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1. Introduction

In Cano et al. (2022), we have studied local solutions of first order autonomous algebraic ordinary 
differential equations (shortly AODEs). Therein we prove that every fractional power series solution of 
such equations is convergent, and an algorithm for computing these solutions is provided. In Cano et 
al. (2021), we generalized these results to the case of systems of higher order autonomous AODEs in 
one unknown function whose associated algebraic set is of dimension one, i.e. the algebraic set is a 
finite union of curves and, maybe, points. Here, in the current paper, we show that every component 
of a fractional power series solution vector of a system of higher order autonomous AODEs in several 
unknown functions, with the expected dimension, is convergent. In Denef and Lipshitz (1984) it is 
shown that for general systems of AODEs the existence of non-constant formal power series solutions 
can not be decided algorithmically. Nevertheless, for the systems treated in the paper and formal 
Puiseux series solutions, this undecidability property does not hold. Moreover, all algebraic solutions 
can be computed algorithmically.

We follow the idea in Cano et al. (2021) and triangularize the given system and perform differen-
tial elimination. In contrast to Cano et al. (2021), we use in the current paper the so-called Thomas 
decomposition (see e.g. Robertz (2014); Bächler et al. (2012)). In the literature there are several other 
methods to triangularize differential systems and to obtain resolvent representations of them, see for 
instance Cluzeau and Hubert (2003); Boulier et al. (1995) and references therein, but the Thomas 
decomposition seems to be the most adequate and direct method for our reasonings.

In the Thomas decomposition of the systems under investigation, we obtain subsystems involving 
the unknown functions and only one derivative of one of the functions. In the case where the first 
solution component of such a subsystem is an algebraic Puiseux series, the subsystem can be further 
simplified in order to obtain subsystems involving only the unknown functions. As a consequence, all 
solution components are algebraic and for every component of a possible solution its minimal poly-
nomials can be found. In the representation in terms of the minimal polynomials, however, not all 
possible root combinations indeed define a solution of the given differential system. So we alterna-
tively represent the solutions as the triangular set involving no derivatives.

The main algorithm presented here generalizes both the algorithms in Lastra et al. (2015) and Cano 
et al. (2021), in the following sense. In Lastra et al. (2015), rational solutions of systems of au-
tonomous AODEs of dimension one with one differential unknown are computed. Additionally, al-
gebraic and formal Puiseux series solutions for such systems were considered in Cano et al. (2021). 
We present here an extension to systems of this kind involving several differential unknowns.

The structure of the paper is as follows. In Section 2 we recall some necessary concepts such as 
simple systems, the Thomas decomposition and algebraic solutions of first order autonomous AODEs. 
In Section 3 we introduce, and briefly discuss, a notion of dimension when dealing with differen-
tial systems. Following our algebraic definition, which can be computed by just using well-known 
methods from computational Algebraic Geometry, the dimension does not increase when applying al-
gebraic and differential elimination methods for obtaining a Thomas decomposition (see Theorem 3.4). 
Consequently, differential systems of algebraic dimension one decompose into simple subsystems of 
a very specific type, namely into triangular systems involving no derivatives of the unknown func-
tions except for possibly the first derivative of one variable. In Section 4 we study formal Puiseux 
series solutions of such systems with constant coefficients. The main result is Theorem 4.3, where 
it is shown that the Artin approximation theorem for algebraic systems (see Artin (1968)) holds for 
autonomous differential systems of algebraic dimension one. Additionally we show in Theorem 4.4
that the existence of constant and non-constant formal Puiseux series solutions can be decided. In 
Section 4.1 we focus on algebraic solutions. In Theorem 4.9 is shown that all algebraic solutions of 
systems of autonomous AODEs of algebraic dimension one can be given by a finite number of simple 
systems involving no derivatives. Alternatively to the representation by simple systems, the algebraic 
solutions can be represented by their minimal polynomials and Proposition 4.10 gives a degree bound 
on them. In Section 5, by using the algorithms in Cano et al. (2021); Bächler et al. (2012), we derive 
an algorithm for determining all algebraic solutions of the original system. This is also illustrated by 
examples.
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2. Preliminaries

In this section we first recall the notion of simple systems and Thomas decomposition in a form 
that is adapted to systems of ordinary differential equations. For further details we refer to Robertz 
(2014). Afterwards we recall some results on algebraic solutions of first order autonomous AODEs. 
We follow the work Aroca et al. (2005), where the authors give a necessary and sufficient condition 
on algebraic general solutions of such equations. They indicate how to use these results in order to 
compute all algebraic solutions. We need some results that are stated in Aroca et al. (2005) without 
an explicit proof. For the sake of completeness, we present detailed proofs of them.

2.1. Algebraic and differential Thomas decomposition

Let K be a field of characteristic zero and K [z0, . . . , zm] the polynomial ring in m + 1 indetermi-
nates with ordering z0 < · · · < zm . For F ∈ K [z0, . . . , zm] \ K we denote by lv(F ) the leading variable of 
F with respect to <. An algebraic system is given by

S = {F1 = 0, . . . , F M = 0, U1 �= 0, . . . , U N �= 0}, (2.1)

where Fi , U j ∈ K [z0, . . . , zm] are polynomials. Moreover, let L ⊇ K be a field extension and let us 
denote by L the algebraic closure of L. For given S ⊂ K [z0, . . . , zm], we introduce the set

VL(S) := VL({F1, . . . , F M}) \
⋃

1≤i≤N

VL({Ui}) ⊆ L
m+1

,

where VL(�) is the zero set defined by the polynomials in �. Each non-constant polynomial is 
considered recursively as a univariate polynomial in its leading variable with coefficients that are uni-
variate polynomials in lower ranked indeterminates, etc. Correspondingly, a sequence of projections is 
defined by

L
m+1 πm−→ L

m πm−1−→ L
m−1 πm−2−→ . . .

π1−→ L

(z0, . . . , zm) 	−→ (z0, . . . , zm−1) 	−→ (z0, . . . , zm−2) 	−→ . . . 	−→ z0

The initial init(F ) of a non-constant polynomial F is the coefficient of the highest power of lv(F ) in F , 
which is a polynomial in indeterminates that are ranked lower than lv(F ). Similarly, the discriminant
of F is also defined with respect to lv(F ).

Definition 2.1. The algebraic system S is said to be simple (with respect to <) if

1. the polynomials F1, . . . , F M , U1, . . . , U N are not in K and have pairwise distinct leading variables;
2. the initial and discriminant of each of these polynomials (say, with leading variable z j+1) do not 

admit roots (a0, . . . , a j) ∈ L
j+1

in (π j+1 ◦ . . . ◦ πm)(VL(S)).

An algebraic Thomas decomposition of a system S as in (2.1) is a finite collection of (algebraic) 
simple systems Si such that

VL(S) =
⋃̇

VL(Si),

where ∪̇ denotes the disjoint union, see (Robertz, 2014, Definition 2.2.10).
Now let K be a differential field of characteristic zero, endowed with the derivation ′ = d/dx, 

and consider the differential polynomial ring K {y1, . . . , yn} in differential indeterminates y1, . . . , yn

representing unknown functions of x. In other words, we consider the polynomial ring over K in y1, 
. . . , yn and all their derivatives y′

1, y′′
1, . . . , y′

n , y′′
n , . . . , which are linearly ordered by the ranking

y1 < y′
1 < y′′

1 < . . . < y2 < y′
2 < y′′

2 < . . . < yn < y′
n < y′′

n < . . . (2.2)
3
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(more generally, any ranking on the differential polynomial ring K {y1, . . . , yn} is assumed to satisfy 
y(l)

j < y(k)
j whenever k > l.) Then for any differential polynomial F ∈ K {y1, . . . , yn} \ K its leading 

variable lv(F ) (with respect to <) and its initial init(F ) are defined as above. The separant sep(F ) of 
F is defined as the partial derivative of F with respect to lv(F ), which is also the initial of any proper 
derivative of F .

Let F , G ∈ K {y1, . . . , yn} \ K . Then F can be reduced modulo G if the leading variables of F and G

involve the same differential indeterminate, say, lv(F ) = y(k)
j and lv(G) = y(l)

j , and if k > l or k = l and 

the degree dF = deg(F , y(k)
j ) of F in y(k)

j is greater than or equal to the degree dG = deg(G, y(k)
j ). In 

this case a (differential) pseudo-reduction of F modulo G is possible as follows.

• If k = l, then let

R = init(G) F − init(F ) (y(k)
j )dF −dG G.

• If k > l, then let

R = sep(G) F − init(F ) (y(k)
j )dF −1G(k−l).

Then R is either constant or has leading variable lv(R) = lv(F ) and degree in lv(F ) less than dF or has 
leading variable lv(R) ranked lower than lv(F ). If none of the above reduction steps can be performed, 
then F is said to be (differentially) reduced modulo G .

Let G1, . . . , Gr ∈ K {y1, . . . , yn} \ K (typically with pairwise distinct leading variables). Iterated 
pseudo-reduction of F modulo each of the polynomials G1, . . . , Gr yields, after finitely many steps, a 
differential polynomial R , called (differential) pseudo-remainder of F modulo G1, . . . , Gr , that is reduced 
modulo G1, . . . , Gr . Taking the recursive representation of (differential) polynomials into account, 
pseudo-reductions similar to the ones defined above may be applied to ensure that all coefficients of 
R and their coefficients, etc., are (differentially) reduced modulo G1, . . . , Gr as well. If we would like 
to emphasize this property, we call R completely reduced modulo G1, . . . , Gr .

A differential system is given by

S = {F1 = 0, . . . , F M = 0, U1 �= 0, . . . , U N �= 0}, (2.3)

where F1, . . . , F M , U1, . . . , U N ∈ K {y1, . . . , yn} are differential polynomials.

Definition 2.2. The differential system S is said to be simple (with respect to <) if

1. S is simple as an algebraic system;
2. each Fi is reduced modulo F1, . . . , Fi−1, Fi+1, . . . , F M ;
3. each U j is reduced modulo F1, . . . , F M .

If Fi and U j in (2) and (3), respectively, are completely reduced modulo F1, . . . , Fi−1, Fi+1, . . . , F M

and modulo F1, . . . , F M , respectively, then we call S a simple differential system with completely reduced 
equations and inequations.

Let L be a differential extension field of K . The solutions in L of the system of differential equations 
{F1 = 0, . . . , F M = 0}, fulfilling the inequations in S , will be denoted by SolL(S).

A (differential) Thomas decomposition (Robertz, 2014, Algorithm 2.2.56) of a system (2.3) is a finite 
collection of simple (differential) systems Si such that

SolL(S) =
⋃̇

SolL(Si). (2.4)

Simple (differential) systems are formally integrable in the sense that they incorporate all integrability 
conditions for formal power series solutions.
4
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The computation of a Thomas decomposition of a differential system can be understood as an it-
eration of two phases (which can also be interwoven as described in Bächler et al. (2012)). The first 
phase achieves simplicity in the algebraic sense by applying Euclidean division with case distinctions 
so as to ensure the triangular shape and that polynomials have non-vanishing initials and discrim-
inants. Splittings of the systems arise from these case distinctions. In the second phase, differential 
pseudo-reductions are applied in order to ensure the remaining conditions in Definition 2.2. When 
non-zero pseudo-remainders are obtained, this process has to be restarted.

In the proof of Theorem 3.4, we will use this approach. More details can be found in Robertz 
(2014).

Implementations of the algebraic and differential Thomas decomposition methods have been de-
veloped by T. Bächler and M. Lange-Hegermann. The implementation for differential systems has been 
incorporated into Maple’s standard library since Maple 2018 and was also published in the Computer 
Physics Communications library Gerdt et al. (2019).

2.2. Algebraic solutions of first order autonomous AODEs

Let K be an algebraically closed field of characteristic zero. Let K 〈〈x〉〉 be the field of formal Puiseux 
series expanded around any x0 ∈ K or around infinity. Since the equations and systems of consider-
ation are invariant under translation of the independent variable, we can assume without loss of 
generality that the formal Puiseux series are expanded around zero or around infinity such as in Cano 
et al. (2021).

In this subsection we consider a subclass of formal Puiseux series, namely algebraic series. These 
are y(x) ∈ K 〈〈x〉〉 such that there exists a non-zero Q ∈ K [x, y] with Q (x, y(x)) = 0. Note that since 
the field of formal Puiseux series is algebraically closed, all algebraic solutions can be represented as 
(formal) Puiseux series. In Aroca et al. (2005) it is stated, without an explicit proof, that if there exists 
one (non-constant) algebraic solution of a first order autonomous AODE, then all of them are algebraic. 
For the convenience of the reader we provide a complete proof of this fact (see Theorem 2.4) and 
additionally show that the minimal polynomials are equal up to a shift and the multiplication with a 
constant (Theorem 2.6).

For dx, dy ∈N , we say that a formal Puiseux series y(x) ∈ K 〈〈x〉〉 is (dx, dy)-algebraic if and only if 
y(x) is algebraic over K (x) with a minimal polynomial Q (x, y) ∈ K [x, y] such that

deg(Q , x) ≤ dx, deg(Q , y) ≤ dy .

Rational functions y(x) = f (x)
g(x) ∈ K (x) \ {0} are (dx, 1)-algebraic, where gcd( f , g) = 1 and dx is the 

maximum of the degrees of f (x) and g(x), since they have the minimal polynomial

Q (x, y) = g(x) y − f (x).

Lemma 2.5 in Aroca et al. (2005) can be rewritten as follows.

Lemma 2.3. Let dx, dy > 0. Then there exists an autonomous differential polynomial G ∈ K {y} of order less or 
equal to (dx + 1)(dy + 1) − 1 such that for any y(x) ∈ K 〈〈x〉〉, y(x) is (dx, dy)-algebraic over K (x) if and only 
if y(x) ∈ SolK 〈〈x〉〉(G).

Theorem 2.4. Let F ∈ K [y, y′] be an irreducible polynomial. Let y(x) ∈ K 〈〈x〉〉 be a non-constant algebraic 
solution of the differential equation F (y, y′) = 0. Then all non-constant formal Puiseux series solutions of 
F (y, y′) = 0 are algebraic over K (x).

Proof. Let Q (x, y) ∈ K [x, y] be the minimal polynomial of y(x) and let G ∈ K [y, . . . , y(d)], where 
d = (deg(Q , x) + 1)(deg(Q , y) + 1) − 1, be as in Lemma 2.3. Then we can compute the differential 
pseudo-remainder of G with respect to F
5
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R(y, y′) = I(y)k1 S(y, y′)k2 G −
∑

0≤i≤d−1

Gi F (i), (2.5)

where I = init(F ) ∈ K [y], S = sep(F ) ∈ K [y, y′], Gi ∈ K {y}, k1, k2 ∈ N and deg(R, y′) < deg(F , y′). 
By plugging y(x) into equation (2.5), we obtain that R(y(x), y′(x)) = 0. Let us show that R is the 
zero-polynomial. Assume that R has positive degree in y′ , otherwise R depends only on y and the 
statement follows. Consider the resultant

H(y) = res(F , R, y′) = A1(y, y′) F (y, y′) + A2(y, y′) R(y, y′)

for some A1, A2 ∈ K [y, y′] with deg(A1, y′) < deg(R, y′), deg(A2, y′) < deg(F , y′). Since H(y(x)) = 0
and y(x) is non-constant, H is the zero polynomial. Because F is an irreducible polynomial, F divides 
A2 or R , which is a contradiction to the degree conditions. Hence, R(y, y′) = 0. Now let ȳ(x) be a 
non-constant Puiseux series solution of the differential equation F (y, y′) = 0. Substituting ȳ(x) into 
equation (2.5),

I( ȳ(x))k1 S( ȳ(x), ȳ′(x))k2 G( ȳ(x), . . . , ȳ(d)(x)) = 0.

Similar as before, since ȳ(x) is non-constant and F is irreducible, it follows that the first two factors 
are non-zero and ȳ(x) is a solution of G = 0. Then the statement follows from Lemma 2.3. �
Lemma 2.5. Let F ∈ K [y, y′] be an irreducible polynomial. Let y1(x), y2(x) be non-constant algebraic solu-
tions of the differential equation F (y, y′) = 0 and let Q 1, Q 2 ∈ K [x, y] be their minimal polynomials. Then 
there is c ∈ K such that

Q 1(x, y) = Q 2(x + c, y).

Proof. From Theorem 3.4 in Aroca et al. (2005) we know that

d = deg(Q i, x) = deg(F , y′).
For the proof we need y0 ∈ K such that all curve points p0 = (y0, p0) ∈VK (F ) and (x0, y0) ∈VK (Q i), 
for i ∈ {1, 2}, are somehow generic points. To be precise, let y0 ∈ K be such that the number of 
different roots of F (y0, z) ∈ K [z] and of Q 1(x, y0), Q 2(x, y0) ∈ K [x] are maximal, namely equal to d. 
Note that by the irreducibility of F and Q i , there are only finitely many exceptional values for y0 ∈ K
where this is not fulfilled. Let p1, . . . , pd ∈ K , x1, . . . , xd ∈ K and x′

1, . . . , x
′
d ∈ K be the distinct roots of 

P (y0, z), Q 1(x, y0) and Q 2(x, y0), respectively. Centered at (x j, y0) ∈ VK (Q 1), for j ∈ {1, . . . , d}, we 
can compute by the Newton polygon method for algebraic equations the Puiseux expansions. Since 
every point (x j, y0) ∈VK (Q 1) is regular, the expansion is unique and a formal power series

ϕ j(x) = y0 +
∑
k≥1

a j,k(x − x j)
k.

Moreover, from (Aroca et al., 2005, Lemma 2.4) it follows that ϕ j(x) are solutions of the differential 
equation F (y, y′) = 0. In particular,

F (ϕ j(x j),ϕ
′
j(x j)) = F (y0,a j,1) = 0.

By the choice of y0, {a1,1, . . . , ad,1} = {p1, . . . , pd}. Similarly, for Q 2 and its Puiseux expansions

ψ j(x) = y0 +
∑
k≥1

a′
j,k(x − x′

j)
k

we obtain {a′
1,1, . . . , a

′
d,1} = {p1, . . . , pd}. Without loss of generality we can assume that a1,1 = p1 =

a′
1,1. Since F is independent of x and Cauchy-Kovalevskaya’s Theorem is applicable, because (y0, p1)

is a regular curve point with ∂ F
∂z (y0, p1) �= 0, all coefficients a1,k = a′

1,k coincide and
6



J. Cano, S. Falkensteiner, D. Robertz et al. Journal of Symbolic Computation 114 (2023) 1–17
y(x) = y0 +
∑
k≥1

a1,k xk

is the unique solution of the differential equation F (y, y′) = 0 with the initial condition (y(0),

y′(0)) = (y0, p1) centered around the origin. Now the irreducible polynomials Q̄ 1(x, y) = Q 1(x +
x1, y) and Q̄ 2(x, y) = Q 2(x + x′

1, y) have the common root y(x), which is only possible if they divide 
each other. Since minimal polynomials are monic, the statement follows for c = x′

1 − x1. �
Theorem 2.6. Let F ∈ K [y, y′] be irreducible and let y(x) be a non-constant algebraic solution of the differen-
tial equation F (y, y′) = 0 with minimal polynomial Q ∈ K [x, y]. Then all non-constant formal Puiseux series 
solutions of the differential equation F (y, y′) = 0 are algebraic and given by Q (x + c, y), where c ∈ K .

Proof. First let us prove that, for c ∈ K , all roots of Q (x + c, y) are indeed solutions of the differential 
equation F (y, y′) = 0. The pseudo-remainder of F with respect to Q is

R(x, y) = I(x)k1 S(x, y)k2 F (y, y′) − A1 Q (x, y) − A2 Q ′(x, y, y′)

where I = init(Q ) ∈ K [x], S = sep(Q ) ∈ K [x, y], A1, A2 ∈ K [x, y, y′], k1, k2 ∈ N and deg(R, y) <
deg(Q , y). Since Q is irreducible with the root y(x), R is the zero-polynomial (compare to the proof 
of Theorem 2.4). In the above equation, substitute x by x + c and set Q̄ (x, y) = Q (x + c, y). Note that 
Q̄ ′(x, y, y′) = Q ′(x + c, y, y′) and the initial Ī and the separant S̄ of Q̄ are I(x + c) and S(x + c, y), 
respectively. Then

0 = Ī(x)k1 S̄(x, y)k2 F (y, y′) − Ā1 Q̄ − Ā2 Q̄ ′,
where Ā1(x, y, y′) = A1(x + c, y, y′), Ā2(x, y, y′) = A2(x + c, y, y′). Let ȳ(x) be a non-constant root of 
Q̄ . Hence, Q̄ ′(x, ȳ(x), ȳ′(x)) = 0, Ī(x) ̄S(x, ȳ(x)) �= 0 and consequently, F ( ȳ(x), ȳ′(x)) = 0. The converse 
direction is Lemma 2.5. �
3. Algebraic-geometric dimension of differential systems

Let K be an algebraically closed field of characteristic zero, considered as differential field of con-
stants under the derivation ′ , and let L be a differential extension field of K . For n ≥ 1 we denote by 
L{y1, . . . , yn} the differential polynomial ring in the indeterminates y1, . . . , yn . We consider systems 
of algebraic ordinary differential equations in several differential indeterminates of algebraic dimen-
sion equal to one in the following sense.

Definition 3.1. Let F1, . . . , F M , U1, . . . , U N ∈ L[y1, . . . , y
(m1)
1 , . . . , yn, . . . , y(mn)

n ] be differential polyno-

mials effectively depending on y(m1)
1 , . . . , y(mn)

n for some m1, . . . , mn ∈ N . Then we define the (alge-
braic) dimension of the corresponding system

S = {F1 = 0, . . . , F M = 0, U1 �= 0, . . . , U N �= 0} (3.1)

as the dimension of VL(S) ⊂ L
m1+···+mn+n

(see Subsection 2.1 for the precise definition of VL(S)).

In what follows we often let L = K (x) with ′ = d/dx. In that case we would not consider sys-
tems (3.1) with equations or inequations involving only x.

Example 3.2. The differential systems {y′ 2
1 + y3

2 = 0, 2y1 − y′
1 y2 = 0, y1 �= 0} and {y′ + x = 0} have 

algebraic dimension one, whereas the system {y′ + y = 0, y′′ �= 0} has algebraic dimension two.

Let us remark that VL(S) may be a strict subset of VL({F1, . . . , F M}).
Note that our definition of dimension is purely algebraic and does not correspond to notions of 

differential dimension presented, e.g., in Ritt (1950) or Lange-Hegermann (2014). In particular, it is 
7
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not necessary to consider the differential ideal generated by S nor its set of generic solutions. As 
Example 3.5 shows, there are some systems which have algebraic dimension equal to one, but their 
differential dimension is bigger.

Remark 3.3. There are several methods for computing the dimension of an algebraic set, which 
makes it easy to verify an assumption on the dimension imposed on a system (3.1). For example, 
for a given system S as in (3.1), an algebraic Thomas decomposition S1, . . . , Sr of S can be com-
puted (cf., e.g., (Robertz, 2014, Subsection 2.2.1)). The dimension of VL(Si) is the difference of the 
dimension of the ambient affine space and the number of (distinct) leading variables of the equa-
tions in Si . Then the dimension of VL(S) is the maximum of the dimensions of the VL(Si). Note 
that each system is a finite set of equations and inequations, so that only finitely many indetermi-
nates occur, and for our purposes, the coordinate ring of the ambient affine space is of the form 
K [y1, . . . , y(m1)

1 , . . . , yn, . . . , y(mn)
n ] for certain m1, . . . , mn ∈N .

We are going to explain, in the following theorem, how the algebraic dimension is affected by the 
construction of a differential Thomas decomposition. The resulting simple differential systems may 
refer to different ambient affine spaces in general.

Theorem 3.4. Let S be a differential system as in (3.1), of algebraic dimension d. Then there exists a Thomas 
decomposition of S (with respect to <) with completely reduced equations and inequations whose simple 
differential systems all have algebraic dimension less than or equal to d.

Proof. We recall that a Thomas decomposition of a differential system S (consisting of ordinary dif-
ferential polynomials) can be obtained as follows. We repeat (if necessary) two stages, namely the 
computation of an algebraic Thomas decomposition and differential pseudo-reductions, in a loop. In 
the first stage, iterated Euclidean pseudo-reduction is applied to pairs of left hand sides of equations 
and inequations of the system, in order to obtain a system that is simple in the algebraic sense (cf. 
Definition 2.1). In general this process requires case distinctions so as to ensure non-vanishing (on the 
solution set of the system) of initials and discriminants of the polynomials involved, which leads to 
a splitting of the system into subsystems, whose solution sets form a partition of the solution set of 
the original system. Let S1, . . . , Sr be the resulting (sub)systems, which are simple in the algebraic 
sense. Due to the above mentioned partition of the solution set of S , if S has algebraic dimension d, 
then each Si has algebraic dimension at most d (in the same ambient affine space as for S).

For each system Si obtained so far, the second stage applies differential pseudo-reductions modulo 
the equations in Si as explained in Subsection 2.1, so as to work towards a simple differential system 
with completely reduced equations and inequations. Pseudo-reductions with respect to the greatest 
variable (with respect to <) are performed first. In this step of our reasoning we may consider reduc-
tions modulo proper derivatives of equations G = 0 in Si only. Let Coord(Si) be the set of coordinates 
of the ambient affine space for Si , say, Coord(Si) = {y1, . . . , y

(m1)
1 , . . . , yn, . . . , y(mn)

n }, and let LV=(Si)

be the set of leading variables of equations in Si . The pseudo-remainder R of a reduction of F modulo 
G , where F = 0 and G = 0 are equations in Si , is either zero or not.

If R is zero, then F = 0 is omitted from Si . The leading variable of F may occur in equations 
of Si whose leading variables are ranked higher than lv(F ) and possibly in inequations. Differential 
pseudo-reductions modulo G = 0 eliminate lv(F ) from Si altogether, because any proper derivative of 
G has degree one in its leading variable. We call the resulting system S̃i . The cardinality |LV=(S̃i)|
is |LV=(Si)| − 1 and |Coord(S̃i)| < |Coord(Si)|. Hence, the algebraic dimension of S̃i is the same or 
smaller as that of Si .

If R is a non-zero element of L, then the system Si is inconsistent (as differential system) and is 
discarded.

Otherwise R is a differential polynomial with a leading variable lv(R) that is ranked lower than 
lv(F ). After elimination of lv(F ) from Si (using G) as described above and replacing F = 0 by R = 0, 
we obtain a new system S̃i with |Coord(S̃i)| < |Coord(Si)|. The indeterminate lv(R) is certainly an 
element of Coord(Si), but either lv(R) is an element of LV=(Si) or not. If not, then |LV=(S̃i)| =
8
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|LV=(Si)| so that the algebraic dimension of the system drops. If lv(R) is an element of LV=(Si), then 
the algebraic dimension either does not change or drops.

For differential reductions of inequations F �= 0 modulo (proper derivatives of) equations G = 0 in 
Si we have a similar case distinction. If the pseudo-remainder R is zero, then the system is incon-
sistent and is discarded. If R is a non-zero element of L, then the inequation F �= 0 is omitted from 
Si . Otherwise R is a differential polynomial with a leading variable lv(R) that is ranked lower than 
lv(F ). In both of these cases, after elimination of further occurrences of lv(F ) in Si , for the resulting 
system S̃i it holds that |Coord(S̃i)| < |Coord(Si)|. As a consequence, the algebraic dimension of the 
system drops at least by one as well, because LV=(Si) = LV=(S̃i).

If any differential reduction was performed on a system Si we start over with the modified system 
S̃i and compute an algebraic Thomas decomposition of it, where the ambient affine space may now 
be different to the one for the original system S . This step may lead to further splittings. Differential 
pseudo-reduction might have to be performed again, etc.

This loop is a special case for ordinary differential polynomials of the Thomas Algorithm and it 
terminates with finitely many simple differential systems after finitely many steps. �
Example 3.5. Let S = {F1 = z′ 2 + z = 0, F2 = yz′ = 0} be a system of autonomous AODEs, defined 
over K = C. Let us check that S has algebraic dimension one. For that we compute an algebraic 
Thomas decomposition of S with respect to y < z < z′:

S̃1 = {y = 0, z′2 + z = 0}, S̃2 = {z = 0, z′ = 0, y �= 0},
which are of dimension one because the set of leading variables has two elements. A differential 
Thomas decomposition is given by

S1 = {y = 0, z′2 + z = 0, z �= 0}, S2 = {y = 0, z = 0}, S3 = {z = 0, y �= 0}.
Note that S3 is of dimension two in C[y, z, z′], but this does not contradict Theorem 3.4 because S3
is, seen as independent system, of algebraic dimension one.

In the following we show that, if the given differential system is of algebraic dimension one, 
the construction of a differential Thomas decomposition results in simple systems of a very particular 
form. This leads to results on convergence and on the computation of algebraic solutions (cf. Section 4
and Section 4.1.)

Proposition 3.6. Let S be a differential system as in (3.1) and let the ranking < on L{y1, . . . , yn} be defined 
as in (2.2). If S is simple (with respect to <) and of algebraic dimension at most one, then it is of one of the 
following types:⎧⎪⎪⎨

⎪⎪⎩

Gs(y1, . . . , ys) = 0, s ∈ {1, . . . , t − 1},
Gt(y1, . . . , yt, y′

t) = 0,

Gs(y1, . . . , yt, y′
t, yt+1, . . . , ys) = 0, s ∈ {t + 1, . . . ,n},

U (y1, . . . , yt) �= 0,

(I)

for a unique t ∈ {1, . . . , n}, where lv(Gt) = y′
t ;{

Gs(y1, . . . , ys) = 0, s ∈ {1, . . . ,n} \ {t},
U (y1, . . . , yt) �= 0,

(II)

for a unique t ∈ {1, . . . , n};
{

Gs(y1, . . . , ys) = 0, s ∈ {1, . . . ,n}, (III)

where, in each of the systems (I), (II), (III), for all s in the admissible range, we have Gs ∈ L[y1, . . . , ys] with 
either lv(Gs) = ys or Gs is the zero polynomial and all other equations in the system are independent of ys, 
and U is a non-zero element of L or U ∈ L[y1, . . . , yt] with lv(Ut) = yt .
9
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Proof. Since S is of algebraic dimension at most one, there exist a minimal subset {z1, . . . , zq} of 
{y1, . . . , yn}, say, of cardinality q, and non-negative integers m1, . . . , mq such that all equations and 
inequations of S are elements of L[z1, . . . , z

(m1)
1 , . . . , zq, . . . , z

(mq)
q ] \ L and VL(S) ⊂ L

m1+···+mq+q
is of 

dimension at most one.
Considered as an algebraic system, S admits solutions

(η1,0, . . . , η1,m1 , η2,0, . . . , η2,m2 , . . . , ηq,0, . . . , ηq,mq ) ∈ L
m1+···+mq+q

,

where the coordinates of the affine space are arranged in accordance with the ranking (2.2). By sim-
plicity of S , every solution is obtained as follows (cf. also (Robertz, 2014, Remark 2.2.5)). Suppose 
that all coordinates of a solution preceding ηk,l are already determined. If there is an equation G j = 0

in S with lv(G j) = z(l)
k and degree d in lv(G j), then there are exactly d different ηk,l ∈ L such that 

G j(η1,0, . . . , ηk,l) = 0, because the initial and discriminant of the polynomial G j in lv(G j) do not van-
ish when evaluated at the preceding coordinates, and L is algebraically closed. Similarly, if there is an 
inequation G j �= 0 in S with lv(G j) = z(l)

k and degree d in lv(G j), then all ηk,l ∈ L except d many sat-
isfy G j(η1,0, . . . , ηk,l) �= 0. If there is neither an equation nor an inequation in S with leading variable 
z(l)

k , then ηk,l ∈ L can be chosen arbitrarily.
We enumerate the differential polynomials G j occurring as left hand sides of equations and in-

equations in S in increasing order with respect to their pairwise distinct leading variables lv(G j). 
Since in S each equation is differentially reduced modulo the other equations and each inequation 
is differentially reduced modulo the equations, for every k ∈ {1, . . . , q} there exists at most one non-
negative integer mk ≤ mk such that z(mk)

k is the leading variable of some equation G j = 0, and if mk

exists and z(nk)

k is the leading variable of an inequation in S , then nk < mk .
Suppose that all m1, . . . , mq exist, i.e., for all k ∈ {1, . . . , q} some equation in S has leading variable 

z(mk)

k . If m1 = m1, . . . , mq = mq , then, since S is of algebraic dimension at most one, either m1 = . . . =
mq = 0, in which case S is a system of type (III), or m j = 1 for a unique j ∈ {1, . . . , q} and mk = 0 for 
all k �= j, in which case S is a system of type (I) with t = j. On the other hand, if m j < m j for some 
j ∈ {1, . . . , q}, then no equation in S involves z(m j )

j , and since S is of algebraic dimension at most one 
and all m1, . . . , mq exist, S contains no inequation and is of type (III).

Now suppose that m j does not exist. According to the recursive solution procedure recalled above, 
the coordinates η j,0, η j,1, . . . , η j,m j attain arbitrary values in L, possibly with the exception of finitely 

many values if S contains an inequation with leading variable z
(n j )

j . Since S is of algebraic dimension 
at most one, we conclude that at most one m j may not exist, and in that case we have m j = 0, and 
S is of type (II) with t = j. �

Note that a differential system of type (I) or (II) or (III) in Proposition 3.6 is of algebraic dimen-
sion 1,1 or 0, respectively. In Example 3.5, the systems S1, S2 and S3 are of type (I), (III) and (II), 
respectively.

Corollary 3.7. Let S be a differential system as in (3.1) and let the ranking < on L{y1, . . . , yn} be defined as 
in (2.2). If S is of algebraic dimension one, then there exists a Thomas decomposition of S (with respect to <) 
each of whose simple differential systems is of one of the types (I), (II) and (III) from Proposition 3.6.

Proof. This is a combination of Theorem 3.4 and Proposition 3.6. �
4. Solutions of differential systems of dimension one

Let S be a differential system as in (3.1) with coefficients in the algebraically closed field K , i.e. 
the differential polynomials in S have constant coefficients. We are interested in formal Puiseux series 
solution vectors
10
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Y (x) = (y1(x), . . . , yn(x)) ∈ K 〈〈x〉〉n

of S , expanded around x0 ∈ {0, ∞}.

Remark 4.1. The components of the solution Y (x) = (y1(x), . . . , yn(x)) ∈ K 〈〈x〉〉n can be assumed to 
have non-negative order. Otherwise, choose I ⊆ {1, . . . , n} as the set of indices where the order is 
negative and perform the change of variable ỹi = 1/yi in S for every i ∈ I . More precisely, let 
{y1, . . . , y

(m1)
1 , . . . , yn, . . . , y(mn)

n } be the ambient space for S and let m = m1 + · · · + mn + n. If the 
differential polynomials F1, . . . , F M ∈ S have some y1, . . . , yn as factors, divide these equations by 
such factors. Then we define for every i ∈ I the mapping

�i : K mi+1 \VK (u0) → K mi+1 \VK (w0); (u0, . . . , umi ) 	→ (w0, . . . , wmi ),

where w0 = 1/u0 and

w j = −u j−1
0 u j + R j(u0, . . . , u j−1)

u j+1
0

for some polynomial R j . Since the equality above is linear in u j , �i is birational. For all i /∈ I let us 
define �i as the identity map on K mi+1. Then the mapping

�(u1,0, . . . , un,mn ) = (�1(u1,0, . . . , u1,m1), . . . ,�n(un,0, . . . , un,mn ))

is birational on K m \ ⋃
i∈I VK (yi). Let us apply � to S and call the resulting system S∗ . The Zariski 

closure of �(VK (S)) is the Zariski closure of VK (S∗). In particular, dim(VK (S)) = dim(VK (S∗)) and 
one may proceed with S∗ instead of S .

In the following we will again impose that the given differential system is of algebraic dimension 
one. This allows to use in particular Proposition 3.6.

Remark 4.2. Clearly, by definition of Thomas decomposition (cf. (2.4)), the set of solution vectors of S
is partitioned into the subsets of solution vectors of the simple differential systems in Proposition 3.6. 
Systems of type (II) or (III) are algebraic systems. Of main interest for our further study of differential 
systems of dimension are systems of type (I).

Following the discussion in Proposition 3.6, the construction of a differential Thomas decompo-
sition of S may eliminate certain differential indeterminates ys in some subsystems Si , see e.g. 
Example 3.5. Then the solutions of Si do not include the components corresponding to the ys and 
when prolonging to a solution of S , these components can be chosen arbitrarily. In the following 
we may speak in this case about the free variables ys . Additionally, for systems of type (II), yt can 
be chosen arbitrarily except for a finite number of constants possibly excluded by the inequation 
U (y1, . . . , yt) �= 0. In this situation we call yt a parametric variable.

In systems Si of the type (III), the components which are not free variables are constants. The same 
holds for the first 1 ≤ s < t components of systems Si of the type (II). The parametric variable yt can 
be chosen (almost) arbitrary. The following components depend on this choice and, for example, if yt

and free variables are chosen constant, every of the remaining components is again constant or a free 
variable. In systems Si is of the type (I), the first 1 ≤ s < t components of a solution are constants 
η1, . . . , ηt−1 ∈ L or a free variable, which might be chosen constant. Plug these values into S in order 
to obtain a system of type (I) where Gt(η1, . . . , ηt−1, yt , y′

t) ∈ L[yt, y′
t ] is the polynomial with lowest 

ranked leading variable. Hence, we may assume occasionally that t = 1.
For showing that the components of the solutions are convergent or algebraic, we may replace the 

components of the free variables in a solution by zero or any other suitable function. A parametric 
variable yt can be substituted by almost every constant and every non-constant suitable function such 
as x. In this case, the next components yt+1(x), yt+2(x), . . . have to be substituted accordingly.
11
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Theorem 4.3. Let K =C. Let S be a differential system as is (3.1), of algebraic dimension one, and let Y (x) =
(y1(x), . . . , yn(x)) ∈ C〈〈x〉〉n be a solution of S . Let N be a non-negative integer. Then there exists a solution 
Ȳ (x) = ( ȳ1(x), . . . , ȳn(x)) of S with convergent components such that Y (x) ≡ Ȳ (x) mod xN .

Proof. By Corollary 3.7, we may restrict our attention to simple systems S̄ of types (I), (II) and (III). 
If Y (x) is a solution of a system of type (II) or (III), the result follows by the Artin approximation 
theorem (see (Artin, 1968, Theorem 1.2)).

In the case that S̄ is of type (I), the components in Y (x) corresponding to the free variables will be 
substituted by its truncations up to order N . For 1 ≤ s < t , the component ys(x) is either a constant or 
corresponds to a free variable. Plugging them into Gt , we obtain the autonomous differential equation 
Ht(yt , y′

t) = Gt(y1(x), . . . , yt−1(x), yt , y′
t) = 0 with leading variable y′

t . Applying (Cano et al., 2022, 
Theorem 11) to Ht(yt , y′

t) = 0, the component yt(x) is convergent. For s > t , let us proof by induction 
that ys(x) is convergent. If ys is a free variable, then ys(x) is convergent. Otherwise, let us consider

Hs(x, ys) = Gs(y1(x), . . . , yt(x), y′
t(x), . . . , ys−1(x), ys) = 0.

Since the system is simple, the leading variable of Hs is ys and, by Puiseux’s Theorem, ys(x) is 
convergent. �

In the proof of Theorem 4.3 we have evaluated the polynomials Gs at Puiseux series in order to 
obtain the equations Hs(x, ys) = 0. In case that yt(x) is algebraic over K (x), these evaluations can be 
performed by using its minimal polynomial which leads to algorithmic computations as we show in 
the following section.

Theorem 4.4. Let S be a differential system as is (3.1), of algebraic dimension one. Then it can be decided 
algorithmically whether S has a formal Puiseux series solution. Moreover, it can be decided whether a formal 
Puiseux series solution with a non-constant component exists.

Proof. By Corollary 3.7, there exists a Thomas decomposition of S into simple systems of the type (I), 
(II) or (III) with the same solution set as S . The third system has constant solutions. There are no 
other formal Puiseux series solutions if and only if it has no free variables (see Remark 4.2). In sys-
tems of type (II), for the first 1 ≤ s < t equations there exist constant solutions η1, . . . , ηt−1. Then any 
non-constant formal Puiseux series yt(x) fulfills the inequality U �= 0. Since the field of formal Puiseux 
series is algebraically closed, the tuple (η1, . . . , ηt−1, yt(x)) can be prolonged to a non-constant solu-
tion (cf. proof of Theorem 4.3).

In the first 1 ≤ s < t equations of systems of the type (I), we again obtain constant solution 
components η1, . . . , ηt−1. The differential equation Gt = 0 has infinitely many non-constant formal 
power series solutions yt(x) (see e.g. Cano et al. (2022)). Take one of them and again prolong 
(η1, . . . , ηt−1, yt(x)) to a non-constant solution.

The system S does not have any solution if and only if all subsystems are inconsistent and 
discarded in the process of computing the Thomas decomposition. Moreover, S has only constant 
solutions if and only if all subsystems in the Thomas decomposition are of type (III) and do not 
involve free variables. �
4.1. Algebraic solutions

The Thomas decomposition of a given differential system S leads to simple subsystems Si with a 
disjoint solution set. In the case where S is of algebraic dimension one, the Si can be assumed to be 
of a specific type (see Proposition 3.6). In this section, after some possible further decomposition of 
the Si and using the results from Section 2.2, we show that the existence of algebraic solutions can 
be decided and, in the affirmative case, all of them can be determined. The algebraic solutions are 
expressed either as a simple system (involving no derivatives) or by their minimal polynomials. In the 
first case, all of the solutions can be recovered whereas in the latter case there might be combinations 
of roots which are not a solution of the given system S .
12
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Lemma 4.5. Let S be a simple system as in (I) with t = 1, let P1 ∈ K (x)[y1] be a polynomial with lv(P1) = y1

and let < be as in (2.2). Then the simple differential systems in any Thomas decomposition of S ∪ {P1 = 0}
with respect to < are of the following type:

{
Hs(x, y1, . . . , ys) = 0, s ∈ {1, . . . ,n} (IV)

where Hs ∈ K (x)[y1, . . . , ys] with either lv(Hs) = ys or Hs is the zero-polynomial and all other polynomials 
are independent of ys.

Proof. Since lv(P1) = y1 is the lowest ranked variable and P1 is already completely reduced mod-
ulo S , the system S ∪ {P1 = 0} is either inconsistent or has algebraic dimension zero. From now on 
we assume the latter.

Let S1, . . . , Sr be the simple subsystems of a Thomas decomposition of S ∪ {P1 = 0} with respect 
to <. During the construction of the Thomas decomposition, the polynomial G1 from (I) was reduced 
by P ′

1, which has degree one in y′
1, and the derivative is eliminated.

Fix i ∈ {1, . . . , r} and let {z1, . . . , zq} be the minimal subset of {y1, . . . , yn} such that the elements 
in Si are in K (x)[z1, . . . , zq]. Since the algebraic dimension of Si is zero, for every s ∈ {1, . . . , q} there 
exists a unique equation Hs = 0 with Hs ∈ K (x)[z1, . . . , zs] and lv(Hs) = zs . Since the set of lead-
ing variables of Si is {z1, . . . , zq}, the system contains only (algebraic) equations and Si is of the 
type (IV). �

Let us note that in Lemma 4.5 we do not necessarily choose P1 to be irreducible.

Corollary 4.6. Let S be a differential system of the type (I) and H be an algebraic subsystem of S of the 
form (IV). Let Y (x) = (y1(x), . . . , yn(x)) ∈ K 〈〈x〉〉n be a solution of H. Then, for every 1 ≤ s ≤ n, the compo-
nent ys(x) is algebraic or ys is a free variable.

Proof. Replace in Y (x) all the components which are not appearing in H by zero and call the result-
ing vector Ỹ (x) = ( ỹ1(x), . . . , ỹn(x)), which is a solution of H, and therefore of S . Since H is simple 
and of algebraic dimension zero, the tower of field extensions

K ⊆ K ( ỹ1(x)) ⊆ · · · ⊆ K ( ỹ1(x), . . . , ỹn(x))

is algebraic. �
Due to Corollary 4.6, we may speak in the following about algebraic solutions instead of formal 

Puiseux series solutions where all components are algebraic. Let us now show that all of the algebraic 
solutions can be found algorithmically.

Lemma 4.7. Let Y (x) = (y1(x), . . . , yn(x)) ∈ K 〈〈x〉〉n be an algebraic solution of a system S as in (I). Then 
there exists a simple algebraic subsystem H of S , of the form (IV), having Y (x) as solution.

Proof. Let us assume that t = 1 (cf. Remark 4.2). The algebraic Puiseux series y1(x) is a solution of 
the differential equation G1(y, y′) = 0 from S . There is a factor F1(y, y′) of the polynomial G1 such 
that y1(x) is a solution of the differential equation F1(y1, y′

1) = 0. Let Q 1(x, y1) ∈ K [x, y1] be the 
minimal polynomial of y1(x). Let H be the algebraic system obtained when applying Lemma 4.5 to 
S∪{Q 1 = 0}. Then, H is among the subsystems derived from the Thomas decomposition of S∪{Q 1 =
0}, and hence H is a simple algebraic subsystem of S of the type (IV) having Y (x) as solution. �

For details regarding the computation of Q 1 figuring in the previous proof we refer to Section 2.2.

Lemma 4.8. Let H = {H1(x, y1), . . . , Hn(x, y1, . . . , yn)} be a simple algebraic subsystem of a differential 
system S of type (I). Then, for c ∈ K , every solution of the system H(c), defined by
13
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{
H̄s(x, y1, . . . , ys) = Hs(x + c, y1, . . . , ys) = 0, s ∈ {1, . . . ,n} ,

is an algebraic solution of S .

Proof. The system H(c) is of the type (IV). By Corollary 4.6, its solutions are algebraic. We need to 
show that the solutions of H(c) are solutions of S . Let P1 ∈ K (x)[y1] be the polynomial used for 
obtaining H (see Lemma 4.5). We may assume that P1 is square-free. Since y1 is the lowest ranked 
variable, the initial of P1 does not vanish on the solution set of S . Define P̄1(x, y1) = P1(x + c, y1)

where c is a new variable with c′ = 0. The reduction steps in the process of obtaining H in a Thomas 
decomposition of S ∪ {P1 = 0} are as follows:

1. Eliminate y′
1 in G1(y1, y′

1) by P ′
1 resulting into the polynomial R1(x, y1).

2. Compute the greatest common divisor of R1 and P1, say T1.
3. Possibly reduce G2, . . . , Gn by T1.

The chain rule implies that elimination of y′
1 in G1(y1, y′

1) by P̄ ′
1 yields R1(x + c, y1). Similarly, as 

x + c can be considered as a new variable, the greatest common divisor of R1(x + c, y1) and P̄1 is 
T1(x + c, y1). Hence, this process results in the simple system H(c) which can be obtained from H
by substituting x by x + c. �
Theorem 4.9. Let S be a differential system as in (3.1), of algebraic dimension one. Then there exist a finite 
number of simple algebraic subsystems Hk of S such that any algebraic solution of S is among the solutions 
of some Hk(c), c ∈ K , which are defined as in Lemma 4.8.

Proof. Let us first construct a set of simple algebraic subsystems Hk of S . By Corollary 3.7, S can be 
decomposed into simple systems of the form (I), (II) and (III). Systems of the second and third type 
are already algebraic systems and we add them.

Let us consider systems S̄ of the type (I) with t = 1. By possibly further splitting systems according 
to the factorization of G1(y1, y′

1), we may additionally assume that G1 in S̄ is irreducible. The differ-
ential equation G1 = 0 might have a non-constant algebraic solution, given by its minimal polynomial 
Q 1 ∈ K [x, y1], or does not have any. In the first case, let Hk be the simple algebraic subsystems 
obtained by a Thomas decomposition of S̄ ∪ {Q 1 = 0}. In the latter case, we discard S̄ . Addition-
ally, compute the constant solutions y1(x) = c of G1 and let Hk be the simple algebraic subsystems 
obtained by a Thomas decomposition of S̄ ∪ {y1 − c = 0}.

Let S̄ be of the type (I) with t > 1. For 1 ≤ s < t , compute the constant solutions ys(x) = cs and 
plug them into S̄ . Now proceed with the differential equation Gt(yt , y′

t) = 0 as above in order to 
obtain a non-trivial minimal polynomial Q t(x, yt) of a non-constant algebraic solution, if it exists, 
and the corresponding simple algebraic subsystems Hk .

Let Y (x) = (y1(x), . . . , yn(x)) be an algebraic solution of S and hence, of a subsystem S̄ . If all 
components of Y (x) are constant, then it is a constant solution of some system S̄ and all of them are 
kept in Hk . So let yt(x) be the first non-constant component. Then, by Theorem 2.6, there exists c ∈ K
such that Q t(x + c, yt(x)) = 0 for the minimal polynomial Q t corresponding to S̄ . By Lemma 4.8, the 
simple algebraic systems of S̄ ∪ {Q t(x + c, y1) = 0} are Hk(−c) and exactly one of them has Y (x) as 
solution. �

Based on Corollary 4.6, an algebraic solution (y1(x), . . . , yn(x)) of a given system S as in (I)
could be alternatively represented by a list of minimal polynomials (Q 1(x, y1), . . . , Q n(x, yn)), called 
a minimal polynomial system of S . The following proposition gives a degree bound on the minimal 
polynomials.

Proposition 4.10. Let S be a differential system as in (I) with an algebraic solution (y1(x), . . . , yn(x)). Then 
there exists a minimal polynomial system (Q 1(x, y1), . . . , Q n(x, yn)) of S . Moreover, every Q s ∈ K [x, ys]
fulfills
14
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degys
(Q s) ≤ (degy1

(G1) + degy′
1
(G1)) degy2

(G2) · · · degyn
(Gn). (4.1)

Proof. Without loss of generality we can assume that t = 1 in S (cf. Remark 4.2). By the primitive el-
ement theorem, there exist minimal polynomials Q 1 ∈ K [x, y1], . . . , Q n ∈ K [x, yn] of y1(x), . . . , yn(x), 
respectively. Using (Cano et al., 2021, Theorem 6), we have for Q 1(x, y1) the degree bound

degy1
(Q 1) ≤ degy1

(G1) + degy′
1
(G1).

Applying the multiplicative formula for the degree to the tower of field extensions, the statement 
follows. �

Let us note that, in contrast to the situation for simple subsystems of the type (IV), not every 
combination of roots of the minimal polynomial system indeed defines a solution as it can be seen in 
Example 5.3.

5. Algorithm and examples

In (Bächler et al., 2012, Algorithm 3.6) an algorithm to derive a Thomas decomposition of a given 
differential system is presented. We refer to this algorithm by ThomasDecomposition. In Section 4 
of Aroca et al. (2005) there is a description of an algorithm that decides whether a given first order 
autonomous AODE F (y, y′) = 0 with an irreducible polynomial F has algebraic solutions and compute 
them in the affirmative case. Let us call this algorithm AlgebraicSolve and let the output be equal to 
the minimal polynomial of an algebraic solution, if it exists, or empty otherwise.

The next algorithm decides whether a system S as in (3.1), with algebraic dimension 1, has alge-
braic solutions and describes all of them in the affirmative case.

Algorithm 1 SimpleSystemSolve.
Input: A system S of algebraic dimension one as in (3.1).
Output: A (finite) union of simple algebraic systems of the form (IV) or (II) with the same algebraic solutions as S .

1: Apply ThomasDecomposition (with respect to the ordering (2.2)) to S and let {Sk} be the simple subsystems.
2: Add simple systems of the type (II) and (III) to the output.
3: for every system Sk of the form (I) do
4: Compute the constant solutions of the first 1 ≤ s < t many components, which are not free variables, and plug them into 

the remaining equations.
5: Compute a factorization of Gt(yt , y′

t ) and decompose Sk into subsystems where Gt is replaced by the respective factor.
6: for every such subsystem of Sk do
7: Check by AlgebraicSolve whether Gt = 0 has an algebraic solution.
8: In the affirmative case, let Q t ∈ K [x, yt ] be the minimal polynomial of such an algebraic solution. Apply ThomasDe-

composition (with respect to the ordering (2.2)) to Sk ∪ {Q t = 0} in order to obtain the simple subsystems of S of 
type (IV) and add them to the output.

9: end for
10: end for

Theorem 5.1. Algorithm 1 is correct.

Proof. Using Proposition 3.6, the formal Puiseux series solutions of S is the disjoint union of the 
solutions of the Sk . Systems Sk of the type (II) and (III) lead to constant solution components, possibly 
depending on a parametric variable, and components which are free variables. Systems of the type (III)
are in particular of the form (IV). The non-constant solutions are derived from Sk of type (I). If such 
a system has an algebraic solution vector, then the algebraic simple subsystems are computed and 
cover all algebraic solutions (see Theorem 4.9).

Then termination follows from the termination of the sub-algorithms and the finite representation 
of their outputs. �

Let us illustrate the previous ideas and results in the following examples.
15
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Example 5.2. Let us consider the system of differential equations of algebraic dimension equal to one 
given by

S =

⎧⎪⎪⎨
⎪⎪⎩

yy′ y′′ + y′3 − yy′′ − y′2 = 0
z3 − 2y′2 + yy′ − 1 = 0
z3 + yy′′ − y′2 = 0
3z2z′ − 4y′ y′′ = 0

(5.1)

The system S has a differential Thomas decomposition (with respect to the ordering y < y′ < z < z′) 
into the single simple system

S1 =
⎧⎨
⎩

y2z3 − 2 = 0
yy′ − 1 = 0
y �= 0

Its ambient affine space is C[y, y′, z] and the leading variables of the equations are z and y′ , respec-
tively. Hence, the algebraic dimension of S1 is again one. The equation yy′ − 1 = 0 has an algebraic 
solution with minimal polynomial Q 1(x, y) = y2 − 2x. This leads to the algebraic solutions given by 
the simple system

{Q 1(x, y) = y2 − 2x, Q 2(x, z) = xz3 − 1},
which are already the minimal polynomials of the solution components.

Example 5.3. Let us consider the system

S =
⎧⎨
⎩

G1 = 8y′3 − 27y = 0
G2 = z5 − y3 = 0
G3 = 5z4z′ − 3y2 y′ = 0

It is already a simple system with ambient affine space C[y, y′, z, z′] and the equations have leading 
variables y′, z and z′ , respectively. Hence, S is indeed of algebraic dimension one.

By direct computation, the solutions of G1(y, y′) = 0 are y1(x) = x3/2, y2(x) = −x3/2, implicitly 
defined by Q 1(x, y) = y2 − x3. From G2(y, z) = 0 we see that z1(x) = ζ x9/10, z2(x) = −ζ x9/10 with 
ζ 5 = 1. By plugging them into G3 = 0, we obtain that (y1(x), z1(x)), (y2(x), z2(x)) are solutions of S , 
but neither (y1(x), z2(x)) nor (y2(x), z1(x)).

Now let us use Algorithm 1. A Thomas decomposition of S (with respect to the ordering y < y′ <
z < z′) is

S1 = {y3 − z5 = 0, 8y′3 − 27y = 0, y �= 0}, S2 = {y = 0, z = 0}.
The algebraic dimension of S1 is one and that of S2 is zero. The equation 8y′ 3 − 27y = 0 has the 
algebraic solutions given by Q 1. A Thomas decomposition of S1 ∪ {Q 1 = 0} is

{Q 1(x, y) = y2 − x3, H2(x, y, z) = z5 − x3 y}.
The corresponding minimal polynomial system is

{Q 1(x, y) = y2 − x3, Q 2(x, z) = z10 − x9}.
In the latter system, not all combinations of roots are indeed solutions of S1 or S .
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