

Programa de Doctorado en

Ingeniería de la Información y el Conocimiento

UNSUPERVISED INTRUSION DETECTION
WITH CROSS-DOMAIN ARTIFICIAL

INTELLIGENCE METHODS

Tesis Doctoral presentada por

RAFAEL SAN MIGUEL CARRASCO

Director:
DR. MIGUEL ÁNGEL SICILIA URBÁN

Alcalá de Henares, 2021

Unsupervised Intrusion Detection with Cross-Domain
Artificial Intelligence Methods

Rafael San Miguel Carrasco

Index of contents
1. Introduction .. 7

1.1. Motivation and objectives ...7
1.2. Target fields ...8

1.2.1. Intrusion detection ..8
1.2.1.1. Challenges ...8
1.2.1.2. Development paths ..9

1.2.2. Fraud detection ...11
1.2.2.1. Challenges ...11
1.2.2.2. Development paths ..11

2. Systematic review ... 13

2.1. Motivation ..13
2.2. Review method ...14

2.2.1. Planning the review ..14
2.2.2. Research questions ...14
2.2.3. Information sources ..15

2.2.3.1. Research databases ..15
2.2.3.2. Additional sources ..15

2.2.4. Search criteria ...16
2.2.5. Inclusion and exclusion criteria ..16
2.2.6. Quality assessment ..17
2.2.7. Data extraction ..18

2.3. Results ...18
2.3.1. Proposed taxonomy ..18
2.3.2. Datasets, feature selection and performance evaluation ...19

2.3.2.1. Datasets ...19
2.3.2.2. Feature selection ...19
2.3.2.3. Performance metrics and evaluation ...20

2.3.3. Detection techniques ...20
2.3.3.1. Neural networks ..20
2.3.3.2. Fuzzy logic ..24
2.3.3.3. Genetic algorithms ..24
2.3.3.4. Artificial Immune Systems ...25
2.3.3.5. Swarm Intelligence ...27
2.3.3.6. Graphs ...27
2.3.3.7. Sequence learning ...28

2.3.3.8. Time-series analysis ..30
2.3.3.9. Reinforcement learning ...30
2.3.3.10. Dimensionality reduction ..30
2.3.3.11. Clustering ..31
2.3.3.12. Multivariate outliers detection ..32
2.3.3.13. Association Rule Learning ..32
2.3.3.14. Other statistical modeling methods ...33

2.3.4. Comparison of techniques ...35
2.3.4.1. Ability to generalize ..35
2.3.4.2. Detection of complex attacks ..35
2.3.4.3. Scalability ...36

2.3.5. Discussion ..37
2.3.6. Conclusions ...38
2.3.7. Limitations of this review ..38
2.3.8. Supporting background research ...39

2.3.8.1. Intrusion detection ..39
2.3.8.2. Fraud detection ..40
2.3.8.3. Alert reduction ..42

3. Materials and methods .. 44

3.1. Research overview ...44
3.1.1. Unsupervised intrusion detection ..44
3.1.2. Supervised fraud detection optimization ..44
3.1.3. Semisupervised intrusion detection ..44
3.1.4. Unsupervised cross-domain malicious behavior detection ...44

3.2. Datasets ...45
3.2.1. UNSW-NB15 ...45
3.2.2. Paysim1 ..46
3.2.3. IoT-23 ...46
3.2.4. Fraud dataset ..46

3.3. Algorithms ..47
3.3.1. Skip-gram modeling ...47
3.3.2. Topic modeling ..48
3.3.3. Neural networks ..48

3.3.3.1. MLP ..48
3.3.3.2. CNN ... ¡Error! Marcador no definido.
3.3.3.3. Deep autoencoders ..49

3.4. Experimental setting ...50

3.4.1. Unsupervised intrusion detection ..50
3.4.1.1. Dataset ...50
3.4.1.2. Feature engineering ...50
3.4.1.3. Neural network design ..51
3.4.1.4. Algorithm reengineering ...52
3.4.1.5. Microbatch building function ...53
3.4.1.6. Distance measurement ..54
3.4.1.7. Visual inspection ...54
3.4.1.8. Performance evaluation criteria ..55
3.4.1.9. Experiment setup ..55

3.4.2. Semisupervised intrusion detection ..56
3.4.2.1. Dataset ...56
3.4.2.2. Feature engineering ...56
3.4.2.3. Feature selection ...57
3.4.2.4. Neural network design ..59
3.4.2.5. Training and detection ..60
3.4.2.6. Performance evaluation criteria ..62

3.4.3. Cross-domain malicious behavior detection ..63
3.4.3.1. Datasets ...63
3.4.3.2. Entity definition ..63
3.4.3.3. Feature engineering ...63
3.4.3.4. Scoring ..64
3.4.3.5. Performance evaluation ..64
3.4.3.6. Training and test datasets ..65
3.4.3.7. Model parametrization ..67

3.4.4. Supervised fraud detection alert optimization ...67
3.4.4.1. Dataset ...67
3.4.4.2. Statement of the problem ..67
3.4.4.3. Feature engineering ...68
3.4.4.4. Architecture design criteria ...69
3.4.4.5. Performance evaluation criteria ..69
3.4.4.6. Training and test datasets ..70
3.4.4.7. Parametrization ...71

4. Results ... 73

4.1. Introduction ...73
4.2. Unsupervised intrusion detection ...73
4.3. Semisupervised intrusion and fraud detection ...75

4.4. Cross-domain malicious behavior detection ...77
4.5. Supervised fraud detection optimization ..81

5. Discussion ... 88

5.1. Introduction ...88
5.2. Unsupervised intrusion detection ...88
5.3. Semisupervised intrusion and fraud detection ...88
5.4. Cross-domain malicious behavior detection ...88
5.5. Supervised fraud detection optimization ..89

6. Conclusions ... 90

6.1. Reduce the dependence on well-known attack patterns through AI ..90
6.2. Cross-domain applications and use cases of AI ..90
6.3. Augment unsupervised intrusion detection with supervised learning90
6.4. Reduce false positive ratio of fraud detection systems ...91
6.5. Research directions ...91

7. References ... 92

8. Appendices .. 114

8.1. UNSW-NB 15 dataset feature set ...114
8.2. Paysim1 dataset ...116
8.3. IoT-23 MC11 dataset ...116

1. Introduction
1.1. Motivation and objectives

Cybercrime is a major concern for corporations, business owners, governments and citizens. Major
incidents are causing significant damage to organizations and consumers, including economic losses,
reputational impact and failure to meet compliance requirements. This trend continues to grow in
spite of increasing investments in security and fraud prevention, public and private sector initiatives
geared towards collaboratively defeating cybercrime, and new regulations pushed from national and
international bodies.

On the other hand, security professionals are equipped with tools, techniques and technologies, each
designed to solve a given problem. However, these resources must be used in combination with
others (layered approach) and effectively orchestrated in order to obtain optimal results. These
solutions heavily rely on existing knowledge about attack and fraud patterns. They are built upon
past incidents and procedures used by attackers to ensure that these methods (or their variants) won’t
succeed in the future once they are deployed in the environment to be protected. They also rely on
human experts to analyze triggered alerts and discard false positives, focusing on those alerts that are
more likely to represent true attacks.

However, as novel attack techniques are developed, with increasing degree of sophistication, existing
expert knowledge quickly becomes obsolete. Also, as more devices and business channels are
monitored for potential intrusions, the volume of events, and the number of false positives becomes
unmanageable for analysts.

The aim of this research work was to target both problems (detecting unknown attacks and reducing
false positive ratio) by leveraging artificial intelligence techniques. Artificial Intelligence was chosen
for two reasons: it exhibits the ability to learn from both data and human knowledge, and it can
potentially generalize.

While the first statement has been extensively demonstrated by the research community, the second
statement (ability to generalize) is still a green field. Artificial General Intelligence (AGI) is even
nowadays a theoretical concept, not a reality.

However, cross-domain applications of artificial intelligence, which sits between applied artificial
intelligence and AGI, looks to be achievable. The goal of this research was to develop means to
solve an existing problem in a given domain (intrusion detection) and then leverage the same
underlying tools (AI) to solve a related problem in a related domain (fraud).

While different in purpose, data nature and volume, and business implications, fraud detection shares
with intrusion detection the aim to detect malicious activity to prevent incidents from occurring. It
also shares the need to go beyond current human expert knowledge and reduce the volume of alerts
that must be reviewed by human experts. These common factors made fraud detection an ideal field
to reuse AI techniques.

Artificial intelligence can learn in a supervised and unsupervised fashion. Depending on the use case,
one paradigm might more suitable than the other. The focus of this research has been placed on
unsupervised techniques to approach the primary problem (intrusion detection), with supervised
techniques becoming helpers for more specific tasks (reducing false positive ratio). Under the
aforementioned context, the objectives of this research were the following:

- Reduce the dependence on well-known attack patterns for effective intrusion detection, by
leveraging AI techniques that can distinguish malicious activity by modeling legitimate
activity with network features.

- Prove that artificial intelligence, while far from AGI, can evolve towards cross-domain
applications and use cases, as long as target domains are related and share some principles
and needs.

- Demonstrate that unsupervised intrusion detection can be augmented by supervised learning,
thus effectively increasing their accuracy.

- Reduce false positive ratio of fraud detection systems by proving that human expertise used
to confirm or discard alerts can be (partially) captured and synthetized by AI, in order to
reduce the volume of alerts that require manual review.

1.2. Target fields
Cybercrime is a fast-growing area of crime which affects both individuals and organizations,
including governments, corporations and non-profit associations (Udo, Bagchi, & Kirs, 2018)
(Tsakanyan, 2017). It has increased globally and jumped by 32 per cent in 2016 (Cybersecurity
Challenges in the Middle East, 2017). It's not only increasing in number of occurrences but also in
cost per incident, which doubles each year (Lukasik, 2000). In fact, global cybercrime cost has been
estimated (Net Losses: Estimating the Global Cost of Cybercrime, 2014) to be $400 billion in 2014.
These estimates might be conservative, because companies are hesitant to report security incidents in
surveys (Chen, Dong, Chen, & Xu, 2016), and due to the fact that security incidents go undetected
for long time (Rudd, Rozsa, Günther, & Boult, 2016). On the other hand, on average, the
announcement of a breach has a negative impact of about 2.1% of the market value of the company
(Chen, Dong, Chen, & Xu, 2016). These figures suggests that existing security measures, techniques
and systems are not effective against most advanced attacks (Ullah & Babar, 2019).

On the other hand, security and privacy concerns in computer networks and systems have
significantly increased over the last few years (da Costa, Papa, Lisboa, Munoz, & de Albuquerque,
2019). This is true for computers, mobile devices, IoT devices (Chapaneri & Shah, 2019), and
payment networks. Malware is also major area of concern (Idika & Mathur, 2007). In both contexts,
machine learning has been subject to extensive research (Akhi, Kanon, Kabir, & Banu, 2019)
(Firdausi, Erwin, & Nugroho, 2010), as it can accurately spot differences between legitimate and
malicious activity by generalizing and finding patterns in data (Liu & Lang, 2019). Fraud, a growing
issue in online payments (Fiore, De Santis, Perla, Zanetti, & Palmieri, 2019), has also been
approached with machine learning (Raj & Portia, 2011).

This research work targets a primary field (unsupervised intrusion detection) and applies the
underlying techniques (AI) to a related domain (fraud detection).

1.2.1. Intrusion detection

1.2.1.1. Challenges

An IDS (Intrusion Detection Systems) is designed to recognize intrusions and trigger alerts,
obtaining high intrusion detection ratios and acceptable (as low as possible) false positive ratios
(Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017). An IDS can leverage the following
types of detection method: signature-based, anomaly-based or specifications-based (Hindy, Brosset,
Bayne, Seeam, Tachtatzis, Atkinson, & Bellekens, 2018).

Signature-based systems rely on prior knowledge about attack patterns. In these systems, a signature
is created for each known pattern, which results in a high degree of accuracy for known attacks, but a
lack of detection capabilities for unknown attacks (Ashraf, Ahmad, & Ashraf, 2018). This limitation
also applies to systems based on supervised settings, as they rely on the availability of labelled
instances of attacks. In fact, previous research (Zarpelão, Miani, Kawakani, & de Alvarenga, 2017)
states that traditional techniques cannot be successfully applied to different environments, including
emerging ones as IoT, which uses specific protocols, standards and devices.

Therefore, recognizing unknown attacks is one of most desired features of an intrusion detection
technique (Casas, Mazel, & Owezarski, 2012). Unknown attacks don't have a pattern, neither
statistical nor signature-based. Anomaly-based systems could detect unknown attack patterns,
assuming that malicious behavior is significantly different from legitimate activity. Their main
drawbacks (Carlin, Hammoudeh, & Aldabbas, 2015) are: usability dependent on the false alarm rate,
effective behavior models are difficult to design, greater implementation complexity, and inability to
explain the type of attack that was detected.

On the other hand, an IDS must process significant amounts of data that is received from multiple
other systems (Garvey & Lunt, 1991). Moreover, there could be irrelevant data that won't improve
accuracy, and perhaps key data or features are missing.

In this scenario, intrusion detection is now a relevant field for researchers. However, there are a
number of additional challenges that researchers must face. First, cyber-attacks leverage stealth
techniques for intrusion detection evasion in signature-based approaches (used by most antivirus
software packages) (Alston, 2017). These techniques are evolving towards evading machine learning
anomaly detection techniques as well (Viegas, Santin, Abreu, & Oliveira, 2017). Also, new
technology eco-systems like mobile (Zhang, Lee, & Huang, 2003), cloud (Joshi, Joshi, & Rani,
2017) and IoT (Minoli, Sohraby, & Kouns, 2017) are demanding custom security approaches. On the
other hand, there is increasing regulatory pressure around data protection (Raab & Szekely, 2017),
and a growing amount of business applications of big data (Choi, Chan, & Yue, 2016), which
encourages companies to store high volumes of data, hence increasing the attack surface and the
available threat vectors.

1.2.1.2. Development paths

1.2.1.2.1. Increase detection rate

Recent surveys (Ahmed, Mahmood, & Hu, 2016) (Keegan, Ji, Chaudhary, Concolato, Yu, & Jeong,
2016) (Buczak & Guven, 2015) and taxonomies (Qayyum, Islam, & Jamil, 2005) show that there are
multiple intrusion detection techniques leveraging Machine Learning or Artificial Intelligence. They
can be based on anomaly detection (unsupervised) or misuse detection (supervised).

Common attacker activities are learnt and compared with current activity in misuse detection
(Cannady, 1998). These malicious activities are labeled as such in the training dataset, which must
be available for the learning process to occur. All other observations in this training dataset are
labeled as normal activities. Unknown attacks are difficult to detect, because they were not present in
the learning phase (Meira, Andrade, Praça, Carneiro, Bolón-Canedo, Alonso-Betanzos, & Marreiros,
2020).

It's also remarkable that datasets with labeled malicious activity are not widely available. There are
some challenges specific to the intrusion detection field that make it hard to produce those datasets.

For example, the activities surrounding a given action, that is, its context, heavily influence whether
that action is considered an attack or not. In addition to this, recognizing an intrusion might require
looking at a number of related events, often produced by more than one system. Therefore, a single
event cannot be classified (alone) as an attack or legitimate. Lastly, there are multiple datasets with
synthetic attack data, but datasets with realistic intrusions are scarce. Moreover, the research
community cannot reliably assess attack statistics and indicators (Kuypers, Maillart, & Paté-Cornell,
2016).

In anomaly detection techniques, the focus is on learning legitimate activity, not malicious actions
(Chimphlee, Abdullah, Sap, Srinoy, & Chimphlee, 2006), in order to discover patterns that don't
align with that legitimate activity (Chandola, Banerjee, & Kumar, 2009). Attack labels are not
needed. The main objective is to recognize actions that can't be fit to most usual activity learnt in the
training phase (Chandola, Banerjee, & Kumar, 2009). This approach has proven to be effective to be
able to spot intrusions (Meira, Andrade, Praça, Carneiro, Bolón-Canedo, Alonso-Betanzos, &
Marreiros, 2020), for a number of reasons.

First, evasion techniques cannot be easily applied. Their impact is much lower than in systems whose
focus is to learn attack patterns. Second, because anomaly detection is based on broad and generally-
applicable principles, it can be applied to all elements of a technology ecosystem without reducing
its effectiveness. Third, the evolution of intrusion vectors doesn't influence these techniques'
performance, because knowledge about these vectors is not required at all.

Moreover, anomaly detection exhibits the following advantages: they can detect unknown attacks,
they can detect abuse of privileges, and they are not dependent on the underlying operating system
(Liao, Lin, Lin, & Tung, 2013).

However, anomaly detection also exhibits several disadvantages: they can take longer to produce an
alert when malicious activity happens, detection is sometimes disabled while legitimate activity is
being learnt, and the fact that these techniques are vulnerable to concept drift, because legitimate
activity patterns can change overtime (Liao, Lin, Lin, & Tung, 2013) (Lane & Brodley, 1998).
Besides, creating patterns of legitimate activity can become a hard task to accomplish (Zamani &
Movahedi, 2013). Also, the volume of data to be processed by an IDS is quite significant, attacks
represent just a small fraction of that data, and discovering effective criteria to separate legitimate
and malicious activity is a hard task (Zamani & Movahedi, 2013).

Anomaly detection requires more training data than supervised settings, which translates into higher
demand for compute resources (Bashah, Shanmugam, & Ahmed, 2005). That training data can
contain attacks, which can impact the quality of models produced (Estevez-Tapiador, Garcia-
Teodoro, & Diaz-Verdejo, 2004). Lastly, in some cases the assumption that legitimate behavior is
frequent might not hold (Estevez-Tapiador, Garcia-Teodoro, & Diaz-Verdejo, 2004), and infrequent
activity might not be related to attacks.

Attackers could also influence anomaly detection algorithms to learn malicious activity as legitimate
(Chebrolu, Abraham, & Thomas, 2005). By introducing small (incremental) changes in behavior
over a long period of time, malicious activity would go unnoticed and would become part of the
normal behavior profile. In any case, this manipulation requires details about how the algorithm was
implemented, and the attacker must be able to generate activity while the algorithm is being trained.

Lastly, the actual performance of anomaly detection techniques relies on a list of assumptions
(Gates & Taylor, 2006): attacks are anomalous or rare, anomalous activity is malicious, definition of

malicious is universal, attack-free data is available, simulated data (for those experiments in which
legitimate activity is simulated) is representative, false alarm rate over 1% is acceptable, and
administrators can interpret anomalies.

1.2.1.2.2. Reduce false positive rate

There are multiple approaches available for automated decision-making processes whose goal is to
minimize false alarms. Most popular methods are adaptive learning (Pietraszek, 2004), similarity
with confirmed alerts (Njogu & Jiawei, 2010), greedy aggregation algorithm (Harang & Guarino,
2012), neuro-fuzzy approach (Alshammari, Sonamthiang, Teimouri, & Riordan, 2007), alert
enrichment framework (Bakar, Belaton, & Samsudin, 2005), and outlier detection (Xiao, Jin, & Li,
2010).

Alert reduction and false positive minimization are problems that share the same principles in
intrusion detection and fraud detection.

1.2.2. Fraud detection

1.2.2.1. Challenges

Fraud detection shares key objectives with intrusion detection: maximize detection rate and
minimize false positive rates, which lead to high performance. It differs from intrusion detection in
the type of input features available to achieve that performance (Soh & Yusuf, 2019): Personal
Account Number (PAN) and related details, transaction location, date and time, customer details, and
the amount associated with the transaction.

The set of indicators used to measure performance in fraud detection are equivalent to those for
intrusion detection: precision, recall, accuracy, and false alarms ratio (Kumari & Mishra, 2019).
Nevertheless, the lack of a universal dataset to be used as reference for comparing performance
across algorithms prevents these metrics to be really useful for benchmarking purposes. However,
there are promising proposals (Yang, Zhang, Ye, Li, & Xu, 2019) that leverage federated learning,
which rely on data sharing among banks. These initiatives might solve the aforementioned issue.

Fraud detection systems (FDS) are designed to detect fraudulent activity and trigger alerts. These
systems implement techniques leveraging advanced detection methods, rule-based detection,
artificial intelligence and statistical models. Transactions flagged as fraud must be reviewed by a
fraud analyst (human expert) to check whether the FDS made the right decision or not. Significant
cost reduction can be achieved by replacing these manual reviews with automated methods.

Alert reduction is especially challenging in the fraud detection field due to the evolving nature of the
payments sector. There are new channels and methods to execute payments and new customer
segments are constantly found. As a consequence, the number of transactions is always increasing,
which also increases the number of manual reviews required to detect fraud. Growing the team of
experts effectively allows to handle additional workload, but doesn't scale in terms of cost. A better
option is to implement automated methods to quickly discard false alarms with common patterns, so
that experts only have to review the less trivial cases.

1.2.2.2. Development paths

1.2.2.2.1. Increase detection rate

To increase detection performance, drivers in the fraud detection field resemble those seen for
intrusion detection: feature selection and engineering (Singh & Jain, 2019) (Lucas, Portier, Laporte,

Calabretto, Caelen, He-Guelton, & Granitzer, 2019), ability to leverage ensembles of models (Kim,
Lee, Shin, Yang, Cho, Nam, 2019) (Prusti & Rath, 2019a) or hybrid models (Carcillo, Le Borgne,
Caelen, Kessaci, Oblé, & Bontempi, 2019) (Prusti, Padmanabhuni, & Rath, 2019), incorporated
domain expertise (Rushin, Stancil, Sun, Adams, & Beling, 2017), and deciding between misuse
detection and anomaly detection techniques (Niu, Wang, & Yang, 2019).

The underlying assumption in supervised models (misuse detection) is that current fraud can be
recognized with a set of patterns that can be discovered and synthesized from past fraud data
(Carcillo, Le Borgne, Caelen, Kessaci, Oblé, & Bontempi, 2019). In unsupervised models (anomaly
detection), the underlying assumption is that legitimate activity can be baselined, and fraudulent
activity is significantly different from that baseline. Lastly, hybrid systems come into play when the
hypothesis is that standalone techniques fail to effectively detect fraud, and that using multiple
techniques leveraging different approaches simultaneously is a preferred method. Recent research
(Mittal & Tyagi, 2019) has evaluated the most innovative methods available today. The key
conclusion is that, when it comes to accuracy, unsupervised methods yield better results (Mittal &
Tyagi, 2019).

Beyond the chosen algorithm, feature selection and engineering also plays a relevant role in obtained
performance. A novel feature engineering framework (Zhang, Han, Xu, & Wang, 2019) has
demonstrated to perform better when applied to several methods based on artificial intelligence.

1.2.2.2.2. Reduce false positive rate

This development path hasn’t been so extensively explored in the fraud detection field. However,
given the similarity of this field with intrusion detection, it seems reasonable that these methods
could be re-engineered to make them effective for fraud detection as well.

2. Systematic review
2.1. Motivation

This systematic review focuses on unsupervised techniques based on anomaly detection, that have
been applied to the intrusion detection domain. The reason behind setting this scope is that the main
goal of this research, as described in the motivation and objectives section, is to reduce the
dependence on well-known attack patterns in the intrusion detection field, and unsupervised
techniques are best suited for this purpose. It’s therefore required to understand existing methods for
unsupervised learning before enhanced techniques can be developed and tested.

While supervised settings are also present in this research work, they are leveraged only as helpers or
secondary techniques for specific functions. Therefore, and extensive review is not a requirement,
and the relevant literature review is included in a separate section.

Several anomaly detection methods have been applied to intrusion detection (Fernandes, Rodrigues,
Carvalho, Al-Muhtadi, & Proença, 2019), with varying performance results. Moreover, recent
surveys (Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017) (Liao, Lin, Lin, & Tung, 2013)
(Kwon, Kim, Kim, Suh, Kim, & Kim, 2019) have focused on producing a taxonomy to classify these
methods. There are other surveys focused on the usage of anomaly detection to detect cyber-attacks
(Chandola, Banerjee, & Kumar, 2009).

This review aims to provide a comprehensive and up-to-date reference of available techniques. It
includes a brief description on how each of them operates, as well as their advantages, drawbacks
and limitations, and what detection and false positive rates were obtained by researchers along the
experimental testing phase, where available.

Surveys and taxonomies on the field of intrusion detection have already been developed and made
available to the security research community. Recent surveys include references to latest
developments around neural networks (Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017)
and extend the scope by including other aspects of security, like vulnerability assessments (Debar,
Dacier, & Wespi, 2000). A recent taxonomy (Axelsson, 2000) focused on the actual systems used for
intrusion detection, rather than their underlying techniques, while another (Liao, Lin, Lin, & Tung,
2013) took a comprehensive approach to review and classify modern intrusion detection systems.

The aforementioned reviews combine supervised and unsupervised techniques, misuse detection and
anomaly detection approaches. Moreover, while several surveys focused on anomaly detection
techniques for IDS already exist (Gyanchandani, Rana, & Yadav, 2012) (Garcia-Teodoro, Diaz-
Verdejo, Maciá-Fernández, & Vázquez, 2009), they include both misuse detection (supervised) and
anomaly detection (unsupervised) algorithms.

However, unsupervised techniques based on anomaly detection can only be assessed and compared
when isolated from other available paradigms. Benchmarking cannot be accurate if some techniques
make use of labeled data and others don't. Also, the ability to detect unknown attacks doesn't apply
to misuse detection.

On the other hand, even though hybrid systems represent a promising path in intrusion detection,
current implementations weaken the agnostic nature of anomaly detection by incorporating pre-
existing patterns of well-known attacks. While the resulting performance is competitive, in most
cases that performance is measured against known attacks, hence not measuring the real accuracy
against any type of attack.

These arguments have motivated this systematic review, which aims at: collecting research done
with most relevant methods that fall into this category; assess the strengths, advantages and
constraints of each of those methods; identify most promising areas of research to drive future
efforts.

2.2. Review method
2.2.1. Planning the review

The protocol used for this systematic review builds upon the following components: a set of research
questions, sources of information, inclusion and exclusion criteria, and guidelines used to summarize
results and focus the discussion and conclusions.

2.2.2. Research questions

The goal of this review was to collect, assess, classify and discuss available research on unsupervised
techniques based on anomaly detection for intrusion detection.

To plan the review, a list of research questions was identified. They are shown in Table 1.

Research question Motivation

(1) What is the current status of unsupervised methods based on
anomaly detection in the IDS domain?

It helps in understanding what methods
have been researched and are available
in the target domain.

For this purpose, most popular
techniques and algorithms are
referenced and compared. Studies
which compare and benchmark related
methods are also included.

(1.1) What algorithms and implementation approaches are used?

(1.2) What detection and false positive rates do these methods
achieve?

(1.3) How applicable these methods would be to a real-life
environment?

(2) What criteria and processes are followed for data selection,
feature extraction, and performance evaluation?

It helps in understanding whether
quality data is available to enable the
development of effective methods, and
whether obtained results are
comparable.

Multiple feature extraction strategies
and their influence on performance are
reviewed.

Common criteria applied to measure
performance of unsupervised methods
for IDS are identified and assessed.

(2.1) What datasets are leveraged to train, test, optimize and
benchmark algorithms?

(2.2) What feature extraction techniques lead to better results,
and what features are typically extracted?

(2.3) How is performance measured, and what metrics are used
for that purpose?

(3) Key sub areas It helps in understanding what methods
should be used under different
scenarios.

(3.1) What are the main advantages and drawbacks of each
method?

(3.2) Which techniques are more likely to detect complex attacks
which differ significantly from well-known attacks?

Pros and cons of each technique are
assessed. Techniques that are more
resilient to advanced attackers are
identified.

Lastly, potential for generalization is
evaluated.

(3.3) Which techniques would remain accurate when applied to
other intrusion datasets, and can therefore generalize well?

Table 1. Research questions.

2.2.3. Information sources

For extensive coverage of the available literature in this research field, databases and information
resources were researched. To the best of my knowledge, these resources are relevant for the target
domain.

2.2.3.1. Research databases

Table 2 enumerates selected research databases.

Database name URL

archiv.org - Cornell University Library http://arxiv.org/

IEEE Xplore Digital Library http://ieeexplore.ieee.org/

ResearchGate https://www.researchgate.net/

SemanticScholar https://www.semanticscholar.org/

ScienceDirect http://www.sciencedirect.com/

CiteSeerX - The Pennsylvania State University http://citeseerx.ist.psu.edu/index

SpringerLink https://link.springer.com/

ACM Digital Library - Association for Computing Machinery http://dl.acm.org/

Table 2. Research databases.

2.2.3.2. Additional sources

Table 3 enumerates selected additional sources.

Database name URL

Google Patents https://www.google.es/patents/

The Definitive Security Data Science
and Machine Learning Guide

http://www.covert.io/the-definitive-security-datascience-and-
machinelearning-guide/

Packet Storm https://packetstormsecurity.com/

Black Hat https://www.blackhat.com/html/archives.html

Google Scholar https://scholar.google.com/

Table 3. Additional sources.

2.2.4. Search criteria

Keywords such “anomaly detection”, "intrusion detection" and "security" or "network security" were
included in most abstract-related searches. They returned a significant number of results with
varying levels of relevance.

Table 4 enumerates the search strings for selected sources.

Search no. Source Search string #

1 archiv.org Subject: Computer science

Abstract: anomaly detection intrusion detection

76

2 IEEE Xplore
Digital Library

(("Abstract":"anomaly detection") AND
"Abstract":"intrusion detection")

502

3 ResearchGate Publications: anomaly detection intrusion security 1.000+

4 SemanticScholar "anomaly detection" intrusion security 10.757

5 ScienceDirect pub-date > 1994 and TITLE-ABSTR-KEY("anomaly
detection") and TITLE-ABSTR-KEY("intrusion
detection")[All Sources(Computer Science)]

126

6 CiteSeerX abstract:("anomaly detection" "intrusion detection"
"network security") AND year:[1995 TO 2017]

600.997

7 SpringerLink anomaly detection intrusion security 4.706

8 ACM Digital
Library

anomaly detection intrusion security 52.609

9 Google Patents "anomaly detection", "intrusion detection", "security" 4.296

10 The Definitive
Security Data
Science and
Machine Learning
Guide

Machine Learning and Security Papers

Deep Learning and Security Papers

Abstract: "anomaly detection"

11 Packet Storm Files: anomaly detection pdf 19

12 Black Hat "anomaly detection", "deep learning" 7

13 Google Scholar "anomaly detection" "intrusion detection" security 18.400

Table 4. Search strings.

2.2.5. Inclusion and exclusion criteria

The first filter applied to papers returned by each source was based on title. Intrusion detection
papers not leveraging anomaly detection techniques, or vice versa, were tagged as irrelevant. Next,
same criteria was applied to abstract. Given that an abstract describes in greater detail the actual

research work performed, it allowed to further distinguish whether papers were or not under scope.
Several research papers included "anomaly detection" or similar terms in their title but their abstract
included references to supervised learning techniques, hence rendering them not relevant.

Next, full text was reviewed. Again, implementations combining anomaly detection with supervised
learning or leveraging labeled security data were discarded. Exceptions were applied to anomaly
detection techniques used in a hybrid context that were worth mentioning for some reason.

Additional relevant papers were found manually, using references of other papers, or using more ad
hoc keyword searches. Particularly:

• Papers describing a general-purpose technique that is then used for intrusion detection in
other paper. They provide context and insights to understand how other researchers applied
that technique to the domain under scope.

• Papers related to feature extraction in an intrusion detection context. They are helpful to
understand how relevant this process is to achieve acceptable performance levels.

• Papers documenting network, system or application intrusions datasets. They are useful to
understand what sources researchers leverage in the IDS field.

• Papers related to topics included in the discussion. While these are not part of the core
review, they provide direction and guidance on the most promising areas that must be
considered in future research.

This review is based on both qualitative and quantitative studies, published from 1997 to date. Prior
security research is based on data that might not be representative of current network and systems
configurations, or account for the complexity of services and applications commonly found in
computer networks today.

All included studies were written in English language.

Figure 1 depicts the exclusion process. Search results pointed to 5.120 total papers, downsized to
1.070 based on title, and 576 based on abstracts. These 576 papers were analyzed in detail to select a
list of 240 papers.

Figure 1. Article assessment procedure.

2.2.6. Quality assessment

The studies have been assessed for internal and external validity of results, as well as bias.

Exclusion based on
Title

Exclusion based on
Abstracts

Exclusion based on
Full Texts

#5.120

Data sourceData sourceData source

#1.070 #576 #240

2.2.7. Data extraction

The goal of the data extraction process was to answer questions in Table 1. Although it was not
possible to answer all questions in all papers, the outcome, quality and relevance of the review was
not negatively impacted. Each paper became highly relevant to answer certain questions, and so it
made a relevant contribution to the overall review.

The procedure applied can be described as follows: one author reviewed all the studies and gathered
data from them. For data extraction consistency, a second researcher took a random sample of papers
and extracted data from them. Results were then checked for discrepancies. In those cases, consensus
conversations among authors were used to resolve them.

2.3. Results

2.3.1. Proposed taxonomy

The techniques were classified into their underlying algorithms, in order to group together those that
share the same foundational approach. Related techniques were compared as to assess what were
their strengths and weaknesses, and whether results shared patterns or not (which would suggest that
the algorithm was not key to obtain the results).

The resulting classification is shown in Figure 2.

Figure 2. Proposed taxonomy.

Neural
Networks

Time
series

analysis

Fuzzy
logic

Reinforce
ment

learning

Sequence
learning

Dimensio
nality

reduction

Kernel-
based

methods

Graphs

Statistical
Modeling

Genetic
Algorithms

Artificial
Immune
Systems Swarm

Intelligence

Clustering

Self-Organizing Maps
Adaptive Resonance Theory

Autoencoders

Other

Evolutionary
Neural Network

Multilayered Feed
Forward

Recurrent
Neural Network

Extraction of Rules

CG-AD

High-level
Negative Selection

Danger Theory

Markov models

Other

GARMA
Hierarchical

Temporal Memory
Seasonality

decomposition

Principal
Components
Analysis

Unsupervised learning based on
Anomaly Detection

2.3.2. Datasets, feature selection and performance evaluation

2.3.2.1. Datasets

From a general perspective, intrusion detection data is commonly collected from network behavior,
user commands, system calls, log files, system error logs, or hardware consumption (Wu & Banzhaf,
2010). In practice, however, most intrusion detection implementations measured performance on
KDDCup99 or NSL-KDD datasets (Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017).
These datasets are considered to be very large (Wu & Banzhaf, 2010), so 10% of it is frequently
used. However, using sampled datasets conflicts with the big data nature of intrusion detection data.

On the other hand, artificially generated datasets might provide biased rates. Particularly, the false
alarm rate could significantly differ depending on whether real or synthetic data is used (McHugh,
2000), and data structure, which varies for real and synthetic intrusion data, influences detection
performance. An anomaly-detection algorithm was applied to 165 datasets with different structure
which were calibrated and to which anomalies were injected. The conclusion was that performance
differed as much as an order of magnitude (Maxion & Tan, 2000).

Also, several features in synthetic data (IP, time to live, TCP options and window size) have fixed
and tight range, but a large range in real data (Mahoney & Chan, 2003b). The synthetic data doesn't
include rare network packets, like those with bad checksums, garbage information in TCP fields that
are not used, or IP fragmentation. Synthetic command-line data doesn't include malformed calls to
applications, or wrong arguments.

Time range is also a key feature in intrusion data. Small ranges can lead to inaccurate behavior
modeling, which can impact performance. Even with a high volume of traffic in data, the timespan
can be a few minutes (Balthrop, Forrest, & Glickman, 2002), which is insufficient to characterize
legitimate behavior.

Removing existing anomalies in training data when characterizing normal behavior also remains a
challenge. With regards to this issue, a robust approach to removing anomalies from training data
when building SOMs has been proposed (Rhodes, Mahaffey, & Cannady, 2000), in which several
training sets train a map on each set, and then each set is filtered through other maps. This technique
has not been leveraged by other researchers to account for the issue.

Several attempts have been made to create synthetic anomalous data to train classifiers in a pseudo-
supervised fashion. In this approach, boundaries drawn to separate normal and anomalous data lead
to more accurate detection of unknown attacks. Particularly, empirical studies (Fan, Miller, Stolfo,
Lee, & Chan, 2004) showed that algorithms leveraging synthetic attacks detected more than 77% of
the attacks not present in the training phase, and exhibited an accuracy beyond 50% per intrusion
category.

Lastly, it’s remarkable that only recent studies used real network data.

2.3.2.2. Feature selection

The method used to select relevant features can heavily influence the performance of an IDS
leveraging artificial intelligence (Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017).

This is especially true for highly dimensional datasets, which are common in the intrusion detection
space. The curse of dimensionality problem (Erfani, Rajasegarar, Karunasekera, & Leckie, 2016),

that arises when handling a high number of features, can pose a challenge to model legitimate
behavior. Moreover, techniques based on clustering methods are more likely to be impacted by this
issue, since they rely on identifying clusters of related feature values, which will not likely occur in
multidimensional spaces.

2.3.2.3. Performance metrics and evaluation

Performance is typically measured by calculating detection accuracy and the ratio of false positives
(Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017).

The effectiveness of a technique is measured by the confusion matrix (Wu & Banzhaf, 2010), which
contains figures for the following indicators:

• True Negative: normal traffic tagged as normal.
• True Positive: attack traffic tagged as attack.
• False Negative: attack traffic tagged as normal.
• False Positive: normal traffic tagged as attack.

The following metrics are built on top of the previous indicators to provide more accurate
performance measures:

• True Negative Rate (TNR)
• True Positive Rate (TPR)
• False Negative Rate (FNR)
• False Positive Rate (FPR)
• Accuracy
• Precision

ROC (Receiver Operating Characteristic) curve can further assess IDS performance and compare the
results obtained by different settings or systems (Wu & Banzhaf, 2010). It plots TPS on y axis and
FPR on x axis, at single or multiple parameter settings. However, displaying true positives versus
false positives doesn't allow researchers to understand the reasons for the obtained performance
(McHugh, 2000).

2.3.3. Detection techniques

2.3.3.1. Neural networks

Neural networks are interconnected group of nodes which map inputs (observations) to an output,
which is typically a class label in a predictive modeling exercise.

Neural networks are becoming popular in IDS research (Choksi, Shah, & Kale, 2014).

It has been demonstrated that they can operate on raw signals (data), hence automating feature
extraction and making this process dynamic (Saxe & Berlin, 2017), which tackles the need in
intrusion detection to fine tune features as attacks evolve. In fact, it was able to outperform manual
feature extraction on the benchmark tests, leading to a 5%-10% increase in detection rate, keeping a
low false alarm rate of 0.1%.

2.3.3.1.1. Clustering

Clustering techniques are unsupervised methods that discover groups of related data observations.
They are typically used for intrusion detection by attempting to form two clusters of normal and

malicious data, or by forming multiple clusters of normal data and spotting data instances not fitting
into any cluster, which are typically malicious.

Most popular clustering methods based on neural networks are self-organizing maps and Adaptive
Resonance Theory. Generally speaking, SOM shows less overhead and ability to handle coordinated
intrusion (Ahmad, Abdullah, & Alghamdi, 2010). ART has demonstrated to deliver a higher
detection rate, low false negative rate, higher maturity, and more cost effectiveness (Ahmad,
Abdullah, & Alghamdi, 2010).

2.3.3.1.1.1. Self-organizing maps

SOM implement clustering through a neural network. They can be used to spot unknown attacks.
There is extensive research in the intrusion detection field that leverages this technique under several
varying settings (Kumar & Radhakrishnan, 2014) (Sarasamma, Zhu, & Huff, 2005) (Rhodes,
Mahaffey, & Cannady, 2000) (Ramadas, Ostermann, & Tjaden, 2003) (Amini, Jalili, & Shahriari,
2006).

One key advantage of SOMs is that they can easily filter out existing intrusions in training data used
to profile normal behavior. With large datasets and the strength of the neighborhood function, a
given SOM limits how much diversity can exist. As intrusions represent a small fraction of the
training set, the map will be dominated by legitimate activity. In fact, an intrusion-detection system
grounded on SOM competitive network achieved better detection and false positive rates than other
approaches based on neural network (Kumar & Radhakrishnan, 2014). However, they can exhibit a
low detection rate for certain attacks, like U2R and R2L (Choksi, Shah, & Kale, 2014).

Hierarchical or multi-layer SOMs are common for intrusion detection. In this setting, each layer uses
only a few features from the set of available features. They can outperform single-layer SOMs in
several attack types, and also increase overall detection rate (Sarasamma, Zhu, & Huff, 2005). In
another research work (Kayacik, Zincir-Heywood, & Heywood, 2007), two-layer SOM obtained a
1.38% false positives rate and a 90.4% detection rate with all the features (41) available in the KDD
dataset.

Moreover, when assigning a different network protocol to each layer, the ratio by which legitimate
and malicious traffic differed was greater than an order of magnitude (Rhodes, Mahaffey, &
Cannady, 2000). A similar setting (Ramadas, Ostermann, & Tjaden, 2003) assigning network
services (HTTP, DNS and SMTP) to each layer obtained accurate results in three attack scenarios:
buffer overflow in Sendmail, encapsulated HTTP traffic, and a buffer overflow in BIND. Extracted
feature values for each connection were the following: interactivity (volume of requests per second),
average size of questions (in bytes), average size of responses, idle question-answer time, idle time,
and volume of connections.

Hyperellipsoidal SOM with Gaussian radial basis function as transfer function and winner-take-all
approach (Sarasamma & Zhu, 2006) achieved detection rates from 91.55% to 91.71%, with false
positive rate between 2.68% and 4.84%, when tested with KDD Cup 99. Parameters for the transfer
function were not precalculated using the training dataset, but an accretion approach updates them as
each data observation is processed. This introduces a slight overhead in execution time which is
compensated by detection performance levels.

Another SOM implementation based on anomaly detection (Depren, Topallar, Anarim, & Ciliz,
2005) tested against KDD Cup 99 obtained a detection rate of 98.96% and a FPR of 1.01%. It

focused on the following features: service, duration, protocol, status flag, bytes sent and received.
Three different SOMs were trained for each of the protocols (TCP, UDP, ICMP).

SOM has also been implemented in combination with other techniques, particularly hypothesis
testing (Hoglund, Hatonen, & Sorvari, 2000) and Decision-Making systems (Miller & Inoue, 2003).
In the first case, the Anomaly P-value of a data instance was the number of BMU (Best Mapping
Unit) distances calculated in the training phase that were greater than the BMU distance for that data
instance, divided by the total amount of training data instances. When that p-value exceeded a
threshold, the data instance was flagged as attack. In the second case, the Decision-Making system
made the final decision based on the reputation level of each SOM, based on past performance and
implemented through Reinforcement Learning.

They have also been used to build a visualization tool (Girardin, 1999) for security analysts to
discover network traffic anomalies, including intrusions (IP spoofing, FTP DoS, network scan and
network hoping attacks), through topological classification of network events.

Lastly, SOMs can be used to preprocess data when building profiles of normal network packets in a
hybrid system (Shon & Moon, 2007), leveraging GA for feature selection and Enhanced SVM for
classification. Highly dimensional datasets are translated into bidimensional spaces, making it easier
for Enhanced SVM to identify anomalous instances. This hybrid method outperformed signature-
based systems Snort and Bro, achieving a detection rate of 99,99% and a FPR of 0,01% for one of
the datasets used for testing.

2.3.3.1.1.2. ART

Adaptive Resonance Theory (ART) is similar to SOM, as it implements clustering through a neural
network.

In Adaptive Resonance Theory technique, an input vector is transferred to its best matching neuron,
which outputs a negative signal to each of the other neurons to inhibit their output (Carpenter &
Grossberg, 1987a). Each neuron then represents a category or cluster to which input vectors are
classified. Several variants were created, including one to handle continuous inputs (Carpenter &
Grossberg, 1987b), another to support fuzzy logic (Carpenter, Grossberg, & Rosen, 1991).

They have also been applied to build an IDS (Chauhan, Pratap, & Dixit, 2015) (Amini, Jalili, &
Shahriari, 2006). Compared to SOMs, with the same feature set (27 features generated from IP, TCP,
UDP and ICMP headers), ART obtained a 97% accuracy, while SOM was slightly less accurate
(95%) (Amini, Jalili, & Shahriari, 2006). When compared with FuzzyART (Durgin & Zhang, 2005),
it was noted that the sensitivity of FuzzyART was much higher than that of SOM.

2.3.3.1.2. Autoencoder or replicator neural networks

An autoencoder is neural network with multiple layers which compresses and decompresses data in
order to learn frequent patterns. As a result, legitimate activity is properly recognized but outliers
(infrequent data) is not (Veeramachaneni, Arnaldo, Korrapati, Bassias, & Li, 2016). For example, a
novel method for anomaly detection with deep autoencoders (Lyudchik, 2016) was used to recognize
outliers (instances of digit '7') in the MNIST dataset of handwritten digits. 39 different models were
tested. The model having the best performance, that is, having a high reconstruction error for an
outlier and a low error for non-outliers, was the one with three hidden layers and six latent features.

Autoencoders have been successfully leveraged for anomaly detection in previous research (Zhou &
Paffenroth, 2017) (Fan, Wen, Li, Qiu, Levine, & Xiao, 2020) (Borghesi, Bartolini, Lombardi,

Milano, & Benini, 2019) (Chen, Sathe, Aggarwal, & Turaga, 2017). They can even detect anomalies
which linear techniques like PCA fail to spot (Sakurada & Yairi, 2014). For example, Kitsune
(Mirsky, Doitshman, Elovici, & Shabtai, 2018) is an online IDS based on an ensemble of
autoencoders which achieved a FPR of 0.1% with an average recall of 36,53%. The dataset used for
testing was generated by launching attacks against a video surveillance network.

Autoencoders can also be applied to feature selection processes. The obtained feature set is supplied
as input to a classifier. Using a self-taught learning technique (Javaid, Niyaz, Sun, & Alam, 2016)
led to 88.39% accuracy, 85.44% precision, 95.95% recall, and 90.4% F-measure against the NSL-
KDD dataset. A similar technique (Yu, Long & Cai, 2017) implementing stacked dilated
convolutional autoencoders for pre-training stage, and a softmax classifier for fine-tuning led to
90.65% precision, 88.80% recall, and 88.64% F-measure. In similar setting (Yan & Han, 2018) with
stacked sparse autoencoders and SVM, authors reported 99.35% accuracy, 99.01% detection rate and
0.13% FPR.

Another research (Ludwig, 2017) combined unsupervised and supervised settings under an ensemble
of the following algorithms: deep belief neural network, autoencoder, deep neural network, and
extreme learning machine. It achieved 93% precision, 93% recall and 92% F-score against the NSL-
KDD dataset. A similar technique (Yousefi-Azar, Varadharajan, Hamey, & Tupakula, 2017), tested
against KDD dataset, achieved 83.84% accuracy. The Taguchi method has also been integrated to
stacked sparse autoencoders working as feature extractors (Karim, Güzel, Tolun, Kaya, & Çelebi,
2018). Tested against the UNSW-NB15 dataset, it achieved 99.7% precision and 99.7% accuracy.

Non-symmetric deep autoencoders have been leveraged for intrusion detection in combination with
Random Forest. The autoencoder helped reduce the dimensionality of inputs without impacting
detection performance (Shone, Ngoc, Phai, & Shi, 2018). Obtained results led to 97.8% accuracy,
99.99% precision, 97.85% recall, 98.15% F-score and 2.15% False Alarm Rate.

Autoencoders (Alam et al, 2019), in this case implemented using memristors, were tested against the
NSL-KDD dataset, leading to an accuracy of 92.91%. Similar research (Khan, Gumaei, Derhab, &
Hussain, 2019), implementing a novel deep learning model with two stages, obtained 89.13%
accuracy. Yet another research using autoencoders (Choi, Kim, Lee, & Kim, 2019) achieved 91.70%
accuracy.

Lastly, autoencoders’ reconstruction error has been leveraged for intrusion detection (Sun, Wang,
Xiong, & Shao, 2018 (Meidan, Bohadana, Mathov, Mirsky, Shabtai, Breitenbacher, & Elovici,
2018). Tested against KDD Cup 99 (Sun, Wang, Xiong, & Shao, 2018, it achieved an F-score of
81.20%. When applied to botnet detection in IoT devices (Meidan, Bohadana, Mathov, Mirsky,
Shabtai, Breitenbacher, & Elovici, 2018), it achieved a TPR of 100% and a FPR of 0.007±0.01.

2.3.3.1.3. Other neural network approaches

Evolutionary neural network (ENN) (Han & Cho, 2006) produced 0.0011% false positive rate at
100% detection rate when tested system-call sequences in the BSM audit data of the IDEVAL
dataset. ENNs have the advantage that both the weights and the network topology are learnt
automatically, with no human intervention.

Multilayered Feed Forward (MLFF) neural network (Tan, 1995) successfully identified abnormal
commands, connection times, connections to hosts, services and programs, when trained with a set of
UNIX users' commands, designed to capture their behavior. In a similar setting (Ryan, Lin, &

Miikkulainen, 1998), a detection rate of 96% with a FPR of 7% was obtained. However, anomalous
behavior was generated randomly, and so might not be representative of a real, more subtle, change
in behavior to perform malicious actions.

Recurrent Neural Network (RNN) were used to learn sequences of legitimate user actions, from
login to logout, while excluding anomalies with a rule-based system (Debar, Becker, & Siboni,
1992). It then predicted most probable next commands, allowing to recognize captured behavior
through successful predictions, and anomalous behavior otherwise.

Lastly, a semisupervised approach (Ghosh, Wanken, & Charron, 1998) trained a neural network with
legitimate, random, and well-known malicious patterns for the lpr UNIX command. Highest
detection rates were achieved with random inputs, which suggest that the use of this kind of inputs
can potentially help in detecting unknown attacks.

2.3.3.2. Fuzzy logic

In this variant of traditional logic, the truth values of features are real numbers, instead of binary
values. It’s applied to use cases where there is vagueness and uncertainty, as it’s the case for
intrusion detection.

When used in the form of fuzzy association rules mined during the training phase with normal
network traffic (Bridges & Vaughn, 2000), it was able to recognize IP spoofing and port scanning
attacks. These rules are then compared with those obtained when mining test data that contains
anomalies. The similarity between both sets of rules quantifies the anomaly score. In this setting,
extracted features were the amount of SYN, FIN, RST flags in TCP header, and the number of
distinct destination ports during last 2 seconds.

In a similar setting (Linda, Manic, Vollmer, & Wright, 2011), fuzzy rules were extracted from a
previous clustering exercise that identified clusters of normal network traffic (learning directly from
the stream of network packets). Fuzzy rules extraction was done through a fuzzy membership
function (nonsymmetrical Gaussian) with different standard deviations for right and left sides.
Classification was made based on maximum t-conorm to rules output, which is related to the degree
of membership to a normal behavior cluster. Tests were performed against a dataset of 200.000
packets containing anomalous network activity, achieving 99.36% correct classification rate with
0.0% FPR and 0.9% FNR.

2.3.3.3. Genetic algorithms

This type of algorithm is a metaheuristic that resembles a natural selection process. They are used to
discover high-quality solutions in search problems by leveraging operators such as mutation,
crossover and selection.

When combined with an unsupervised clustering approach (Aissa & Guerroumi, 2015), a GA
achieved detection rates from 75% to 98%, and FPR from 1.3% to 0.12% against different subsets of
KDD99 dataset. This technique created a cluster of rejected instances, including those not meeting
the confidence interval set for the fitness function. This approach, called CG-AD, turned out to be
more efficient than K-means.

In another setting (Shon, Kim, Lee, & Moon, 2005), a GA was used to perform optimal feature
selection from 24 attributes representing TCP and IP header fields. The fitness function leveraged
anomaly and communication scores defined in MIT Lincoln Lab datasets (Shon, Kim, Lee, & Moon,

2005). The feature sets obtained in the final generations (91-100, 15 out of 24 features selected) led
to best detection rate (97,56%) and the lowest FPR (0%) when feeding an SVM-based IDS.

2.3.3.4. Artificial Immune Systems

2.3.3.4.1. Introduction

Artificial Immune Systems (AIS) abstract human immune system and apply this abstraction to
solving problems with computer systems. AIS design is suitable for intrusion detection due to these
features (Kim, Bentley, Aickelin, Greensmith, Tedesco, & Twycross, 2007): distributed, disposable
and multi-layered, as well as diverse, all of which increases robustness; self-organized, which
provides adaptability; lightweight, which increases efficiency.

The first implementation of an AIS-based intrusion detection system (Kephart, 1994) used six decoy
programs to entice the potential virus to infect them. If that occurred, an algorithmic analysis of the
infected decoy extracted relevant signatures by executing it with a debugger. These signatures were
tested against a set of legitimate programs to avoid false positives. If tests were passed, the newly
created signatures were added to the database of well-known viruses.

On the other hand, a conceptual AIS-based multi-agent system (Dasgupta, 1999) made use of agents
with different monitoring levels (user, system, process, packet) and Action/Decision agents to take
action when an anomaly was detected, based on previously learnt normal behavior. While useful as a
general framework, it doesn't provide any implementation insights. Another AIS-based high-level
IDS (de Paula, de Castro, & de Geus, 2004) proposed several detection mechanisms resembling
Human Immune System (HIS): evidence-based detector (policy violation), behavioral-based
detector, signature extractor and knowledge base detector (misuse detection).

2.3.3.4.2. Negative selection

In negative selection (Forrest, Perelson, Allen, & Cherukuri, 1994), detectors are set up for a set of
randomly generated non-self strings, representing patterns. If current behavior of one of the
monitored entities matches one of those patterns, then that behavior is flagged as an anomaly. One of
the most appealing features of negative selection, from an anomaly detection standpoint, is that no
prior knowledge of intrusions is required, and so unknown attacks can be spotted (D’haeseleer,
1996). However, the following factors influence performance: number of detectors, non-self space
covered by each detector, and storage needed for the detector. Also, holes (non-self space that can’t
be matched by any detector), constitute the biggest risk of this approach for intrusion detection.

An IDS based on Negative Selection (Hofmeyr, 1999) showed high performance when tested against
probing a port scanning exercises, and random connections. It generated self and non-self strings
from TCP data paths (source IP, destination IP, and service). It implemented several features to make
it more suitable for intrusion detection: more than a single representation, which helps to avoid
holes; reducing false alarms with sensitivity levels and activation thresholds; co-stimulation by a
human, which allows to avoid autoreactive detectors; generation of detections in a distributed
fashion, which allows to adapt to self sets that change; detectors of dynamic nature, which helps to
increment detection rates; and memory, so that detection based on signatures is also available.

When tested with 28 fields of TCP headers and 16 fields of UDP/ICMP headers, high detection rates
and low error rates were achieved (Kim, Bentley, Aickelin, Greensmith, Tedesco, & Twycross,
2007). However, these results might be influenced by the use of simulated (and not real) intrusions.

Negative Selection poses two additional issues: scalability and coverage. To obtain a detection rate
of 80%, more than 643 million of detectors are required (Kim & Bentley, 2001a), and 1.000
detectors are generated in 20 hours (these figures might be now obsolete, considering that more
computational power is available nowadays).

Dynamic Clonal Selection was added to the Negative Selection approach (Kim & Bentley, 2002) to
mitigate the scalability issue, by capturing normal behavior using just a subset of self-antigens.
Clonal Selection also increased detection rates of well-known attacks when used in a supervised
approach (Kim & Bentley, 1999). In this setting, the primary IDS is helped by a secondary IDS that
clones best performing detector sets, which makes it more specialized on most probable non-self
antigens. The drawback of this approach is that it reduces the chance to detect novel attacks. Lastly,
in another Clonal Selection implementation (Kim & Bentley, 2001b), detectors evolved towards the
non-self patterns hidden in the collected non-self data, which essentially transforms the anomaly
detection approach into a misuse detector.

As for coverage, the permutation mask technique (Hofmeyr & Forrest, 1999) can significantly
reduce holes. It consists of adding detectors with multiple representations (through permutation) but
identical non-self space. The union of coverages of all detectors would likely reduce the resulting
number of holes.

Also, a Negative Selection variant for continuous data (Randomized Real-Valued Negative
Selection) (Gonzalez, Dasgupta, & Niño, 2003) attempted to maximize coverage. However, when
benchmarked (Stibor, Timmis, & Eckert, 2005) against three other algorithms (Real-Valued Positive
Selection, OneClassSVM, and Parzen-Window) with KDD Cup 99 data, it was discovered that it was
not appropriate for high-dimensional datasets as those found in the intrusion detection field. In
another setting (González & Dasgupta, 2003), abnormal samples representing the non-self space
were produced, while normal samples defined the self space. Both sets of samples were supplied as
input to train a MLP neural network classifier. Tested with MIT-DARPA 98 and MIT-DARPA 99
datasets and compared with a SOM-based implementation, this method showed equivalent detection
rate but with a high FPR. Lastly, the effectiveness of this technique has been questioned (Stibor,
Mohr, Timmis, & Eckert, 2005) in unsupervised settings, as its performance heavily depends on the
self-radius parameter, which can only be accurately calculated when instances from the anomalous
class are available in the training dataset.

When combined with fuzzy rules (Gómez, González, & Dasgupta, 2003), the results obtained were a
98,22% detection rate with a 1.9% FPR against KDD Cup 99 dataset, and a 94,63% detection rate for
the DARPA 99 dataset, outperforming two other similar algorithms: Evolving Rule Detectors and
Parallel Hill Climbing of Fuzzy Rules Detectors.

Lastly, when combining Real-Valued Negative Selection with a MLP (Gonzalez & Dasgupta, 2002),
results were comparable to those obtained with a SOM. Moreover, a higher detection rate could be
achieved if a higher false positive rate was allowed.

2.3.3.4.3. Danger theory

Danger Theory is an evolution of the Negative Selection algorithm in which danger signals (unusual
death of self-cells in the HIS context) are the triggers for immune response. The concept of danger
signals is subject to interpretation when applied to network intrusion.

An implementation combining elements of Danger Theory as artificial tissue, dentritic cells
algorithm and T-cell algorithm was able to detect malicious code execution (Kim, Greensmith,
Twycross, & Aickelin, 2010). This system required PAMPS (Pathogen Associated Molecular
Patterns), that is, known security policy violations from systrace program. This requirement suggests
that this technique is highly dependent upon existing knowledge about intrusion and hence couldn't
be classified as unsupervised. Another setting (Greensmith, Twycross, & Aickelin, 2006) leveraging
Dentritic Cells successfully detected ICMP scans through the high concentration of PAMPS
(destination unreachable errors) and danger signals.

An implementation based on lymphotic laws (Hashim, Munasinghe, & Jamalipour, 2010) effectively
detected DoS, DDoS and worm attacks. Detection is based on three consecutive danger signals:
initiation process, recognition process and co-stimulation process. First signal is triggered when
network traffic deviating from normal profile is found. Second signal detects malicious anomalies
present in the deviated traffic through a flow-level spectral analysis. Third signal estimates the
significance level of the anomaly (to be considered an attack) through the likelihood-ratio of the
traffic deviation.

2.3.3.5. Swarm Intelligence

Swarm Intelligence techniques are inspired by collective behavior observed in decentralized systems
like those found in social insects or swarms. The aim of these techniques is to implement simple
solutions for complex problems.

A clustering algorithm based on ant colonies approach to self-organization (Ramos & Abraham,
2005) was compared with Decision Trees, SVM and Linear Genetic Programming (LGP) leveraging
KDD Cup 99 data and obtained notable results. In this approach, a set of agents move around the
classification habitat using available information about pheromone concentrations. Also, a similar
approach (Feng, Wu, Wu, Xiong, & Zhou, 2005) (Feng, Zhong, Xiong, Ye, & Wu, 2007) (Feng,
Zhong, Ye, & Wu, 2006) based on advanced distance-based metrics (different from those used by
most clustering techniques) claimed to successfully detect unknown intrusions.

2.3.3.6. Graphs

Graphs are data structures with finite set of nodes and pairs (edges) of these nodes. Graphs are used
in multiple domains and use cases and are suitable for intrusion detection given the relational nature
of their features (Veeramachaneni, Arnaldo, Korrapati, Bassias, & Li, 2016).

Link prediction is a graph-based approach in which the anomaly score of a link between two nodes
can be obtained through algorithms like preferential attachment, spreading activation, or generative
models (Huang & Zeng, 2006). It successfully assigned the highest anomaly score to five
synthetically generated fake e-mails inserted into the Enron e-mail corpus.

A graph-based behavior modeling approach for use with system call sequences of a program (Gao,
Reiter, & Song, 2004) was tested against common UNIX programs like proftpd, wu-ftpd, httpd, and
httpd with chroot, obtaining promising results. The system built an execution graph that only
accepted sequences aligned with the program's control flow graph. This graph contained all possible
executions, therefore representing legitimate behavior.

Anomalous Substructure Detection and Anomalous Subgraph Detection (Cook & Holder, 2000)
techniques were tested against 37 attack types of KDD Cup 99 data (Noble & Cook, 2003). The first
one examined the entire graph and reported unusual substructures, while the latter partitioned the

graph into subgraphs and determined how anomalous they were when compared to the rest. They
both assigned a 'normality score' below a reasonable threshold to most attacks. In both cases,
snmpgetattack and snmpguess attacks couldn't be detected, which suggests that further testing is
required.

2.3.3.7. Sequence learning

Most sequence learning approaches rely on Markov models or Hidden Markov Models. However,
other researchers have also been successful in this task by leveraging neural networks, instance-
based learning or even custom algorithms.

2.3.3.7.1. Markov models

Markov models have been used to profile legitimate system behavior from training data (Ye, 2000).
Current system behavior is then analyzed to measure the probability that the model supports
observed behavior.

HMMs (Hidden Markov Models), a Markov model variant, has shown high discrimination power for
system call sequences data and low discrimination power for shell command sequences (Yeung &
Ding, 2003). This can be due to the fact that temporal relationships are key in the first scenario, but
harmful in the latter. When tested against user shell activity (UNIX) (Lane & Brodley, 2003), similar
conclusions were reached. Also, it was discovered that sequence length and number of states heavily
influenced performance: longer sequences and more states led to better detection rate. However,
results were not uniform across programs (ps, login, named and sendmail), which suggests that the
underlying structure of the program must also be considered in the modeling process. The technique
was further improved (Kruegel, Kirda, Mutz, Robertson, & Vigna, 2005) and obtained satisfactory
results when tested against three dummy vulnerable programs and three real-world applications
(apache2, ftpd, imapd).

HMMs performance has been subject to improvement (Khreich, Granger, Sabourin, & Miri, 2009)
by using a multi-HMM system in which each model was built with varying number of hidden states.
The resulting models were combined with the Maximum Realizable ROC (MRROC). When applied
to synthetic HIDS data, obtained performance was higher than the highest obtained with a single
HMM or STIDE (sequence matching).

When combined with a Naïve Bayes Classifier (that can properly handle the skewness in network
traffic) (Karthick, Hattiwale, & Ravindran, 2012), an HMM with more than five states had 100%
accuracy classifying all IPs from CAIDA (Hick, Aben, Claffy, & Polterock, 2007) as attack and IPs
from DARPA (“MIT Lincoln Laboratory: DARPA Intrusion Detection Evaluation”, n.d.) as clean.

With HsMM (Hidden Semi Markov Models) (Xie & Yu, 2008), the optimal configuration achieved a
detection rate of 97% with 1,8% FPR when detecting application-level DDoS attacks in HTTP
session data. HsMM is an extension of HMM with explicit state duration, which makes it suitable to
model user HTTP sessions. Deviation from the mean entropy of training data measured the
abnormality of an observed request sequence made by a given user.

Lastly, combined with the Urn and Ball model (Rabiner, 1989), promising results were obtained in
detecting whether a TCP session was anomalous or not (Joshi & Phoha, 2005). Urns were 5 features
(from 41 features) of KDD Cup 99: duration, is_host_login, src_bytes, dst_bytes, and is_guest_login.

2.3.3.7.2. Other sequence learning approaches

Recurrent Neural Networks (RNNs) are neural networks which can learn sequences. When applied
to intrusion detection (Al-Subaie & Zulkernine, 2007), they detected novel attacks and recognized
new normal activity. They also reduce FPR and FNR, and generalize better than other IDS.

By combining sequence learning with dimensionality reduction (Oka, Oyama, Abe, & Kato, 2004), a
72.3% detection rate with a 2.5% FPR was obtained for anomalous sequences of user commands. In
this approach, a user profiles were built by modeling the sequence' dynamic features, extracting
principal features of the model, and producing a layered network from them.

On the other hand, using a novel similarity measure (Lane & Brodley, 1997b) that counted adjacent
matching tokens (strings), 66.177 tokens from 4 different users were successfully classified: users
were similar to themselves and dissimilar to the other users. The set of sequences extracted in the
training phase were compared against those obtained in the detection phase. The similarity measures
of the set of sequences for a given user were aggregated through a smoothing filter, and the result
was leveraged to classify the overall stream as normal or unusual.

Using Instance-based learning (IBL) (Lane & Brodley, 1999) (Lane & Brodley, 1997a), a sequence
learning approach in which temporal sequences of categorical observations are translated into a
metric space through a similarity measure, users with a different behavior were clearly distinguished
from profiled users, at an early stage. Tests were performed with UNIX user command-line data.
These researchers later assessed the impact of concept drift (that occurs when statistical properties of
features being modeled change over time) in user behavior modeling (Lane & Brodley, 1998). They
compared three techniques (DAIP, truncate, U-ins). DAIP matched or outperformed truncate in 52%
of true accept tests but performed worst on true detect nearly 85% of the time. The disparity was
greater for U-ins, which was superior to truncate 60% of the time on true accept but worst 90% of
the time on true detect tests.

An Extended Finite State Automata (EFSA) that captured normal behavior of hosts and routers in a
network (Sekar, Gupta, Frullo, Shanbhag, Tiwari, Yang, & Zhou, 2002) was tested against the
DARPA 99 dataset, detecting all probing and DoS attacks with less than 10 false alarms per day. The
mapping process modeled how often a transition was taken, and common values of state variables on
a transition. These statistics were then recalculated in the detection phase. Anomalies were flagged
when a significant deviation was found.

Incremental Probabilistic Action Modeling (IPAM) (Davison & Hirsh, 1998) predicted the next
command in a sequence of UNIX commands entered by a user for which a normal profile was built
in advance. Compared to C4.5 classifier over 77 users, it outperformed C4.5 sixty times, tied once,
and lost sixteen times. This algorithm worked under the assumption that recent activity influences
future activity more than old activity, much in the same way as Markov models do.

Lastly, Bayesian parameter estimation (Singer, 1999) detected 91% of all the Whisker (web
vulnerability scanner) scans and previously unseen sequences of web pages requested by users (Cho
& Cha, 2004). Attacks were detected by comparing real-time web logs with expected frequencies of
the resulting sequences, with the underlying assumption was that sequences of pages requested by
users will exhibit patterns.

2.3.3.8. Time-series analysis

Time series analysis has been consistently applied to domains other than intrusion detection for
forecasting purposes. In particular, ARMA and its variants have been the preferred statistical models
to perform time series analysis.

GARMA models, which include generalized responses in the exponential family (Poisson counts,
binary responses), have been successfully used to forecast cyberattacks (Pillai, Palaniappan,
Abdullah, & Imran, 2015), with acceptable accuracy and sufficient early-warning time to defeat
these attacks.

Hierarchical Temporal Memory (HTM) has been used to detect anomalies in traffic received from
real-time sensors (Ahmad, Lavin, Purdy, & Agha, 2017), outperforming other anomaly detection
algorithms like CAD OSE, KNN CAD, Relative Entropy, Twitter AdVec, Skyline and Sliding
Threshold on some but not all of the tests. HTM is based on an online sequence memory algorithm.
In this approach, the prediction error or anomaly score is the gap between predicted sequence and
current input.

2.3.3.9. Reinforcement learning

In this type of learning, agents operate in an environment and take actions to maximize the
cumulative reward. This method has also been applied to the intrusion detection field.

An adaptive neural network (Cerebellar Model Articulation Controller or CMAC) using RL for DoS
(denial of service) detection (Cannady, 2000) achieved a response error of 1.94-07% for Ping Flood
attacks and a response error of 8.53-14% for a type of attack for which hadn't been trained (UDP
Packet Storm). The reinforcement learning component was implemented by providing feedback to
the neural network from the protected system, from a number of system state-related indicators (CPU
load, available memory, network load, etc.).

A log correlation and association rule learning IDS used RL to increase (reward) or decrease
(penalty) the importance of the rules that correctly pointed to log files containing attack patterns
(Deokar & Hazarnis, 2012). Performance was not made available.

Temporal-difference (TD) learning has been applied to sequential anomaly detection and tested
against system-call sequences to spot multi-stage intrusions like buffer overflows, symlink attacks
and Trojan programs (Xu, 2010). It outperformed HMM and supervised techniques like SVM and
Naïve Bayes. This approach was based on a novel Markov reward model in which the learning
prediction of value functions was equivalent to estimating the anomaly probabilities of the data
sequences. TD learning algorithm was also tested (Xu, 2006) against KDD99 data and the MIT lpr
system call data, confirming the suitability of this approach for intrusion detection.

RL has also been used to minimize the information exchange volumes of IDS agents in a distributed
architecture, and to improve the detection rates (Xu, Sun, & Huang, 2007). In this approach,
observed sequences of source IP addresses were only shared with other agents if related to a DDoS
attack.

2.3.3.10. Dimensionality reduction

In Principal Components Analysis (PCA), features are projected to a space with principal
components. This projection is then reversed to recover the features from those principal components
(Veeramachaneni, Arnaldo, Korrapati, Bassias, & Li, 2016). If only the first principal components

(those explaining most variance in data) are used for projection and reconstruction, reconstruction
error will be low for most observations and high for outliers.

When tested against system calls in a dataset made available by the University of New Mexico and a
UNIX command-line dataset produced by AT&T Research Lab (Wang, Guan, & Zhang, 2004), it
obtained a 100% detection rate with a FPR of 2.75% for system calls, and 100% detection rate with
0% FPR for UNIX command data. The algorithm measured the distance between the original vector
and its projection, with a long distance representing unusual user or program behavior. Another
similar approach (using the distance between major and minor principal components to the mean of
the sample as anomaly score) (Shyu, Chen, Sarinnapakorn, & Chang, 2003) obtained 98.94% recall
and a precision of 97.89%, with FPR of 0.92% against KDD Cup 99.

Abnormal traffic subspace, another PCA-based technique, is characterized by the (n-k) remaining
Principal Components (PC). In this setting, n is the total number of PCs and the k first Principal
Components represent the normal traffic subspace. This approach was useful to identify volume-
related anomalies (Huang, Nguyen, Garofalakis, Jordan, Joseph, & Taft, 2006), which constitute a
subset of the network intrusion categories.

Lastly, multiscale streaming PCA and hierarchical streaming PCA added real-time anomaly
detection (Kiran, 2017), a very convenient feature for a network intrusion detection system.

2.3.3.11. Clustering

This section includes clustering techniques not based on neural networks.

A variant of the single-linkage clustering technique (Portnoy, 2000) obtained a maximum detection
rate of 88% with 8,14% FPR, when tested with KDD Cup 99. The algorithm was trained with normal
distances and identified clusters of normal and anomalous instances, with no feature selection,
transformation or extraction process.

By leveraging the first phase of BIRCH hierarchical clustering algorithm (Burbeck & Nadjm-
Tehrani, 2004), a detection rate of 95% and a FPR of 2.8% were achieved against KDD Cup 99
dataset. The clusters hierarchy was built through incremental training. The detection process
consisted of searching from the root the closest cluster feature. The distance from the centroid to the
new data point was computed, with a high distance revealing an anomaly.

Frequent baskets concept (Leung & Leckie, 2005) achieved a ROC curve of 0.867, comparable to
other algorithms like KNN or SVM, when tested against KDD Cup 99. Data instances were
transformed into sequences of frequent baskets, used to generate the FP-tree with the FP-growth
algorithm, and clusters were then extracted using the count back method.

A novel clustering algorithm (Last, Shapira, Elovici, Zaafrany, & Kandel, 2003) compactly
represented and classified the content of web pages browsed by users in order to identify when a user
performs abnormal activity. Tested against 1,000 vectors representing normal accesses and 100
vectors representing abnormal accesses, TPR was 0.7 and FPR was 0.008.

Transductive Confidence Machines for KNN (TCM-KNN) (Li, Fang, Guo, & Chen, 2007) achieved
a detection rate of 99.48% with 1,74% FPR against KDD Cup 99 with no feature selection, and
99,32% and 2,81%, respectively, with a subset of the features. In this approach, p-value associated
with a strangeness ratio was calculated to identify anomalous observations.

Lastly, the performance of three additional clustering methods applied to intrusion detection were
compared (Syarif, Prugel-Bennett, & Wills, 2012): distance-based outlier detection approach led to
80.15% accuracy, while EM clustering led to 78.06%, and K-Medoids led to 76.71%.

2.3.3.12. Multivariate outliers detection

OneClassSVM is a variant of the most recent SVM implementation (Cortes & Vapnik, 1995). It
discovers a region where most training data is located, and labels those observations as one class.
Observations outside the region are labeled as another class.

Tested against 1998 DARPA Intrusion Detection Evaluation Data (Lazarevic, Ertoz, Kumar, Ozgur,
& Srivastava, 2003), it achieved the best detection rate (84,2%) but also a high FPR (4%), compared
to Density-Based Local Outliers (LOF), Nearest Neighbors (NN), and Mahalanobis Distance
Outliers Detection. In this approach, the following types of features were produced from tcpdump
files: connection-based, content-based, and time-based, most of them being simple counts and sums.

Tested against KDD Cup 99 dataset (Eskin, Arnold, Prerau, Portnoy, & Stolfo, 2002), it achieved
98% detection rate with a 10% FPR, and 100% detection rate when evaluated against system-call
sequences, which suggests that this method might outperform HMM and other sequence learning
methods.

Lastly, two variants attempting to make OneClassSVM more robust to outliers (Amer, Goldstein, &
Abdennadher, 2013) outperformed other standard unsupervised anomaly detection techniques in two
of four datasets of UCI Machine Learning Repository. Both of them aimed at reducing the weight of
outliers in computing the decision boundary.

On the other hand, a kernel-based method that projected raw network traffic feature space into a
highly dimensional feature space (Ahmed, Coates, & Lakhina, 2007) obtained results comparable to
those of PCA-based methods. In this approach, the kernel trick (inner product of feature vectors) was
used to produce a dictionary representing the region of normality through two different thresholds.

2.3.3.13. Association Rule Learning

Association rule learning (ARL) finds patterns and relations in data. It's a machine learning
technique. As opposed to sequence learning, it does not account for the order of items.

When implemented to isolate rare events in nominal time-series data (Mahoney & Chan, 2003a), it
achieved a 64% detection rate at a threshold of 100 false positives against the IDEVAL dataset. The
approach consisted of finding conditional rules to model legitimate patterns in a time series of tuples
of nominal attributes (packet fields values, elements in an HTTP request or strings in a TCP session).
An anomaly score was then produced based on the time since the rule was last triggered, the rule's
support, and the number of allowed values for the attribute.

When applied to modeling legitimate user command-line calls (Lee, Stolfo, & Mok, 1999), it was
able to accurately detect anomalies in a subset of DARPA datasets. These anomalies had very low
similarity scores (outside the range of legitimate behavior), which represented the likelihood that the
current user behavior is aligned with recorded profile.

More complex settings (Vaccaro, 1988) combined rule extraction and an evaluation process to model
normal user/system behavior, given by a set of a attributes. A rule forest was generated with no a
priori templates. Each rule was assigned a grade, based on its historical accuracy. An anomaly score
was then calculated in the detection phase for each new transaction. Particularly, a score was

obtained for each attribute, aggregated to obtain a transaction (set of attributes) score, and further
aggregated to obtain a thread score (set of transactions for a given user/system). Each individual
score was based on the number of rules fired and violated, and their grades.

The Frequent Episodes Rules (FER) (Qin & Hwang, 2004a) was leveraged to enhance Association
Rule Learning detection rates (Qin & Hwang, 2004b), with tests against NetAttack dataset achieving
a detection rate of 47% for the following types of attack: DoS, R2L and portscan. This represents an
average of 51% gain versus association rules. As opposed to association rules, which identifies
relationships among attributes in a single connection, FER identify relationships among multiple
connection records in a sequence. The underlying assumption justifying this approach is that
sequence-related information is relevant to uncover attacks.

Association Rule Learning has also been leveraged to extract rules from network traffic (Chan,
Mahoney, & Arshad, 2003), which detected 117 attacks out of 201 in the DARPA 99 dataset (with
50 to 75 rules and 10 false alarms per day). In this approach, the goal was to identify rules with high
support along the training phase, and violations of those rules along the detection phase. A novel
clustering algorithm was also implemented to discover outliers along the training phase, so that the
data used in this phase could be considered attack-free. A similar approach (Chen, Lu, & Teng,
1990) extracted rules from user activity, through Time-based Inductive Machine (TIM) algorithm
(Chen, 1988), which accounts for the sequential order of the events in the antecedent of a rule.

2.3.3.14. Other statistical modeling methods

PAYL (Wang & Stolfo, 2004) is a technique that profiles payload byte frequency distribution and
leverages Mahalanobis distance to measure similarity with expected distribution. Nearly 100%
accuracy was achieved with 0.1% FPR for http, when tested against the 1999 DARPA IDS and data
made available by Columbia CS department network. However, PAYL can be defeated with
polymorphic blending attacks, that successfully evaded byte frequency-based detection systems by
mimicking the statistical profile of normal behavior (Fogla, Sharif, Perdisci, Kolesnikov, & Lee,
2006). An enhanced version developed later (Perdisci, Gu, & Lee, 2006) was less vulnerable to these
attacks. This new version generated descriptions of the payload in multiple feature spaces with
related features, whose relationships were identified through a clustering algorithm designed for text
classification (Dhillon, Mallela, & Kumar, 2003).

A variant of PAYL (Bolzoni, Etalle, & Hartel, 2006) with a two-tier architecture achieved a higher
detection rate and a lower FPR than PAYL, and PHAD (Mahoney & Chan, 2002) (Mahoney &
Chan, 2001), another payload-based anomaly detector. The first layer implemented a SOM to pre-
process data, and the second layer implemented PAYL to perform classification. SOM was found to
be a useful method to pre-classifying packets. The assigned cluster then became an input to PAYL.

K-means was leveraged to produce clusters of normal and anomalous traffic (Münz, Li, & Carle,
2007), which led to successful detection of port scans and DoS attacks against both synthetic and real
data. The algorithm was independently run for each of the services observed in the traffic, assuming
that different protocols would exhibit different normal behavior profiles. Extracted features included
number of packets, bytes and source-destination pairs per flow.

Conditional probabilities were used (Stolfo, Hershkop, Bui, Ferster, & Wang, 2005) to detect
anomalous file system accesses through the following features: user ID, working directory,
command-line invoking the process, parent directory, filename, the three previously accessed files,
and file access frequency. One order consistency check calculated the probability of a feature value,

and another calculated the probability of a feature value conditioned on another feature. This system
achieved 95% detection rate and a 2% FPR.

Histograms have also been leveraged (Kind, Stoecklin, & Dimitropoulos, 2009) to represent flows
for a set of features (source and target IP and port, TCP flags, protocol, packet size, and duration).
When recalculated in the detection phase, those exceeding a distance to the clusters found in the
training phase represented anomalies. When tested against 15 types of attacks of the IDEVAL
dataset, 13 alarms were raised (86.7% accuracy).

Another statistical approach (Ye, & Chen, 2001) was based on a statistic called X^2, equivalent to
Hotelling’s T^2 statistic, but less computationally expensive. A sample of audit data for normal
events (with 284 event types and a stream of 3019 events) from MIT Lincoln Laboratory was used
for testing. The detection rate by audit event was 75% and reached 100% for intrusion session
(password guessing, symlinks attacks, and unauthorized remote access). 71% of the intrusion
sessions are detected at the first audit event. In a similar approach (Zhang, Li, Manikopoulos,
Jorgenson, & Ucles, 2001), the resulting statistical model was used as input to a neural network-
based classifier. Yet another equivalent approach (Krügel, Toth, & Kirda, 2002) produced an
anomaly score from three metrics (probability distribution of request length, character distribution of
payload data in the request, and likelihood of a given request type). It achieved 100% detection rate
against DNS and HTTP data with six different attack types.

Markov models and statistical anomalies were combined (Kruegel & Vigna, 2003) to detect
malicious HTTP requests, using the following features: length, character distribution, attribute
presence or absence, attribute order, and structural inference (for which the Markov model was
used). Three datasets with webserver logs were used for testing. Collectively, the models were able
to detect all intrusion scenarios (buffer overflow, directory traversal, cross-site scripting, input
validation and Code Red).

Another technique successfully detected SYN flood attacks using Latent Dirichlet Allocation
(Newton, 2012) in TCP/IP header data. The dataset used was made available by the University of
North Carolina at Chapel Hill (UNC). IP address sessions were translated into documents, with
words being target IP address/port number combinations. The resulting data was run through LDA to
create two models in the training and detection phases, which were then compared using variational
inference (log likelihood of documents in new data). A likelihood below the selected threshold was
associated with an anomaly.

Random forests were implemented under an unsupervised setting to build a classifier that was able to
find service-related patterns and match each data instance with the right service (Zhang &
Zulkernine, 2006). Data instances for which a class couldn’t be matched were considered anomalies.
The method was tested against the KDD Cup 99 and achieved a 95% detection rate of with a 1%
FPR. However, if false alarm rate was adjusted to 0.1%, detection rate dropped to 60%.

Lastly, entropy measurement has been used for worm detection (Wagner & Plattner, 2005), by
assuming that worm traffic is more uniform than normal traffic, and target IP addresses seen in flows
are more random than those in normal traffic. Entropy was obtained through data compression. The
method was successfully tested against Blaster and Witty worms. Authors warn, though, that this
method is not suitable for slow worms, since other techniques might provide shorter time to
detection.

2.3.4. Comparison of techniques

2.3.4.1. Ability to generalize

From the vast array of techniques analyzed in this systematic review, it turns out that testing is
commonly performed against a single dataset. These datasets belong to one of the following
categories: network traffic, intrusion data, system calls, user command-line data, or audit events.
While testing in any research experiment is limited by nature, the fact that most of the research work
is based on a particular dataset or two datasets of the same category must be accounted for when
assessing generalizability. If the results obtained with one dataset won’t export to data of different
nature, then the proposed implementation will be solving the problem partially, as the underlying
algorithm will not be suitable for intrusion detection in general, but for intrusions given particular
input information.

On the other hand, several experiments present performance results on a network protocol or service
basis (Krügel, Toth, & Kirda, 2002) (Kruegel, Kirda, Mutz, Robertson, & Vigna, 2005), or are
directly tested on a single service (Cho & Cha, 2004) (Kruegel & Vigna, 2003). This approach also
represents a strong limitation of the proposed systems, prevent them from achieving comprehensive
intrusion detection, even if the underlying algorithm is multipurpose and has been successfully
applied to different use cases.

Lastly, several experiments showed acceptable results on a given attack type (Huang, Nguyen,
Garofalakis, Jordan, Joseph, & Taft, 2006) (Greensmith, Twycross, & Aickelin, 2006) (Xu, Sun, &
Huang, 2007) and not the others present on the datasets used for testing. This is another sign of a
general lack of generalization capabilities in the current research literature.

The aforementioned lack of generalization doesn’t seem to be tied, however, to the particular
algorithm or modeling technique used, but to the conceptual design of the experiment. In other
words, the underlying techniques in each category might be suitable for a wider range of services,
protocols, datasets or attack types, but clearly that fact hasn’t been the goal of any of the references
reviewed. Having said that, the only promising approach (in the references included in this
systematic review), from a generalization perspective, seem to be those systems based on neural
networks (Saxe & Berlin, 2017) (Zanero & Savaresi, 2004), which can automatically extract features
from supplied data or work with packet payload data directly. This feature effectively means that
they don’t rely on a particular data structure to be effective, and so they could potentially generalize
well.

2.3.4.2. Detection of complex attacks

In general, an intrusion detection technique based on an unsupervised setting is expected to find
attack types that can’t be easily spot with more traditional approaches, like rules or signatures. In
fact, the goal of anomaly detection is to identify suspicious activity by comparison with legitimate
activity, not requiring any attack pattern knowledge in advance for effective detection. On the other
hand, the use of general-purpose algorithms must lead to more sophisticated detections, that is, those
that would go unnoticed to an experienced security analyst, or to a properly configured detection tool
that relies on well-known patterns alone.

When looking at the technique categories presented in this review, two categories seem to be
theoretically best positioned for this task: clustering based on neural networks (SOM and ART), and
Sequence Learning.

In the first case, this is supported by the actual tests performed against datasets of very different
nature, combined with their multi-layer capabilities, which allows them to produce specialized
detection models across data inputs, protocols, services and attack types. This is a requirement for
detection of complex attacks, whose traces can span multiple data sources.

In the case of Sequence Learning, the ability to detect complex attacks is not so much supported by
the diverse or heterogeneous scenarios in which these techniques have been evaluated, but rather by
the nature of those complex attacks, which can be interpreted as a sequence of malicious steps. Any
technique which relies on a single data point to detect attacks will be able to detect simple attacks,
whereas a technique that can correlate (and even detect in order) several circumstances associated
with an intrusion will be able to spot complex, multi-stage attacks.

Regarding AIS, and particularly systems leveraging Negative Selection (NS) and Danger Theory
(DT), their reliance on the non-self concept and the danger signals can make them less appropriate
for complex attacks. The reason behind is that these attacks don’t show a uniform pattern of activity
or leave consistent traces that could be easily captured by a set of detectors, but can rather adopt
many different shapes with no similarity among them, thus requiring an infeasible number of
detectors to be created.

Fuzzy logic, graph, and Swarm Intelligence, on the other hand, are very general-purpose techniques.
Therefore, their ability to detect complex attacks is linked to other components of the system, like
data preprocessing or feature extraction. In the case of Reinforcement Learning, it seems to be a very
experimental approach with very limited research work available. Lastly, statistical methods that rely
on probability distribution of input data could be weak in detecting attacks which might not impact
the observed probability distribution, like it’s the case of many stealthy attacks that generate almost
no noise compared to legitimate activity.

It’s also worth noting that several experiments included in this review (Bridges & Vaughn, 2000)
(Hofmeyr, 1999) (Sekar, Gupta, Frullo, Shanbhag, Tiwari, Yang, & Zhou, 2002) (Münz, Li, & Carle,
2007) can only detect attack types like DoS, probing and port scanning, which can be easily detected
with static thresholds. These techniques, or the way they have been implemented, are likely far from
being able to detect complex attacks that require no significant volumes of traffic or logs for success.

2.3.4.3. Scalability

Scalability refers to the ability to move from a laboratory exercise with a data sample to a real-life
environment with significantly higher volumes of data.

From the techniques reviewed, Negative Selection is the one for which scalability issues have
already been identified (Kim & Bentley, 2001a). However, scalability might pose a serious risk for
other detection categories: statistical methods, because capturing probability distribution is an
intense computational task as data volume grows; Association Rule Learning, because managing a
very large ruleset can become infeasible for timely intrusion detection; graphs, because memory
consumption is linked to graph size, which in turn depends on the volume of data to be represented;
Markov models, because this statistic model was designed to handle a small set of states, well below
the potential requirements of real intrusion data; and Reinforcement Learning, for the same reason.
In the case of Reinforcement Learning, though, more recent developments using neural networks
suggest that scalability might no longer be an issue, but it’s yet to be demonstrated that these models
can be successfully implemented for intrusion detection.

2.3.5. Discussion

Even though research which applies neural networks to intrusion detection is still under heavy
development, the references included in this review suggest that techniques based on this approach
are closer to offer generalizability, ability to detect complex attacks and scalability than any of the
included categories. Their main disadvantage is that they require big datasets in order to produce
accurate models; however, this requirement is very likely to be satisfied in real-life environments.

Fuzzy logic accounts for uncertainty, which is a desirable feature in intrusion detection. However,
the developments around this tool seem to focus on producing rules to model legitimate behavior.
The resulting rulesets show acceptable detection rates, but the scalability of those implementations is
at least questionable. The same applies to techniques based on Association Rule Learning.

Genetic algorithms have proven to enhance another technique like clustering, and to optimize feature
selection for accurate intrusion detection. However, from the references included in this review, they
can’t still be used as standalone methods.

Artificial Immune Systems have shown comparable performance to other methods; however, they
suffer from scalability and coverage issues, and they are not suitable for detecting complex attacks,
given their dependence on detectors, which are likely to represent known attack patterns.

Swarm Intelligence has had a very limited focus so far. The results obtained by available research are
comparable to other methods, and researchers claim that this technique can detect unknown attacks.
However, there is little support from the research community to validate those claims and confirm
whether they can be repeated under different testing scenarios. The sample applies to graphs, which
also suffers from potential scalability issues, as discussed before.

Sequence learning algorithms are by definition well suited to detect more complex attacks involving
several steps that would take place in order for the intrusion to succeed. However, Markov models
were designed to handle a small set of states, and therefore they can’t scale efficiently. On the other
hand, RNNs, which are sequence learning neural networks, can both generalize and scale, but there
is not enough literature to strongly support these claims.

Reinforcement Learning is still a very experimental approach, and so pros and cons can be backed
yet with enough experiments.

Dimensionality reduction has obtained promising results against public and commonly used datasets.
It’s a simple technique that combines feature extraction with detection. However, its simplicity might
become an issue with real data where the underlying assumptions (for example, linearity in PCA)
might not hold. Moreover, recent dimensionality reduction techniques based on deep neural
networks, like autoencoders, could replace more traditional techniques in this category.

Clustering techniques not based on neural networks have also obtained promising performance and
are by definition well suited to detect unknown attacks. Their effectiveness, though, heavily relies on
the feature selection process, which will make anomalous clusters arise more or less clearly. The
same applies to multivariate outlier detection, where the right choice of kernel function is the key to
properly separate normal and anomalous instances.

Lastly, the vast array of statistical methods implemented for intrusion detection share their lack of
generalization, since they have been tested against very specific datasets or attack types.

2.3.6. Conclusions

Depending on the particular intrusion detection use case, certain techniques could offer more
advantages than the others. While there are techniques that are in theory better prepared to support a
wide range of scenarios, like neural networks, each of the techniques included in this systematic
review could successfully address a given intrusion detection need. In fact, future development paths
are focusing on combining several techniques and even paradigms (supervised and unsupervised) in
order to build upon the advantages of more than a single algorithm (Tsai, Hsu, Lin, & Lin, 2009).
Another approach would be to reengineer methods that have been successfully applied in a
supervised setting, so that they can also fit into unsupervised approaches. In fact, CNN has only been
recently applied to building an IDS in an unsupervised setting. It has been though leveraged in
supervised approaches (Upadhyay & Pantiukhin, 2017), which built a CNN from the DeepLearn
ToolBox by Mathworks Matlab and obtained a classification error rate below 2% for the KDD99
dataset.

On the other hand, complex attacks are likely to span multiple datasets, which suggests that data
fusion could be another development path. This engineering discipline makes inferences from
activities, events and situations whose data is gathered from multiple sources.

This approach would allow to achieve a higher degree of inference, including identity of intruder,
behavior of intruder, situation assessment and threat analysis. Previous research (Bass, 2000) has
already proposed to apply multisensor data fusion to intrusion detection systems.

Lastly, all techniques presented in this review rely on trusted training data to successfully detect
intrusions. However, an attacker could inject noise into the data used for training and trick the
anomaly detector to model an attack as normal behavior. This adversarial noise issue has been
analyzed by previous research (Kloft & Laskov, 2010). When using a simple learning algorithm like
online centroid anomaly detection, using HTTP traffic and a set of well-known web application
exploits, an attacker would need to control over 5-15% of the traffic used for training for a poisoning
attack to succeed. In a similar setting, a poisoning attack led to same conclusions (Kloft & Laskov,
2012). Both experiments suggest that the resilience of an algorithm to these attacks is a relevant
feature for which extensive research is needed.

2.3.7. Limitations of this review

This systematic review follows a procedure commonly used in the research community that aims at
providing extensive coverage of the topic under discussion and answer key questions related to the
motivation and objectives of this research.

However, this review has a number of inherent limitations. First, the extensive literature on the topic
makes it hard to deliver full coverage and include every single research work that might be relevant
to the discussion. Therefore, some references that could have also been included in this review might
be missing. For the same reason, this review has focused on popular techniques with several research
experiments associated with them. Niche methods or very custom approaches that are not supported
by different researchers have been discarded in the process.

Lastly, obtained conclusions are based on relevant findings of previous research and how they have
been interpreted in the context of this research work’s motivation and objectives. Other researchers
describing those findings from another perspective or evaluate them under a different context might
obtain different conclusions.

In any case, to the best of my knowledge, this systematic review constitutes an in-depth assessment
and provides a solid foundation to the rest of this research work.

2.3.8. Supporting background research

This section includes research literature that doesn’t fit into the scope of the systematic review but
had to be reviewed prior to starting the developments associated with this research work.

2.3.8.1. Intrusion detection

In this section, relevant research literature in which supervised learning has been applied to intrusion
detection is presented and discussed. These references were included for comparison purposes: they
allow to measure the relative degree of success obtained by this research work’s developments, that
is, to what extent these developments outperform any of the performance results obtained with
techniques that have prior knowledge of attack patterns.

Most common classifiers (Ahmed, Mahmood, & Hu, 2016) used to build an IDS are based on SVM,
Bayesian networks, neural networks, and rule mining methods.

SVM, used in combination with Deep Belief Networks for feature extraction, achieved (Marir,
Wang, Feng, Li, & Jia, 2018) 90.47% precision, 97.21% recall and 93.72% F-measure when tested
against UNSW-NB15. An IDS based on Bayesian networks (Kruegel, Mutz, Robertson, & Valeur,
2003) leveraging OS calls triggered by the DARPA 1999 dataset (Mahoney & Chan, 2003b)
achieved accuracies ranging from 75% to 100%. Deep learning has reported enhanced performance
(Kwon, Kim, Kim, Suh, Kim, & Kim, 2019). These include (Zhao, Yan, Chen, Mao, Wang, & Gao,
2019): autoencoders, Deep Belief Networks, Deep Boltzmann Machines, Recurrent Neural Networks
(RNN) and Convolutional Neural Networks (CNN).

Deep Belief Networks, used in combination with Modified Density Peak Clustering Algorithm
(MDPCA-DBN), obtained 90.21% accuracy against UNSW-NB15 dataset. A variant of Boltzmann
Machines (Aldwairi, Perera, & Novotny, 2018), Restricted Boltzmann Machines, was trained with
the ISCX dataset (Shiravi, Shiravi, Tavallaee, & Ghorbani, 2012) using Contrastive Divergence
(CD) and Persistent Contrastive Divergence (PCD) algorithms. It achieved 88.6% (CD) and 89.0%
(PCD) accuracies, 88.4% (CD) and 84.2% (PCD) true positive rates, and 88.8% (CD) and 93.8%
(PCD) true negative rates.

RNNs have been leveraged to model sequences of basic network parameters and predict legitimate
future behavior (Radford, Apolonio, Trias, & Simpson, 2018). When focusing on protocol-bytes
sequences, Area Under the Curve (AUC) ranged from 0.78 to 0.84. On the other hand, a CNN (Saxe
& Berlin, 2017) was able to detect attacks using OS and application-level resources as input,
including URLs, files and registry keys. The system achieved a detection rate ranging from 97.8% to
99.3%.

Natural Language Processing (NLP) implemented through an artificial neural network has been used
to build an IDS (Mimura & Tanaka, 2017). Particularly, Paragraph Vector algorithm was used,
which creates embeddings for documents. An SVM classifier was also leveraged to classify
legitimate and malicious traffic. The aim of this research was to detect command-and-control activity
generated by malware. Precision ranged from 77% and 99%, and recalled ranged from 69% and
100%. With another NLP technique, based on skip-gram models (Carrasco & Sicilia, 2018), 99.2%
precision and 82.07% recall were reported.

CNNs are useful to detect malicious URLs, file paths and registry keys. The obtained detection rate
ranged from 97.8% to 99.3% (Saxe & Berlin, 2017). Another method based on Cerebellar Model
Articulation Controller and RL was able to successfully detect DoS attacks (Cannady, 2000). The
obtained error was 3.28E-05%.

Previous research (Kumar, Glisson, & Cho, 2020) compared the performance of MeanShift, K-
means, and Fuzzy C-Means. Detection rate was 79.1%, 82.3%, and 84.6%, respectively, and
accuracy was 81.2%, 77.2%, and 82.1%. The dataset used was KDD 99. Another research (Nawir,
Amir, Yaakob, & Lynn, 2019) tested five classification algorithms against the UNSW-NB15 dataset:
Naïve Bayes, Averaged One Dependence Estimator (AODE), RBFN, MLP, and J48 trees.
Accuracies ranged from 76.12% to 98.71% (J48 trees).

Deep learning was tested (Fernández & Xu, 2019) in both supervised and unsupervised settings to
detect intrusions in the CIC IDS 2017 dataset. 96.77% TPR and 0.52% FPR were obtained with the
supervised approach, and 0.013% FPR and 76.70% FNR with the unsupervised (autoencoder)
setting.

Another research (Meftah, Rachidi, & Assem, 2019) performed feature selection, using Recursive
Feature Elimination and Random Forest, to find top performing features and input them to several
binary classifiers. Best results were obtained by Support Vector Machines (SVM), with an accuracy
of 82.11% when tested against the UNSW-NB15 dataset. Also, a variation of SVM with a new
scaling method obtained an accuracy of 85.99% against UNSW-NB15 (Jing & Chen, 2019).

Previous research discovered that feature selection optimization (Parker, Yoo, Asyhari, Chermak,
Jhi, & Taha, 2019) led to an accuracy of 98.04% in the Aegean Wi-Fi Impersonation Attack
Detection dataset. Another research (Blaise, Bouet, Conan, & Secci, 2020) developed a technique
that detects bots (malware) through clustering, by classifying new hosts either as bots or benign ones
based on distances to labeled clusters. Tested against CTU-13 dataset, the obtained F1-Score ranged
from 80% and 93%.

Lastly, Convolutional Neural Networks were used by another research (Van Huong & Hung, 2019)
to detect intrusions in IoT systems. The obtained average accuracy was 98.9%.

2.3.8.2. Fraud detection

In this section, research literature focused on increasing fraud detection rate are presented and
discussed. Their obtained results are useful to determine to what extent this research work’s
development provide comparable performance or even outperform existing approaches. Supervised
and unsupervised learning techniques are included.

Recent research states that credit card fraud detection can be best implemented by using artificial
neural networks (Rushin, Stancil, Sun, Adams, & Beling, 2017), after evaluating the performance
obtained by both neural networks and other techniques like SVM, AIS, KNN, Dempster Shafer
Theory, decision trees, logistic regression, association rule learning, active learning, Cardwatch
(Aleskerov, Freisleben, & Rao, 1997) and several others.

From a set of classifiers that included random forest, KNN, decision trees, and logistic regression,
the latter achieved best accuracy (Soh & Yusuf, 2019).

In terms of skewness, techniques like C5.0 classifier, SVM, neural networks and logistic regression
obtained better results than KNN, AIS, Naïve Bayes or Bayesian Belief Network (Makki, Assaghir,
Taher, Haque, Hacid, & Zeineddine, 2019). On the other hand, imbalanced data is better managed by

neural networks, compared with SVM, decision trees and random forest (Parthasarathy, Ramanathan,
JustinDhas, Saravanakumar, & Darwin, 2019).

Extreme Gradient Boosting (GB) and Random Forest (RF), both supervised methods, obtained better
results (in terms of AUROC metric) than Restricted Boltzmann Machine (RBM) and Generative
Adversarial Networks, which had obtained top performance among unsupervised methods. The vales
ranged from 98.8% to 98.9%. The chosen feature selection method is also a driver performance. In
particular, filter and wrapper methods obtained better accuracy for PART and J48 decision trees
(Singh & Jain, 2019). It also obtained better sensitivity and precision levels for random forest, J48
decision tree and AdaBoost.

A novel method leveraging a non-parametric approach exploited data reduction to extract relevant
transactions (Vardhani, Priyadarshini, & Narasimhulu, 2019), while another leveraging DeepWalk
and decision trees with Gradient Boosting obtained an F1 score which ranged from 61.43% to
71.84%.

The hypersphere model (Chen, Zhang, Liu, Yang, Meng, & Wang, 2019) has been used in an
unsupervised setting to model normal user activity, obtaining better performance than other methods.
On the other hand, Local Outlier Factor (LoF) and Isolation Forest have outperformed other artificial
intelligence techniques (Sharmila, Kumar, Sundaram, Samyuktha, & Harish, 2019).

A neural network trained to recognize sequences has proven to achieve notable performance (Yang
& Xu, 2019). This method also makes it easier to interpret model results, and is better prepared to
tackle concept drift. In fact, higher performance is observed in malicious credit card transactions
when concept drift is accounted for (Lucas, Portier, Laporte, Calabretto, He-Guelton, Oblé, &
Granitzer, 2019). Hidden Markov Models have delivered better precision and recall compared to
other fraud detection systems (Lucas, Portier, Laporte, Calabretto, Caelen, He-Guelton, & Granitzer,
2019).

When skewness is accounted for, unsupervised methods show higher performance than supervised
techniques (Mittal & Tyagi, 2019). On the other hand, when data is oversampled (using a method
like SMOTE), accuracy increases in supervised techniques (Varmedja, Karanovic, Sladojevic,
Arsenovic, & Anderla, 2019). Lastly, accuracy might decrease if several scores are combined to
come up with a final score (Carcillo, Le Borgne, Caelen, Kessaci, Oblé, & Bontempi, 2019).

Better accuracy is obtained when SVM, KNN and MLP classifiers are implemented together. The
comparison was done against standalone classifiers, including these three and several others (Naïve
Bayes, Extreme Learning Machine) (Prusti & Rath, 2019a) (Prusti, Padmanabhuni, & Rath, 2019). A
variant of AdaBoost and stacking ensemble technique obtained better accuracy (94.5%) than other
methods as stacking, AdaBoost, RF, logistic regression, and DT (Prabhakara, Kumarb, Ponnarb,
Sureshb, & Jayandhiranb, 2019).

Semantic fusion (Darwish, 2020), with artificial bee colony algorithm (ABC) and k-means clustering
obtained a high accuracy. Indeed, higher accuracy is obtained if customers are classified into groups
before transactions are processed (Kasa, Dahbura, Ravoori, & Adams, 2019).

Previous fraud detection research (Dornadula & Geetha, 2019) compared the accuracy of five
different algorithms with a novel technique implementing oversampling, behavioral pattern
extraction, and feedback management. Authors obtained the following results: Local Outlier Factor
(45.82%), Isolation Forest (58.83%), Logistic Regression (97,18%), Decision Trees (97.08%), and

Random Forest (99.98%). A similar research (Varmedja, Karanovic, Sladojevic, Arsenovic, &
Anderla, 2019) concluded that Random Forest leads to best results, with 99.96% accuracy. Yet
another study (Kang, 2019) that compared Random Forest and Boosted Trees led to accuracies of
98.98% and 99.24%, respectively. Lastly, another research (Kumar, Soundarya, Kavitha, Keerthika,
& Aswini, 2019) leveraging Random Forest obtained 90% accuracy.

Another research (Misra, Thakur, Ghosh, & Saha, 2020) proposed a two-stage model in which an
autoencoder was used for feature engineering and several algorithms (Multi Layered Perceptron, K-
nearest Neighbor, logistic regression) for classification. The resulting F-score ranged from 77.15% to
82.65%. On the other hand, SVM was the algorithm of choice of another recent research (Gupta,
2019), that used a dataset with ten years of credit card transactions. It achieved an accuracy on
90.00% in the classification task. Similarly, another research (Latif, Kulkarni, Molkire, & Nangare,
2020) leveraging Naïve Bayes theorem achieved 94.57% accuracy.

Paysim1 dataset was leveraged to for performance comparison of DT, neural networks, and
SVM(Shahed, Ibrahim, & Akter, 2019). The accuracies obtained were 94.04%, 96.14%, and 97.83%,
respectively. Undercomplete autoencoders (Misra, Thakur, Ghosh, & Saha, 2020) have also been
tested against the Paysim1 dataset, achieving 85.34% precision and 80,15% recall.

Yet another research (Shukur & Kurnaz, 2019) geared towards algorithm comparison concluded that
Isolation Forest was the best-performing technique, with 99.7% accuracy. Another study (Safa &
Ganga, 2019) that compared Naïve Bayes, logistic regression and K-Nearest Neighbors obtained
accuracies of 83.00%, 97.69% and 54.86% respectively. Lastly, other approaches which have proven
their effectiveness in improving classification results for fraud detection include Generative
Adversarial Networks (GAN) (Fiore, De Santis, Perla, Zanetti, & Palmieri, 2019), deep learning and
hybrid ensemble (Kim, Lee, Shin, Yang, Cho, Nam, 2019), a hybrid model (Prusti & Rath, 2019b)
combining decision tress, SVM, and KNN models, and an optimized SVM model combined with the
Random Under Sampling (RUS) technique (Pambudi, Hidayah, & Fauziati, 2019).

Lastly, the combination (Eshghi & Kargari, 2019) of decision trees, transaction sequences and user
activity (semisupervised setting) improved detection rate by 7%.

2.3.8.3. Alert reduction

In this section, research literature related to this research work’s development around fraud detection
optimization is presented and discussed.

2.3.8.3.1. Intrusion detection

ALAC (Adaptive Learner for Alert Classification) prototype leveraged adaptive learning for
classification of alerts in real time. The system (Pietraszek, 2004) learnt decisions patterns from
human expertise, and leveraged a RIPPER classifier (Cohen, 1995). RIPPER (Lee, 1999) delivers
generalization accuracy and concise conditions. False alarm rate dropped by 30% (Lippmann,
Haines, Fried, Korba, & Das, 2000) when tested with DARPA 1999 dataset.

Clustering also allows to reduce alert volume (Njogu & Jiawei, 2010). Data was enriched with
evidence and vulnerability assessment data. The reduction rate was 78%, using the DARPA 1999
data for testing.

Greedy aggregation, also a clustering algorithm, obtained an 83.2% reduction rate (Harang &
Guarino, 2012) for Snort (open-source IDS) alerts. Alerts were classified into groups of meta-alerts,
with common details.

Snort IDS alerts included in DARPA 1999 data were used to test a method (Nauck, Nauck, & Kruse,
1999) using Jrip and NEFCLASS. Jrip is a RIPPER implementation in Weka. Detection rate was
88% with the first (Jrip), and 84.63% with the latter (NEFCLASS).

A reduction rate of 35.04% was obtained (Bakar, Belaton, & Samsudin, 2005) with data enrichment
through an alert quality framework. The quality level was calculated based on criteria like reliability,
sensitivity, accuracy and correctness. Additional details like vulnerability details were included. The
vulnerability information applied to OS, applications, and network services.

Lastly, frequent pattern-based outlier detection (He, Xu, Huang, & Deng, 2005) has been applied to
alert reduction, with rates ranging from 86% to 92% (Xiao, Jin, & Li, 2010). The dataset used was
extracted from traffic in a network with 10 systems.

2.3.8.3.2. Deep learning for decision-making automation

Deep Learning (DL) can automate decision-making activities for intrusion detection (McElwee,
Heaton, Fraley, & Cannady, 2017), loan application processing (Srivastava, 1992), managerial
decision making (Hill & Remus, 1994), medical diagnosis and treatment prescription (Liang, Zhang,
Huang, & Hu, 2014), and clinical imaging classification (Ciritsis, Rossi, Eberhard, Marcon, Becker,
& Boss, 2019). The combination of rules and artificial neural networks (Tan, Quah, & Teh, 1996)
can also support the automation of these processes.

A classifier based on a deep neural network (McElwee, Heaton, Fraley, & Cannady, 2017) was able
to triage IDS alerts. The groups into which alerts were classified had meaning for human experts,
which confirmed its effectiveness.

Business judgement can also be automated with artificial neural networks. For example, they were
applied (Srivastava, 1992) to loan applications, using data about companies with a label indicating
whether they defaulted or not. Decisions were taken using the same criteria as humans.

On the other hand, Deep Learning (DL) outperformed rules and shallow neural networks for medical
diagnosis (Liang, Zhang, Huang, & Hu, 2014). It also resembled criteria used by human experts in
this field better than other methods.

Lastly, a Deep CNN outperformed humans in tasks like classification of clinical images (Ciritsis,
Rossi, Eberhard, Marcon, Becker, & Boss, 2019). Data used for testing included 101 images from an
internal dataset (accuracy from 87.1% to 93.1% for dCNN and from 79.2% to 91.6% for humans)
and 43 from an external dataset (AUC 96.7% for dCNN and 90.9% for humans). Both were extracted
from the Breast Imaging Reporting and Data System (BI-RADS).

3. Materials and methods
3.1. Research overview

In this section, an overview of the research work done is presented. The work is split into four
different developments, each of them addressing one or more of the objectives shown in the
introductory section of this document.

3.1.1. Unsupervised intrusion detection

In order to reduce the dependence on well-known attack patterns for effective intrusion detection in
the cybersecurity field, an unsupervised technique was developed that can accurately distinguish
malicious network activity by comparing it with legitimate behavior (Carrasco & Sicilia, 2018).

A variant of word2vec (skip-gram) was applied. The technique captures the relationship among
nodes (entities) in a network, as well as its legitimate activity. In the detection stage, attacks are
detected by measuring how far is observed activity from expected activity for the entities (Carrasco
& Sicilia, 2018).

The technique aims to increase artificial intelligence’s contribution to intrusion detection, by
improving in one or more aspects the existing methods. It leverages UNSW-NB15 (Moustafa &
Slay, 2015) public intrusion dataset, which allows proposed approach to be validated, replicated and
improved in the future by the research community.

3.1.2. Supervised fraud detection optimization

Multiple settings leveraging deep neural networks were tested to assess whether they could capture
the criteria used by humans to discard false positives in anomalous credit card transactions (Carrasco
& Sicilia, 2020). The underlying neural networks had already demonstrated to deliver notable
performance in other fields (Liu, Wang, Liu, Zeng, Liu, & Alsaadi, 2017).

This development also aims to increase artificial intelligence’s contribution to fraud detection, by
improving in one or more aspects the state-of-the-art methods found in research literature.

3.1.3. Semisupervised intrusion detection

In order to demonstrate that unsupervised intrusion detection can be augmented by supervised
learning, a deep autoencoder leveraging xgboost algorithm for feature selection was designed and
tested. In fact, three approaches were implemented and compared: excluding source and target IP
addresses from the feature set, including all available features, and selectively including features,
based on the feature importance metric supplied by xgboost algorithm. In addition to this, One-Hot
Encoding and logarithmic scale discretization were used for feature engineering purposes.

This development leverages UNSW-NB15 (Moustafa & Slay, 2015) public intrusion dataset, which
allows proposed approach to be validated, replicated and improved in the future by the research
community.

3.1.4. Unsupervised cross-domain malicious behavior detection

In order to prove that artificial intelligence can evolve towards cross-domain applications, an
unsupervised technique leveraging topic modeling was designed, implemented and tested against
three datasets of network traffic, Internet of Things (IoT) malware traffic, and payment transactions.

In an attempt to build upon this previous research on NLP and topic modeling, LDA was selected as
the baseline algorithm of proposed technique. On top of the algorithm, it was developed: a feature
engineering technique that converts both categorical and numerical feature values into words, and a
tailored scoring mechanism for anomaly detection. Also, the concept of entity was shifted from the
subject performing the action to the action being performed.

Publicly available datasets in each field were used. UNSW-NB15 (Moustafa & Slay, 2015) was
selected for intrusion detection, Paysim1 (“Synthetic Financial Datasets For Fraud Detection”, 2017)
for payments fraud detection, and IoT-23 (“IoT-23 Dataset: A labeled dataset of Malware and
Benign IoT Traffic”, n.d.) for malware detection in IoT devices. The datasets all share the trait of
capturing forms of malicious behavior, while being diverse in the environments from which data is
extracted. They all have been used in previous research, hence allowing to compare results with
those obtained by other authors.

3.2. Datasets

3.2.1. UNSW-NB15

Synthetic datasets support most intrusion detection research (Gogoi, Bhuyan, Bhattacharyya, &
Kalita, 2012). The reason behind this is that real traffic data have only become available very
recently. In this research, UNSW-NB15 (Moustafa & Slay, 2015) was used. It contains realistic and
recent legitimate activity, and recent attack types belonging to 9 categories: Fuzzers, Analysis,
Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode and Worms.

UNSW-NB15 was made available by the Australian Centre for Cyber Security (ACCS), and created
with PerfectStorm (“PerfectStorm”, n.d.). With tcpdump, 100 GB of traffic was sniffed. 49 features
were produced with Argus and Bro-IDS. Label classified observations into normal or attack. Data is
delivered as 4 CSV files. For this research, they have been combined into a single file with 2,218,763
observations of normal activity and 321,283 attacks.

The file was used for training and testing in the following developments: unsupervised intrusion
detection, semisupervised intrusion detection, and unsupervised cross-domain malicious behavior
detection.

Other common datasets used in the IDS field include KDD Cup 99 and NSL KDD, an enhanced
version of KDD Cup 99. KDD Cup 99 suffers from two statistical issues (Tavallaee, Bagheri, Lu, &
Ghorbani, 2009): a significant number of redundant records, which leads to a bias towards more
frequent observations, and artificially high accuracy measures, which prevents from proper
performance comparison among algorithms. While NSL KDD partially solves these issues, it doesn’t
represent modern attack environments, as it is still based on the same malicious traffic of KDD Cup
99. IDEVAL, also a very popular dataset for intrusion detection, also suffers from several issues
(Mahoney & Chan, 2003b).

UNSW-NB15 solves some of the key issues with datasets as KDD Cup 99 and NSL-KDD (Moustafa
& Slay, 2016), including: lack of recent attack types, lack of recent normal activity, and different
distribution of training and testing sets.

3.2.2. Paysim1

Paysim1 (“Synthetic Financial Datasets For Fraud Detection”, 2017) is a synthetic dataset of
payment transactions. It was produced from 1 month of real transactions recorded by a mobile
money service in Africa. It was produced using Paysim (Lopez-Rojas, Elmir, & Axelsson, 2016), a
financial mobile money simulator designed to support fraud detection research. The dataset contains
6,354,407 observations of legitimate transactions, and 8,213 of fraudulent transactions.

Dataset features are enumerated in Appendix 8.2.

This dataset was used for the unsupervised cross-domain malicious behavior detection development.

3.2.3. IoT-23

IoT-23 (“IoT-23 Dataset: A labeled dataset of Malware and Benign IoT Traffic”, n.d.) is a dataset of
malware traffic from IoT devices. It contains 20 malware traces executed in IoT devices, and three
samples of legitimate traffic. Traffic was recorded in the Stratosphere Laboratory, AIC group, FEL,
CTU University, Czech Republic. It was published in January 2020. Its purpose is to allow
researchers to design algorithms suitable for IoT-related malware detection. From all the available
captures, CTU-IoT-Malware-Capture-1-1 was selected for this research. It contains 469,275
observations of legitimate traffic, 539,465 observations of port-scanning activity, and 8 observations
of C&C (Command & Control) malicious traffic.

Dataset features are enumerated in Appendix 8.3.

This dataset was used for the unsupervised cross-domain malicious behavior detection development.

3.2.4. Fraud dataset

446,076 real alerts issued during 6 months of anomalous credit card transactions from a payment
processing organization in Spain were also used in this research (Carrasco & Sicilia, 2020).

The percentage of confirmed and discarded alerts is included in Table 5.

Label # Records Percentage (%)

Confirmed 195,265 43.77%

Discarded 250,811 56.22%

Table 5. Dataset label distribution.

The feature set is described in Table 6 (Carrasco & Sicilia, 2020).

Feature Description Type Cardinality Range

Amount Amount in local currency. Numerical N/A [0,
231.014,48]

Day of month Day of month. Numerical N/A [1, 31]

Hour Hour. Numerical N/A [0, 23]

Data Input PoS identification method for
credit card.

Categorical 21 N/A

Authentication
method

PoS customer authentication
method.

Categorical 12 N/A

Response code Code returned by the payment
processing platform after
processing.

Categorical 59 N/A

Merchant type
(international)

Type of business, based on
international codes.

Categorical 507 N/A

Merchant type
(domestic)

Type of business, based on
Spanish codes.

Categorical 325 N/A

City - Categorical 54 N/A

Country - Categorical 187 N/A

Issuing bank Bank that issued the credit card. Categorical 107 N/A

Score Risk level assigned by the fraud
detection system.

Numerical 100 N/A

Label Human expert decision: confirm
or discard.

Binary 2 N/A

Table 6. Input columns.

This dataset was used for the supervised fraud detection optimization development.

3.3. Algorithms
3.3.1. Skip-gram modeling

The word2vec algorithm transforms words into embeddings (vectors). The CBOW variant predicts a
word from context, while the skip-gram variant predicts context from a given target word (Mikolov,
Chen, Corrado, & Dean, 2013).

In skip-gram, the goal is to obtain high probability (cosine similarity) for words that belong to the
context of the target word. This variant is more suitable for data with many records, like it is the case
for intrusion detection. The reason for this is that it manages context-word pair as a single
observation. Training speed and quality of embeddings was improved by algorithm extensions
(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013).

The skip-gram algorithm was modified in this research (Carrasco & Sicilia, 2018), so that it can
accurately detect intrusions. The underlying assumption was that both nodes in a network and the
connections they initiate (behavior) can be represented as words.

word2vec and skip-gram have been leveraged in multiple domains. The skip-gram variant can
uncover relationships among cancer patents (Whitehead & Johnson, 2017). It can also uncover
semantic information in medical words (Zhou, Fu, Qiu, Zhang, & Liu, 2017), perform protein
classification (Islam, Heil, Kearney, & Baker, 2017), predict consumer acceptance (Kim, Ha, Choi,
& Moon, 2018), extract sentiment information against movie reviews (Chakraborty, Bhattacharyya,
Bag, & Hassanien, 2018), model harmony (Sears, Arzt, Frostel, Sonnleitner, & Widmer, 2017),
evaluate human judgment (Hollis, Westbury, & Lefsrud, 2017), and infer psycholinguistic properties
(dos Santos, Duran, Hartmann, Candido, Paetzold, & Aluisio, 2017).

In anomaly detection, skip-gram can detect deviations in log files (Bertero, Roy, Sauvanaud, &
Trédan, 2017). In cybersecurity, word2vec can be applied to feature engineering (Zhuo, Zhang, &
Son, 2017). It can also find learn semantics of attack types, to be used as input to a CNN classifier
(Barot, Zhang, & Son, 2016).

3.3.2. Topic modeling

Topic modeling is a NLP method used for discovering latent topics in a corpus of documents.
Originally proposed in 1998 (Papadimitriou, Raghavan, Tamaki, & Vempala, 2000), it was further
developed from a probabilistic standpoint (Hofmann, 2013). It has been applied to multiple fields:
themes and trends discovery in transportation research (Sun & Yin, 2017), anomaly detection in
video data (Girdhar, Cho, Campbell, Pineda, Clarke, & Singh, 2016), anomalous event detection in
text documents (Shin, Choi, Choi, Langevin, Bethune, Horne, 2017), spatio-temporal event analytics
on social media (Choi, Shin, Choi, Langevin, Bethune, Horne, 2018), insider threat detection (Kim,
Park, Kim, Cho, & Kang, 2019), anomaly detection in multi-view data (Zhang, Iwata, & Kashima,
2017), and supply-chain analysis (Bansal, Gualandris, & Kim, 2020). Latent Dirichlet Allocation
(LDA) (Blei, Ng, & Jordan, 2003) is a topic modeling variant developed in 2003 that builds upon the
original development (Papadimitriou, Raghavan, Tamaki, & Vempala, 2000), using a hierarchical
Bayesian model.

LDA can describe network behaviors, and is a promising approach for detecting zero-day attacks and
other network threats (Cramer & Carin, 2011). It has also been proposed to detect unauthorized
access in SSH logs (Aswani, Cronin, Liu, & Zhao, 2015) and malicious user behavior (Huang,
Kalbarczyk, & Nicol, 2014), by modeling topics of legitimate and attack-related activities.

3.3.3. Neural networks

3.3.3.1. Multi-Layer Perceptron

MLP is a feedforward neural network with at least 3 layers (input, output, and hidden). Neurons are
fully connected and implement a non-linear activation function. Backpropagation is leveraged to
minimize the loss function.

3.3.3.2. Convolutional Neural Network

CNN architecture is also based on multiple layers (input, output, and hidden). It's implemented as
sequences of convolution (sliding dot product of input and a rectifier linear unit) and max pooling
(non-linear down-sampling) operations with a fully connected layer.

3.3.3.3. Deep autoencoders

DAE is a neural network used to reduce dimensionality. It's leveraged in unsupervised settings. It
compresses input and decompresses it back (output). Outliers are easily uncovered because they
obtain a high reconstruction error.

An autoencoder is a class of neural network for unsupervised learning that produces efficient
encoded representations of input data (Liou, Cheng, Liou, & Liou, 2014). It’s commonly used for
dimensionality reduction purposes. When its architecture includes several hidden layers, it’s
considered a deep autoencoder. A standard deep autoencoder architecture is visually depicted in
Figure 3.

Figure 3. Deep autoencoder neural network structure.

The autoencoder learns compressed representations of training data, from which it generates output
that resembles the original input. This reconstruction task is shown in Figure 4 for both handwritten
digit recognition and (simplified) network traffic events. To achieve their goal, autoencoders try to
minimize a loss function which express reconstruction error of frequently observed inputs. The
reconstruction error is defined as follows:

!"#$%&'!(#')$%	"!!$!	 = 	
1
- 	×/

(1! − 13!)"
#

!$%
				

where 1! represents each component of the input vector, -is the input length, and 13! represents each
component of the reconstructed input.

Figure 4. Deep autoencoder behavior in handwritten digit recognition and in intrusion detection.

3.4. Experimental setting

3.4.1. Unsupervised intrusion detection

3.4.1.1. Dataset

UNSW-NB15 (Moustafa & Slay, 2015) was used. Its features are enumerated in Appendix 8.1.

3.4.1.2. Feature engineering

The hypothesis for feature engineering is that a system owned by an attacker will connect to network
nodes and ports that were not observed in the past, before it was compromised (Carrasco & Sicilia,
2018). In this context, only four features related to network connections were selected: source IP,
destination IP, destination port and protocol.

The other features were not used, for the reasons described next:

• Aggregated features. Producing them requires a lot of computation power in a real network,
which would impact real time performance.

• Protocol-related. These features are not generally available, and so including them would
restrict proposed approach to very specific environments.

• Application-based. If included, they would restrict detection capabilities to those applications.

• Time-based. They can be easily manipulated by an attacker.

The overall objective was to design an approach that could be applied to real datasets.

Compared to other methods that use the 49 features (Bamakan, Wang, & Shi, 2017), proposed
approach has low storage requirements (from 586.4 MB to 101.2 MB, an 82.7% reduction rate). The
issue with having to process big data has been pointed out by other researchers (Garvey & Lunt,
1991) and is minimized with proposed approach (Carrasco & Sicilia, 2018).

The dport feature was transformed: only the most frequent values were kept, while the others were
replaced by a default value. This transformation helped to increase performance because it allows to
discriminate connections to well-known and unusual services (Carrasco & Sicilia, 2018).

3.4.1.3. Neural network design

TensorFlow (Abadi et al, 2016) is an open-source machine learning framework that has been applied
in fields like robotics, computer vision, natural language processing and speech recognition. It was
created by Google.

TensorFlow was used in this research as the underlying framework to implement skip-gram. The
resulting neural network architecture had the following layers: input, embeddings, and a softmax
classifier (output).

Figure 5 displays the neural network architecture used for skip-gram:

Figure 5. Skip-gram neural network architecture.

Embeddings are initialized with random values ([-1, 1]). These values represent a sample from a
uniform distribution. Weighs are populated from a normal distribution and updated through SGD
(Stochastic Gradient Descent) with Adagrad optimizer (which adjusts learning rate based on

parameter frequency), while all bias values are set to zero (0). Adagrad is the most suitable optimizer
because it properly handles sparse data (as One-Hot encoding inputs used in our approach).

The training process creates a set of normalized embeddings that can be used to calculate cosine
similarity between entities (network nodes and network connections) (Carrasco & Sicilia, 2018).

Other parameters in the design were adjusted through grid search, as shown later. On the other hand,
the micro batch function was customized to properly encode inputs.

3.4.1.4. Algorithm reengineering

word2vec handle words in a document. Microbatches contains pairs of target word and context word.
These data points are used to refine embeddings in each iteration. This approach allows to predict
whether a word is in the context of a target word or not (negative sampling).

This approach is visually depicted in Figure 6.

Figure 6. Skip-gram modeling for text classification and as IDS.

In proposed approach (Carrasco & Sicilia, 2018), target words represent network nodes, or systems,
that connect to other nodes. Context words, in turn, represent connection details, or connection types.
Connections are defined by a target IP, a protocol and a destination service, represented by a port
number.

Therefore, context around a target word represent most probable connections of a given network
node, and obtained embeddings (of network nodes and network connections) meet the following
criteria: nodes whose embeddings are similar (close) connect to similar nodes and services; if the
embedding of a node is similar (close) to the embedding of a connection, the node frequently creates
that type of connection to other nodes; if the embeddings of two network connections are similar
(close), then they are initiated by the same nodes (Carrasco & Sicilia, 2018). As a result, embeddings
that are far from each other represent unusual connections for a network node, or nodes whose
connection profile is very different.

During training, embeddings are obtained. After that, for each recorded event, a network node and its
connection details are extracted, and their embeddings' similarity is obtained. Low similarity means
infrequent activity. Multiple events associated with a given node represent infrequent activity are a
signal of anomalous activity taking place.

This approach is visually depicted in Figure 7:

Figure 7. Examples of normal and anomalous interactions.

Leveraging a set of embeddings helps to reduce the FPR, because the model doesn't only spot
infrequent activity of a given node by comparing current activity with historical records of that
node, but also compares that activity with the one of similar nodes (which obtain similar
embeddings, as explained before). This means that inference goes well beyond what it is known
about a given node, and expands to what it is collectively known about nodes exhibiting similar
behavior in the past. If a given normal behavior for a given node is, for some reason, not observed in
the training phase, that lack of information won't generate false positives if that behavior is observed
for other similar nodes (Carrasco & Sicilia, 2018).

3.4.1.5. Microbatch building function

In order to apply skip-gram to intrusion detection, the microbatch function originally included in
TensorFlow implementation was redesigned. After the redesign, each record supplied to the neural
network for processing is a list of items (the equivalent to a document in the original form of the
algorithm), in which the first item (target word) is a network node (p = 0.8) or connection details (p
= 0.2), and the remaining items are the connections initiated by that node (context). If a node initiates
a connection multiple times (in the training data), the corresponding item is found in the list multiple
times as well. Therefore, each record contains all connection types associated with a node (Carrasco
& Sicilia, 2018).

The microbatch function takes consecutive samples (with no overlap) of the dataset. This sampling is
controlled by the batch_size parameter. If the first item is a node, the algorithm learns the
relationship between that node and its connections. If the first item is a connection, the algorithm
learns the relationship between a connection of a node and the remaining connections of that node.
This stochastic approach was included in order to learn accurate embeddings (Carrasco & Sicilia,
2018).

The set of connections included in each record is randomly chosen. The num_skips parameter
controls how many connections are sampled for a record, that is, what is the bandwidth or depth of
the context.

3.4.1.6. Distance measurement

The algorithm generates a vector for each word (node or connection). With these vectors, it's feasible
to discover which words are close to a given word, that is, which items exhibit a high similarity
(cosine similarity):

&)5)67!)'8 = 	 cos < = 	
= ∙ ?

‖=‖‖?‖ = 	
∑ =!?!&
!$'

B∑ =!"&
!$' B∑ ?!"&

!$'

The similarity ranges from -1 to 1, with 1 representing the shortest distance (angle with 0 degrees)
and -1 representing the longest distance (angle with 180 degrees).

The similarity measure is obtained for each event observed in the detection stage, by multiplying the
normalized embedding of the node initiation a connection by the transposed embedding of the
initiated connection (Carrasco & Sicilia, 2018).

3.4.1.7. Visual inspection

In order to measure accuracy, a rigorous performance measurement method was applied.
Nevertheless, before that method was run, visual inspection of the results obtained in the training
phase was useful to confirm the initial hypothesis (Carrasco & Sicilia, 2018). This inspection
provides a deeper understanding of the results of the modeling exercise. Moreover, it allows to check
whether clusters of nodes and connections are naturally formed, that is, whether normal behavior
actually exists and whether nodes' behavior can be classified into groups (for example, workstations
and servers, which should exhibit radically different behavior).

In order to plot embeddings, they were transformed into bidimensional vectors using tSNE (t-
Distributed Stochastic Neighbor Embedding) algorithm (Van Der Maaten, 2014). tSNE (Van der
Maaten & Hinton, 2012) is a method to reduce dimensionality that allows to display in a XY graph
records of a high-dimensional dataset (Van Der Maaten, 2009). This algorithm is included in scikit-
learn Python package. The tSNE configuration used is included in Table 7. Figure 8 shows the
scatter plot associated with the optimal neural network configuration (C1), which suggests that
network nodes exhibit similar behavior and can be classified into groups according to that behavior.

Parameter Value

perplexity 50

n_components 2

init pca

n_iter 5000

Table 7. tSNE parameters.

Figure 8. Scatter plot of obtained embeddings.

3.4.1.8. Performance evaluation criteria

Proposed evaluation criteria are based on popular metrics used in IDS research: precision and recall
(Wu & Banzhaf, 2010). Their formulas are the following:

C!"#)&)$% = 	
'D

'D + FD

G"#766 = 	
'D

'D + F%

F-score, which is also commonly used in the IDS field, is derived from precision and recall:

H' = 2	 ∙ 	
D!"#)&)$%	 ∙ !"#766
D!"#)&)$% + !"#766

True positives (tp) represent events considered an attack that are an attack. False positives (fp)
represent events wrongly tagged as an attack which are normal traffic. False negatives (fn) represent
attack events erroneously tagged as normal. Precision represents the proportion of true positives
detected among events tagged as attacks. Recall represents the proportion of attacks detected among
all observed events.

3.4.1.9. Experiment setup

3.4.1.9.1. Training and test datasets

1,938,118 records (76.3%) were sampled to train the model. The training set included no attacks, as
required in an unsupervised setting. 601,928 records (23.6%) were sampled to measure model
accuracy.

280,645 records in the test set represented normal traffic, while 321,283 records were actual attacks.

3.4.1.9.2. Parametrization

Optimal neural network configuration (higher precision and higher recall, with recall having higher
priority) was discovered through grid search.

Table 8 shows what parameters were considered for the grid search (Carrasco & Sicilia, 2018):

Parameter Value

batch_size # of records returned by microbatch function.

num_skips # of context items for a target word.

valid_size # of records used for validation.

num_steps # of epochs.

embedding_size # of embedding vector dimensions.

Table 8. Neural network parameters.

3.4.2. Semisupervised intrusion detection

3.4.2.1. Dataset

UNSW-NB15 was used to test proposed approach.

3.4.2.2. Feature engineering

UNSW-NB15 dataset contains 49 features that can be grouped into the following categories: IP
addresses, categorical features, and numerical features. A different engineering technique was
applied to each of these categories.

For source and destination IP addresses, each of the four octets was encoded as eight binary ([0, 1])
values.

One-Hot Encoding (OHE) was applied to categorical features. It produces a vector in which one
single element is set to one (1), and the rest are set to zero. The length of the vector equals the
number of unique values. Therefore, this encoding scheme creates orthogonal vectors, whose
distance to all other vectors is the same. This property is required for categorical features in which
there is no relationship between values, that is, all values are equally different from the rest. Table 9
and Table 10 show this encoding technique for two sample features (target port and network
protocol, respectively). For unknown values in the test process, that is, those not found in the training
dataset, a vector with all components set to zero was generated.

Target port value Assigned Index One-hot Encoded Value

0 0 100000000000

9999 (default) 1 010000000000

80 2 001000000000

25 3 000100000000

53 4 000010000000

111 5 000001000000

5190 6 000000100000

22 7 000000010000

21 8 000000001000

143 9 000000000100

6881 10 000000000010

179 11 000000000001

Table 9. Target port encoding.

Network protocol
value

Assigned Index One-hot Encoded Value

ospf 0 100000000

icmp 1 010000000

tcp 2 001000000

arp 3 000100000

udp 4 000010000

igmp 5 000001000

udt 6 000000100

rtp 7 000000010

esp 8 000000001

Table 10. Network protocol encoding.

For numerical features, the following logarithmic scale discretization formula was applied:

F(1) = J6$K'%(1), 1 ≠ 0
0, 1 = 0

Once discretized, these feature values were transformed into numerical vectors using the
aforementioned One-Hot Encoding scheme.

Lastly, infrequent destination ports were identified in the dataset and relabeled with a default value
(9999).

3.4.2.3. Feature selection

In proposed setting, three different feature selection approaches were tested.

In the first approach, all features were included. In the second approach, numerical features with
more predictive power, IP addresses (source and target), and categorical features were selected.

Predictive power was obtained through xgboost's feature importance metric. This metric is calculated
for a single decision tree by measuring the amount that each feature split point enhances performance
in terms of the Gini index, weighted by the number of instances the node is responsible for. Obtained
importance is then averaged across all decision trees in the model. Gini index is calculated as
follows:

O)%) = 1 −/(D!)"
(

!$'

where P is the number of classes (two in proposed scenario, normal or attack), and D! is the
probability of an instance being classified to class).

Most important features, as ranked by xgboost, are shown in Figure 9.

Figure 9. Top features by xgboost importance.

In the third approach, all features but IP addresses were selected. Table 11 enumerates the features
included in each approach.

Approach Included features

All features srcip, dstip, dsport, proto, state, service, is_sm_ips_ports, ct_state_ttl,
is_ftp_login, ct_ftp_cmd, dur, sbytes, dbytes, sttl, dttl, sloss, dloss,
Sload, Dload, Spkts, Dpkts, swin, dwin, stcpb, dtcpb, smeansz,
dmeansz, trans_depth, res_bdy_len, Sjit, Djit, Sintpkt, Dintpkt, tcprtt,

synack, ackdat, ct_flw_http_mthd, ct_srv_src, ct_srv_dst, ct_dst_ltm,
ct_src_ltm, ct_src_dport_ltm, ct_dst_sport_ltm, ct_dst_src_ltm

xgboost
features

srcip, dstip, dsport, proto, state, service, is_sm_ips_ports, ct_state_ttl,
is_ftp_login, ct_ftp_cmd, ct_srv_dst, sttl, smeansz, sbytes, stcpb,
ct_dst_sport_ltm, dttl, dloss, Sintpkt, ct_dst_src_ltm, synack, Sload,
dbytes, tcprtt

No IP
addresses

dsport, proto, state, service, is_sm_ips_ports, ct_state_ttl,
is_ftp_login, ct_ftp_cmd, dur, sbytes, dbytes, sttl, dttl, sloss, dloss,
Sload, Dload, Spkts, Dpkts, swin, dwin, stcpb, dtcpb, smeansz,
dmeansz, trans_depth, res_bdy_len, Sjit, Djit, Sintpkt, Dintpkt, tcprtt,
synack, ackdat, ct_flw_http_mthd, ct_srv_src, ct_srv_dst, ct_dst_ltm,
ct_src_ltm, ct_src_dport_ltm, ct_dst_sport_ltm, ct_dst_src_ltm

Table 11. UNSW-NB15 features included in each feature selection approach.

The motivation behind the second approach (letting xgboost select features) was to check whether
excluding features with less predictive power would lead to higher performance. This has been
investigated by other researchers using Linear Discriminant Analysis (Dahiya & Srivastava, 2018),
with positive results. On the other hand, the motivation behind the third approach (excluding IP
addresses) was to measure the impact on performance of training the model with frequent
connections between known IP addresses. Lastly, timestamps were excluded in the three cases,
because proposed detection method must not rely on attacks taking place at a given timeframe or in a
given sequence.

3.4.2.4. Neural network design

TensorFlow (Abadi et al, 2016) is a machine learning framework created by Google. It allows to
perform training and inference for neural networks. Keras is an open-source neural network Python
package that leverages TensorFlow as backend. I

In this research, a deep autoencoder was implemented with Keras, using TensorFlow as backend
engine. The design process implied setting the parameters enumerated in Table 12.

Parameter Description

Layer 1 size Size of the first hidden layer of the encoder.

Layer 2 size Size of the second hidden layer of the encoder.

Layer 3 size Size of the third hidden layer of the encoder, which represents the
compressed input.

Batch size # of records returned by microbatch function as input.

Epochs # of epochs.

Table 12. Neural network parameters.

All configurations shared the structure of layers shown in Table 13.

Name Type Activation

Input Dense

-

Hidden 1(encoder) Dense RELU

Hidden 2 (encoder) Dense RELU

Hidden 3 (compressed) Dense RELU

Hidden 2 (decoder) Dense RELU

Hidden 1 (decoder) Dense RELU

Output Dense sigmoid

Table 13. Autoencoders Layers Structure.

Lastly, Adam optimizer (Kingma & Ba, 2014) was selected to minimize loss function. The parameter
values shown in Table 14 were set for proposed implementation.

Parameter Symbol Value

Learning rate ! 0.009

Forgetting factor for gradients %! 0.9

Forgetting factor for second moments of gradients %" 0.999

Small scalar used to prevent division by 0 & 10#$

Table 14. Adam Optimizer parameters.

3.4.2.5. Training and detection

The training process aimed at leveraging the proposed autoencoder to learn legitimate traffic
patterns. For this purpose, the UNSW-NB15 dataset was split into a train dataset, containing normal
instances, and a test dataset, containing both normal and attack instances. Table 15 shows the size of
each dataset and their respective proportion of normal and attack instances.

Dataset Size # normal instances (%) # attack instances (%)

Train 1,897,478 1,897,478 (100%) 0 (0%)

Test 642,566 321,283 (50%) 321,283 (50%)

Table 15. Train and test datasets.

The assumption was that, in the detection process, attack inputs would be rare, compared to normal
activity. Therefore, they would exhibit a higher reconstruction error than normal inputs. In other

words, low reconstruction errors would be associated with normal traffic, while high reconstruction
errors would be associated with attack traffic. This approach is depicted in Figure 10.

Figure 10. Training and detection approach.

Figure 11. Transformed Reconstruction Errors for normal instances.

Figure 12. Transformed Reconstruction Errors for attack instances.

Therefore, setting a threshold allows proposed system to accurately classify inputs as normal or
attack traffic. In order to find an accurate and stable threshold for each autoencoder configuration,
the obtained reconstruction error was transformed by taking (and negating) 6$K'%	of its value, which
represents its order of magnitude. The resulting value was designated as Transformed Reconstruction
Error (TRE):

QGR = 	−6$K'% S
1
- ×	/

(1! − 13!)"
#

!$'
T				

where - is input length.

Figures 11 and 12 show histograms of normal and attack Transformed Reconstruction Errors for an
example autoencoder configuration.

3.4.2.6. Performance evaluation criteria

In the field of IDS, the following metrics are commonly used for model comparison: accuracy,
precision, recall and F-score:

=##(!7#8 = 	
'D + '%

'D + '% + FD + F%

C!"#)&)$% = 	
'D

'D + FD

G"#766 = 	
'D

'D + F%

H' = 2	 ∙ 	
D!"#)&)$%	 ∙ !"#766
D!"#)&)$% + !"#766

where true positives ('D) refer to attack traffic observations correctly classified, false positives (FD)
are legitimate traffic observations incorrectly classified as attacks, false negatives (F%) are attack
traffic observations incorrectly classified as legitimate traffic, and true negatives ('%) are legitimate
traffic observations correctly classified.

3.4.3. Cross-domain malicious behavior detection

3.4.3.1. Datasets

The following datasets were used: UNSW-NB15, Paysim1 and IoT-23.

3.4.3.2. Entity definition

Typically, behavior modeling techniques take the subject performing actions as the entity whose
behavior has to be modeled (Kim, Park, Kim, Cho, & Kang, 2019) (Blaise, Bouet, Conan, & Secci,
2020). In this research, however, the action being performed was used as the entity. This decision
was made to avoid detecting attacks or fraud by simply spotting subjects (attackers or fraudsters) that
were not present in the training phase, which only contains legitimate activity.

Table 16 shows what features were used to form the entity in each dataset:

Dataset Entity features Description

UNSW-NB15 proto, service Connection, represented by protocol and service features.

Paysim1 type Transaction type.

IoT-23 proto, service Connection, represented by protocol and service features.

Table 16. Features used as entity in each dataset.

3.4.3.3. Feature engineering

In this research, a feature engineering technique that translates events (or transactions) into words
was developed. For each event, the entity (action being performed) was extracted. Each entity
represented a document. Content (feature values) of all events of a given entity represented words of
that document. The resulting corpus was a set of entities (documents) whose documents’ words were
the feature values present in their events.

Target datasets contained both numerical and categorical features. Therefore, data transformation
was needed to ensure that the resulting item could be translated into a word regardless of the feature
type. For this purpose, a two-stage encoding technique was used.

In the first stage, feature values were prefixed with the feature name. This was done to ensure that
same values present in different features were translated into different words in the documents where
they appear. In the second stage, numerical values were discretized using a logarithmic scale or by

dividing its value by ten (10), depending on their range. For numerical features with a range that
spans more than one order of magnitude, the logarithmic scale was used, while the remaining
numerical features were divided by ten.

Logarithmic scale is applied with the following formula:

F(1) = 	6$K10 U
1
7V × 	10															1 ≥ 7

F(1) = 	0							1 ≤ 7

where 7 is parameter that is set to percentile 1 if all values are lower than 1, or to 1 otherwise.

3.4.3.4. Scoring

The initial purpose of the topic modeling algorithm was to discover latent topics in a corpus of
documents. This translates into two probability distributions: the probability of a document (entity)
containing a topic, and the probability of a word (feature value) representing a topic. These two
probability distributions are represented by matrices R and Q, respectively.

In this research, these probability distributions were used to compute the probability of an event (D)
representing legitimate behavior. The following two probability metrics were tested to assess which
one exhibited higher performance:

D)!& = min{R! ∙ Q', … , R! ∙ Q#}		

D*+) =/R! ∙ Q,

#

,$%

1 ≤)	 ≤ 	_

where M is the number of unique entities, - is the number of feature values in each event (except
from entity-related features), R! is the document-topic probability vector for document (entity)), and
Q, is the word-topic probability vector for word (feature value) `.

3.4.3.5. Performance evaluation

Performance evaluation was done using common metrics in the field of intrusion detection systems
(Elhamahmy, Elmahdy, & Saroit, 2010): precision, recall, accuracy and F-score.

Accuracy is the proportion of the total number of the correct detections (both legitimate activity and
attacks) relative to the dataset size. F-score (F1) measures the balance between precision and recall.

Their formulas are as follows:

=##(!7#8 = 	
'D + '%

'D + '% + FD + F%

C!"#)&)$% = 	
'D

'D + FD

G"#766 = 	
'D

'D + F%

H' = 2	 ∙ 	
D!"#)&)$%	 ∙ !"#766
D!"#)&)$% + !"#766

where 'D is the number of attacks correctly detected, '% is the number of legitimate events correctly
classified, FD is the number of legitimate events incorrectly classified as attacks, and F%is the
number of attacks incorrectly classified as legitimate activity.

3.4.3.6. Training and test datasets

Target datasets were split into legitimate and malicious activity. A subset of the legitimate activity
and all the malicious activity (with a proportion of 50% each) was used for testing, and the
remaining legitimate activity was used for training. This split approach (with the same number of
observations for both classes) ensures that performance evaluation metrics remain consistent and
reliable, with the same number of observations for both classes.

3.4.3.6.1. UNSW-NB15

Table 17 shows how the UNSW-NB15 dataset was split for training and testing:

Subset Number of observations

Legitimate 2,218,763

Malicious 321,283

Train 1,897,480

Test (legitimate) 321,283

Test (malicious) 321,283

Test (all) 642,566

Table 17. UNSW-NB15 train and test datasets.

Table 18 shows how features were transformed, using the feature engineering method described in
section 3.3.

Discretization technique Features

Logarithmic scale dur, sbytes, dbytes, sloss, dloss, Sload,
Dload, Spkts, Dpkts, stcpb, dtcpb,
smeansz, dmeansz, res_bdy_len, Sjit,
Djit, Sintpkt, Dintpkt, ackdat, tcprtt,
synack.

Divide by 10 sttl, dttl, swin, dwin, trans_depth,
ct_srv_src, ct_srv_dst, ct_dst_ltm,
ct_src_ltm, ct_src_dport_ltm,
ct_dst_port_ltm, ct_dst_src_ltm.

None (categorical) is_sm_ips_ports, ct_state_ttl,
ct_flw_http_mthd, is_ftp_login,
ct_ftp_cmd.

Table 18. Feature transformations for UNSW-NB15 dataset.

3.4.3.6.2. Paysim1

Table 19 shows how the Paysim1 dataset was split for training and testing:

Subset Number of observations

Legitimate 6,354,407

Malicious 8,213

Train 6,346,194

Test (legitimate) 8,213

Test (malicious) 8,213

Test (all) 16,426

Table 19. Paysim1 train and test datasets.

Table 20 shows how features were transformed, using the feature engineering method described in
section 3.3.

Discretization technique Features

Logarithmic scale amount, newbalanceOrig,
oldbalanceDest, newbalanceDest,
oldbalanceOrig

Divide by 10 -

None (categorical) -

Table 20. Feature transformations for Paysim1 dataset.

3.4.3.6.3. IoT-23 MC11

Table 21 shows how the IoT-23 MC11 dataset was split for training and testing:

Subset Number of observations

Legitimate 469,275

Malicious 539,473

Train 234,638

Test (legitimate) 234,637

Test (malicious) 539,473

Test (all) 774,110

Table 21. IoT-23 MC11 train and test datasets.

Table 22 shows how features were transformed, using the feature engineering method described in
section 3.3.

Discretization technique Features

Logarithmic scale duration, orig_bytes, resp_bytes,
orig_ip_bytes, resp_ip_bytes

Divide by 10 orig_pkts, resp_pkts

None (categorical) conn_state, history

Table 22. Feature transformations for IoT-23 MC11 dataset.

3.4.3.7. Model parametrization

Gensim is a robust, open-source, scalable and platform-independent Python library for topic
modeling (“Gensim: topic modelling for humans”, n.d.). Gensim’s LDA implementation was used in
this research.

This implementation provides multiple parameters for customization. The two key parameters
influencing performance, based on tests performed, were the number of topics and the number of
passes.

Table 23 describes these parameters and their default values:

Name Description Default value

num_topics # of requested latent topics to be
extracted from the training corpus.

100

passes # of passes through the corpus during
training.

1

Table 23. LDA model parameters in scope.

3.4.4. Supervised fraud detection alert optimization

3.4.4.1. Dataset

The fraud dataset described in the section devoted to datasets was used.

3.4.4.2. Statement of the problem

Multiple neural network implementations were subject to a training exercise. The goal for these
neural networks was to learn how to discard false alerts, in order to reduce the amount of alerts
requiring manual review (Carrasco & Sicilia, 2020).

3.4.4.3. Feature engineering

Both numeric and categorical features are present in the dataset used for testing. All features were
transformed into fixed-length binary vectors. The actual transformation procedures applied to
features were as follows (Carrasco & Sicilia, 2020):

Binary. Applied to categorical features. Values were indexed with a positive (greater than or equal
to zero) integer. The obtained index was then translated a binary vector. Vector length equaled the
amount of bits required to represent the highest binary value.

Table 24 shows an example of the results for a feature with 5 values.

B = 	 {B', B", … , B-}

Label # Records Percentage (%)

B! 0 000

B" 1 001

B% 2 010

B& 3 011

B' 4 100

Table 24. Binary encoding example.

OHE (One-Hot Encoding). Applied to categorical features. Values were indexed with a positive
(greater than zero) integer. The obtained index was then translated a binary vector. Vector length is
associated with the number of unique feature values. All vector values (bits) are set to zero, except
from the value at the position represented by the index (set to one).

Table 25 shows an example of the results for a feature with 5 values.

O = 	 {O', O", … , O-}

Feature value Index Encoded value

O! 0 00001

O" 1 00010

O% 2 00100

O& 3 01000

O' 4 10000

Table 25. One Hot Encoding example.

Binning. Applied to numeric features. Feature values were assigned to bins. Bins were defined by
applying thresholds derived from the feature value range.

Table 26 shows which bins applied to numeric features.

Feature name Bin thresholds

Score [-∞, 10, 20, 30, 40, 50, 60, 70, 80, 90,
∞]

Day of month [-∞, 10, 20, ∞]

Hour [-∞, 4, 8, 12, 16, 20, ∞]

Amount [-∞, 10, 100, 1000, 10000, 100000, ∞]

Table 26. Bin thresholds.

3.4.4.4. Architecture design criteria

Both supervised and unsupervised settings were considered in this research (Carrasco & Sicilia,
2020).

MLP (Multi Layer Perceptron) and CNN (Convolutional Neural Networks) are artificial neural
networks used for classification (supervised learning) of observations with fixed length. DAE (Deep
Autoencoders) leverage unsupervised learning, which requires no labeled data. In other words, Deep
Autoencoders learn without prior knowledge of fraud patterns.

Table 27 shows each architecture parameters.

Label # Records

MLP # of hidden layers

Hidden layer sizes

CNN # of convolutional layers

Input layer shape

DAE # of hidden layers

Hidden layer sizes

Common (MLP,
CNN, DAE)

Batch size

Learning rate

of epochs

Table 27. Neural network key parameters.

3.4.4.5. Performance evaluation criteria

The most popular evaluation metrics for classification tasks are precision and recall. They are also
leveraged in the fraud detection domain (Kumari & Mishra, 2019).

C!"#)&)$% = 	
'D

'D + FD

G"#766 = 	
'D

'D + F%

where true positives ('D) refer to alerts flagged for fraudulent transactions, false positives (FD) refer
to alerts flagged for legitimate transactions, false negatives (F%) refer to the lack of a triggered alert
for fraudulent transactions, and true negatives ('%) refer to legitimate transactions that triggered no
alert.

Precision and recall values were calculated for the assessed neural network architectures (Carrasco &
Sicilia, 2020). The AUC (Area Under the Curve) was obtained from the ROC (Receiver Operator
Characteristic). For supervised settings (MLP, CNN), a threshold representing the probability
beyond which an observation would be assigned to the fraud class was set. For the unsupervised
setting (DAE), a threshold representing the reconstruction error beyond which an observation would
be assigned to the fraud class was set.

Reconstruction error was calculated as follows:

!"#$%&'!(#')$%	"!!$! = 	−6$K'% S
1
-	/

(1! − 13!)"
#

!$%
T				

where - equals input length, 1! represents each input dimension, and 13! is represents each output
dimension. Output represents the reconstructed (after compression and decompression) input.

The effective alert reduction rate was calculated for each configuration based on the aforementioned
performance metrics (Carrasco & Sicilia, 2020). The rate, in this scenario, represents the percentage
of alerts that can be automatically discarded as false positives, requiring no manual review by a
human fraud expert. The rate is described together with a rate of misclassification, that is, how much
actual fraud is missed due to the proposed approach tagging it as a false positive.

3.4.4.6. Training and test datasets

For both supervised and unsupervised settings, data was split into training and testing datasets. For
supervised settings (MLP, CNN), 80% of the alerts were included in the training dataset, and 20% of
the alerts were included in the testing dataset. In the case of the Deep Autoencoder, it was trained
with 201,995 false positives. For testing, 48,816 false positive alerts and 195,265 true alerts were
used as input.

Table 28 includes the number of alerts (for the training and testing datasets) in each configuration
(Carrasco & Sicilia, 2020):

Identifier Test dataset
size

Test dataset
size
(legitimate)

Test dataset
size (fraud)

MLP2BE256H82 89,216 50.168 39,048

MLP2BE128H164 89,216 50.168 39,048

MLP2OH128H918 89,216 49,624 39,592

MLP3OH256H512 89,216 49,907 39,309

MLP3BE256H512 89,216 50,117 39,099

MLP3OH256H918 89,216 49,911 39,305

CNN2OH100LR10-3 89,216 50,231 38,985

CNN2OH100LR10-1 89,216 50,137 39,079

DAE4BE256 244,081 48,816 195,265

DAE4OH256 244,081 48,816 195,265

Table 28. MLP neural network architectures.

3.4.4.7. Parametrization

Grid search was used to adjust the parameters initially set for each architecture. These initial
parameters are included in Tables 29, 30, and 31 (Carrasco & Sicilia, 2020). Grid search was useful
to measure how much each of these parameters was influencing performance.

Id
en

tif
ie

r

H
id

de
n

la
ye

rs

E
nc

od
in

g
(c

at
eg

or
ic

al
)

E
nc

od
in

g
(n

um
er

ic
al

)

B
at

ch
 si

ze

L
ea

rn
in

g
ra

te

H
id

de
n

la
ye

r
si

ze

E
po

ch
s

MLP2BE256H82 2 Binary Binning 256 10#% 82 250

MLP2BE128H164 2 Binary Binning 128 10#" 164 1,000

MLP2OH128H918 2 OHE Binning 128 10#" 918 250

MLP3OH256H512 3 OHE Binning 256 10#% 512 250

MLP3BE256H512 3 Binary Binning 256 10#% 512 250

MLP3OH256H918 3 OHE Binning 256 10#% 918 250

Table 29. MLP parametrization.

Id
en

tif
ie

r

C
on

vo
lu

tio
na

l
la

ye
rs

E
nc

od
in

g
(c

at
eg

or
ic

al
)

E
nc

od
in

g
(n

um
er

ic
al

)

B
at

ch
 si

ze

L
ea

rn
in

g
ra

te

In
pu

t l
ay

er

sh
ap

e

E
po

ch
s

CNN2OH100LR10-3 2 OHE Binning 100 10#% 31x31 25,000

CNN2OH100LR10-1 2 OHE Binning 100 10#! 31x31 25,000

Table 30. CNN parametrization.

Id
en

tif
ie

r

H
id

de
n

la
ye

rs

E
nc

od
in

g
(c

at
eg

or
ic

al
)

E
nc

od
in

g
(n

um
er

ic
al

)

B
at

ch
 si

ze

L
ea

rn
in

g
ra

te

H
id

de
n

la
ye

r
si

ze
s

E
po

ch
s

DAE4BE256 4 Binary Binning 256 10#" 55 (1)
37 (2)

250

DAE4OH256 4 OHE Binning 256 10#" 612 (1)
408 (2)

500

Table 31. DAE parametrization.

4. Results
4.1. Introduction

Obtained results in each of this research work’s developments are presented and discussed in this
section.

4.2. Unsupervised intrusion detection

An attack was identified in proposed approach by measuring the cosine similarity between the
network node and the connection observed in the event. The threshold was zero. Therefore, if the
similarity was negative, the event was classified as an attack. In the same way, a positive value
represented normal activity (Carrasco & Sicilia, 2018).

The total number of distinct network nodes and connections was 2,830 in the test dataset. Each of
these combinations was evaluated to determine whether they represented legitimate or malicious
activity. The results obtained with assessed configurations are enumerated in Table 32.

ba
tc

h_
si

ze

nu
m

_s
ki

ps

nu
m

_s
te

ps

em
be

dd
in

g_
si

ze

T
ru

e
po

si
tiv

es

Fa
ls

e
po

si
tiv

es

T
ru

e
ne

ga
tiv

es

Fa
ls

e
ne

ga
tiv

es

%
 o

f l
eg

iti
m

at
e

tr
af

fic
 (t

ra
in

in
g)

A
ve

ra
ge

 lo
ss

Pr
ec

is
io

n

R
ec

al
l

C1 8 2 90,000 4 1,122 9 1,454 245 98.14 0.197208 0.9920 0.8207

C2 16 2 90,000 4 1,103 7 1,456 264 99.01 0.360984 0.9936 0.8068

C3 32 2 90,000 4 1,109 8 1,455 258 99.18 0.626274 0.9928 0.8112

C4 16 4 90,000 4 1,114 7 1,456 253 98.48 0.364535 0.9937 0.8149

C5 16 4 90,000 8 1,119 9 1,454 248 97.55 0.367023 0.9920 0.8185

C6 16 4 90,000 16 1,118 14 1,449 249 97.79 0.366863 0.9876 0.8178

C7 16 4 180,000 4 1,103 6 1,457 264 98.89 0.355693 0.9945 0.8068

C8 16 4 360,000 4 1,096 7 1,456 271 99.30 0.359761 0.9936 0.8017

C9 32 4 360,000 8 1,088 5 1,458 279 99.30 0.624516 0.9954 0.7959

Table 32. Configuration parameters and results.

As seen in the table (Carrasco & Sicilia, 2018), performance was not influenced by batch size,
embedding size or skips length. On the other hand, convergence was achieved with a low number of
epochs, possibly due to the (small) size of the dataset.

C1 was the optimal configuration (Carrasco & Sicilia, 2018). Precision and recall values for this
configuration were 99.20% and 82.07%, respectively. F-score was 89.82%, accuracy was 91.02%,
and false positive rate was 0.61%. No knowledge of attack patterns was required to achieve these
figures. On the other hand, while this precision value was outperformed by other configurations, the
recall of those configurations was suboptimal.

UNSW-NB15 dataset has been extensively chosen to measure intrusion detection performance
(Bamakan, Wang, & Shi, 2017). Table 33 shows how proposed approach's performance compares to
other methods (Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017):

Technique Dataset Requires
prior
knowledge

False
positive rate

Accuracy Detection
rate

Precision

Skip-gram UNSW-NB15 No 0.61% 91.02% 82.07% 99.20%

MLP-BP KDD Cup’99 Yes 8.51% - 81.96% 90.58%

RBF KDD Cup’99 Yes 1.2% - 99.2% -

SOM KDD Cup’99 No 1.38% - 90.4% -

ART KDD Cup’99 No 3.86% - 96.13% -

LSTM-RNN KDD Cup’99 No 10.04% 96.93% 98.88% -

DBN KDD Cup’99 Yes 0.76% 93.49% - 99.18%

Ramp-KSVCR UNSW-NB15 Yes 2.46% 93.52% 98.68% 98.60%

Table 33. Performance comparison with other neural network-based techniques.

Neither precision nor accuracy were disclosed for MLP-BP (Hodo, Bellekens, Hamilton, Tachtatzis,
& Atkinson, 2017). The value shown for precision was calculated from disclosed rates (detection
rate, false positives, false negatives). The same exercise is done for SOM (Kayacik, Zincir-
Heywood, & Heywood, 2007), using detection and false positive rate. Neither precision nor accuracy
were disclosed (or could be obtained from disclosed rates) for ART (Hodo, Bellekens, Hamilton,
Tachtatzis, & Atkinson, 2017).

False positive rate was not included for LSTM-RNN in the study comparing methods (Hodo,
Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017), but was found in the original research work
(Kim, Kim, Thu, & Kim, 2016). For DBN implementation, supplied true positive and false positive
rates allowed to calculate precision.

Proposed approach outperforms the aforementioned methods in key metrics like false positive rate.
Keeping this rate as low as possible is a challenge in the field of IDS (Pietraszek, 2004). Proposed
approach achieves a low false positive rate with notable accuracy and detection rate values.
Moreover, these figures are achieved without training the algorithm with attack data. The algorithm
is also compact in terms of input features, as it only requires four features that can be easily extracted
from any network source.

The dataset used for testing has been recently produced (2015) and correct issues found in other
datasets (Gogoi, Bhuyan, Bhattacharyya, & Kalita, 2012) used by the methods with which proposed
approach is compared. These other datasets contain records that exhibit redundancy, which
introduces bias (Gogoi, Bhuyan, Bhattacharyya, & Kalita, 2012), and leads to artificially high
measures of accuracy (Buczak & Guven, 2015).

4.3. Semisupervised intrusion and fraud detection

The set of tested neural network configurations are presented, and the optimal configuration is
identified. Obtained results are compared to similar techniques and discussed.

A set of configurations with varying values for these parameters (shown in Table 34) were defined,
in order to measure their influence on performance levels.

Optimal parameters were discovered by measuring the performance obtained by each configuration
in Table 34. In proposed setting, optimal meant higher accuracy. For each of the feature selection
approaches described in section 3.3, three parameter configurations were tested. These
configurations were designed to measure the influence of batch size and neural network layer sizes.
Table 34 includes tested configurations and their performance levels.

Id
.

Fe
at

ur
e

se
le

ct
io

n

In
pu

t s
iz

e

L
ay

er
 1

si

ze

L
ay

er
 2

si

ze

L
ay

er
 3

si

ze

E
po

ch
s

B
at

ch
 si

ze

Pr
ec

is
io

n

R
ec

al
l

A
cc

ur
ac

y

C1 All features 305 16 4 1 10 64 0.9344 0.9743 0.9529

C2 All features 305 32 4 1 10 32 0.9365 0.9668 0.9506

C3 All features 305 32 4 1 10 64 0.9396 0.9826 0.9597

C4 Random forest 207 16 4 1 10 64 0.9322 0.9655 0.9477

C5 Random forest 207 32 4 1 10 32 0.9584 0.9999 0.9783

C6 Random forest 207 32 4 1 10 64 0.9462 0.9810 0.9626

C7 No IP addresses 241 16 4 1 10 64 0.9601 0.9577 0.9589

C8 No IP addresses 241 32 4 1 10 32 0.9048 0.8701 0.8893

C9 No IP addresses 241 32 4 1 10 64 0.9458 0.9563 0.9507

Table 34. Parameter configurations and results.

Table 34 shows that neither layer size structure nor batch size strongly influenced performance
levels, regardless of the feature selection approach. On the other hand, ten epochs were set for all
configurations, as more epochs didn't drove any performance improvement. This, however, might
not hold for bigger datasets. As for the feature selection approach, including IP addresses in the
training process didn't consistently improve performance: configurations excluding them (C7)
performed better than those that included them (C1), in terms of accuracy. However, selecting
features based on the importance attributed by xgboost slightly enhanced the metrics, as observed for
configurations C5 and C2.

C5 was the optimal configuration, with 95.84% precision and 99.99% recall, leading to an F-score of
97.87%. Accuracy was 97.83%, and the FPR 4.33%.

Table 35 summarizes how proposed system's performance compares to previous research. Proposed
system outperformed all other methods in terms of detection rate (recall) and obtained comparable

performance in other metrics like accuracy and precision. S-NDAE (Shone, Ngoc, Phai, & Shi,
2018) and SSAE+SVM (Yan & Han, 2018) techniques obtained higher accuracy, but they were
tested against a dataset with less recent attacks and unrealistic traffic, as reported by other authors
(Tavallaee, Bagheri, Lu, & Ghorbani, 2009). Both methods are based on a supervised setting, which
fully relies on labelled data, while proposed approach is semisupervised (labeled data is only used
for feature selection). On other hand, the system based on Taguchi method and stacked sparse
autoencoders obtained higher accuracy and precision, but it is also based on a supervised setting.

T
ec

hn
iq

ue

A
ut

oe
nc

od
er

D
at

as
et

Su
pe

rv
is

ed

Fa
ls

e
Po

si
tiv

e
R

at
e

A
cc

ur
ac

y

D
et

ec
tio

n
ra

te

Pr
ec

is
io

n

Proposed approach Yes UNSW-
NB15

No 4.33% 97.83% 99.99% 95.84%

Ramp-KSVCR (Bamakan,
Wang, & Shi, 2017)

No UNSW-
NB15

Yes 2.46% 93.52% 98.68% 98.60%

DBN+SVM (Marir, Wang,
Feng, Li, & Jia, 2018)

No UNSW-
NB15

Yes - - 97.21% 90.47%

MDPCA-DBN (Yang, Zheng,
Wu, Niu, & Yang, 2019)

No UNSW-
NB15

Yes 17.15% 90.21% 96.22% 87.30%

S-NDAE (Shone, Ngoc, Phai,
& Shi, 2018)

Yes KDD Yes 2.15% 97.85% 97.85% 99.99%

Self-taught learning (STL)
(Javaid, Niyaz, Sun, & Alam,
2016)

Yes NSL KDD Yes - 88.39% 95.95% 85.44%

Stacked Dilated Convolutional
Autoencoders (Yu, Long &
Cai, 2017)

Yes CTU-UNB /
Contagio-
CTU-UNB

Yes - - 88.80% 90.65%

SSAE+SVM (Yan & Han,
2018)

Yes NSL KDD Yes 0.13% 99.35% 99.01% -

Deep Neural Net Ensemble
(Ludwig, 2017)

Yes NSL KDD Yes - - 92.00% 93.00%

Taguchi + stacked sparse
autoencoders (Karim, Güzel,
Tolun, Kaya, & Çelebi, 2018)

Yes UNSW-
NB15

Yes - 99.70% - 99.70%

Autoencoder (Yousefi-Azar,
Varadharajan, Hamey, &
Tupakula, 2017)

Yes KDD No - 83.84% - -

Table 35. Performance comparison.

4.4. Cross-domain malicious behavior detection

Based on the proposed model parametrization options, configurations shown in Table 36 were tested
for the three datasets under consideration. For each configuration, the parameters used and
performance evaluation metrics are displayed.

 T
ar

ge
t d

at
as

et

 N
um

be
r

of
 to

pi
cs

 N
um

be
r

of
 p

as
se

s

 P
ro

ba
bi

lit
y

m
et

ri
c

 P
re

ci
si

on
 (l

eg
iti

m
at

e)

 P
re

ci
si

on
 (m

al
ic

io
us

)

 R
ec

al
l (

le
gi

tim
at

e)

 R
ec

al
l (

m
al

ic
io

us
)

 A
cc

ur
ac

y

 F
1-

sc
or

e
(le

gi
tim

at
e)

 F
1-

sc
or

e
(m

al
ic

io
us

)

UNSW-NB15 5 1,000 ,()* 0.9707 0.9458 0.9443 0.9715 0.9579 0.9573 0.9585

UNSW-NB15 5 1,000 ,+,(0.7883 0.7041 0.6535 0.8245 0.7390 0.7146 0.7596

UNSW-NB15 5 25,000 ,()* 0.9583 0.9485 0.9480 0.9588 0.9534 0.9531 0.9536

UNSW-NB15 5 25,000 ,+,(0.7984 0.7008 0.6423 0.8378 0.7401 0.7119 0.7632

UNSW-NB15 10 25,000 --./ 0.9719 0.9454 0.9438 0.9727 0.9582 0.9576 0.9588

UNSW-NB15 10 25,000 ,+,(0.8162 0.7456 0.7136 0.8393 0.7765 0.7615 0.7897

Paysim1 5 1,000 ,()* 0.7775 0.9023 0.9202 0.7366 0.8284 0.8429 0.8111

Paysim1 5 1,000 ,+,(0.9916 0.7073 0.5883 0.9950 0.7917 0.7385 0.8269

Paysim1 5 25,000 ,()* 0.7788 0.9067 0.9241 0.7375 0.8308 0.8453 0.8134

Paysim1 5 25,000 ,+,(0.9916 0.7080 0.5896 0.9950 0.7923 0.7395 0.8273

Paysim1 10 25,000 --./ 0.7648 0.9414 0.9560 0.7060 0.8310 0.8498 0.8068

Paysim1 10 25,000 ,+,(0.9916 0.7075 0.5887 0.9950 0.7919 0.7388 0.8270

IoT-23 MC11 5 1,000 ,()* 0.9998 0.9291 0.8245 0.9999 0.9468 0.9037 0.9632

IoT-23 MC11 5 1,000 -01- 0.9998 0.9296 0.8259 0.9999 0.9472 0.9046 0.9635

IoT-23 MC11 5 25,000 ,()* 0.9998 0.9291 0.8245 0.9999 0.9468 0.9037 0.9632

IoT-23 MC11 5 25,000 ,+,(0.9998 0.9296 0.8259 0.9999 0.9472 0.9046 0.9635

IoT-23 MC11 10 25,000 ,()* 0.9998 0.9291 0.8245 0.9999 0.9468 0.9037 0.9632

IoT-23 MC11 10 25,000 ,+,(0.9998 0.9291 0.8245 0.9999 0.9468 0.9037 0.9632

Table 36. Parameter configurations and results.

Obtained results suggest that performance is not heavily influenced by the number of topics or
algorithm’s passes, even though optimal configurations were achieved with different parameter
values in the three datasets.

As for the probability metric, D)!& leads to poor performance in UNSW-NB15 and Paysim1 datasets
but delivers a comparable (and slightly higher) accuracy in IoT-23 MC11. In fact, all configurations
tested with IoT-23 MC11 led to similar performance. This could be explained by the stationarity
behavior of IoT devices, and the fact that most attack traffic belongs to port scanning activities,
which differ significantly from legitimate traffic. Therefore, legitimate traffic can be easily modeled
by LDA, leading to high detection performance regardless of the parameters used.

Performance achieved for UNSW-NB15 and IoT-23 MC11 is notably higher than the one obtained
for Paysim1. One possible reason for this is that the former two contain a richer feature set, leading
to greater discriminative capabilities when topic modeling is applied. Also, UNSW-NB15 metrics
are more uniform across classes (legitimate, malicious) than those for Paysim1 or IoT-23 MC11.
Again, the nature of the datasets and their features could partially explain this behavior. Lastly,
proposed method seems to perform better when classifying network traffic, but still obtains
acceptable results for the other two datasets.

Figures 13, 14 and 15 show the ROC curves obtained for the optimal configuration in each dataset.

Figure 13. ROC curve for dataset UNSW-NB15.

Figure 14. ROC curve for dataset Paysim1.

Figure 15. ROC curve for dataset IoT-23 MC11.

 M
et

ho
d

 D
at

as
et

 P
ri

or

 k
no

w
le

dg
e

 A
cc

ur
ac

y

 P
re

ci
si

on

 R
ec

al
l

Proposed method UNSW-NB15 No 95.82% 95.86% 95.82%

Autoencoder (Choi, Kim, Lee, & Kim,
2019)

KDD Cup 99 No 91.70% - -

Averaged One Dependence Estimator
(AODE) (Nawir, Amir, Yaakob, &
Lynn, 2019)

UNSW-NB15 Yes 97.26% - -

Support Vector Machine (SVM) +
Recursive Feature Elimination, Random
Forest (Meftah, Rachidi, & Assem,
2019)

UNSW-NB15 Yes 82.11% - -

Support Vector Machine (SVM) +
Scaling method (Jing & Chen, 2019)

UNSW-NB15 Yes 85.99% - -

Table 37. Performance comparison for network attacks.

 M
et

ho
d

 D
at

as
et

 P
ri

or

 k
no

w
le

dg
e

 A
cc

ur
ac

y

 P
re

ci
si

on

 0
 =

 le
gi

tim
at

e

 1

 =
 fr

au
d

 R
ec

al
l

 0
 =

 le
gi

tim
at

e

 1

 =
 fr

au
d

Proposed method Paysim1 No 83.21% 77.92% (0)

90.97% (1)

84.45%

92.68% (0)

73,74% (1)

83.21%

Decision tree
(Shahed, Ibrahim, &
Akter, 2019)

Paysim1 Yes 94.04% 94.00% (0)

98.00% (1)

100.00% (0)

43.00% (1)

Support Vector
Machine (Shahed,
Ibrahim, & Akter,
2019)

Paysim1 Yes 96.14% 96.00% (0)

98.00% (1)

100.00% (0)

64.00% (1)

Artificial Neural
Network (Shahed,
Ibrahim, & Akter,
2019)

Paysim1 Yes 97.83% 98.00% (0)

92.00% (1)

99.00% (0)

87.00% (1)

Undercomplete
autoencoder (Misra,
Thakur, Ghosh, &
Saha, 2020)

Paysim1 No 99.94% 85.34% 80.15%

Table 38. Performance comparison for payments fraud.

 M
et

ho
d

 D
at

as
et

 P
ri

or

 k
no

w
le

dg
e

 A
cc

ur
ac

y

 P
re

ci
si

on

 R
ec

al
l

Proposed method IoT-23 No 95.82
%

95.05% 94.72%

DEMISe (Parker, Yoo, Asyhari,
Chermak, Jhi, & Taha, 2019)

Aegean Wi-
Fi
Impersonatio
n Attack
Detection

Yes 98.04
%

- 99.07%

BotFP-Clus (& = 0.50) (Blaise, Bouet,
Conan, & Secci, 2020)

CTU-13 Yes - 74.00% 100.00%

BotFP-MLP (Blaise, Bouet, Conan, &
Secci, 2020)

CTU-13 Yes - 85.00% 85.00%

BotFP-SVM (Blaise, Bouet, Conan, &
Secci, 2020)

CTU-13 Yes - 93.00% 93.00%

BotFP-Clus (& = 0.10) (Blaise, Bouet,
Conan, & Secci, 2020)

CTU-13 Yes - 100.00% 85.00%

Convolutional Neural Network (Van
Huong & Hung, 2019)

Self-
generated

Yes 98.9% - -

Table 39. Performance comparison for IoT malware traffic.

Table 37 shows that proposed method outperforms (Choi, Kim, Lee, & Kim, 2019), (Meftah,
Rachidi, & Assem, 2019) and (Jing & Chen, 2019) in terms of accuracy, and provides comparable
performance to AODE (Nawir, Amir, Yaakob, & Lynn, 2019). However, AODE works with labeled
data, while proposed method doesn’t require prior examples of attack traffic.

Table 38 shows that proposed method exhibits lower accuracy than the other techniques, but it
provides higher recall ratios for the fraud class than decision trees (Shahed, Ibrahim, & Akter, 2019)
or SVM (Shahed, Ibrahim, & Akter, 2019). It also delivers lower precision and recall than Artificial
Neural Network (Shahed, Ibrahim, & Akter, 2019), but it requires no prior knowledge of fraudulent
transactions. Lastly, it delivers precision and recall ratios comparable to those obtained with the
undercomplete autoencoder (Misra, Thakur, Ghosh, & Saha, 2020).

Table 39 shows that proposed method outperforms BotFP-MLP (Blaise, Bouet, Conan, & Secci,
2020) and BotFP-SVM (Blaise, Bouet, Conan, & Secci, 2020) techniques in terms of precision and
recall, while providing comparable (but more stable) performance to both configurations of BotFP-
Clus. It performs slightly worse than DEMISe (Parker, Yoo, Asyhari, Chermak, Jhi, & Taha, 2019)
and Convolutional Neural Network (Van Huong & Hung, 2019), but it requires no knowledge of
malicious traffic for training.

4.5. Supervised fraud detection optimization
Obtained results are summarized in Tables 40 to 49 (Carrasco & Sicilia, 2020).

Threshold 0.0 0.1 0.2 0.3 0.4 0.5

C
la

ss

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Legitimate 0.00 0.00 0.92 0.43 0.89 0.59 0.85 0.71 0.81 0.78 0.78 0.84

Fraud 0.44 1.00 0.57 0.95 0.63 0.90 0.69 0.84 0.73 0.77 0.77 0.70

Average /
Total

0.19 0.44 0.77 0.66 0.78 0.73 0.78 0.76 0.78 0.78 0.78 0.78

Table 40. MLP2BE256H82 performance.

Threshold 0.0 0.1 0.2 0.3 0.4 0.5

C
la

ss

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Legitimate 0.00 0.00 0.92 0.43 0.89 0.58 0.86 0.68 0.83 0.74 0.80 0.81

Fraud 0.44 1.00 0.56 0.95 0.63 0.91 0.67 0.85 0.71 0.81 0.75 0.74

Average /
Total

0.19 0.44 0.76 0.66 0.77 0.72 0.78 0.76 0.78 0.77 0.78 0.78

Table 41. MLP2BE128H164 performance.

Threshold 0.0 0.1 0.2 0.3 0.4 0.5

C
la

ss

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Legitimate 0.00 0.00 0.90 0.57 0.87 0.65 0.82 0.81 0.74 0.90 0.74 0.81

Fraud 0.44 1.00 0.63 0.92 0.67 0.88 0.76 0.78 0.83 0.61 0.84 0.69

Average /
Total

0.20 0.44 0.78 0.72 0.78 0.75 0.79 0.79 0.78 0.77 0.78 0.76

Table 42. MLP2OH128H918 performance.

Threshold 0.0 0.1 0.2 0.3 0.4 0.5

C
la

ss

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Legitimate 0.00 0.00 0.77 0.81 0.76 0.84 0.75 0.86 0.74 0.87 0.73 0.88

Fraud 0.44 1.00 0.74 0.70 0.76 0.66 0.78 0.63 0.79 0.61 0.80 0.59

Average /
Total

0.19 0.44 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.75

Table 43. MLP3OH256H512 performance.

Threshold 0.0 0.1 0.2 0.3 0.4 0.5

C
la

ss

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Legitimate 0.00 0.00 0.83 0.66 0.82 0.70 0.80 0.74 0.79 0.76 0.78 0.78

Fraud 0.44 1.00 0.66 0.83 0.68 0.80 0.70 0.77 0.71 0.75 0.72 0.72

Average /
Total

0.19 0.44 0.76 0.73 0.76 0.74 0.76 0.75 0.76 0.76 0.76 0.76

Table 44. MLP3BE256H512 performance.

Threshold 0.0 0.1 0.2 0.3 0.4 0.5

C
la

ss

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Legitimate 0.00 0.00 0.84 0.69 0.82 0.73 0.81 0.77 0.80 0.80 0.79 0.81

Fraud 0.44 1.00 0.68 0.83 0.70 0.80 0.73 0.76 0.74 0.74 0.75 0.73

Average /
Total

0.19 0.44 0.77 0.75 0.77 0.76 0.77 0.77 0.77 0.77 0.77 0.77

Table 45. MLP3OH256H918 performance.

Threshold 0.0 0.1 0.2 0.3 0.4 0.5

C
la

ss

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Legitimate 0.00 0.00 0.00 0.00 0.85 0.09 0.78 0.35 0.73 0.60 0.67 0.78

Fraud 0.44 1.00 0.44 1.00 0.46 0.98 0.51 0.88 0.58 0.71 0.65 0.51

Average /
Total

0.19 0.44 0.19 0.44 0.68 0.48 0.66 0.58 0.66 0.65 0.66 0.66

Table 46. CNN2OH100LR10-3 performance.

Threshold 0.0 0.1 0.2 0.3 0.4 0.5

C
la

ss

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Legitimate 0.00 0.00 0.95 0.27 0.91 0.47 0.86 0.65 0.82 0.76 0.78 0.84

Fraud 0.44 1.00 0.51 0.98 0.58 0.94 0.66 0.87 0.72 0.78 0.77 0.69

Average /
Total

0.19 0.44 0.76 0.58 0.77 0.68 0.77 0.74 0.77 0.77 0.78 0.78

Table 47. CNN2OH100LR10-1 performance.

Threshold 0.0 0.1 0.2 0.3 0.4 0.5

C
la

ss

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Legitimate 0.21 0.65 0.20 0.52 0.21 0.42 0.23 0.34 0.23 0.24 0.25 0.13

Fraud 0.82 0.39 0.80 0.49 0.81 0.61 0.81 0.71 0.81 0.80 0.81 0.91

Average /
Total

0.69 0.44 0.68 0.50 0.69 0.57 0.69 0.64 0.69 0.69 0.70 0.75

Table 48. DAE4BE256 performance.

Threshold 0.0 0.1 0.2 0.3 0.4 0.5

C
la

ss

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Pr
ec

is
io

n

R
ec

al
l

Legitimate 0.20 0.62 0.19 0.49 0.17 0.32 0.17 0.25 0.17 0.17 0.18 0.09

Fraud 0.81 0.39 0.79 0.49 0.78 0.59 0.79 0.69 0.79 0.80 0.80 0.90

Average /
Total

0.69 0.44 0.67 0.49 0.66 0.54 0.66 0.60 0.67 0.67 0.68 0.74

Table 49. DAE4OH256 performance.

The supervised learning approaches (MLP, CNN) obtained higher performance than the Deep
Autoencoder.

The AUC was 0.52 for the Deep Autoencoder when using binary encoding, and 0.48 for OHE. This
performance level might be explained by the fact that alerts contain biased normal activity
(transactions tagged as potential fraud by the fraud detection system (Carrasco & Sicilia, 2020).

MLP architectures with less hidden layers exhibited higher AUC values. OHE exhibited higher AUC
performance than binary encoding, while batch size, epochs and learning rate didn’t impacted
obtained performance (Carrasco & Sicilia, 2020).

MLP2OH128H918 achieved top AUC (0.87). With a value of 0.2 set for the threshold, tradeoff
between average precision (0.78) and recall (0.75) was optimal. Fraud class obtained 0.67 precision
and 0.88 recall (Carrasco & Sicilia, 2020).

Figure 16. MLP2BE256H82 ROC. Figure 17. MLP2BE128H164 ROC.

Figure 18. MLP2OH128H918 ROC. Figure 19. MLP3OH256H512 ROC.

Figure 20. MLP3BE256H512 ROC. Figure 21. MLP3OH256H918 ROC.

Figure 22. CNN2OH100LR10-3 ROC. Figure 23. CNN2OH100LR10-1 ROC.

Figure 24. DAE4BE256 ROC. Figure 25. DAE4OH256 ROC.

Table 50 and Table 51 shows the confusion matrixes for threshold values 0.1 and 0.2:

Predicted class Legitimate Fraud Total

Real class

Legitimate 28,120 21,504 49,624

Fraud 3,249 36,343 39,592

Total 31,369 57,487 89,216

Table 50. Confusion matrix (threshold = 0.1)

Predicted class Legitimate Fraud Total

Real class

Legitimate 32,367 17,257 49,624

Fraud 4,849 34,743 39,592

Total 37,216 52,000 89,216

Table 51. Confusion matrix (threshold = 0.2)

The alert reduction rate was 35.16%:

31,369
89,216 = 	0.3516	(35.16%)

to detect 91.79% of fraud (8.21% misclassification rate):

36,343
39,592 = 	0.9179	(91.79%)

Alert reduction rate could grow to 41.47% with a slightly higher misclassification rate:

37,216
89,216 = 	0.4147	(41.47%)

to detect 87.75% of fraud (12.25% misclassification rate):

34,743
39,592 = 	0.8775	(87.75%)

5. Discussion
5.1. Introduction

In this section, the conclusions extracted from obtained results are presented and discussed. Final
conclusions, related to the motivation and objectives of this research work, are also included.

5.2. Unsupervised intrusion detection

Proposed approach obtained 99.20% precision, 82.07% recall, 91.02% accuracy, and 0.61% false
positive rate. The obtained false positive rate outperforms other similar methods (Carrasco & Sicilia,
2018). Furthermore, these figures were obtained without training the algorithm with attack data.

Proposed approach only requires four basic network-related features, which significantly lowers
storage requirements. Other methods (Bamakan, Wang, & Shi, 2017) require the 49 features of
UNSW-NB15. It also delivers a model in which results can be explained. Modeled behavior
considers both known behavior of the node, and the behavior observed for similar nodes (Carrasco &
Sicilia, 2018), which allows to extend the method to perform Peer Group Analysis (Botros, Diep, &
Izenson, 2004) (Diep, Botros, & Izenson, 2003).

5.3. Semisupervised intrusion and fraud detection

In this research, a semisupervised learning system for intrusion was designed and tested. It was based
on a deep autoencoder, a popular neural network architecture for anomaly detection. The proposed
feature engineering approach transformed both categorical and numerical features into binary vectors
that could be processed as inputs by the autoencoder. On the other hand, three feature selection
techniques were tested, showing that selecting features based on their importance led to higher
performance, but modeling frequent connections didn't consistently improve results.

The optimal configuration of proposed semisupervised intrusion detection system achieved 95.84%
precision, 99.99% recall, 97.83% accuracy, and 97.87% F-score, with a false positive rate of 4.33%.
With such recall (detection rate) value, proposed approach outperforms other similar techniques. On
the other hand, the proposed system delivers this performance under a semisupervised setting, which
is more suitable for detecting unknown attacks than techniques based on learning known attack
patterns.

5.4. Cross-domain malicious behavior detection

Optimal configurations of proposed LDA-based technique led to accuracies of 95.82%, 83.21% and
94.72% for the UNSW-NB15 (network attacks), Paysim1 (payments fraud), IoT-23 (IoT malware
traffic) datasets, respectively. These accuracies are comparable to, or even outperform, several state-
of-art methods in each of the targeted fields.

This work demonstrates that topic modeling, particularly LDA, can be successfully applied to
malicious behavior detection in three different, unrelated datasets used in previous literature. It
achieves this objective without relying on a particular feature set structure, by transforming
categorical and numerical features into words. It redefines the traditional concept of entity, switching
from IP address or user to connection (protocol, service) or transaction type. Lastly, it applies a
tailored scoring mechanism for anomaly detection, leveraging the data structures created by the LDA
algorithm.

5.5. Supervised fraud detection optimization

Alert reduction rates was the motivation behind the assessment of several deep neural networks used
in the fraud detection field. This reduction rate was enabled by the ability of each architecture to
automate detection of false alerts (Carrasco & Sicilia, 2020).

The set of alerts used as input was processed to determine which of them were false positives.

A reduction rate of 35.16% was obtained with the optimal architecture. This configuration caught
91.79% of fraud (obtaining a 8.21% misclassification rate). The reduction rate was 41.47% if the
percentage of caught fraud cases dropped to 87.75% (obtaining 12.25% misclassification rate)
(Carrasco & Sicilia, 2020). This reduction rate implies less cost of human specialists, whose
workload would be significantly lowered by proposed approach.

As a result, deep neural networks are a promising development path to obtain cost efficiencies in
fraud detection (Carrasco & Sicilia, 2020).

6. Conclusions
The conclusions of this research are strongly connected with the original objectives of the work. For
this reason, they are included in separate sections, one for each objective.

6.1. Reduce the dependence on well-known attack patterns through AI
In this research work, a novel unsupervised learning technique based on skip-gram models was
designed, developed and tested against a public dataset with popular intrusion patterns. A high
accuracy and a low false positive rate were achieved by modeling legitimate activity, without
knowledge of these attack patterns.

Therefore, capturing frequent network behavior is an effective method to discover known and
unknown attacks, as the related activity is significantly different from legitimate interactions.
Moreover, relying on well-known attack patterns can provide a false sense of security, since
unknown patterns will let sophisticated attacks go unnoticed.

6.2. Cross-domain applications and use cases of AI

The current state of artificial intelligence is far from AGI (Artificial General Intelligence), in which a
machine can use general problem-solving methods and doesn't require to be trained on specific use
cases. However, designing AI techniques that can solve a set of related problems is feasible, as
demonstrated by this research.

Particularly, it was proven that an AI method like topic modeling can be successfully applied to three
related domains (network attacks, payments fraud, IoT malware traffic) that share some structure and
principles. A high accuracy was achieved in the three scenarios, even though the malicious activity
significantly differs from one domain to the other. However, as the topic modeling was performed
against legitimate activity, these differences didn't impact results.

This exercise also proves that, while choosing the right algorithm is important to solve a problem,
framing the problem properly can be even more important. This is especially true when the chosen
algorithm shouldn't solve a standalone problem but a set of related problems.

6.3. Augment unsupervised intrusion detection with supervised learning
A thorough discussion exists in the research community as to whether supervised or unsupervised
techniques perform better when it comes to intrusion detection. There have been multiple proposals
that leverage ensemble or hybrid models, in which both are integrated to maximize performance.

However, no extensive literature exists on how a supervised learning method can augment an
unsupervised setting in the intrusion detection use case. In this research work, this augmentation was
achieved by prioritizing or selecting features that could discriminate best whether a given activity
was legitimate or malicious. Obtained results showed that this technique can outperform other
similar techniques.

Therefore, augmentation of unsupervised learning with supervised-related insights is an effective
method to increase intrusion detection accuracy of an algorithm trained with legitimate activity only,
while not limiting these detection capabilities with well-known attack patterns.

6.4. Reduce false positive ratio of fraud detection systems

While automated detection is key in any malicious behavior detection use case, manual review by
human experts is still required. Therefore, making this process more efficient helps to further
improve the overall detection process.

In this research work, it was proven that part of this manual review can also be automated without
significantly impacting accuracy. In other words, human judgement can be captured by an algorithm
(in this case, a neural network) to quickly discriminate legitimate activity.

Therefore, in the malicious behavior detection use case, and particularly in fraud detection, the focus
must go beyond the initial or real-time automation and expand to optimizing manual work performed
by experts as well.

6.5. Research directions
Part of this research work was published as journal papers (Carrasco & Sicilia, 2018) (Carrasco &
Sicilia, 2020). This opens up the opportunity to extend the research in a number of directions.

First, cross-domain application of AI methods can be further explored in the intrusion detection field.
As businesses and supporting technology becomes more complex and heterogeneous, the need to
develop methods that can be reused across fields becomes more important. Having the ability to
apply an AI technique to multiple set of problems can lead to significant efficiencies and pave the
road to more general reasoning systems that could detect malicious behavior regardless of what the
exact environment is.

Also, augmentation of a given technique with another that takes a different approach might have
more applications to intrusion detection than the one shown in this research. As the intrusion
detection literature is extensive and well-grounded, it might be the time to rethink how existing
knowledge on the field can be combined in such a way that a higher-order knowledge can be
extracted.

Lastly, while using fully automated and optimized methods to solve problems is desirable, exploring
ways to mimic human decision-making processes can also help to further optimize a process. In this
research work the focus was on reducing the false positive ratio, but intrusion detection requires
multiple other activities where human experts play a relevant role. These could be candidates to
achieve similar optimizations.

7. References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016).
Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

Ahmad, I., Abdullah, A. B., & Alghamdi, A. S. (2010, June). Evaluating neural network intrusion
detection approaches using Analytic Hierarchy Process. In 2010 International Symposium on
Information Technology (Vol. 2, pp. 885-890). IEEE.

Ahmad, S., Lavin, A., Purdy, S., & Agha, Z. (2017). Unsupervised real-time anomaly detection for
streaming data. Neurocomputing, 262, 134-147.

Ahmed, M., Mahmood, A. N., & Hu, J. (2016). A survey of network anomaly detection techniques.
Journal of Network and Computer Applications, 60, 19-31.

Ahmed, T., Coates, M., & Lakhina, A. (2007, May). Multivariate online anomaly detection using
kernel recursive least squares. In IEEE INFOCOM 2007-26th IEEE International Conference on
Computer Communications (pp. 625-633). IEEE.

Aissa, N. B., & Guerroumi, M. (2015, June). A genetic clustering technique for Anomaly-based
Intrusion Detection Systems. In 2015 IEEE/ACIS 16th International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD) (pp. 1-
6). IEEE.

Akhi, A. B., Kanon, E. J., Kabir, A., & Banu, A. (2019). Network intrusion classification employing
machine learning: A survey (Doctoral dissertation).

Al-Subaie, M., & Zulkernine, M. (2007, June). The power of temporal pattern processing in anomaly
intrusion detection. In 2007 IEEE International Conference on Communications (pp. 1391-1398).
IEEE.

Alam, M. S., Fernando, B. R., Jaoudi, Y., Yakopcic, C., Hasan, R., Taha, T. M., & Subramanyam, G.
(2019, July). Memristor Based Autoencoder for Unsupervised Real-Time Network Intrusion and
Anomaly Detection. In Proceedings of the International Conference on Neuromorphic Systems (pp.
1-8).

Aldwairi, T., Perera, D., & Novotny, M. A. (2018). An evaluation of the performance of Restricted
Boltzmann Machines as a model for anomaly network intrusion detection. Computer Networks, 144,
111-119.

Aleskerov, E., Freisleben, B., & Rao, B. (1997, March). Cardwatch: A neural network based
database mining system for credit card fraud detection. In Proceedings of the IEEE/IAFE 1997
computational intelligence for financial engineering (CIFEr) (pp. 220-226). IEEE.

Alshammari, R., Sonamthiang, S., Teimouri, M., & Riordan, D. (2007, May). Using neuro-fuzzy
approach to reduce false positive alerts. In Fifth Annual Conference on Communication Networks
and Services Research (CNSR'07) (pp. 345-349). IEEE.

Alston, A. (2017). Extending the Metasploit Framework to Implement an Evasive Attack
Infrastructure. arXiv preprint arXiv:1705.04853.

Amer, M., Goldstein, M., & Abdennadher, S. (2013, August). Enhancing one-class support vector
machines for unsupervised anomaly detection. In Proceedings of the ACM SIGKDD workshop on
outlier detection and description (pp. 8-15).

Amini, M., Jalili, R., & Shahriari, H. R. (2006). RT-UNNID: A practical solution to real-time
network-based intrusion detection using unsupervised neural networks. computers & security, 25(6),
459-468.

Ashraf, N., Ahmad, W., & Ashraf, R. (2018). A comparative study of data mining algorithms for
high detection rate in intrusion detection system. Annals of Emerging Technologies in Computing
(AETiC), Print ISSN, 2516-0281.

Aswani, K., Cronin, A., Liu, X., & Zhao, H. (2015, April). Topic modeling of SSH logs using latent
dirichlet allocation for the application in cyber security. In 2015 Systems and Information
Engineering Design Symposium (pp. 75-79). IEEE.

Axelsson, S. (2000). Intrusion detection systems: A survey and taxonomy (Vol. 99). Technical
report.

Bakar, N. A., Belaton, B., & Samsudin, A. (2005, November). False positives reduction via intrusion
alert quality framework. In 2005 13th IEEE International Conference on Networks Jointly held with
the 2005 IEEE 7th Malaysia International Conf on Communic (Vol. 1, pp. 6-pp). IEEE.

Balthrop, J., Forrest, S., & Glickman, M. R. (2002, May). Revisiting lisys: Parameters and normal
behavior. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.
02TH8600) (Vol. 2, pp. 1045-1050). IEEE.

Bamakan, S. M. H., Wang, H., & Shi, Y. (2017). Ramp loss K-Support Vector Classification-
Regression; a robust and sparse multi-class approach to the intrusion detection problem. Knowledge-
Based Systems, 126, 113-126.

Bansal, P., Gualandris, J., & Kim, N. (2020). Theorizing supply chains with qualitative Big Data and
Topic Modeling. Journal of Supply Chain Management, 56(2), 7-18.

Barot, K., Zhang, J., & Son, S. W. (2016). Using natural language processing models for
understanding network anomalies. In Proceedings of the IEEE High Performance Extreme
Computing Conference.

Bashah, N., Shanmugam, I. B., & Ahmed, A. M. (2005). Hybrid intelligent intrusion detection
system. World Academy of Science, Engineering and Technology, 11, 23-26.

Bass, T. (2000). Intrusion detection systems and multisensor data fusion. Communications of the
ACM, 43(4), 99-105.

Bertero, C., Roy, M., Sauvanaud, C., & Trédan, G. (2017, October). Experience report: Log mining
using natural language processing and application to anomaly detection. In 2017 IEEE 28th
International Symposium on Software Reliability Engineering (ISSRE) (pp. 351-360). IEEE.

Blaise, A., Bouet, M., Conan, V., & Secci, S. (2020). Botnet fingerprinting: A frequency
distributions scheme for lightweight bot detection. IEEE Transactions on Network and Service
Management, 17(3), 1701-1714.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of machine
Learning research, 3, 993-1022.

Bolzoni, D., Etalle, S., & Hartel, P. (2006, April). Poseidon: a 2-tier anomaly-based network
intrusion detection system. In Fourth IEEE International Workshop on Information Assurance
(IWIA'06) (pp. 10-pp). IEEE.

Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., & Benini, L. (2019, July). Anomaly detection
using autoencoders in high performance computing systems. In Proceedings of the AAAI
Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 9428-9433).

Botros, S. M., Diep, T. A., & Izenson, M. D. (2004). U.S. Patent No. 6,769,066. Washington, DC:
U.S. Patent and Trademark Office.

Bridges, S. M., & Vaughn, R. B. (2000, October). Fuzzy data mining and genetic algorithms applied
to intrusion detection. In Proceedings of 12th Annual Canadian Information Technology Security
Symposium (pp. 109-122).

Buczak, A. L., & Guven, E. (2015). A survey of data mining and machine learning methods for
cyber security intrusion detection. IEEE Communications surveys & tutorials, 18(2), 1153-1176.

Burbeck, K., & Nadjm-Tehrani, S. (2004, December). Adwice–anomaly detection with real-time
incremental clustering. In International Conference on Information Security and Cryptology (pp.
407-424). Springer, Berlin, Heidelberg.

Cannady, J. (1998, October). Artificial neural networks for misuse detection. In Proceedings of the
1998 National Information Systems Security Conference (NISSC'98) (pp. 443-456).

Cannady, J. (2000, October). Next generation intrusion detection: Autonomous reinforcement
learning of network attacks. In Proceedings of the 23rd national information systems security
conference (pp. 1-12).

Cao, S., Yang, X., Chen, C., Zhou, J., Li, X., & Qi, Y. (2019). Titant: Online real-time transaction
fraud detection in ant financial. arXiv preprint arXiv:1906.07407.

Carcillo, F., Le Borgne, Y. A., Caelen, O., Kessaci, Y., Oblé, F., & Bontempi, G. (2019). Combining
unsupervised and supervised learning in credit card fraud detection. Information Sciences.

Carlin, A., Hammoudeh, M., & Aldabbas, O. (2015). Intrusion detection and countermeasure of
virtual cloud systems-state of the art and current challenges. International Journal of Advanced
Computer Science and Applications, 6(6).

Carpenter, G. A., & Grossberg, S. (1987). A massively parallel architecture for a self-organizing
neural pattern recognition machine. Computer vision, graphics, and image processing, 37(1), 54-115.

Carpenter, G. A., & Grossberg, S. (1987). ART 2: Self-organization of stable category recognition
codes for analog input patterns. Applied optics, 26(23), 4919-4930.

Carpenter, G. A., Grossberg, S., & Rosen, D. B. (1991). Fuzzy ART: Fast stable learning and
categorization of analog patterns by an adaptive resonance system. Neural networks, 4(6), 759-771.

Carrasco, R. S. M., & Sicilia, M. A. (2018). Unsupervised intrusion detection through skip-gram
models of network behavior. Computers & Security, 78, 187-197.

Carrasco, R. S. M., & Sicilia-Urbán, M. Á. (2020). Evaluation of Deep Neural Networks for
Reduction of Credit Card Fraud Alerts. IEEE Access, 8, 186421-186432.

Casas, P., Mazel, J., & Owezarski, P. (2012). Unsupervised network intrusion detection systems:
Detecting the unknown without knowledge. Computer Communications, 35(7), 772-783.

Chakraborty, K., Bhattacharyya, S., Bag, R., & Hassanien, A. E. (2018, February). Comparative
sentiment analysis on a set of movie reviews using deep learning approach. In International
Conference on Advanced Machine Learning Technologies and Applications (pp. 311-318). Springer,
Cham.

Chan, P. K., Mahoney, M. V., & Arshad, M. H. (2003). A machine learning approach to anomaly
detection.

Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM computing
surveys (CSUR), 41(3), 1-58.

Chapaneri, R., & Shah, S. (2019). A comprehensive survey of machine learning-based network
intrusion detection. Smart Intelligent Computing and Applications, 345-356.

Chauhan, M., Pratap, A., & Dixit, A. (2015, October). Designing a technique for detecting intrusion
based on modified Adaptive Resonance Theory Network. In 2015 International Conference on Green
Computing and Internet of Things (ICGCIoT) (pp. 448-451). IEEE.

Chebrolu, S., Abraham, A., & Thomas, J. P. (2005). Feature deduction and ensemble design of
intrusion detection systems. Computers & security, 24(4), 295-307.

Chen, J., Sathe, S., Aggarwal, C., & Turaga, D. (2017, June). Outlier detection with autoencoder
ensembles. In Proceedings of the 2017 SIAM international conference on data mining (pp. 90-98).
Society for Industrial and Applied Mathematics.

Chen, K. (1988). An Inductive Engine for the Acquisition of Temporal Knowledge (Doctoral
dissertation, University of Illinois at Urbana-Champaign).

Chen, K., Lu, S. C., & Teng, H. S. (1990, May). Adaptive real-time anomaly detection using
inductively generated sequential patterns,". In Fifth Intrusion Detection Workshop, SRI
International, Menlo Park, CA.

Chen, L., Zhang, Z., Liu, Q., Yang, L., Meng, Y., & Wang, P. (2019, May). A method for online
transaction fraud detection based on individual behavior. In Proceedings of the ACM Turing
Celebration Conference-China (pp. 1-8).

Chen, Y., Dong, F., Chen, H., & Xu, L. (2016, August). Can Cross-Listing Mitigate the Impact of an
Information Security Breach Announcement on a Firm's Values?. In IOP Conference Series:
Materials Science and Engineering (Vol. 142, No. 1, p. 012133). IOP Publishing.

Chimphlee, W., Abdullah, A. H., Sap, M. N. M., Srinoy, S., & Chimphlee, S. (2006, November).
Anomaly-based intrusion detection using fuzzy rough clustering. In 2006 International Conference
on Hybrid Information Technology (Vol. 1, pp. 329-334). IEEE.

Cho, S., & Cha, S. (2004). SAD: web session anomaly detection based on parameter estimation.
Computers & Security, 23(4), 312-319.

Choi, H., Kim, M., Lee, G., & Kim, W. (2019). Unsupervised learning approach for network
intrusion detection system using autoencoders. The Journal of Supercomputing, 75(9), 5597-5621.

Choi, M., Shin, S., Choi, J., Langevin, S., Bethune, C., Horne, P., ... & Choo, J. (2018, April).
Topicontiles: Tile-based spatio-temporal event analytics via exclusive topic modeling on social

media. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 1-
11).

Choi, T. M., Chan, H. K., & Yue, X. (2016). Recent development in big data analytics for business
operations and risk management. IEEE transactions on cybernetics, 47(1), 81-92.

Choksi, K., Shah, B., & Kale, O. (2014). Intrusion detection system using self organizing map: a
survey. International Journal of Engineering Research and Applications, 4(12), 11-16.

Ciritsis, A., Rossi, C., Eberhard, M., Marcon, M., Becker, A. S., & Boss, A. (2019). Automatic
classification of ultrasound breast lesions using a deep convolutional neural network mimicking
human decision-making. European radiology, 29(10), 5458-5468.

Cohen, W. W. (1995). Fast effective rule induction. In Machine learning proceedings 1995 (pp. 115-
123). Morgan Kaufmann.

Cook, D. J., & Holder, L. B. (2000). Graph-based data mining. IEEE Intelligent Systems and Their
Applications, 15(2), 32-41.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.

Cramer, C., & Carin, L. (2011, May). Bayesian topic models for describing computer network
behaviors. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (pp. 1888-1891). IEEE.

Cybersecurity Challenges in the Middle East. (n.d.). GCSP. Retrieved January 31, 2021, from
https://css.ethz.ch/content/dam/ethz/special-interest/gess/cis/center-for-securities-
studies/resources/docs/GCSP-Cybersecurity%20Challenges%20in%20the%20Middle%20East.pdf

D'haeseleer, P. (1996). An Immunological Approach to Change Detection: Theoretical Results. In
Proceedings of the 9th IEEE Computer Security Foundations Workshop (pp. 66-71). IEEE Computer
Society Press.

da Costa, K. A., Papa, J. P., Lisboa, C. O., Munoz, R., & de Albuquerque, V. H. C. (2019). Internet
of Things: A survey on machine learning-based intrusion detection approaches. Computer Networks,
151, 147-157.

Dahiya, P., & Srivastava, D. K. (2018). Network intrusion detection in big dataset using spark.
Procedia computer science, 132, 253-262.

Darwish, S. M. (2020). An intelligent credit card fraud detection approach based on semantic fusion
of two classifiers. Soft Computing, 24(2), 1243-1253.

Dasgupta, D. (1999, October). Immunity-based intrusion detection system: A general framework. In
Proc. of the 22nd NISSC (Vol. 1, pp. 147-160).

Davison, B. D., & Hirsh, H. (1998, July). Predicting sequences of user actions. In Notes of the
AAAI/ICML 1998 Workshop on Predicting the Future: AI Approaches to Time-Series Analysis (pp.
5-12).

de Paula, F. S., de Castro, L. N., & de Geus, P. L. (2004, June). An intrusion detection system using
ideas from the immune system. In Proceedings of the 2004 Congress on Evolutionary Computation
(IEEE Cat. No. 04TH8753) (Vol. 1, pp. 1059-1066). IEEE.

Debar, H., Becker, M., & Siboni, D. (1992, May). A neural network component for an intrusion
detection system. In Proceedings 1992 IEEE Computer Society Symposium on Research in Security
and Privacy (pp. 240-240). IEEE Computer Society.

Debar, H., Dacier, M., & Wespi, A. (2000, July). A revised taxonomy for intrusion-detection
systems. In Annales des télécommunications (Vol. 55, No. 7, pp. 361-378). Springer-Verlag.

Deokar, B., & Hazarnis, A. (2012). Intrusion detection system using log files and reinforcement
learning. International Journal of Computer Applications, 45(19), 28-35.

Depren, O., Topallar, M., Anarim, E., & Ciliz, M. K. (2005). An intelligent intrusion detection
system (IDS) for anomaly and misuse detection in computer networks. Expert systems with
Applications, 29(4), 713-722.

Dhillon, I. S., Mallela, S., & Kumar, R. (2003). A divisive information theoretic feature clustering
algorithm for text classification. The Journal of machine learning research, 3, 1265-1287.

Diep, T. A., Botros, S. M., & Izenson, M. D. (2003). U.S. Patent No. 6,671,811. Washington, DC:
U.S. Patent and Trademark Office.

Dornadula, V. N., & Geetha, S. (2019). Credit card fraud detection using machine learning
algorithms. Procedia Computer Science, 165, 631-641.

dos Santos, L. B., Duran, M. S., Hartmann, N. S., Candido, A., Paetzold, G. H., & Aluisio, S. M.
(2017, August). A lightweight regression method to infer psycholinguistic properties for Brazilian
Portuguese. In International conference on text, speech, and dialogue (pp. 281-289). Springer, Cham.

Durgin, N. A., & Zhang, P. (2005). Profile-based adaptive anomaly detection for network security.
Sandia National Laboratories Technical Report, SAND2005-7293.

Elhamahmy, M. E., Elmahdy, H. N., & Saroit, I. A. (2010). A new approach for evaluating intrusion
detection system. CiiT International Journal of Artificial Intelligent Systems and Machine Learning,
2(11), 290-298.

Erfani, S. M., Rajasegarar, S., Karunasekera, S., & Leckie, C. (2016). High-dimensional and large-
scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognition, 58,
121-134.

Eshghi, A., & Kargari, M. (2019, January). Introducing a method for combining supervised and
semi-supervised methods in fraud detection. In 2019 15th Iran International Industrial Engineering
Conference (IIIEC) (pp. 23-30). IEEE.

Eskin, E., Arnold, A., Prerau, M., Portnoy, L., & Stolfo, S. (2002). A geometric framework for
unsupervised anomaly detection. In Applications of data mining in computer security (pp. 77-101).
Springer, Boston, MA.

Estevez-Tapiador, J. M., Garcia-Teodoro, P., & Diaz-Verdejo, J. E. (2004). Anomaly detection
methods in wired networks: a survey and taxonomy. Computer Communications, 27(16), 1569-1584.

Fan, W., Miller, M., Stolfo, S., Lee, W., & Chan, P. (2004). Using artificial anomalies to detect
unknown and known network intrusions. Knowledge and Information Systems, 6(5), 507-527.

Fan, Y., Wen, G., Li, D., Qiu, S., Levine, M. D., & Xiao, F. (2020). Video anomaly detection and
localization via gaussian mixture fully convolutional variational autoencoder. Computer Vision and
Image Understanding, 195, 102920.

Feng, Y., Wu, Z. F., Wu, K. G., Xiong, Z. Y., & Zhou, Y. (2005, August). An unsupervised anomaly
intrusion detection algorithm based on swarm intelligence. In 2005 International Conference on
Machine Learning and Cybernetics (Vol. 7, pp. 3965-3969). IEEE.

Feng, Y., Zhong, J., Xiong, Z. Y., Ye, C. X., & Wu, K. G. (2007, June). Network anomaly detection
based on DSOM and ACO clustering. In International Symposium on Neural Networks (pp. 947-
955). Springer, Berlin, Heidelberg.

Feng, Y., Zhong, J., Ye, C. X., & Wu, Z. F. (2006, October). Clustering based on self-organizing ant
colony networks with application to intrusion detection. In Sixth International Conference on
Intelligent Systems Design and Applications (Vol. 2, pp. 1077-1080). IEEE.

Fernandes, G., Rodrigues, J. J., Carvalho, L. F., Al-Muhtadi, J. F., & Proença, M. L. (2019). A
comprehensive survey on network anomaly detection. Telecommunication Systems, 70(3), 447-489.

Fernández, G. C., & Xu, S. (2019, November). A case study on using deep learning for network
intrusion detection. In MILCOM 2019-2019 IEEE Military Communications Conference
(MILCOM) (pp. 1-6). IEEE.

Fiore, U., De Santis, A., Perla, F., Zanetti, P., & Palmieri, F. (2019). Using generative adversarial
networks for improving classification effectiveness in credit card fraud detection. Information
Sciences, 479, 448-455.

Firdausi, I., Erwin, A., & Nugroho, A. S. (2010, December). Analysis of machine learning
techniques used in behavior-based malware detection. In 2010 second international conference on
advances in computing, control, and telecommunication technologies (pp. 201-203). IEEE.

Fogla, P., Sharif, M. I., Perdisci, R., Kolesnikov, O. M., & Lee, W. (2006, August). Polymorphic
Blending Attacks. In USENIX security symposium (pp. 241-256).

Forrest, S., Perelson, A. S., Allen, L., & Cherukuri, R. (1994, May). Self-nonself discrimination in a
computer. In Proceedings of 1994 IEEE computer society symposium on research in security and
privacy (pp. 202-212). Ieee.

Gao, D., Reiter, M. K., & Song, D. (2004, October). Gray-box extraction of execution graphs for
anomaly detection. In Proceedings of the 11th ACM conference on Computer and communications
security (pp. 318-329).

Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., & Vázquez, E. (2009). Anomaly-based
network intrusion detection: Techniques, systems and challenges. computers & security, 28(1-2), 18-
28.

Garvey, T. D., & Lunt, T. F. (1991, October). Model based intrusion detection. In Proceedings of the
14th national computer security conference (Vol. 10, pp. 372-385).

Gates, C., & Taylor, C. (2006, September). Challenging the anomaly detection paradigm: a
provocative discussion. In Proceedings of the 2006 workshop on New security paradigms (pp. 21-
29).

Gensim: topic modelling for humans. (n.d.). Gensim. Retrieved January 31, 2021, from
https://radimrehurek.com/gensim/

Ghosh, A. K., Wanken, J., & Charron, F. (1998, December). Detecting anomalous and unknown
intrusions against programs. In Proceedings 14th annual computer security applications conference
(Cat. No. 98Ex217) (pp. 259-267). IEEE.

Girardin, L. (1999, April). An Eye on Network Intruder-Administrator Shootouts. In Workshop on
Intrusion Detection and Network Monitoring (pp. 19-28).

Girdhar, Y., Cho, W., Campbell, M., Pineda, J., Clarke, E., & Singh, H. (2016, May). Anomaly
detection in unstructured environments using Bayesian nonparametric scene modeling. In 2016 IEEE
International Conference on Robotics and Automation (ICRA) (pp. 2651-2656). IEEE.

Gogoi, P., Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2012, August). Packet and flow
based network intrusion dataset. In International Conference on Contemporary Computing (pp. 322-
334). Springer, Berlin, Heidelberg.

Gómez, J., González, F., & Dasgupta, D. (2003, May). An immuno-fuzzy approach to anomaly
detection. In The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ'03. (Vol. 2,
pp. 1219-1224). IEEE.

González, F. A., & Dasgupta, D. (2003). Anomaly detection using real-valued negative selection.
Genetic Programming and Evolvable Machines, 4(4), 383-403.

Gonzalez, F., & Dasgupta, D. (2002, September). Neuro-immune and self-organizing map
approaches to anomaly detection: A comparison. In First International Conference on Artificial
Immune Systems (pp. 203-211).

Gonzalez, F., Dasgupta, D., & Niño, L. F. (2003, September). A randomized real-valued negative
selection algorithm. In International Conference on Artificial Immune Systems (pp. 261-272).
Springer, Berlin, Heidelberg.

Greensmith, J., Twycross, J., & Aickelin, U. (2006, July). Dendritic cells for anomaly detection. In
2006 IEEE International Conference on Evolutionary Computation (pp. 664-671). IEEE.

Gupta, G. (2019). MACHINE LEARNING APPROACH FOR CREDIT CARD FRAUD
DETECTION. Global Journal For Research Analysis (GJRA), 8(9). https://doi.org/10.36106/gjra

Gyanchandani, M., Rana, J. L., & Yadav, R. N. (2012). Taxonomy of anomaly based intrusion
detection system: a review. International Journal of Scientific and Research Publications, 2(12), 1-
13.

Han, S. J., & Cho, S. B. (2006). Evolutionary neural networks for anomaly detection based on the
behavior of a program. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
36(3), 559-570.

Harang, R., & Guarino, P. (2012, October). Clustering of Snort alerts to identify patterns and reduce
analyst workload. In MILCOM 2012-2012 IEEE Military Communications Conference (pp. 1-6).
IEEE.

Hashim, F., Munasinghe, K. S., & Jamalipour, A. (2010). Biologically inspired anomaly detection
and security control frameworks for complex heterogeneous networks. IEEE Transactions on
Network and Service Management, 7(4), 268-281.

He, Z., Xu, X., Huang, Z. J., & Deng, S. (2005). FP-outlier: Frequent pattern based outlier detection.
Computer Science and Information Systems, 2(1), 103-118.

Hick, P., Aben, E., Claffy, K., & Polterock, J. (2007). the CAIDA DDoS attack 2007 dataset.
2012)[2015-07-10]. http://www. caida. org.

Hill, T., & Remus, W. (1994). Neural network models for intelligent support of managerial decision
making. Decision Support Systems, 11(5), 449-459.

Hindy, H., Brosset, D., Bayne, E., Seeam, A., Tachtatzis, C., Atkinson, R., & Bellekens, X. (2018).
A taxonomy and survey of intrusion detection system design techniques, network threats and
datasets. arXiv preprint arXiv:1806.03517.

Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C., & Atkinson, R. (2017). Shallow and deep
networks intrusion detection system: A taxonomy and survey. arXiv preprint arXiv:1701.02145.

Hofmann, T. (2013). Probabilistic latent semantic analysis. arXiv preprint arXiv:1301.6705.

Hofmeyr, S. A. (1999). An immunological model of distributed detection and its application to
computer security (Doctoral dissertation, PhD thesis, University of New Mexico).

Hofmeyr, S. A., & Forrest, S. (1999, July). Immunity by design: An artificial immune system. In
Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation-Volume 2 (pp.
1289-1296).

Hoglund, A. J., Hatonen, K., & Sorvari, A. S. (2000, July). A computer host-based user anomaly
detection system using the self-organizing map. In Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New
Challenges and Perspectives for the New Millennium (Vol. 5, pp. 411-416). IEEE.

Hollis, G., Westbury, C., & Lefsrud, L. (2017). Extrapolating human judgments from skip-gram
vector representations of word meaning. Quarterly Journal of Experimental Psychology, 70(8), 1603-
1619.

Huang, J., Kalbarczyk, Z., & Nicol, D. M. (2014, June). Knowledge discovery from big data for
intrusion detection using LDA. In 2014 IEEE International Congress on Big Data (pp. 760-761).
IEEE.

Huang, L., Nguyen, X., Garofalakis, M., Jordan, M. I., Joseph, A., & Taft, N. (2006, December). In-
network PCA and anomaly detection. In NIPS (Vol. 2006, pp. 617-624).

Huang, Z., & Zeng, D. D. (2006, October). A link prediction approach to anomalous email detection.
In 2006 IEEE International Conference on Systems, Man and Cybernetics (Vol. 2, pp. 1131-1136).
IEEE.

Idika, N., & Mathur, A. P. (2007). A survey of malware detection techniques. Purdue University, 48,
2007-2.

IoT-23 Dataset: A labeled dataset of Malware and Benign IoT Traffic. (n.d.). Stratosphere IPS.
Retrieved January 31, 2021, from https://www.stratosphereips.org/datasets-iot23

Islam, S. A., Heil, B. J., Kearney, C. M., & Baker, E. J. (2017). Protein classification using modified
n-gram and skip-gram models. bioRxiv, 170407.

Javaid, A., Niyaz, Q., Sun, W., & Alam, M. (2016, May). A deep learning approach for network
intrusion detection system. In Proceedings of the 9th EAI International Conference on Bio-inspired
Information and Communications Technologies (formerly BIONETICS) (pp. 21-26).

Jing, D., & Chen, H. B. (2019, October). SVM based network intrusion detection for the UNSW-
NB15 dataset. In 2019 IEEE 13th International Conference on ASIC (ASICON) (pp. 1-4). IEEE.

Joshi, B., Joshi, B., & Rani, K. (2017). Mitigating data segregation and privacy issues in cloud
computing. In Proceedings of International Conference on Communication and Networks (pp. 175-
182). Springer, Singapore.

Joshi, S. S., & Phoha, V. V. (2005, March). Investigating hidden Markov models capabilities in
anomaly detection. In Proceedings of the 43rd annual Southeast regional conference-Volume 1 (pp.
98-103).

Kang, H. (2019). Fraud Detection in Mobile Money Transactions Using Machine Learning.

Karim, A. M., Güzel, M. S., Tolun, M. R., Kaya, H., & Çelebi, F. V. (2018). A new generalized deep
learning framework combining sparse autoencoder and Taguchi method for novel data classification
and processing. Mathematical Problems in Engineering, 2018.

Karthick, R. R., Hattiwale, V. P., & Ravindran, B. (2012, January). Adaptive network intrusion
detection system using a hybrid approach. In 2012 Fourth International Conference on
Communication Systems and Networks (COMSNETS 2012) (pp. 1-7). IEEE.

Kasa, N., Dahbura, A., Ravoori, C., & Adams, S. (2019, April). Improving credit card fraud
detection by profiling and clustering accounts. In 2019 Systems and Information Engineering Design
Symposium (SIEDS) (pp. 1-6). IEEE.

Kayacik, H. G., Zincir-Heywood, A. N., & Heywood, M. I. (2007). A hierarchical SOM-based
intrusion detection system. Engineering applications of artificial intelligence, 20(4), 439-451.

Keegan, N., Ji, S. Y., Chaudhary, A., Concolato, C., Yu, B., & Jeong, D. H. (2016). A survey of
cloud-based network intrusion detection analysis. Human-centric Computing and Information
Sciences, 6(1), 1-16.

Kephart, J. O. (1994). A biologically inspired immune system for computers. In In proc. Of the
fourth international workshop on synthesis and simulation of living systems, artificial life IV.

Khan, F. A., Gumaei, A., Derhab, A., & Hussain, A. (2019). A novel two-stage deep learning model
for efficient network intrusion detection. IEEE Access, 7, 30373-30385.

Khreich, W., Granger, E., Sabourin, R., & Miri, A. (2009, June). Combining hidden markov models
for improved anomaly detection. In 2009 IEEE International Conference on Communications (pp. 1-
6). IEEE.

Kim, A. Y., Ha, J. G., Choi, H., & Moon, H. (2018). Automated text analysis based on skip-gram
model for food evaluation in predicting consumer acceptance. Computational intelligence and
neuroscience, 2018.

Kim, E., Lee, J., Shin, H., Yang, H., Cho, S., Nam, S. K., ... & Kim, J. I. (2019). Champion-
challenger analysis for credit card fraud detection: Hybrid ensemble and deep learning. Expert
Systems with Applications, 128, 214-224.

Kim, J., & Bentley, P. (1999, September). The artificial immune model for network intrusion
detection. In 7th European congress on intelligent techniques and soft computing (EUFIT'99) (Vol.
158).

Kim, J., & Bentley, P. J. (2001, July). An evaluation of negative selection in an artificial immune
system for network intrusion detection. In Proceedings of the 3rd Annual Conference on Genetic and
Evolutionary Computation (pp. 1330-1337).

Kim, J., & Bentley, P. J. (2001, May). Towards an artificial immune system for network intrusion
detection: An investigation of clonal selection with a negative selection operator. In Proceedings of
the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546) (Vol. 2, pp. 1244-
1252). IEEE.

Kim, J., & Bentley, P. J. (2002, May). Towards an artificial immune system for network intrusion
detection: An investigation of dynamic clonal selection. In Proceedings of the 2002 Congress on
Evolutionary Computation. CEC'02 (Cat. No. 02TH8600) (Vol. 2, pp. 1015-1020). IEEE.

Kim, J., Bentley, P. J., Aickelin, U., Greensmith, J., Tedesco, G., & Twycross, J. (2007). Immune
system approaches to intrusion detection–a review. Natural computing, 6(4), 413-466.

Kim, J., Greensmith, J., Twycross, J., & Aickelin, U. (2010). Malicious code execution detection and
response immune system inspired by the danger theory. arXiv preprint arXiv:1003.4142.

Kim, J., Kim, J., Thu, H. L. T., & Kim, H. (2016, February). Long short term memory recurrent
neural network classifier for intrusion detection. In 2016 International Conference on Platform
Technology and Service (PlatCon) (pp. 1-5). IEEE.

Kim, J., Park, M., Kim, H., Cho, S., & Kang, P. (2019). Insider threat detection based on user
behavior modeling and anomaly detection algorithms. Applied Sciences, 9(19), 4018.

Kind, A., Stoecklin, M. P., & Dimitropoulos, X. (2009). Histogram-based traffic anomaly detection.
IEEE Transactions on Network and Service Management, 6(2), 110-121.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kiran, B. R. (2017). Multi-scale streaming anomalies detection for time series. arXiv preprint
arXiv:1706.06910.

Kloft, M., & Laskov, P. (2010, March). Online anomaly detection under adversarial impact. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (pp.
405-412). JMLR Workshop and Conference Proceedings.

Kloft, M., & Laskov, P. (2012). Security analysis of online centroid anomaly detection. The Journal
of Machine Learning Research, 13(1), 3681-3724.

Kruegel, C., & Vigna, G. (2003, October). Anomaly detection of web-based attacks. In Proceedings
of the 10th ACM conference on Computer and communications security (pp. 251-261).

Kruegel, C., Kirda, E., Mutz, D., Robertson, W., & Vigna, G. (2005, August). Automating mimicry
attacks using static binary analysis. In USENIX Security Symposium (Vol. 14, pp. 11-11).

Kruegel, C., Mutz, D., Robertson, W., & Valeur, F. (2003, December). Bayesian event classification
for intrusion detection. In 19th Annual Computer Security Applications Conference, 2003.
Proceedings. (pp. 14-23). IEEE.

Krügel, C., Toth, T., & Kirda, E. (2002, March). Service specific anomaly detection for network
intrusion detection. In Proceedings of the 2002 ACM symposium on Applied computing (pp. 201-
208).

Kumar, A., Glisson, W., & Cho, H. (2020). Network attack detection using an unsupervised machine
learning algorithm.

Kumar, M. S., Soundarya, V., Kavitha, S., Keerthika, E. S., & Aswini, E. (2019, February). Credit
card fraud detection using random forest algorithm. In 2019 3rd International Conference on
Computing and Communications Technologies (ICCCT) (pp. 149-153). IEEE.

Kumar, V. D., & Radhakrishnan, S. (2014, April). Intrusion detection in MANET using self
organizing map (SOM). In 2014 International Conference on Recent Trends in Information
Technology (pp. 1-8). IEEE.

Kumari, P., & Mishra, S. P. (2019). Analysis of credit card fraud detection using fusion classifiers.
In Computational Intelligence in Data Mining (pp. 111-122). Springer, Singapore.

Kuypers, M. A., Maillart, T., & Paté-Cornell, E. (2016). An empirical analysis of cyber security
incidents at a large organization. Department of Management Science and Engineering, Stanford
University, School of Information, UC Berkeley, 30.

Kwon, D., Kim, H., Kim, J., Suh, S. C., Kim, I., & Kim, K. J. (2019). A survey of deep learning-
based network anomaly detection. Cluster Computing, 22(1), 949-961.

Lane, T., & Brodley, C. E. (1997, July). Sequence matching and learning in anomaly detection for
computer security. In AAAI Workshop: AI Approaches to Fraud Detection and Risk Management
(pp. 43-49).

Lane, T., & Brodley, C. E. (1997, October). An application of machine learning to anomaly
detection. In Proceedings of the 20th National Information Systems Security Conference (Vol. 377,
pp. 366-380). Baltimore, USA.

Lane, T., & Brodley, C. E. (1998, August). Approaches to Online Learning and Concept Drift for
User Identification in Computer Security. In KDD (pp. 259-263).

Lane, T., & Brodley, C. E. (1999). Temporal sequence learning and data reduction for anomaly
detection. ACM Transactions on Information and System Security (TISSEC), 2(3), 295-331.

Lane, T., & Brodley, C. E. (2003). An empirical study of two approaches to sequence learning for
anomaly detection. Machine learning, 51(1), 73-107.

Last, M., Shapira, B., Elovici, Y., Zaafrany, O., & Kandel, A. (2003, May). Content-based
methodology for anomaly detection on the web. In International Atlantic Web Intelligence
Conference (pp. 113-123). Springer, Berlin, Heidelberg.

Latif, S., Kulkarni, A., Molkire, R., & Nangare, P. (2020). Study of Credit Card Fraud Recognition
using machine learning classification methods. CLIO An Annual Interdisciplinary Journal of
History, 6(4), 87-91.

Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., & Srivastava, J. (2003, May). A comparative study
of anomaly detection schemes in network intrusion detection. In Proceedings of the 2003 SIAM
international conference on data mining (pp. 25-36). Society for Industrial and Applied Mathematics.

Lee, W. (1999). A date mining framework for constructing features and models for intrusion
detection systems (Doctoral dissertation, Columbia University).

Lee, W., Stolfo, S. J., & Mok, K. W. (1999, May). A data mining framework for building intrusion
detection models. In Proceedings of the 1999 IEEE Symposium on Security and Privacy (Cat. No.
99CB36344) (pp. 120-132). IEEE.

Leung, K., & Leckie, C. (2005, January). Unsupervised anomaly detection in network intrusion
detection using clusters. In Proceedings of the Twenty-eighth Australasian conference on Computer
Science-Volume 38 (pp. 333-342).

Li, Y., Fang, B., Guo, L., & Chen, Y. (2007, March). Network anomaly detection based on TCM-
KNN algorithm. In Proceedings of the 2nd ACM symposium on Information, computer and
communications security (pp. 13-19).

Liang, Z., Zhang, G., Huang, J. X., & Hu, Q. V. (2014, November). Deep learning for healthcare
decision making with EMRs. In 2014 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM) (pp. 556-559). IEEE.

Liao, H. J., Lin, C. H. R., Lin, Y. C., & Tung, K. Y. (2013). Intrusion detection system: A
comprehensive review. Journal of Network and Computer Applications, 36(1), 16-24.

Linda, O., Manic, M., Vollmer, T., & Wright, J. (2011, April). Fuzzy logic based anomaly detection
for embedded network security cyber sensor. In 2011 IEEE Symposium on computational
intelligence in cyber security (CICS) (pp. 202-209). IEEE.

Liou, C. Y., Cheng, W. C., Liou, J. W., & Liou, D. R. (2014). Autoencoder for words.
Neurocomputing, 139, 84-96.

Lippmann, R., Haines, J. W., Fried, D. J., Korba, J., & Das, K. (2000). The 1999 DARPA off-line
intrusion detection evaluation. Computer networks, 34(4), 579-595.

Liu, H., & Lang, B. (2019). Machine learning and deep learning methods for intrusion detection
systems: A survey. applied sciences, 9(20), 4396.

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural
network architectures and their applications. Neurocomputing, 234, 11-26.

Lopez-Rojas, E., Elmir, A., & Axelsson, S. (2016). PaySim: A financial mobile money simulator for
fraud detection. In 28th European Modeling and Simulation Symposium, EMSS, Larnaca (pp. 249-
255). Dime University of Genoa.

Lucas, Y., Portier, P. E., Laporte, L., Calabretto, S., Caelen, O., He-Guelton, L., & Granitzer, M.
(2019, April). Multiple perspectives HMM-based feature engineering for credit card fraud detection.
In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing (pp. 1359-1361).

Lucas, Y., Portier, P. E., Laporte, L., Calabretto, S., He-Guelton, L., Oblé, F., & Granitzer, M. (2019,
June). Dataset shift quantification for credit card fraud detection. In 2019 IEEE Second International
Conference on Artificial Intelligence and Knowledge Engineering (AIKE) (pp. 97-100). IEEE.

Ludwig, S. A. (2017, October). Intrusion detection of multiple attack classes using a deep neural net
ensemble. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1-7). IEEE.

Lukasik, S. J. (2000). Protecting the global information commons. Telecommunications Policy,
24(6-7), 519-531.

Lyudchik, O. (2016). Outlier detection using autoencoders (No. CERN-STUDENTS-Note-2016-
079).

Mahoney, M. V., & Chan, P. K. (2001). PHAD: Packet header anomaly detection for identifying
hostile network traffic.

Mahoney, M. V., & Chan, P. K. (2002, July). Learning nonstationary models of normal network
traffic for detecting novel attacks. In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining (pp. 376-385).

Mahoney, M. V., & Chan, P. K. (2003, November). Learning rules for anomaly detection of hostile
network traffic. In Third IEEE International Conference on Data Mining (pp. 601-604). IEEE.

Mahoney, M. V., & Chan, P. K. (2003, September). An analysis of the 1999 DARPA/Lincoln
Laboratory evaluation data for network anomaly detection. In International Workshop on Recent
Advances in Intrusion Detection (pp. 220-237). Springer, Berlin, Heidelberg.

Makki, S., Assaghir, Z., Taher, Y., Haque, R., Hacid, M. S., & Zeineddine, H. (2019). An
experimental study with imbalanced classification approaches for credit card fraud detection. IEEE
Access, 7, 93010-93022.

Marir, N., Wang, H., Feng, G., Li, B., & Jia, M. (2018). Distributed abnormal behavior detection
approach based on deep belief network and ensemble svm using spark. IEEE Access, 6, 59657-
59671.

Maxion, R. A., & Tan, K. M. (2000, June). Benchmarking anomaly-based detection systems. In
Proceeding International Conference on Dependable Systems and Networks. DSN 2000 (pp. 623-
630). IEEE.

McElwee, S., Heaton, J., Fraley, J., & Cannady, J. (2017, October). Deep learning for prioritizing
and responding to intrusion detection alerts. In MILCOM 2017-2017 IEEE Military
Communications Conference (MILCOM) (pp. 1-5). IEEE.

McHugh, J. (2000). Testing intrusion detection systems: a critique of the 1998 and 1999 darpa
intrusion detection system evaluations as performed by lincoln laboratory. ACM Transactions on
Information and System Security (TISSEC), 3(4), 262-294.

Meftah, S., Rachidi, T., & Assem, N. (2019). Network based intrusion detection using the UNSW-
NB15 dataset. International Journal of Computing and Digital Systems, 8(5), 478-487.

Meidan, Y., Bohadana, M., Mathov, Y., Mirsky, Y., Shabtai, A., Breitenbacher, D., & Elovici, Y.
(2018). N-baiot—network-based detection of iot botnet attacks using deep autoencoders. IEEE
Pervasive Computing, 17(3), 12-22.

Meira, J., Andrade, R., Praça, I., Carneiro, J., Bolón-Canedo, V., Alonso-Betanzos, A., & Marreiros,
G. (2020). Performance evaluation of unsupervised techniques in cyber-attack anomaly detection.
Journal of Ambient Intelligence and Humanized Computing, 11(11), 4477-4489.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations of
words and phrases and their compositionality. arXiv preprint arXiv:1310.4546.

Miller, P., & Inoue, A. (2003, July). Collaborative intrusion detection system. In 22nd International
Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003 (pp. 519-
524). IEEE.

Mimura, M., & Tanaka, H. (2017, November). Reading network packets as a natural language for
intrusion detection. In International Conference on Information Security and Cryptology (pp. 339-
350). Springer, Cham.

Minoli, D., Sohraby, K., & Kouns, J. (2017, January). IoT security (IoTSec) considerations,
requirements, and architectures. In 2017 14th IEEE Annual Consumer Communications &
Networking Conference (CCNC) (pp. 1006-1007). IEEE.

Mirsky, Y., Doitshman, T., Elovici, Y., & Shabtai, A. (2018). Kitsune: an ensemble of autoencoders
for online network intrusion detection. arXiv preprint arXiv:1802.09089.

Misra, S., Thakur, S., Ghosh, M., & Saha, S. K. (2020). An autoencoder based model for detecting
fraudulent credit card transaction. Procedia Computer Science, 167, 254-262.

MIT Lincoln Laboratory: DARPA Intrusion Detection Evaluation. (n.d.). MIT. Retrieved January
31, 2021, from https://archive.ll.mit.edu/ideval/data/index.html

Mittal, S., & Tyagi, S. (2019, January). Performance evaluation of machine learning algorithms for
credit card fraud detection. In 2019 9th International Conference on Cloud Computing, Data Science
& Engineering (Confluence) (pp. 320-324). IEEE.

Moustafa, N., & Slay, J. (2015, November). UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set). In 2015 military communications and
information systems conference (MilCIS) (pp. 1-6). IEEE.

Moustafa, N., & Slay, J. (2016). The evaluation of Network Anomaly Detection Systems: Statistical
analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set. Information
Security Journal: A Global Perspective, 25(1-3), 18-31.

Münz, G., Li, S., & Carle, G. (2007, September). Traffic anomaly detection using k-means
clustering. In GI/ITG Workshop MMBnet (pp. 13-14).

Nauck, D., Nauck, U., & Kruse, R. (1999, June). NEFCLASS for JAVA-new learning algorithms. In
18th International Conference of the North American Fuzzy Information Processing Society-
NAFIPS (Cat. No. 99TH8397) (pp. 472-476). IEEE.

Nawir, M., Amir, A., Yaakob, N., & Lynn, O. B. (2019). Effective and efficient network anomaly
detection system using machine learning algorithm. Bulletin of Electrical Engineering and
Informatics, 8(1), 46-51.

Net Losses: Estimating the Global Cost of Cybercrime. (2014). CSIS.
http://csis.org/files/attachments/140609_McAfee_PDF.pdf

Newton, B. D. (2012). Anomaly Detection in Network Traffic Traces Using Latent Dirichlet
Allocation. dated Dec, 31.

Niu, X., Wang, L., & Yang, X. (2019). A comparison study of credit card fraud detection:
Supervised versus unsupervised. arXiv preprint arXiv:1904.10604.

Njogu, H. W., & Jiawei, L. (2010, July). Using alert cluster to reduce IDS alerts. In 2010 3rd
International Conference on Computer Science and Information Technology (Vol. 5, pp. 467-471).
IEEE.

Noble, C. C., & Cook, D. J. (2003, August). Graph-based anomaly detection. In Proceedings of the
ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 631-
636).

Oka, M., Oyama, Y., Abe, H., & Kato, K. (2004, September). Anomaly detection using layered
networks based on eigen co-occurrence matrix. In International Workshop on Recent Advances in
Intrusion Detection (pp. 223-237). Springer, Berlin, Heidelberg.

Pambudi, B. N., Hidayah, I., & Fauziati, S. (2019, December). Improving Money Laundering
Detection Using Optimized Support Vector Machine. In 2019 International Seminar on Research of
Information Technology and Intelligent Systems (ISRITI) (pp. 273-278). IEEE.

Papadimitriou, C. H., Raghavan, P., Tamaki, H., & Vempala, S. (2000). Latent semantic indexing: A
probabilistic analysis. Journal of Computer and System Sciences, 61(2), 217-235.

Parker, L. R., Yoo, P. D., Asyhari, T. A., Chermak, L., Jhi, Y., & Taha, K. (2019, August). Demise:
Interpretable deep extraction and mutual information selection techniques for IoT intrusion
detection. In Proceedings of the 14th International Conference on Availability, Reliability and
Security (pp. 1-10).

Parthasarathy, G., Ramanathan, L., JustinDhas, Y., Saravanakumar, J., & Darwin, J. (2019,
February). Comparative case study of machine learning classification techniques using imbalanced
credit card fraud datasets. In Proceedings of International Conference on Sustainable Computing in
Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India.

Perdisci, R., Gu, G., & Lee, W. (2006, December). Using an ensemble of one-class svm classifiers to
harden payload-based anomaly detection systems. In Sixth International Conference on Data Mining
(ICDM'06) (pp. 488-498). IEEE.

PerfectStorm. (n.d.). Keysight. Retrieved January 31, 2021, from
https://www.keysight.com/us/en/products/network-test/network-test-hardware/perfectstorm.html

Pietraszek, T. (2004, September). Using adaptive alert classification to reduce false positives in
intrusion detection. In International Workshop on Recent Advances in Intrusion Detection (pp. 102-
124). Springer, Berlin, Heidelberg.

Pillai, T. R., Palaniappan, S., Abdullah, A., & Imran, H. M. (2015, February). Predictive modeling
for intrusions in communication systems using GARMA and ARMA models. In 2015 5th National
Symposium on Information Technology: Towards New Smart World (NSITNSW) (pp. 1-6). IEEE.

Portnoy, L. (2000). Intrusion detection with unlabeled data using clustering (Doctoral dissertation,
Columbia University).

Prabhakara, E., Kumarb, M. N., Ponnarb, K., Sureshb, A., & Jayandhiranb, R. (2019). Credit card
fraud detection using boosted stacking. South Asian J. Eng. Technol., 8(S1), 149-153.

Prusti, D., & Rath, S. K. (2019, July). Fraudulent transaction detection in credit card by applying
ensemble machine learning techniques. In 2019 10th International Conference on Computing,
Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.

Prusti, D., & Rath, S. K. (2019, October). Web service based credit card fraud detection by applying
machine learning techniques. In TENCON 2019-2019 IEEE Region 10 Conference (TENCON) (pp.
492-497). IEEE.

Prusti, D., Padmanabhuni, S. S., & Rath, S. K. (2019). Credit card fraud detection by implementing
machine learning techniques.

Qayyum, A., Islam, M. H., & Jamil, M. (2005, September). Taxonomy of statistical based anomaly
detection techniques for intrusion detection. In Proceedings of the IEEE Symposium on Emerging
Technologies, 2005. (pp. 270-276). IEEE.

Qin, M., & Hwang, K. (2004). Frequent episode rules for intrusive anomaly detection with internet
datamining. In USENIX Security Symposium (pp. 1-15).

Qin, M., & Hwang, K. (2004). Network Anomaly Detection Against Frequent Episodes of Internet
Connections.

Raab, C., & Szekely, I. (2017). Data protection authorities and information technology. Computer
Law & Security Review, 33(4), 421-433.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2), 257-286.

Radford, B. J., Apolonio, L. M., Trias, A. J., & Simpson, J. A. (2018). Network traffic anomaly
detection using recurrent neural networks. arXiv preprint arXiv:1803.10769.

Raj, S. B. E., & Portia, A. A. (2011, March). Analysis on credit card fraud detection methods. In
2011 International Conference on Computer, Communication and Electrical Technology (ICCCET)
(pp. 152-156). IEEE.

Ramadas, M., Ostermann, S., & Tjaden, B. (2003, September). Detecting anomalous network traffic
with self-organizing maps. In International Workshop on Recent Advances in Intrusion Detection
(pp. 36-54). Springer, Berlin, Heidelberg.

Ramos, V., & Abraham, A. (2005). Antids: Self organized ant-based clustering model for intrusion
detection system. In Soft Computing as transdisciplinary science and technology (pp. 977-986).
Springer, Berlin, Heidelberg.

Rhodes, B. C., Mahaffey, J. A., & Cannady, J. D. (2000, October). Multiple self-organizing maps for
intrusion detection. In Proceedings of the 23rd national information systems security conference (pp.
16-19).

Rudd, E. M., Rozsa, A., Günther, M., & Boult, T. E. (2016). A survey of stealth malware attacks,
mitigation measures, and steps toward autonomous open world solutions. IEEE Communications
Surveys & Tutorials, 19(2), 1145-1172.

Rushin, G., Stancil, C., Sun, M., Adams, S., & Beling, P. (2017, April). Horse race analysis in credit
card fraud—deep learning, logistic regression, and Gradient Boosted Tree. In 2017 systems and
information engineering design symposium (SIEDS) (pp. 117-121). IEEE.

Ryan, J., Lin, M. J., & Miikkulainen, R. (1998). Intrusion detection with neural networks. Advances
in neural information processing systems, 943-949.

Safa, M. U., & Ganga, R. M. (2019). Credit Card Fraud Detection Using Machine Learning.
International Journal of Research in Engineering, Science and Management, 2(11), 372-374.

Sakurada, M., & Yairi, T. (2014, December). Anomaly detection using autoencoders with nonlinear
dimensionality reduction. In Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning
for Sensory Data Analysis (pp. 4-11).

Sarasamma, S. T., & Zhu, Q. A. (2006). Min-max hyperellipsoidal clustering for anomaly detection
in network security. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
36(4), 887-901.

Sarasamma, S. T., Zhu, Q. A., & Huff, J. (2005). Hierarchical Kohonenen net for anomaly detection
in network security. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
35(2), 302-312.

Saxe, J., & Berlin, K. (2017). eXpose: A character-level convolutional neural network with
embeddings for detecting malicious URLs, file paths and registry keys. arXiv preprint
arXiv:1702.08568.

Sears, D. R., Arzt, A., Frostel, H., Sonnleitner, R., & Widmer, G. (2017). Modeling harmony with
skip-grams. arXiv preprint arXiv:1707.04457.

Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., & Zhou, S. (2002, November).
Specification-based anomaly detection: a new approach for detecting network intrusions. In
Proceedings of the 9th ACM conference on Computer and communications security (pp. 265-274).

Shahed, M., Ibrahim, K., & Akter, P. (2019). Fraud Detection in Mobile Money Transaction: A Data
Mining Approach.

Sharmila, V. C., Kumar, K., Sundaram, R., Samyuktha, D., & Harish, R. (2019, April). Credit card
fraud detection using anomaly techniques. In 2019 1st International Conference on Innovations in
Information and Communication Technology (ICIICT) (pp. 1-6). IEEE.

Shin, S., Choi, M., Choi, J., Langevin, S., Bethune, C., Horne, P., ... & Choo, J. (2017, November).
Stexnmf: Spatio-temporally exclusive topic discovery for anomalous event detection. In 2017 IEEE
International Conference on Data Mining (ICDM) (pp. 435-444). IEEE.

Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). Toward developing a systematic
approach to generate benchmark datasets for intrusion detection. computers & security, 31(3), 357-
374.

Shon, T., & Moon, J. (2007). A hybrid machine learning approach to network anomaly detection.
Information Sciences, 177(18), 3799-3821.

Shon, T., Kim, Y., Lee, C., & Moon, J. (2005, June). A machine learning framework for network
anomaly detection using SVM and GA. In Proceedings from the sixth annual IEEE SMC information
assurance workshop (pp. 176-183). IEEE.

Shone, N., Ngoc, T. N., Phai, V. D., & Shi, Q. (2018). A deep learning approach to network
intrusion detection. IEEE transactions on emerging topics in computational intelligence, 2(1), 41-50.

Shukur, H. A., & Kurnaz, S. (2019). Credit card fraud detection using machine learning
methodology. International Journal of Computer Science and Mobile Computing, 8(3), 257-260.

Shyu, M. L., Chen, S. C., Sarinnapakorn, K., & Chang, L. (2003). A novel anomaly detection
scheme based on principal component classifier. MIAMI UNIV CORAL GABLES FL DEPT OF
ELECTRICAL AND COMPUTER ENGINEERING.

Singer, N. F. Y. (1999). Efficient Bayesian parameter estimation in large discrete domains. Advances
in neural information processing systems, 11, 417.

Singh, A., & Jain, A. (2019). Adaptive credit card fraud detection techniques based on feature
selection method. In Advances in computer communication and computational sciences (pp. 167-
178). Springer, Singapore.

Soh, W. W., & Yusuf, R. M. (2019). Predicting credit card fraud on a imbalanced data. International
Journal of Data Science and Advanced Analytics (ISSN 2563-4429), 1(1), 12-17.

Srivastava, R. P. (1992, April). Automating judgmental decisions using neural networks: a model for
processing business loan applications. In Proceedings of the 1992 ACM annual conference on
Communications (pp. 351-357).

Stibor, T., Mohr, P., Timmis, J., & Eckert, C. (2005, June). Is negative selection appropriate for
anomaly detection?. In Proceedings of the 7th annual conference on Genetic and evolutionary
computation (pp. 321-328).

Stibor, T., Timmis, J., & Eckert, C. (2005, August). A comparative study of real-valued negative
selection to statistical anomaly detection techniques. In International Conference on Artificial
Immune Systems (pp. 262-275). Springer, Berlin, Heidelberg.

Stolfo, S. J., Hershkop, S., Bui, L. H., Ferster, R., & Wang, K. (2005, May). Anomaly detection in
computer security and an application to file system accesses. In International Symposium on
Methodologies for Intelligent Systems (pp. 14-28). Springer, Berlin, Heidelberg.

Sun, J., Wang, X., Xiong, N., & Shao, J. (2018). Learning sparse representation with variational
auto-encoder for anomaly detection. IEEE Access, 6, 33353-33361.

Sun, L., & Yin, Y. (2017). Discovering themes and trends in transportation research using topic
modeling. Transportation Research Part C: Emerging Technologies, 77, 49-66.

Syarif, I., Prugel-Bennett, A., & Wills, G. (2012, April). Unsupervised clustering approach for
network anomaly detection. In International conference on networked digital technologies (pp. 135-
145). Springer, Berlin, Heidelberg.

Synthetic Financial Datasets For Fraud Detection. (2017, April 3). Kaggle.
https://www.kaggle.com/ntnu-testimon/paysim1

Tan, C. L., Quah, T. S., & Teh, H. H. (1996). An artificial neural network that models human
decision making. Computer, 29(3), 64-70.

Tan, K. (1995, November). The application of neural networks to UNIX computer security. In
Proceedings of ICNN'95-International Conference on Neural Networks (Vol. 1, pp. 476-481). IEEE.

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009, July). A detailed analysis of the KDD
CUP 99 data set. In 2009 IEEE symposium on computational intelligence for security and defense
applications (pp. 1-6). IEEE.

Tsai, C. F., Hsu, Y. F., Lin, C. Y., & Lin, W. Y. (2009). Intrusion detection by machine learning: A
review. expert systems with applications, 36(10), 11994-12000.

Tsakanyan, V. (2017). The role of cybersecurity in world politics. VESTNIK RUDN
INTERNATIONAL RELATIONS. 17. 339-348.

Udo, G., Bagchi, K., & Kirs, P. (2018). ANALYSIS OF THE GROWTH OF SECURITY
BREACHES: A MULTI-GROWTH MODEL APPROACH. Issues in Information Systems, 19(4).

Ullah, F., & Babar, M. A. (2019). Architectural tactics for big data cybersecurity analytics systems: a
review. Journal of Systems and Software, 151, 81-118.

Upadhyay, R., & Pantiukhin, D. (2017, September). Application of convolutional neural network to
intrusion type recognition. In Proceedings of the 2017 International Conference on Advances in
Computing, Communications and Informatics, Udupi, India (pp. 13-16).

Vaccaro, H. S. (1988). Detection of anomalous computer session activity (No. LA-UR-88-3656;
CONF-890536-2). Los Alamos National Lab., NM (USA).

Van Der Maaten, L. (2009, April). Learning a parametric embedding by preserving local structure. In
Artificial Intelligence and Statistics (pp. 384-391). PMLR.

Van Der Maaten, L. (2014). Accelerating t-SNE using tree-based algorithms. The Journal of
Machine Learning Research, 15(1), 3221-3245.

Van der Maaten, L., & Hinton, G. (2012). Visualizing non-metric similarities in multiple maps.
Machine learning, 87(1), 33-55.

Van Huong, P., & Hung, D. V. (2019, December). Intrusion detection in IoT systems based on deep
learning using convolutional neural network. In 2019 6th NAFOSTED Conference on Information
and Computer Science (NICS) (pp. 448-453). IEEE.

Vardhani, P. R., Priyadarshini, Y. I., & Narasimhulu, Y. (2019). CNN data mining algorithm for
detecting credit card fraud. In Soft Computing and Medical Bioinformatics (pp. 85-93). Springer,
Singapore.

Varmedja, D., Karanovic, M., Sladojevic, S., Arsenovic, M., & Anderla, A. (2019, March). Credit
card fraud detection-machine learning methods. In 2019 18th International Symposium INFOTEH-
JAHORINA (INFOTEH) (pp. 1-5). IEEE.

Veeramachaneni, K., Arnaldo, I., Korrapati, V., Bassias, C., & Li, K. (2016, April). AI^ 2: training a
big data machine to defend. In 2016 IEEE 2nd International Conference on Big Data Security on
Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart
Computing (HPSC), and IEEE International Conference on Intelligent Data and Security (IDS) (pp.
49-54). IEEE.

Viegas, E., Santin, A., Abreu, V., & Oliveira, L. S. (2017, July). Stream learning and anomaly-based
intrusion detection in the adversarial settings. In 2017 IEEE Symposium on Computers and
Communications (ISCC) (pp. 773-778). IEEE.

Wagner, A., & Plattner, B. (2005, June). Entropy based worm and anomaly detection in fast IP
networks. In 14th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprise (WETICE'05) (pp. 172-177). IEEE.

Wang, K., & Stolfo, S. J. (2004, September). Anomalous payload-based network intrusion detection.
In International workshop on recent advances in intrusion detection (pp. 203-222). Springer, Berlin,
Heidelberg.

Wang, W., Guan, X., & Zhang, X. (2004, August). A novel intrusion detection method based on
principle component analysis in computer security. In International Symposium on Neural Networks
(pp. 657-662). Springer, Berlin, Heidelberg.

Whitehead, M., & Johnson, D. K. (2017, May). A Tool for Visualizing and Exploring Relationships
Among Cancer-Related Patents. In FLAIRS Conference (pp. 235-239).

Wu, S. X., & Banzhaf, W. (2010). The use of computational intelligence in intrusion detection
systems: A review. Applied soft computing, 10(1), 1-35.

Xiao, F., Jin, S., & Li, X. (2010). A novel data mining-based method for alert reduction and analysis.
Journal of networks, 5(1), 88.

Xie, Y., & Yu, S. Z. (2008). A large-scale hidden semi-Markov model for anomaly detection on user
browsing behaviors. IEEE/ACM transactions on networking, 17(1), 54-65.

Xu, X. (2006). Adaptive intrusion detection based on machine learning: feature extraction, classifier
construction and sequential pattern prediction. International Journal of Web Services Practices, 2(1-
2), 49-58.

Xu, X. (2010). Sequential anomaly detection based on temporal-difference learning: Principles,
models and case studies. Applied Soft Computing, 10(3), 859-867.

Xu, X., Sun, Y., & Huang, Z. (2007, April). Defending DDoS attacks using hidden Markov models
and cooperative reinforcement learning. In Pacific-Asia Workshop on Intelligence and Security
Informatics (pp. 196-207). Springer, Berlin, Heidelberg.

Yan, B., & Han, G. (2018). Effective feature extraction via stacked sparse autoencoder to improve
intrusion detection system. IEEE Access, 6, 41238-41248.

Yang, K., & Xu, W. (2019, January). FraudMemory: Explainable memory-enhanced sequential
neural networks for financial fraud detection. In Proceedings of the 52nd Hawaii International
Conference on System Sciences.

Yang, W., Zhang, Y., Ye, K., Li, L., & Xu, C. Z. (2019, June). FFD: a federated learning based
method for credit card fraud detection. In International Conference on Big Data (pp. 18-32).
Springer, Cham.

Yang, Y., Zheng, K., Wu, C., Niu, X., & Yang, Y. (2019). Building an effective intrusion detection
system using the modified density peak clustering algorithm and deep belief networks. Applied
Sciences, 9(2), 238.

Ye, N. (2000, June). A markov chain model of temporal behavior for anomaly detection. In
Proceedings of the 2000 IEEE Systems, Man, and Cybernetics Information Assurance and Security
Workshop (Vol. 166, p. 169). West Point, NY.

Ye, N., & Chen, Q. (2001). An anomaly detection technique based on a chi‐square statistic for
detecting intrusions into information systems. Quality and Reliability Engineering International,
17(2), 105-112.

Yeung, D. Y., & Ding, Y. (2003). Host-based intrusion detection using dynamic and static
behavioral models. Pattern recognition, 36(1), 229-243.

Yousefi-Azar, M., Varadharajan, V., Hamey, L., & Tupakula, U. (2017, May). Autoencoder-based
feature learning for cyber security applications. In 2017 International joint conference on neural
networks (IJCNN) (pp. 3854-3861). IEEE.

Yu, Y., Long, J., & Cai, Z. (2017). Network intrusion detection through stacking dilated
convolutional autoencoders. Security and Communication Networks, 2017.

Zamani, M., & Movahedi, M. (2013). Machine learning techniques for intrusion detection. arXiv
preprint arXiv:1312.2177.

Zanero, S., & Savaresi, S. M. (2004, March). Unsupervised learning techniques for an intrusion
detection system. In Proceedings of the 2004 ACM symposium on Applied computing (pp. 412-
419).

Zarpelão, B. B., Miani, R. S., Kawakani, C. T., & de Alvarenga, S. C. (2017). A survey of intrusion
detection in Internet of Things. Journal of Network and Computer Applications, 84, 25-37.

Zhang, G., Iwata, T., & Kashima, H. (2017, September). Robust multi-view topic modeling by
incorporating detecting anomalies. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (pp. 238-250). Springer, Cham.

Zhang, J., & Zulkernine, M. (2006, June). Anomaly based network intrusion detection with
unsupervised outlier detection. In 2006 IEEE International Conference on Communications (Vol. 5,
pp. 2388-2393). IEEE.

Zhang, X., Han, Y., Xu, W., & Wang, Q. (2019). HOBA: A novel feature engineering methodology
for credit card fraud detection with a deep learning architecture. Information Sciences.

Zhang, Y., Lee, W., & Huang, Y. A. (2003). Intrusion detection techniques for mobile wireless
networks. Wireless Networks, 9(5), 545-556.

Zhang, Z., Li, J., Manikopoulos, C. N., Jorgenson, J., & Ucles, J. (2001, June). HIDE: a hierarchical
network intrusion detection system using statistical preprocessing and neural network classification.
In Proc. IEEE Workshop on Information Assurance and Security (Vol. 85, p. 90).

Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its
applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, 213-
237.

Zhou, C., & Paffenroth, R. C. (2017, August). Anomaly detection with robust deep autoencoders. In
Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 665-674).

Zhou, Z., Fu, B., Qiu, H., Zhang, Y., & Liu, X. (2017, April). Modeling medical texts for distributed
representations based on Skip-Gram model. In 2017 3rd International Conference on Information
Management (ICIM) (pp. 279-283). IEEE.

Zhuo, X., Zhang, J., & Son, S. W. (2017, December). Network intrusion detection using word
embeddings. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 4686-4695). IEEE.

8. Appendices
8.1. UNSW-NB 15 dataset feature set

Id. Name Type Description

1 srcip nominal Source IP address.

2 sport integer Source port number.

3 dstip nominal Destination IP address.

4 dsport integer Destination port number.

5 proto nominal Transaction protocol.

6 state nominal Indicates to the state and its dependent protocol.

7 dur float Record total duration.

8 sbytes Integer Source to destination transaction bytes.

9 dbytes integer Destination to source transaction bytes.

10 sttl integer Source to destination time to live value.

11 dttl integer Destination to source time to live value.

12 sloss integer Source packets retransmitted or dropped.

13 dloss integer Destination packets retransmitted or dropped.

14 service nominal
http, ftp, smtp, ssh, dns, ftp-data ,irc and (-) if not
much used service.

15 Sload float Source bits per second.

16 Dload float Destination bits per second.

17 Spkts integer Source to destination packet count.

18 Dpkts integer Destination to source packet count.

19 swin integer Source TCP window advertisement value.

20 dwin integer Destination TCP window advertisement value.

21 stcpb integer Source TCP base sequence number.

22 dtcpb integer Destination TCP base sequence number.

23 smeansz integer Mean of the packet size transmitted by the src.

24 dmeansz integer Mean of the packet size transmitted by the dst.

25 trans_depth integer
Pipelined depth into the connection of http
request/response transaction.

26 res_bdy_len integer
Uncompressed content size of data transferred from
the http server.

27 Sjit float Source jitter (ms).

28 Djit float Destination jitter (ms).

29 Stime
timestam
p

Record start time.

30 Ltime
timestam
p

Record last time.

31 Sintpkt float Source interpacket arrival time (ms).

32 Dintpkt float Destination interpacket arrival time (ms).

33 tcprtt float
TCP connection setup round-trip time: sum of synack
and ackdat.

34 synack float
TCP connection setup time: time between SYN and
SYN_ACK.

35 ackdat float
TCP connection setup time: time between
SYN_ACK and ACK.

36 is_sm_ips_ports binary
If source (1) and destination (3) IP addresses equal
and port numbers (2) (4) equal then 1 else 0.

37 ct_state_ttl integer
Number for each state (6) according to specific range
of values for source/destination time to live (10) (11).

38 ct_flw_http_mthd integer
Flows with methods such as GET and POST in http
service.

39 is_ftp_login binary
If the ftp session is accessed by user and password
then 1 else 0.

40 ct_ftp_cmd integer Flows with a command in ftp session.

41 ct_srv_src integer
Connections with same service (14) and source
address (1) in 100 connections according to last time
(26).

42 ct_srv_dst integer
Connections that contain the same service (14) and
destination address (3) in 100 connections according
to last time (26).

43 ct_dst_ltm integer
Connections of the same destination address (3) in
100 connections according to last time (26).

44 ct_src_ ltm integer
Connections of the same source address (1) in 100
connections according to last time (26).

45 ct_src_dport_ltm integer
Connections with same source address (1) and
destination port (4) in 100 connections according to
last time (26).

46 ct_dst_sport_ltm integer
Connections with same destination address (3) and
source port (2) in 100 connections according to last
time (26).

47 ct_dst_src_ltm integer
Connections with same source (1) and destination
address (3) in 100 connections according to last time
(26).

48 attack_cat nominal Name of each attack category.

49 Label binary 0 for normal and 1 for attack records.

8.2. Paysim1 dataset

Name Type Description

step numeric
A unit of time. 1 step is 1 hour of time. Total steps 744
(30 days).

type
categoric
al

CASH-IN, CASH-OUT, DEBIT, PAYMENT and
TRANSFER.

amount numeric Amount of the transaction in local currency.

nameOrig
categoric
al

Customer who started the transaction.

oldbalanceOrg numeric Initial balance before the transaction.

newbalanceOrig numeric New balance after the transaction.

nameDest
categoric
al

Customer who is the recipient of the transaction.

oldbalanceDest numeric Initial balance recipient before the transaction.

newbalanceDest numeric New balance recipient after the transaction.

isFraud binary Flag: legitimate transaction, fraudulent transaction.

isFlaggedFraud binary
Flag: an attempt to transfer more than 200.000 in a
single transaction.

8.3. IoT-23 MC11 dataset

Name Type Description

ts time Timestamp.

uid string Unique identifier.

id.orig_h addr Source IP address.

id.orig_p port Source port.

id.resp_h addr Target IP address.

id.resp_p port Target port.

proto enum Protocol.

service string Service.

duration interval Connection duration.

orig_bytes count Bytes sent by source IP address to target IP
address.

resp_bytes count Bytes sent by target IP address to source IP
address.

conn_state string Connection state.

local_orig bool Local source address.

local_resp bool Local target address.

missed_bytes count Missed bytes.

history string History.

orig_pkts count Packets sent by source IP address to target IP
address.

orig_ip_bytes count IP bytes sent by source IP address to target IP
address.

resp_pkts count Packets sent by target IP address to source IP
address.

resp_ip_bytes count IP bytes sent by target IP address to source IP
address.

tunnel_parents set[string] Tunnel parents.

label string Label: Benign, Malicious.

detailed_label string Detailed label.

