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Human Activity Recognition applying Computational

Intelligence techniques for fusing information related

to WiFi positioning and body posture

A. Alvarez-Alvarez, J. M. Alonso, G. Trivino, N. Hernández, F. Herranz, A. Llamazares and M. Ocaña

Abstract— This work presents a general framework for
people indoor activity recognition. Firstly, a Wireless Fidelity
(WiFi) localization system implemented as a Fuzzy Rule-
based Classifier (FRBC) is used to obtain an approximate
position at the level of discrete zones (office, corridor, meeting
room, etc). Secondly, a Fuzzy Finite State Machine (FFSM)
is used for human body posture recognition (seated, standing
upright or walking). Finally, another FFSM combines both WiFi
localization and posture recognition to obtain a robust, reliable,
and easily understandable activity recognition system (working
in the desk room, crossing the corridor, having a meeting, etc).
Each user carries with a personal digital agenda (PDA) or
smart-phone equipped with a WiFi interface for localization
task and accelerometers for posture recognition. Our approach
does not require adding new hardware to the experimental
environment. It relies on the WiFi access points (APs) widely
available in most public and private buildings. We include a
practical experimentation where good results were achieved.

I. INTRODUCTION

People activity recognition provides interesting applica-

tions in many areas, e.g., to filter the phone calls depending

on different circumstances, personal navigation assistance,

personal security, etc. We are mainly interested in indoor

security applications (for instance sending warnings when

someone gets into a dangerous area in order to reduce the

occupational health and safety risk) and/or people assistance

(for instance helping elderly or handicapped people).

Our activity recognition system is mainly based on Fuzzy

Logic (FL) [1] because it allows to combine several het-

erogeneous sources of knowledge (mainly expert knowledge

and knowledge automatically extracted from experimental

data provided by sensors), dealing with vague information,

and its interaction with humans demands the design of an

easily understandable system. FL is widely recognized for its

ability for linguistic concept modeling and its use in system

identification. On the one hand, FL semantic expressivity,

using linguistic variables [2] and linguistic rules [3], is quite

close to natural language what reduces the effort of expert

knowledge extraction. On the other hand, being universal

approximators [4] fuzzy inference systems (FIS) are able

to perform nonlinear mappings between inputs and outputs.

Thus, there are lots of fuzzy machine learning methods for

knowledge induction from experimental data [5].
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There are other recent works [6], [7] that show the

advantages of using FL for modeling and monitoring human

activity. They are mainly based on fusing video sensors

what means installing additional hardware (HW) like video

cameras in the environment under study. On the contrary,

our approach takes profit from pre-existent HW and avoids

adding new devices to the environment.

In indoor environments, the use of the network infras-

tructure to estimate user’s location is quite common. Local

network based systems are sometimes based on pre-existing

networks like ZigBee networks designed for home control

applications [8]. However, the most used systems are based

on WiFi networks which are able to provide indoor absolute

localization. In contrast, the main drawback is the need

of a complete network infrastructure in the whole building

where we want to localize a person. Luckily, this technology

is quickly growing of coverage. Currently, there are WiFi

Access Points (APs) in most public buildings like hospitals,

libraries, universities, museums, etc. Moreover, measuring

the WiFi signal level is free even for private WiFi networks.

As a result, WiFi technology is a good choice for indoor

global localization systems yielding a good accuracy-cost

trade-off [9].

Regarding human activity recognition it is important to

know the place where a person is located but it is not

enough. We propose taking into account also information

related to the human body posture. It can be estimated

by means of sensor based systems which provide absolute

information (e.g., magnetic compass, ultrasonic or infrared

sensors) or relative information (e.g., inertial measurement

units or pressure sensors). One low-cost inertial sensor is the

accelerometer, based on the Micro Electro Mechanical Sys-

tems (MEMS) technology that has allowed its integration in

small and low energy consumption devices. Accelerometers

can be used as step length estimators; furthermore they let

us to obtain some information about body posture [10]. In

previous works we have already shown how human activity

can be analyzed in terms of combining one accelerometer

with a skin conductivity meter [11]. This work focuses on

exploiting the fusion of WiFi signal and accelerations.

This paper is organized as follows. Section II describes

how to design a Fuzzy Rule-based Classifier (FRBC) while

Section III formalizes the notion of the Fuzzy Finite State

Machine (FFSM). Afterwards, Section IV explains our pro-

posal related to people activity recognition. It combines

one FRBC and two FFSMs. Then, Section V shows the

WCCI 2010 IEEE World Congress on Computational Intelligence 

July, 18-23, 2010 - CCIB, Barcelona, Spain FUZZ-IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 1878



experimental results. And finally, Section VI expounds the

conclusions and future works.

II. FUZZY RULE BASE CLASSIFIERS

A FRBC is a fuzzy system able to select one output class

from a pre-defined set of classes C=
{

C1, C2, . . . , CNC
}

.

Given an n-dimensional input space (X ⊆ Rn), a fuzzy

inference mechanism yields an activation degree associated

to each class Ci. Of course, several classes can be activated

at the same time with activation degree greater than zero.

Our FRBC is designed following the fuzzy modeling

methodology called HILK (Highly Interpretable Linguistic

Knowledge) [12]. It focuses on building comprehensible

fuzzy classifiers, i.e., classifiers easily understandable by

human beings. Useful pieces of knowledge are automatically

extracted from experimental data and represented by means

of linguistic variables and rules under the FL formalism. The

whole modeling process is made up of three steps:

• Partition design. The readability of fuzzy partitioning

is a prerequisite to build interpretable FRBCs. There-

fore, it is based on the use of Strong Fuzzy Partitions

(SFPs) which are the best ones from the comprehensi-

bility point of view.

• Rule base learning. Linguistic rules are automatically

extracted from data keeping in mind the comprehensi-

bility goal. Therefore, we have chosen Fuzzy Decision

Tree (FDT) [13] as rule induction method. It generates

a neuro-fuzzy decision tree which is translated into

quite general incomplete rules where only a subset

of input variables is considered. In addition, inputs

are sorted according to their importance (minimizing

the entropy). FDT is a fuzzy version of the popular

decision trees defined by Quinlan [14]. Rules are of

form If Premise Then Conclusion, where both Premise

and Conclusion use linguistic terms previously defined

for expressing linguistic propositions that describes the

system behavior.

R: If I1 is Ai
1

︸ ︷︷ ︸

Premise P1

AND . . . AND INI is A
j
NI

︸ ︷︷ ︸

Premise PNI
︸ ︷︷ ︸

Premise

Then YR is Ci

︸ ︷︷ ︸

Conclusion

where given a rule R, rule premises are made up of

tuples (input variable, linguistic term) where Ia is the

name of the input variable a, while Ai
a represents the

label i of such variable, with a belonging to {1, ..., NI}
and being NI the number of inputs. In the conclusion

part, Ci represents one of the possible output classes.

• Knowledge base improvement. It is an iterative re-

finement process that comprises both rule base simpli-

fication and fuzzy partition optimization. The former

increases interpretability while keeping high accuracy.

The later gets higher accuracy without penalizing the

high interpretability previously achieved.

Designed FRBCs are endowed with the usual fuzzy clas-

sification structure based on the Max-Min inference scheme,

and the winner rule fuzzy reasoning mechanism:

yFRBC(xp) = Ci ⇔ µCi(xp) = max
k=1,...,NC

µCk(xp)

µCk(xp) = max
R=1,...,NR

µR(xp) ⇔ YR is Ck

µR(xp) = min
i=1,...,NI

µ
A

j

i
(xp

i )

where given an input vector xp = {xp
1, . . . , x

p
NI}, the output

class Ci is derived from the highest µCi(xp) which is the

membership degree of xp to the class Ci. It is computed as

the maximum firing degree of all rules yielding Ci as output

class. For each rule, the firing degree is computed as the

minimum membership degree of xp to all the attached A
j
i

fuzzy set, for all the NI inputs.

III. FUZZY FINITE STATE MACHINES

In previous studies, we have showed that FFSM are

suitable tools for modeling phenomena that follow an ap-

proximately repetitive pattern [15], [16], [17], [18]. During

the development of these works, the concept of FFSM has

grown up in clarity and usability. In the following, we will

introduce the current version of this paradigm for system

modeling.

A FFSM is a tuple {Q,S, S0, U, Y, f, g}. We will describe

each one of its components in the next subsections.

A. Fuzzy States

Every state represents the pattern of a repetitive situ-

ation. The fuzzy state of the system (Q) is a linguistic

variable [2] that takes its values in the set of linguistic

labels {Q1, Q2, . . . , Qn}, where n is the number of states.

Numerically, the fuzzy state of the FFSM is represented with

a state activation vector:

S[t] = (s1[t], s2[t], . . . , sn[t]), where si ∈ [0, 1].

Moreover, the FFSM implementation verifies
n
∑

i=1

si = 1.

We require the state activation vector to fulfill the previous

relation for two reasons; first, we want that the degree of

activation works like a quantity that is distributed among the

different states keeping the total degree as a constant equal to

one; second, the state activation vector may be used as input

of a second FFSM (serial connection), so we want that these

input values are normalized in the interval [0, 1] in such a

way that we do not need to renormalize them.

We define, S0 as the initial value of the state activation

vector at t = 0, i.e., S0 = S[t = 0].

B. Input variables

U is the input vector (u1, u2, . . . , uNI). Typically, U is

a set of linguistic variables obtained after fuzzification of

numerical measures obtained from sensors. Moreover, ui can

be directly obtained from sensor data and also applying some

calculations, e.g., the derivative or integral of the signal, or

by combination of several signals.
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The designer summarizes the domain of the possible

numerical values provided by sensors representing them by

a small set of fuzzy intervals.

Aui
= {A1

ui
, A2

ui
, . . . , Ana

ui
} is the set of all the possible

values that ui can take, being na the number of linguistic

labels of the linguistic variable ui.

C. Transition function f

The next value of the state activation vector is obtained

by means of the transition function f :

S[t + 1] = f(U [t], S[t]).
This function is implemented by means of a set of expert

fuzzy rules. Once the designer has identified the relevant

states in the model, he/she must define the rules that govern

the temporal evolution of the system among these states (e.g.,

see Figure 2).

We can distinguish between rules Rii to remain in a state

Qi, and rules Rij to change from the state Qi to the state

Qj . To design the allowed transitions and the forbidden ones,

we follow a simple procedure: the allowed transitions have

explicitly associated fuzzy rules while there are not rules

associated with the forbidden transitions.

1) Rules to remain in a state: The designer uses these

rules to express the conditions of the system to remain in a

specific state. The generic expression of Rii is formulated as

follows:

Rii: If S[t] is Qi AND Cii Then S[t + 1] is Qi

where:

• The antecedent (S[t] is Qi) calculates the degree of

activation of the state Qi in the instant of time t, i.e.,

si(t). Note that the FFSM cannot remain in the state

Qi if it is not in this state previously.

• The antecedent Cii describes the constraints over the

input variables to remain in the state Qi. For example:

Cii = (u1 is A3
u1

) AND (u2 is A1
u2

) OR (u3 is A5
u3

).

• Finally, the consequent of the rule is the next value of

the state activation vector S[t+1]. It consists of a vector

with a zero in all of its components except in si, where

it has a one.

2) Rules to change of state: The designer uses these rules

to express the conditions that make the system change from

state Qi to state Qj . Here, the generic expression of Rij is

formulated as follows:

Rij : If S[t] is Qi AND Cij Then S[t + 1] is Qj

where:

• The antecedent (S[t] is Qi) calculates the degree of

activation of the state Qi in the instant of time t, i.e.,

si(t). Note that the FFSM cannot change from the state

Qi to the state Qj if it is not in Qi previously.

• The antecedent Cij describes the constraints over the

input variables to change from the state Qi to the

state Qj . In a first approach, these conditions could

coincide with the amplitude conditions to remain in

the destination state of the transition, i.e., Cij = Cjj .

Then, some tuning could be needed to express different

conditions to change.

• Finally, the consequent of the rule is the next value of

the state activation vector S[t+1]. It consists of a vector

with a zero in all of its components except in sj , where

it has a one.

D. Output variables

Y is the output vector (y1, y2, . . . , yny
), where ny is

the number of output variables. Y is a summary of the

characteristics of the system evolution that are relevant for

the application, e.g., each yi can be obtained as the average

of certain parameters of the system while the model remained

in the state Qi.

E. Output function g

The output function g(U [t], S[t]) calculates the value of

the output vector Y (t). E.g., a possible implementation of

g is doing Y [t] = S[t] = (s1[t], s2[t], . . . , sn[t]). Here, the

output is the current fuzzy state of the system represented

by the state activation vector.

F. Computational implementation

In order to implement the transition function, we use the

Takagi-Sugeno-Kang (TSK) approach [19]. The advantage of

using TSK is that it provides directly the numerical values

of S[t].
Using the TSK implementation, the transition function (f )

of the FFSM is formulated as follows:

R1
ii: If S[t] is Qi AND C1

ii

Then S[t + 1]1 = (0, . . . , si = 1, . . . , 0)

. . .

Rr
ij : If S[t] is Qi AND Cr

ij

Then S[t + 1]r = (0, . . . , sj = 1, . . . , 0)

The state activation vector (S[t + 1]) will be the weighted

average of the individual outputs:

S[t + 1] =























r∑

k=1

ωk·S[t+1]k

r∑

k=1

ωk

if
r
∑

k=1

ωk �= 0

S[t] if
r
∑

k=1

ωk = 0

where ωk is the degree of firing of the rule k using the

minimum for the AND operator. This formulation keeps the

system in its previous state when no rule is fired. Moreover,

it makes si ∈ [0, 1] and
n
∑

i=1

si = 1.

IV. PROPOSAL

This section introduces the proposed fusion framework for

human activity recognition. It is made up of three main mod-

ules as illustrated in Figure 1. Each block will be described in

the following subsections. First, subsection IV-A focuses on

building a FRBC devoted to estimate the location of a person
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in an indoor environment by means of processing WiFi

strength signal levels (SLi). Then, subsection IV-B describes

the FFSM1 in charge of human body posture recognition.

Finally, subsection IV-C gives the details related to the

FFSM2 that combines both WiFi positioning and posture

recognition yielding the desired human activity recognition.

activity

SL2

SLn

SL1

ax

WiFi

Positioning

(FRBC)

wep

Posture

Recognition

(FFSM1)

mov

tilt

pos (FFSM2)

Recognition

Activity

Human

. . .

Fig. 1. Scheme of the proposed fusion framework

A. WiFi positioning module (FRBC)

WiFi localization systems use 802.11b/g network infras-

tructure to estimate a device position without using additional

hardware. The received SL from each AP depends on the

distance but also on the obstacles between the emitter and

the receiver. Therefore, the simplest method for estimating

the device position consists of applying a triangulation algo-

rithm. Unfortunately, in indoor environments SL is strongly

affected by the well-known multipath effect that comprises

reflection, refraction and diffraction. Thus, SL becomes a

complex function of the distance that dynamically changes

with time because it is affected by every modification made

in the environment [20].

Only approximate solutions are able to get nice results.

Authors of [21] propose the use of a priori radio map storing

the received SL of each AP belonging to an interest region.

The radio map is built during the training stage. Then, in

the estimation stage, a vector with received SL of each AP

is created and compared with the radio map to obtain the

estimated position. We have previously proposed the use

of fuzzy classification for WiFi localization inspired on the

radio map method, handling the signal measure uncertainty

and getting small localization errors [9]. In this contribu-

tion we propose the use of an enhanced version of such

WiFi localization system, yielding room-level localization.

Notice that, the output of the FRBC will be one zone of

the environment along with an activation degree which is

understood as a degree of confidence on the system output.

Of course, the interpolation ability of fuzzy systems makes

possible to define a hierarchical localization system where

the position may be refined as much as desired. In a first

level it is possible to identify the floor of the building, in

a second level it points out the room where the person is

located, but in a third level (depending on the application) it

may be interesting giving also the position inside the room.

Thus, thanks to this approach, a FRBC made up of a small

number of rules is used for each level, keeping a good trade-

off between accuracy and interpretability. Although we have

measured the SL in many points of each room, we will only

consider the second level of this hierarchy, i.e., we work at

the room level with all rooms located at the same floor of

the building.

As an illustrative example, let us suppose that two zones

A and B are one close to the other (with a common wall) and

one person is inside zone A but near the wall. The FRBC is

made up of rules like If Signal received from APi is High

AND Signal received from APj is Low Then The person is

close to Position P which belongs to zone Z. In this example,

at least two rules may be fired yielding as output an activation

degree of 0.7 related to zone A and 0.3 regarding zone B.

Output is computed as the result of a fuzzy inference that

takes into account all defined variables and rules.

First of all, we need to identify the zones of interest

in a map of the environment under analysis. The number

of zones determines the number of classes of the FRBC.

Second, we have to find out the APs visible in such en-

vironment. The number of APs determines the number of

input variables of the FRBC. Then, in the training stage

we build the radio map of the environment. To do so, we

collect a training data set (LRN) with the SL measures (from

all visible APs) carried out in several locations for each

of the zones of interest. Then, HILK methodology [12] is

applied (as it was introduced in section II) on LRN in order

to automatically generate a FRBC with a good accuracy-

interpretability trade-off. All input variables (one per each

AP visible in the environment) are characterized by strong

fuzzy partitions of nine linguistic terms (extremely low, very

low, low, etc). In addition, linguistic rules are automatically

generated from data by means of the algorithm FDT. Finally,

the simplification procedure provided by HILK is run getting

a more compact and general FRBC, keeping high accuracy

while increasing even more its interpretability. Notice that,

the FRBC follows the usual fuzzy classification structure

and the winner rule fuzzy reasoning mechanism. For further

information the interested reader is referred to the cited

papers.

Thanks to its flexibility and adaptability the designed

FRBC can be used whenever the environment does not

suffer a great modification, i.e., when some access points are

switched off. In such case, the system should be re-adjusted,

but usually these things do not happen and the fuzzy system

is able to deal with slight modifications like people moving

in the environment or changes in the state of the doors.

B. Posture recognition module (FFSM1)

In previous works, we have shown how a FFSM is able to

synchronize with the acceleration signal produced during the

human gait and to extract the relevant characteristics suitable

for our purpose [16]. In the following, we explain how to

design a FFSM for body posture recognition:
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1) Fuzzy States: Here, the fuzzy states are defined to

recognize different body postures and human activity. So, we

have identified three fuzzy states: {Q1: Seated, Q2: Upright,

Q3: Walking}.

2) Input variables: The set of linguistic variables U ,

as stated in the definition of the FFSM, can be directly

obtained from sensors. In this case, we have used a three-

axial accelerometer tight with a belt in the middle of the

back, therefore, the numerical values that we obtain from

the sensor are: the dorso-ventral acceleration (ax), the medio-

lateral acceleration (ay) and the antero-posterior acceleration

(az). With these numerical values, and in order to distinguish

between the three different states, we have created three

linguistic variables {ax,mov, tilt}:

• ax is the dorso-ventral acceleration as it was obtained

from the sensor.

• mov measures the movement, it is the sum of the

difference between the maximum and minimum of ax,

ay and az respectively contained in a interval of 1

second.

• tilt is a variable that measures the tilt of the body, it

is calculated as the sum of the absolute value of the

medio-lateral acceleration (ay) and the absolute value

of the antero-posterior acceleration (az), i.e., |ay|+|az|.

The linguistic labels, that summarize the domain of each

linguistic variable, are uniform strong fuzzy partitions based

on trapezoidal or triangular membership functions in order

to achieve a good interpretability, satisfying semantic con-

straints on membership functions in order to respect semantic

integrity within the partitions. They are defined for each

linguistic variable in the intervals defined by their maximum

and minimum values taken by their numeric values, i.e., they

are adapted for each user in an off-line process. The possible

values of the three linguistic variables are summarized as

follows:

• ax = {Lax
,Hax

} which corresponds to the terms Low

and High respectively.

• mov = {Lmov,Mmov,Hmov} which corresponds to the

terms Low, Medium and High respectively.

• tilt = {Ltilt,Htilt} which corresponds to the terms

Low and High respectively.

The input vector (U ), with the set of its possible values,

represents the system input with lower granularity than the

domain of numerical values directly obtained from sensors.

3) Transition function f : As we have stated previously,

we will obtain the next value of the activation vector using

the transition function: S[t + 1] = f(U [t], S[t]).
Figure 2 shows how we use the FFSM to define constraints

on the possibilities to change of state. More specifically, we

force the model to pass by the state Upright (Q2) when

the subject passes from Seated (Q1) to Walking (Q3). The

subject cannot be seated and start walking, first he/she must

get upright. This restriction makes the system more robust.

• Rules to remain in a state. Using the generic expression

of Rii explained in section III-C.1, we can define the

Fig. 2. Diagram of states of the FFSM1 (body posture recognition)

three constraints over the input variables to remain in

each state:
C11 = ax is Lax AND mov is Lmov AND tilt is Htilt

C22 = ax is Hax AND mov is Lmov AND tilt is Ltilt

C33 = ax is Hax AND mov is (Mmov OR Hmov)

• Rules to change of state. In a first approach, the con-

straints over the input variables to change of state could

be the same as the constraints over the input variables to

remain in the destination state of the transition, i.e., Cij

= Cjj . But, as we have stated, some tuning is needed

to express different conditions to change:
C12 = ax is Hax AND mov is Lmov AND tilt is Ltilt

C21 = ax is Lax AND mov is Lmov AND tilt is Htilt

C23 = ax is Hax AND mov is Hmov AND tilt is Ltilt

C32 = ax is Hax AND mov is Lmov AND tilt is Ltilt

C31 = ax is Lax AND mov is Hmov AND tilt is Htilt

4) Output variables: Since we are going to use the output

of this FFSM1 as input in the FFSM2, we can use as output

variable the state activation vector, i.e., Y [t] = S[t].
5) Output function g: The output function, as we have

stated above, is simply: g = S[t].

C. Human activity recognition module (FFSM2)

Currently, a new generation of smart-phones and PDAs

including capabilities for WiFi communications and ac-

celerometers is available. We use a PDA to obtain the

information that our system requires for inferring the user

activity. In the following, we explain how to design a

FFSM for combining the WiFi Positioning module and the

Posture Recognition module to achieve a Human Activity

Recognition system:

1) Fuzzy States: The system must be adapted to each

specific user. We manage linguistic descriptions of the dif-

ferent activities daily performed by the user. For example we

distinguish among the following fuzzy states of activity in

an office:

• Q1: Walking. Typical body movement detected by ac-

celerometers

• Q2: Working at his/her desk. Usually, the user is seated,

in specific WiFi coordinates, the most of time.

• Q3: Visiting a colleague. Seated or standing upright, in

several possible WiFi coordinates, for little time.

• Q4: Having coffee. Seated or standing upright, in spe-

cific WiFi coordinates, some time.
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• Q5: Having a meeting. Seated in specific WiFi coordi-

nates for some time.

2) Input variables: In order to distinguish among the

different states, we have created two linguistic variables

{wep, pos} that characterize the outputs of the two previous

modules (FRBC and FFSM1):

• wep is the WiFi estimated position (FRBC computed it

as explained in section IV-A).

• pos is the posture estimation obtained from the posture

recognition module (FFSM1 described in section IV-B).

These variables are characterized by the following linguis-

tic labels which are defined in the interval [0,1]:

• wep = {WAA,MC,WAB,WO,CA,MR}, which

are the zones of our experimental scenario (see later

section V).

• pos = {Seated, Upright,Walking} which corre-

sponds to the three different states of the FFSM1.

3) Transition function f : As in the FFSM1, we will obtain

the next value of the activation vector using the transition

function S[t + 1] = f(U [t], S[t]).
Since we have already identified the relevant states in

the model, we can represent the fuzzy rules that govern the

temporal evolution of the system among these states. Figure

3 shows the transition diagram of the FFSM2. There are five

rules to remain in a state (Rii) and eight rules to change of

state (Rij). In this application not all the possible transitions

are allowed, the majority of the states are connected to the

state Q1 (Walking).

Fig. 3. Diagram of states of the FFSM2 (human activity recognition)

• Rules to remain in a state: Using the generic expression
of Rii explained in section III-C.1, we can define the
constraints over the input variables to remain in each
state.
C11 = pos is Walking
C22 = pos is Seated AND wep is WAA
C33 = pos is (Seated OR Upright) AND wep is (WO OR WAB)
C44 = pos is (Seated OR Upright) AND wep is CA

C55 = pos is Seated AND wep is MR

• Rules to change of state: Using the generic expression

of Rij explained in section III-C.2, we can define the

constraints over the input variables to change of each

state.
C12 = pos is Seated AND wep is WAA
C13 = pos is (Seated OR Upright) AND wep is (WO OR WAB)
C14 = pos is (Seated OR Upright) AND wep is CA
C15 = pos is Seated AND wep is MR
C21 = pos is Walking AND wep is (WAA OR MC)
C31 = pos is Walking AND wep is WAB
C41 = pos is Walking AND wep is MC
C51 = pos is Walking AND wep is MR

4) Output variables: We can use as output variable the

state activation vector, i.e., Y [t] = S[t]. But we have to give

a crisp description of the activity of the person. Therefore, we

can consider as output the state with the maximum degree of

activation at each instant of time t. However, this selection

will make the FFSM very sensitive to noise and spurious

in the signal, and that is precisely what we want to avoid.

Therefore, the output is designed as the state which has

had the maximum average degree of activation over the last

second.

5) Output function g: The output function g(U [t], S[t])
that calculates the value of the output variables is, as we

have stated above, the average operator in an interval of one

second combined with the maximum operator to make the

decision.

V. EXPERIMENTS

The experimentation took place at the premises of the

European Centre for Soft Computing (ECSC). The layout of

ECSC environment is shown in Figure 4. It has a surface of

440 m2 illustrated on the top picture. We have identified six

zones (look at the bottom picture): WAA (working area A),

MC (main corridor), WAB (working area B), WO (working

office), CA (coffee area), and MR (meeting room).

The user carried a HP iPAQ hw6910/hw6915 PDA. It

has a WiFi interface with a maximum acquisition frequency

of 4Hz, i.e., it is able to capture up to four samples per

second. In addition, an external accelerometer (WiTilt v2.5)

with acquisition frequency of 100Hz was connected to our

PDA through Bluetooth. The user wore the accelerometer

tight with a belt in the middle of his back. Our program

measures both WiFi signal and accelerations in the same

cycle with the aim of keeping synchronization. Notice that,

each 25 measures provided by the accelerometer correspond

to only one WiFi measure.

As it can be seen at the top picture in Figure 4, there

are four APs in the environment covering most of the zones.

Inside each zone we have set several training fixed positions.

They are represented by filled circles at the bottom picture in

the Figure. For each of them, we collected 100 samples from

all the four APs. The resultant data set was taken as LRN for

training the WiFi positioning module as explained in section

IV-A. The FRBC contains four inputs (one per AP). First,

we set strong fuzzy partitions with nine linguistic terms per

input. Second, linguistic rules were induced with FDT. Third,
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Fig. 4. Discretization of the ECSC environment

simplification was carried out. As a result, the final FRBC

is made up of 14 rules with a total of 41 premises.

Table I gives the description of our experimental scenario

that tries to summarizes a normal day at the work. Of course,

this is a simplified scenario where we have set a reduced

time for the different tasks. For example, Having a meeting

lasts less than 2 minutes. Notice that we wanted to test how

our system is able to recognize all defined states of activity.

The whole experiment takes about 9 minutes because the

time walking is approximated. Furthermore, the same user

has repeated eleven times the same experiment yielding more

than one hour and a half of experimentation. There may be a

slight time lag between different repetitions of the experiment

when the user is walking. The first trial was used for tuning

the FFSMs. Then, another different day, we run in a row the

rest of ten executions which have been used for testing the

previously designed system.

Table II includes the test averaged results for the ten

repetitions of the experiment. We have reported results (in

terms of misclassified samples) for all the three modules that

constitute the system (look at Figure 1). The first row shows

the percentage of error (about 14%) for the FRBC module.

The two last rows are related to the two FFSMs. In both

cases, the percentage of misclassified samples is very small

(1.2 and 1.5% respectively). This is due to the characteristic

memory effect of FFSMs which define the new state taking

into account the transition conditions but also the previous

state. In addition, output of FFSM2 is averaged in an interval

of only one second what makes feasible the use of our system

in real-time applications. It is also important to remark how

TABLE I

DESCRIPTION OF THE EXPERIMENTAL SCENARIO

Length (s) Description Activity

60 Seated and typing Working at the desk

30 Standing up and walking Walking

towards the coffee area

75 Staying up in front of Having a coffee

the coffee machine.

Sitting and having

the coffee

25 Standing up and walking Walking

until the office of

a colleague

50 Staying up and waiting Visiting a colleague

for a colleague

30 Walking towards Walking

the meeting room

100 Seated in the meeting room Having a meeting

40 Standing up and walking Walking

back to the work-desk

100 Seated and typing Working at the desk

TABLE II

PERCENTAGE OF MISCLASSIFIED SAMPLES

Mean (%) St. Deviation (%)

FRBC 13.8 4.7

FFSM1 1.2 0.2

FFSM2 1.5 0.7

FFSM2 is able to absorb and correct the errors produced by

the FRBC due to the high variability in the WiFi signal. Note

how the error is dramatically reduced from 14 to 1.5%.

Figure 5 plots the system output for the worse trial of our

experiments, the one yielding the largest percentage of error.

The figure is made up of three pictures. The first one (at the

top) illustrates in the vertical axis each component of the state

activation vector S[t], while its activation value is printed

by means of the gray intensity (black means one and white

means zero). The picture below plots the output vector Y [t]
obtained from the output function g, i.e. the state which has

had the maximum average degree of activation over the last

one second. Finally, the picture at the bottom represents the

expected output vector Y [t], i.e., the right output of the FFSM

at each instant of time defined in our experiment (as detailed

in Table I). As it can be appreciated, most errors correspond

to the situations of Having a coffee and Visiting a colleague.

Indeed, it seems that the user was slightly moving while

waiting for the coffee and for his colleague. In consequence,

the state Walking is activated for a few seconds.

VI. CONCLUSIONS

In this paper we have described a system able to detect

some simple tasks carried out by a human in a usual working

day. The main contributions can be summarized as follows:
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Fig. 5. System output (human activity recognition)

(1) the FRBC is mainly based on automatically induced

knowledge yielding the approximated location of the user;

(2) the FFSMs allow the designer to introduce constraints in

the model based on the available expert knowledge about the

activity states; (3) they also allow to fuse data from different

sources and to compensate the partial errors, with the aim

of producing a robust, reliable and easily understandable

activity recognition module; and (4) the whole system is quite

interpretable because it comprises several sets of linguistic

variables and rules. In the future we will extend our model

with the aim of detecting more complex human activities.
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