete test procedure step, which includes inputs
or telecommands and may include outputs or telemetries. For a full
explanation of MASSIVA test procedures, see Section 5.3. There are two
different options for sending packets from the ‘‘Send Steps’’ menu, as
shown in Fig. 8.
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Fig. 6. MASSIVA send raw commands.

Fig. 7. MASSIVA Send protocol packets.

Fig. 8. MASSIVA send steps menu.

The first option, ‘‘Send one step’’, prompts the user to select an XML
file containing a step in the MASSIVA step format. The second option,
‘‘Send multiple steps’’, takes as a parameter a list with the number of
desired steps in the MASSIVA step format, which must be located in
the appropriate folder of the MASSIVA workspace. Both options are
handy for debugging test procedures, as they allow the test designer
to perform all procedures step by step or per block.

4.2.4. Periodic telecommands
The last menu of the MASSIVA main interface is the ‘‘View’’ menu. It

contains different options depending on whether the running instance
of MASSIVA is SpaceWire compatible or not (see Section 5.2). When
it is, this menu will show two SpaceWire time-code options, or SpW
time-codes, as shown in 9.

The other two options are always displayed, as seen in Figs. 9 and
9(b), as they are presented regardless of the MASSIVA version. But they
can be disabled if they have not been configured correctly. In this case,
they will be displayed in the menu with a gray color and will not be
clickable, as in 9(c).

The first option in the ‘‘View’’ menu is ‘‘Periodic Telecommands’’,
which launches the dialog with the same name. This dialog shows a
list of pre-configured telecommands, as shown in 10. Each Periodic
Telecommand has the same information. The checkbox next to the
name activates or deactivates the associated Periodic Telecommand.
The editable number to the right of the checkbox shows the current tar-
get period in milliseconds. The other two non-editable number displays
will show the number of Telecommands sent and the actual period of
the last cycle.

4.2.5. Live monitoring and plots
The other important feature in the ‘‘View’’ menu is called ‘‘Plots’’.

When the menu item is clicked, the dialog shown in Fig. 11 is displayed.
This dialog will display the configured packet fields in a two-

dimensional scatter plot chat with time as the 𝑋-axis and the named
value as the 𝑌 -axis. The dialog allows multiple values to be displayed
on the same chart or separate chart organized in several tabs.

4.2.6. Command-line options
Another essential feature in MASSIVA is neither a menu nor a visible

feature. MASSIVA supports command-line arguments, which help place
it in a complete development and debugging toolchain. Configuration
files can be selected using command line options, which allow multiple
configurations to be maintained simultaneously on the same computer
without requiring any manual modification or adjustment to the tool.

Another helpful command-line option in MASSIVA is the possibility
to run a single test or a whole test campaign from the command
line. This way, MASSIVA can be easily integrated with other tools
and verification and validation workflows, thus helping automatize the
different processes.
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Fig. 9. MASSIVA view menu. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. MASSIVA periodic telecommands dialog.

Fig. 11. MASSIVA plots dialog.

4.2.7. Port interfaces
This subsection will only deal with the port interfaces available

at MASSIVA. For the models of the interfaces, see Section 5.2. The
currently available interfaces in MASSIVA are:

• Serial port, using a Universal Asynchronous Receiver-Transmitter
(UART) and compatible with USB-Serial converters.

• IPv4 Sockets:

– Server socket, which will wait for clients to be connected
– Client socket, which can connect to an existing server

• SpaceWire port, using a SpaceWire transceptor. Currently sup-
ported devices are several from Star-Dundee: SpaceWire PCI,
SpaceWire Brick USB, and SpaceWire Brick Mk2.

– SpaceWire time-codes port, which can send time-codes inde-
pendently from the main packet transmission and reception.

Most ports have several configuration options that can be changed
quickly, making different logic configurations with the same physical
devices easier.

5. MASSIVA models and algorithms

5.1. Configuration models

Fig. 12(a) shows the primary MASSIVA configuration meta-model.
The main root class of the configuration meta-model is GSSConfig. It
contains a scenario, modeled using the class GSSScenario, and a list of
tests for the current campaign, modeled using the class GSSTestList.
The list contains the different test cases, modeled using the class
GSSTestListTestCase. This class includes several attributes: a previous
message to display before the start of the test case; a previous action to
perform before the beginning of the test case, which is modeled using
the enumerated GSSTestProcPrevAction; and an optional parameter
for that previous action. It also references the corresponding Test Pro-
cedure, which will be modeled using the GSSTestProc class discussed
below.

The previous approach is helpful for projects with a single sce-
nario, but for further reusability, another MASSIVA configuration ap-
proach uses environments and campaigns. In this other case, shown in
Fig. 12(b), the main configuration file is the GSS Campaign, modeled
using the class GSSCampaignCampaign, and the scenario is not
contained but referenced. This time, an object of class GSSEnviron-
mentEnvironment contains all the scenarios, thus making the scenario
configuration part reusable and keeping the Test List separate.

In both approaches, an object of class GSSTestList is used to
define the test list, each modeled using class GSSTestListTestCase and
containing a name and a reference to its own XML test procedure file.
This allows reusing the same procedure files with different names in
different scenarios or projects.

The GSSScenario class is the one that defines the configuration
for both hardware and port configuration as well as other options. Its
meta-model can be seen in Fig. 13.

The only mandatory features for GSS to function correctly are
Options, Protocols, and Interfaces, which are modeled respectively
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Fig. 12. MASSIVA scenario models.

Fig. 13. GSS scenario model.
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with the classes GSSScenarioOptions, GSSScenarioProtocols, and
GSSScenarioInterfaces.

Both classes GSSScenarioOptions and GSSScenarioProtocols
contain objects that model the general features to be configured. The
first feature, GSSScenarioOptions, includes options about general
information and scenario version, information printing options and
debugging; physical port printing options; and scenario error flags con-
figuration; modeled through the classes GSSScenarioInfo, GSSSce-
narioInfoPrint, GSSScenarioPhyHeaderPrint and GSSScenarioDis-
cardErrorFlags, respectively. The second general feature, GSSScenar-
ioProtocols, shall define the type and subtype offset of any protocol
used in any interface, thus facilitating the identification of TMs and
TCs. Each protocol is modeled using GSSScenarioProtocol classes.

The class GSSScenarioInterfaces contains the objects that model
the interfaces that MASSIVA must configure (e.g., serial or SpaceWire
ports) using the drivers provided by the device’s vendor and/or by
the operating system and configuring the appropriate parameters for
each of the interfaces. There are two types of interfaces, one for the
main interface to be used within the configuration and one for the
rest, but both are modeled using the class GSSScenarioInterface.
The only difference between the main interface and the others is that
the main interface is the interface related to Protocol Packets, seen
in Section 4.2.2. The class GSSScenarioInterfaces also references an
object of class GSSProtocolPackets, which must contain the desired
Protocol Packets to be configured. These Protocol Packets must use
the protocol defined in the previous feature, but they are not further
related.

There are other options related to feature configuration, but they
are not mandatory, although they are helpful for different needs of
test campaigns. They are modeled using the classes GSSScenarioSpe-
cialPackets, GSSScenarioPeriodicTCs, GSSScenarioGlobalVars and
GSSScenarioMonitors.

The first feature allows the test designer to select which received
telemetries should be treated differently and thus processed separately
from the test telemetry stream. As mentioned above, candidates for
these Special Packets (see Section 4.1.1) are those that are received
periodically and are not relevant to testing, such as housekeeping in-
formation and science data telemetries. Each Special Packet is modeled
using the GSSScenarioSpecialPacket class, and the interface display
options are configured with the Printing Data option, modeled using
the GSSScenarioPrintingData class.

The next non-mandatory feature is Periodic Telecommands. This
feature can help distribute time information or schedule a periodic
‘‘you are alive’’ operation. In MASSIVA, a Periodic Telecommand is a
telecommand that is sent periodically. These telecommands are mod-
eled using the GSSScenarioPeriodicTC class.

The non-mandatory Global Variables feature is used to define a
variable within the MASSIVA scope that can later be used for various
purposes. Each variable is modeled using the class GSSScenarioGlob-
alVar, and must contain a reference modeled using the abstract class
GSSScenarioReference. This reference may be a field within a previ-
ously configured telecommand or telemetry, modeled using GSSSce-
narioReferenceField; a reference to a Periodic Telecommand, modeled
using GSSScenarioReferencePeriodicTC, or a reference to a Spe-
cial Packet, modeled using the GSSScenarioReferenceSpecialPacket
class.

The last non-compulsory feature is the MASSIVA monitors, which
are related to the Global Variables. A monitor can be used for checking
or modifying a Global Variable. Each monitor is modeled using the class
GSSScenarioMonitor, which must reference a Global Variable using
the abstract class GSSScenarioGVRef, which can be concreted in the
class GSSScenarioGVFiltered for Global Variables defined on a Field
or a Special Packet, or in the class GSSScenarioGVPeriodic for Global
Variables defined on a Periodic Telecommand.

Since different types of monitors can be defined, GSSScenari-
oMonitor is also an abstract class. In short, MASSIVA supports the def-
inition of four different types of monitors: plots, modeled through the
GSSScenarioPlot class and described in Section 4.2.5; pop-up alarms,
which carry an associated text message and are modeled through the
GSSScenarioAlarmMg class; monitors that allow us to modify the
monitored value automatically and are modeled through the GSSSce-
narioModify class; and, finally, monitors that enable us to display the
monitored value in the alarm area of the MASSIVA interface and that
are modeled through the GSSScenarioAlarmVal class. For the plotting
function, a charts file is modeled using the GSSCharts attribute within
GSSScenarioMonitors.

5.2. Port interface models

Each GSSScenarioInterface must contain a reference to a port
configuration modeled using the GSSIfacePortConfig class. Fig. 14
shows the section of the meta-model involving both classes.

The root class GSSIfacePortConfig must contain an object of class
GSSIfacePort, which models the physical properties of the interface.
The class is abstract, with several concrete classes inheriting from it
that model the different types of ports that can be configured. There are
six port types, including two auxiliary types. This subsection will only
deal with the meta-model elements since the interfaces are described
in Section 4.2.7.

The first type of port is the SpaceWire (SpW) port. This port type
is modeled using the class GSSIfaceSpWPort. The different SpW port
device types that can be configured are modeled using the enumerate
GSSIfaceSpwPortType. A link number, a write port, and at least one
read port (modeled using the GSSIfaceReadingPort class) must be
configured.

The second type of port is the UART port. As the name implies,
it configures a universal asynchronous serial receiver-transmitter port
using the class GSSIfaceUartPort. The different hardware options
for the UART ports are modeled using various enumerations: GSSI-
faceUartPortBaudRate for the baud rate, GSSIfaceUartPortDataBits
for the data bit length, GSSIfaceUartPortStopBits for the stop bit
length, GSSIfaceUartPortParity for the parity and GSSIfaceUartPort-
FlowControl for selecting RTS/CTS or XON/XOFF flow control.

The following two port types are the client socket and server socket
ports. They are modeled using the classes GSSIfaceSocketCliPort and
GSSIfaceSocketSrvPort, respectively. Both inherit from the abstract
class GSSIfaceSocketPort, which contains the TCP port number of the
socket. In addition, the client class GSSIfaceSocketCliPort stores the
IP address of the target server.

Several port types, such as UART and TCP sockets, do not manage
packet data at the application level. Instead, they enable the seamless
transmission and reception of byte streams across the interface. In such
cases, a minimum Port Protocol must be configured, which is modeled
using the class GSSIfacePortProtocol. This class defines several fields
to create a logical packet from the sequential bytes sent or received.
This protocol information is composed of a synchronization pattern and
several size attributes, modeled using the classes GSSIfaceSyncPattern
and GSSIfaceSize, respectively.

Next, the GSSIfaceSpWTCPort class models an auxiliary port re-
lated to the main SpaceWire port. The SpaceWire protocol allows
sending time-codes routed from the SpaceWire port but out of the
primary packet flow, so this feature has been implemented separately
from the main SpaceWire type option in MASSIVA using this class.

Finally, another type of auxiliary port has been included for pro-
cedural steps that may not require sending data but where a response
is expected. The most common case is system power-on: no packets
are sent, but the power supply is turned on, and several packets are
expected to acknowledge the system boot process and its status. For
these cases, a dummy port has been created, which is modeled using
the GSSIfaceDummyPort with no attributes.
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Fig. 14. MASSIVA interfaces model.

5.3. Tests procedure models

As aforementioned, every test procedure is configured in its own
XML file. This structure facilitates modifying test procedures and the
correction of errors and typos compared to hard-coded tests in closed
systems. Besides, performing the same test in different scenarios is more
accessible by changing only the interface configuration files. Fig. 15
shows the metamodel of a test procedure, including all its elements.

The root class of the test procedure is modeled by the GSSTestProc
class, located in the upper, rightmost area of the figure. This class
contains several attributes: a name, a unique identifier, a number of
replays, and a mode, modeled with the enumerate GSSIfaceTestProc-
Mode. A test procedure is simply a list of steps, each modeled using
the GSSTestProcStep class. All the steps must contain inputs and can
contain outputs, modeled respectively using the GSSTestProcAbstract-
Inputs and GSSTestProcOutputs classes. The first one is an abstract
class, as an input can be:

• a simple list of actual inputs, using the class GSSTestProcInputs,
which contains the different inputs, modeled using the abstract
class GSSTestProcInput. This class includes several attributes:
a name, the numeric identifier of the desired interface where
the input shall be launched, and a delay value composed of the
attributes‘‘delay_value’’ for the cipher and ‘‘delay_unit’’, which
uses the GSSTestProcTimeUnit enumerate that allows us to
select between seconds and milliseconds.

• an action, modeled using the GSSTestProcAction class. This
class contains a message to be shown, and a delay and a timespan
composed with the ‘‘delay_value’’, ‘‘delay_unit’’, and
‘‘span_value’’, ‘‘span_unit’’ attributes. Besides, it defines the ac-
tion to be performed, which must be one in the enumerate
GSSTestProcActionType:

– instruction: a single message to be given to the test conduc-
tor.

– tmtc_checking: an automated checking related to telecom-
mands or telemetries.

– checking: a checking that the test conductor in an external
instrument must perform.

While the inputs list has a fixed order, the outputs list is a set
of expected single outputs, and the class GSSTestProcOutputs con-
tains two attributes named ‘‘valid_time_interval_value’’ and ‘‘valid_time_
interval_unit’’ for defining the time validity of the output set, i.e.,
whether a telemetry was received before its expected time slot ex-
pires. Besides, the attribute ‘‘checkmode’’ defines how the outputs are
expected to be received, as defined using the type GSSTestProcCheck-
mode:

• all: all defined outputs must be received for the step to be com-
pleted. Besides, they must be received in the same order as listed
in the test procedure.

• allunsorted: all defined outputs must be received for the step to
be completed, but they can be received in a different order than
the order in the test procedure.

• any: only one defined output must be received for the step to be
considered complete.

Every output is defined using the abstract class GSSTestProcOut-
put, which contains several attributes: a unique identifier, a name, the
numeric identifier of the expected interface, and an optional flag for
marking any particular output to be optional.

By defining both the inputs and outputs, MASSIVA can check in real-
time whether the test result was as expected and, therefore, whether
there is no need to check the register reports afterward. Although
MASSIVA can be used in any domain, it has been designed for space
software validation. In this domain, radiation tolerance requires that
communication frequencies used are below the ones used on ground
equipment. In the specific case of EPD, it can process a maximum of
10 telecommands per second, each telecommand being lower or equal
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Fig. 15. MASSIVA test procedure model.

than 256 bytes, and for telemetries the maximum science rate in burst
mode is 13630 bps. For this reason, MASSIVA is only limited by the PC
interface and its processing capacity.

<test_proc name= " TP_FT_SOLO_EPD_ICU_BSW_SERV_17 " >
<step name= " test_connection " id= " 0 "

prev_step_idref= " NULL "
output_idref_from_prev_step= " NULL "

mode= " continuous " >
<inputs>

<input_level_1 name= " test_connection "
ifRef= " 0 " delay_value= " 120 " delay_unit= " miliseconds " >

<level1 format= " DEFAULT " />
<app_to_level1 export= " Tx/

epd_pus_tc_17_1_to_epd_pus_tc.xml " />
<level0 format= " DEFAULT " />
<level1_to_level0 export= " DEFAULT " />
</input_level_1>

</inputs>
<outputs checkmode= " all "

valid_time_interval_value= " 500 "
valid_time_interval_unit= " miliseconds " >

<output_level_1 name= "
test_connection_report " id= " 0 " ifRef=
" 0 " >

<level1 format= " DEFAULT " />
<level1_filter apply_def_filter= " yes "

extra_filter= " Rx/
epd_pus_tm_17_2_filter.xml " />

<level0 format= " DEFAULT " />
<level1_from_level0 import= " DEFAULT " />
<level0_filter apply_def_filter= " yes "

extra_filter= " NULL " />
</output_level_1>

</outputs>

</step>
</test_proc>

Listing 1: XML script example of simple Test Procedure

As aforementioned, both GSSTestProcInput and GSSTestProcOut-
put are abstract classes. The Test Designer can define the inputs and
outputs with different levels for a more flexible test configuration.
The lower ones represent the communication levels with their physical
protocols, including the physical headers. The higher levels contain the
telecommand or telemetry payloads. Listing 1 shows a simple MASSIVA
test procedure defined in XML.

Packet formatting uses a hierarchically stacked structure, both for
telecommands and telemetries. Lower levels are closer to the physical
interface, while upper levels comprise the payload or application data
level.

All telecommands are from top to bottom, starting at the payload of
the highest level, usually the application level. Intermediate headers are
added until the lowest level is reached, in which the physical headers
are added just before sending the telecommand.

The validation hierarchy goes the other way around for telemetries.
All the headers are removed from bottom to top as the content is
extracted from the lowest level to the highest one. Validations and
checkings can be performed at any level, for example, checking the
communications protocol version at the lowest level, the telemetry type
received at an intermediate level, and the final content at the highest
level.

Fig. 16 shows different stacks that can be defined using MASSIVA.
Both test inputs and outputs can be defined as having 4 levels named
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Fig. 16. MASSIVA hierarchical organization.

from 0 to 3. Fig. 16(a) shows the GSSTestProcInputLevel0 class, and
Fig. 16(b) shows the GSSTestProcOutputLevel0 class, both of them
used for creating inputs and outputs with a single level. Fig. 16(c)
shows the GSSTestProcInputLevel1 class, Fig. 16(d) the GSSTestPro-
cOutputLevel1 class. Then, Fig. 16(e) shows the GSSTestProcInput-
Level2 class and Fig. 16(f) the GSSTestProcOutputLevel2 class. Fi-
nally, Fig. 16(g) shows the GSSTestProcInputLevel3 class and
Fig. 16(h) the GSSTestProcOutputLevel3 class.

There are four other different classes involved in the process, which
will not be studied in detail in this paper as they belong to the TMTCIF
metamodel and are out of the scope of this paper. However, they will
be briefly described next.

Independently of the number of stacked levels chosen, a format must
be described for the inputs and outputs at each level (0 to 3) using
the TMTCIFFormat class. For inputs, the desired information to be
exported (i.e., the actual values to be sent in the telecommand) are
modeled, from the top application level to the final headers, with the
TMTCIFExport class. For the outputs, the expected data for comparison
is stored in the so-called filters, defined using the TMTCIFFilterFilter

class. Besides, another class, called TMTCIFImport, is used to slice the
headers and pass the payload to the next level.

Any chosen format can be edited with low-code techniques since
the entire TMTCIF metamodel uses XML files for input and output
configuration. Any number of fields and parameters can be defined for a
given level format. In addition, any field size can be defined as constant
size, variable size, and in array form. These features facilitate the
representation of any packet to be received or sent and allow defining
telemetry and telecommand packets even late in the development and
testing process.

It is also important to note that the number of levels is not fixed:
a number of levels can be defined for telemetries and another one for
telecommands. Besides, the default packet-level stacked structure can
be overridden at any input or output within any test procedure. This
last feature is useful for testing wrong-formatted telecommands or fields
whose value is a limit or an edge.

The tests defined for the verification and validation of the afore-
mentioned on-board software of the Instrument Control Unit (ICU)
of the Energetic Particle Detector (EPD) in the Solar Orbiter mission
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used three different levels. Lower levels 0 and 1 were used for CCSDS
and PUS headers, respectively, whereas level 2 was used for the main
payload.

All defined inputs and outputs rely on a predefined set of XML
files containing all TM/TC data formats and expected values for the
filters. These XML files can be created and edited both manually and
automatically. Manual editing is suitable for creating files for testing
fault-detection mechanisms, for example, with a wrong telecommand
or format or an incorrect size. A tool was developed in Java for
automatically parsing files in SCOS-2000 database format.

The same set of data formats and default filter files can be reused in
the projects that share the same TM/TC database. Besides, previously
created inputs and outputs can be used in different projects, both
directly or as a basis for creating new complex inputs and outputs.
In order to facilitate the reuse of steps, another tool was created for
generating new procedures using previously defined steps.

For defining the filters, minterm/maxterm canonical forms are used.
Boolean algebra variables result from the comparison operations, which
can be defined using the classic operators equal, bigger than, etc. Then,
all of these variables can be grouped using a sum of products or a
product of sums.

The sum of products is a disjunction of minterms: first, a logic AND
is performed with all the variables to create a single minterm, which
will test true when all the variables are true. Then all the minterms are
grouped in a logic OR operation, which means that the final result will
test true when any of the minterms are true.

The dual operation of the previous one, the product of sums, is a
conjunction of maxterms. First, a logic OR is performed with all the
variables to create a single maxterm, which will test true when any of
the variables is true. Then all the maxterms are grouped in a logic AND
operation, which means that the final result will test true when all of the
maxterms are true. Listing 2 shows a simple MASSIVA Minterm Filter
defined in XML.

<MintermFilter formatFile= " epd_pus_tm_5_1_1002_format.xml
" >
<BoolVar id= " 0 " name= " RID1002 " constantType= " hex " >

<FieldRef name= " RID " />
<Op type= " equal " />
<Constant value= " 1002 " />

</BoolVar>
<BoolVar id= " 1 " name= " ASW_ver0 " constantType= " hex " >

<FieldRef name= " ASW_version " />
<Op type= " equal " />
<Constant value= " 0 " />

</BoolVar>
<BoolVar id= " 2 " name= " ASW_subver7 " constantType= " hex "

>
<FieldRef name= " ASW_subversion " />
<Op type= " equal " />
<Constant value= " 7 " />

</BoolVar>
<Minterm id= " 0 " >

<BoolVarRef idRef= " 0 " />
<BoolVarRef idRef= " 1 " />
<BoolVarRef idRef= " 2 " />

</Minterm>
</MintermFilter>

Listing 2: XML script example of Minterm Filter

Outputs within steps are not mandatory since only one input is
required to define a step. To define a test procedure, at least one step
is required. This structure leads to a very flexible definition of the test
procedure and makes it possible to use MASSIVA with test protocols
and configurations that do not have to send responses after all requests.
Apart from the mandatory inputs and optional outputs, there are two
other features available in each step of the MASSIVA test procedure.

5.3.1. Test procedures optional features
The first optional feature is related to the MASSIVA Special Pack-

ets introduced in Section 4.1.1. In short, Special Packets are taken
out of the test flow in the main configuration, but there may be
some situations where their content or validity must be tested. For
this purpose, the class GSSTestProcSpecialPackets allows performing
changes in the Special Packets flow within the test procedure. Four
different actions can be performed on each Special Packets, namely:

• disable: temporarily removes the ‘‘Special’’ status and adds it to
the test flow.

• enable: rolls back the ‘‘disabling’’ and adds back the ‘‘Special’’,
keeping again the packet out of the test flow.

• enable_print: keeps the Special Packet outside the test flow but
prints all its information in the report for later checking.

• disable_print: stops the Special Packet information printing.

Step identifiers must be sequential and, by default, are launched
one after another. However, another optional feature in a MASSIVA
test procedure allows a group of steps to be defined as concurrent. This
is an advantageous option when dealing with different interfaces which
produce data at the same time.

When a group of concurrent steps is configured, MASSIVA will per-
form these steps in parallel, using a different thread for each interface.
The class GSSTestProcConcurrentSteps contains a list of concurrent
steps, modeled using the class GSSTestProcConcurrentStep, each of
them including the identifier of a step that is concurrent with others,
which also must be defined as concurrent. This class also contains
a single next step attribute, modeled using the class GSSTestProc-
NextStep. This class must include the identifier of the next step that
must be performed and an attribute modeled using the enumerate
GSSTestProcYesNo. The information in these two attributes allows
MASSIVA to decide whether the next step should be performed on the
same interface (i.e., on the same thread) or whether the concurrency
block should be terminated and the corresponding threads merged. All
the concurrent threads must lead to the same non-concurrent next step
to ensure all test procedure sequences are adequately finished.

This concurrency mechanism allows the definition of several con-
current steps for any test procedure, which is usually necessary for
testing devices with several interfaces running simultaneously, such as
a set of sensors. The ‘‘next step’’ technique allows effortless convergence
of the concurrency threads and easy detection of concurrent block
failures within the test procedures.

6. Model-driven test procedures

When developing the test procedures for EPD’s ICU validation, the
Space Research Group (SRG-UAH) crew manually generated most of the
XML files, only using automation tools for a small set of input files. The
problem with that approach was that a modification in any document
defining a test procedure or a telemetry or telecommand value implied
test procedures creators had to apply the changes manually in all
needed procedures, which is a very prone-error process.

SRG-UAH has started several spin-off projects that use the knowl-
edge gained from experience in the EPD project. Among these is
a project that uses model-driven processes to create the documents
required for validation within the European Space Agency standards
ECSS-E-ST-40 and ECSS-Q-ST-80C Rev.1 [5].

In these software verification and validation standards, the most
important document is called Software Validation Specification (SVS),
which defines the tests needed to fulfill all the requirements to be
validated by testing. The verification and validation process requires
another document called Software Verification Report (SVR). This doc-
ument contains all the verification processes and reports related to
the developed software, including the verification reports that must
connect the tests defined in the SVS to the evidence taken from the
test campaign reports.



Acta Astronautica 211 (2023) 574–591

589

A. Montalvo et al.

Fig. 17. GSS transformations.

MASSIVA fills the gap between SVS and SVR. The tests described
in the SVS can be used to define a MASSIVA test campaign. MASSIVA
then generates log reports that can be used to create the SVR.

We created model-to-model transformations between SVS and MAS-
SIVA models using QVT operational (QVTo) and C/C++. Fig. 17 shows
the models and transformations diagram of a V&V process focusing on
the generated models related to MASSIVA.

The SVS and SVR models of the standard are shown along with
the Test Campaign Report (TCR) model. The latter is not present in
the standard but represents the report of a test campaign with the
corresponding evidence and the status Pass or Fail.

All models located inside the large rectangle of the figure are the
previously seen MASSIVA models, which are independent of the ECSS
standards. MASSIVA produces a log report called ‘‘GSS_LOG’’ after the
execution of the tests, which is a plain text file containing the status
of the executed test procedures. This log report is used with the TCR
model to create the final verification report.

There is a first model-to-model transformation using QVTo for
generating a complete single file from SVS, which contains all needed
information for a test campaign, namely the campaign itself, test pro-
cedures, exports (for TCs), and filters (for TMs), but this is not the
file structure that MASSIVA requires. Then another transformation,
created using C/C++, generates the files needed for configuring the test
campaign in MASSIVA.

Most test campaigns have different set-up configurations, depend-
ing on the items under test. Each set-up configuration has different
procedures, so different MASSIVA log files are usually produced, and
several TCR instances must be generated. The last transformation, also
in C/C++, generates a TCR from each MASSIVA log report. The SVR
can then be created using all the TCR instances and the SVR, coming
full circle to the standards.

Besides the ECSS standards workflow presented here as a use case,
MASSIVA can be easily integrated into any development, verification,
and validation workflow. MASSIVA test procedures and test entries are
XML files, and MASSIVA log report outputs are plain text files. This
means that any model-driven software development process based on
ECSS-E-ST-40 or any other standard can be integrated into MASSIVA.

In order to integrate MASSIVA into any MDE workflow using mod-
eled standards, only two new transformations are required: the first
from the standard validation procedure models to MASSIVA test cam-
paigns and the second from the MASSIVA report files to the correspond-
ing standard verification report models. To illustrate this feature, the
models and transformation for the XML files are available online.1

7. Case study

This tool traces its roots back to the development of the on-board
software of the Instrument Control Unit (ICU) of the Energetic Par-
ticle Detector (EPD) on-board the Solar Orbiter mission carried out
by the Space Research Group of the University of Alcalá (SRG-UAH).
The original tool, called SRG-GSS (Space Research Group - Ground
Support Software), was designed to verify and validate all the original
requirements and the whole set of telecommands and telemetries.

Within the EPD software development, SRG-UAH used a model-
driven component-based approach to design and deploy the application
software supported by the MICOBS framework [31–33].

Fig. 18 shows the scenarios where MASSIVA was used for the veri-
fication and validation campaigns. The scenarios shown in Figs. 18(a)
and 18(c) were designed for the validation of the ICU software in EPD
using an Engineering Model (EM) and an Engineering Qualification
Model (EQM). They both share the SpaceWire connectivity port and
four serial UART ports.

In the first scenario, the four instrument sensors were emulated at
the opposite end using MASSIVA, while in the second scenario, EQM
versions of the actual instruments were used. In these two models,
both EPD’s ICU Boot Software (ICU BSW) and EPD’s ICU Application
Software (ICU ASW) were tested. The main difference with our case
study is connectivity since only the SpaceWire port is used for testing
EPD’s ICU BSW.

Finally, the scenario shown in Fig. 18(b) is a more straightforward
scenario used for testing the so-called SRG-BSW, another boot software

1 The models are located in https://github.com/uah-srg-tech/gss-eclipse.

https://github.com/uah-srg-tech/gss-eclipse
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Fig. 18. MASSIVA test scenarios.

Table 2
Verification and validation port configuration for different software projects using MASSIVA.

Project EPD’s ICU BSW EPD’s ICU ASW SRG-BSW

Main interface SpaceWire SpaceWire UART/IP Sockets
Main interface protocol CCSDS/PUS CCSDS/PUS CCSDS/PUS
Other interfaces – 4 UART –
Other protocols – Custom –

based on the EPD’s ICU BSW. This time a single serial UART port was
used instead of the SpaceWire port of the EPD’s ICU BSW. Another
version of this SRG-BSW was tested on a board (not shown) using
IP sockets instead of the serial UART port. Table 2 shows the port
configuration for these three scenarios.

With both EPD’s ICU software project interfaces, a SpaceWire de-
vice, including SpaceWire time-codes, was connected via USB to the
MASSIVA host PC. The other projects did not use SpaceWire, only
UART ports and sockets, so no other device was needed.

Several of the above projects share the same payload telecommands
and telemetries for basic tests such as test connection or reset, as they
are defined in the PUS services list. When using MASSIVA, only the low
physical interface configuration (SpaceWire, UART, or IP Sockets) had
to be changed, reusing the application data. Conversely, when several
projects used the same physical interface, for example, a given UART
port at a given baud rate, only the logical packet definitions had to be
changed, keeping the physical port configuration.

Table 3 shows the total number of requirements, test procedures,
telecommands, and telemetries involved in the verification and val-
idation of different projects: EPD’s ICU BSW, EPD’s ICU ASW, BSW
UART.

MASSIVA was executed on different computers with different op-
erating systems and port configurations during these test campaigns.
It worked correctly in all Microsoft Windows-based systems, from

Windows XP and above. A Linux version was also successfully used
in Ubuntu and other Debian-based Linux distributions for 32-bit and
64-bit architectures. The vendor of the SpaceWire device used did not
provide drivers for operating systems other than Microsoft Windows.
Still, any SpaceWire device whose vendor provides drivers for Linux
could be easily integrated into MASSIVA. Finally, MASSIVA has also
been tested on virtual machines running all these operating systems,
functioning as on the real machines.

MASSIVA’s source code is available online2 for anybody who wants
to compile the tool for their system. The only compiling dependen-
cies are the SpaceWire drivers, which can easily be deactivated using
preprocessor definitions.

8. Conclusions

This paper has presented a model-driven engineering approach and
a tool for assisting in the verification and validation process for space
software applications called MASSIVA. The solution provides a model
scheme for the configuration files, test campaigns, and related files.
The final objective of this approach is to provide a testing environment

2 The source code in C/C++ is located in https://github.com/uah-srg-tech/
massiva.

https://github.com/uah-srg-tech/massiva
https://github.com/uah-srg-tech/massiva
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Table 3
Verification and validation metrics for different software projects using MASSIVA.

Project EPD’s ICU BSW EPD’s ICU ASW SRG-BSW

Total number of V&V Test Procedures 46 212 29
Total number of Files 14314 88377 11119
Total number of Tested Telecommands 15 118 13
Total number of Tested Telemetry Packets 30 318 29

with a hierarchical organization for promoting the reuse of tests with
no recodification.

To this end, we have implemented several features for automat-
ically performing the test campaigns and developing and debugging
them. Besides, MASSIVA features have been explained, and how to
fit the tool into a space software development project using ECSS
standards has been shown. Based on that model structure, several
examples of the hierarchy levels have been shown, allowing any project
to follow the same structure. Finally, several test campaigns using
different configurations have been performed using different tool com-
pilations, validating the test campaigns with the related documents and
requirements.
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