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1. Introduction 
1.1. Motivation and objectives 

Cybercrime is a major concern for corporations, business owners, governments and citizens. Major 
incidents are causing significant damage to organizations and consumers, including economic losses, 
reputational impact and failure to meet compliance requirements. This trend continues to grow in 
spite of increasing investments in security and fraud prevention, public and private sector initiatives 
geared towards collaboratively defeating cybercrime, and new regulations pushed from national and 
international bodies.  

On the other hand, security professionals are equipped with tools, techniques and technologies, each 
designed to solve a given problem. However, these resources must be used in combination with 
others (layered approach) and effectively orchestrated in order to obtain optimal results. These 
solutions heavily rely on existing knowledge about attack and fraud patterns. They are built upon 
past incidents and procedures used by attackers to ensure that these methods (or their variants) won’t 
succeed in the future once they are deployed in the environment to be protected. They also rely on 
human experts to analyze triggered alerts and discard false positives, focusing on those alerts that are 
more likely to represent true attacks. 

However, as novel attack techniques are developed, with increasing degree of sophistication, existing 
expert knowledge quickly becomes obsolete. Also, as more devices and business channels are 
monitored for potential intrusions, the volume of events, and the number of false positives becomes 
unmanageable for analysts. 

The aim of this research work was to target both problems (detecting unknown attacks and reducing 
false positive ratio) by leveraging artificial intelligence techniques. Artificial Intelligence was chosen 
for two reasons: it exhibits the ability to learn from both data and human knowledge, and it can 
potentially generalize. 

While the first statement has been extensively demonstrated by the research community, the second 
statement (ability to generalize) is still a green field. Artificial General Intelligence (AGI) is even 
nowadays a theoretical concept, not a reality.  

However, cross-domain applications of artificial intelligence, which sits between applied artificial 
intelligence and AGI, looks to be achievable. The goal of this research was to develop means to 
solve an existing problem in a given domain (intrusion detection) and then leverage the same 
underlying tools (AI) to solve a related problem in a related domain (fraud). 

While different in purpose, data nature and volume, and business implications, fraud detection shares 
with intrusion detection the aim to detect malicious activity to prevent incidents from occurring. It 
also shares the need to go beyond current human expert knowledge and reduce the volume of alerts 
that must be reviewed by human experts. These common factors made fraud detection an ideal field 
to reuse AI techniques.  

Artificial intelligence can learn in a supervised and unsupervised fashion. Depending on the use case, 
one paradigm might more suitable than the other. The focus of this research has been placed on 
unsupervised techniques to approach the primary problem (intrusion detection), with supervised 
techniques becoming helpers for more specific tasks (reducing false positive ratio). Under the 
aforementioned context, the objectives of this research were the following: 



- Reduce the dependence on well-known attack patterns for effective intrusion detection, by 
leveraging AI techniques that can distinguish malicious activity by modeling legitimate 
activity with network features. 

- Prove that artificial intelligence, while far from AGI, can evolve towards cross-domain 
applications and use cases, as long as target domains are related and share some principles 
and needs. 

- Demonstrate that unsupervised intrusion detection can be augmented by supervised learning, 
thus effectively increasing their accuracy. 

- Reduce false positive ratio of fraud detection systems by proving that human expertise used 
to confirm or discard alerts can be (partially) captured and synthetized by AI, in order to 
reduce the volume of alerts that require manual review. 

1.2. Target fields 
Cybercrime is a fast-growing area of crime which affects both individuals and organizations, 
including governments, corporations and non-profit associations (Udo, Bagchi, & Kirs, 2018) 
(Tsakanyan, 2017). It has increased globally and jumped by 32 per cent in 2016 (Cybersecurity 
Challenges in the Middle East, 2017). It's not only increasing in number of occurrences but also in 
cost per incident, which doubles each year (Lukasik, 2000). In fact, global cybercrime cost has been 
estimated (Net Losses: Estimating the Global Cost of Cybercrime, 2014) to be $400 billion in 2014. 
These estimates might be conservative, because companies are hesitant to report security incidents in 
surveys (Chen, Dong, Chen, & Xu, 2016), and due to the fact that security incidents go undetected 
for long time (Rudd, Rozsa, Günther, & Boult, 2016). On the other hand, on average, the 
announcement of a breach has a negative impact of about 2.1% of the market value of the company 
(Chen, Dong, Chen, & Xu, 2016). These figures suggests that existing security measures, techniques 
and systems are not effective against most advanced attacks (Ullah & Babar, 2019). 

On the other hand, security and privacy concerns in computer networks and systems have 
significantly increased over the last few years (da Costa, Papa, Lisboa, Munoz, & de Albuquerque, 
2019). This is true for computers, mobile devices, IoT devices (Chapaneri & Shah, 2019), and 
payment networks. Malware is also major area of concern (Idika & Mathur, 2007). In both contexts, 
machine learning has been subject to extensive research (Akhi, Kanon, Kabir, & Banu, 2019) 
(Firdausi, Erwin, & Nugroho, 2010), as it can accurately spot differences between legitimate and 
malicious activity by generalizing and finding patterns in data (Liu & Lang, 2019). Fraud, a growing 
issue in online payments (Fiore, De Santis, Perla, Zanetti, & Palmieri, 2019), has also been 
approached with machine learning (Raj & Portia, 2011). 

This research work targets a primary field (unsupervised intrusion detection) and applies the 
underlying techniques (AI) to a related domain (fraud detection). 

1.2.1. Intrusion detection 

1.2.1.1. Challenges 

An IDS (Intrusion Detection Systems) is designed to recognize intrusions and trigger alerts, 
obtaining high intrusion detection ratios and acceptable (as low as possible) false positive ratios 
(Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017). An IDS can leverage the following 
types of detection method: signature-based, anomaly-based or specifications-based (Hindy, Brosset, 
Bayne, Seeam, Tachtatzis, Atkinson, & Bellekens, 2018).  



Signature-based systems rely on prior knowledge about attack patterns. In these systems, a signature 
is created for each known pattern, which results in a high degree of accuracy for known attacks, but a 
lack of detection capabilities for unknown attacks (Ashraf, Ahmad, & Ashraf, 2018). This limitation 
also applies to systems based on supervised settings, as they rely on the availability of labelled 
instances of attacks. In fact, previous research (Zarpelão, Miani, Kawakani, & de Alvarenga, 2017) 
states that traditional techniques cannot be successfully applied to different environments, including 
emerging ones as IoT, which uses specific protocols, standards and devices.  

Therefore, recognizing unknown attacks is one of most desired features of an intrusion detection 
technique (Casas, Mazel, & Owezarski, 2012). Unknown attacks don't have a pattern, neither 
statistical nor signature-based. Anomaly-based systems could detect unknown attack patterns, 
assuming that malicious behavior is significantly different from legitimate activity. Their main 
drawbacks (Carlin, Hammoudeh, & Aldabbas, 2015) are: usability dependent on the false alarm rate, 
effective behavior models are difficult to design, greater implementation complexity, and inability to 
explain the type of attack that was detected.  

On the other hand, an IDS must process significant amounts of data that is received from multiple 
other systems (Garvey & Lunt, 1991). Moreover, there could be irrelevant data that won't improve 
accuracy, and perhaps key data or features are missing. 

In this scenario, intrusion detection is now a relevant field for researchers. However, there are a 
number of additional challenges that researchers must face. First, cyber-attacks leverage stealth 
techniques for intrusion detection evasion in signature-based approaches (used by most antivirus 
software packages) (Alston, 2017). These techniques are evolving towards evading machine learning 
anomaly detection techniques as well (Viegas, Santin, Abreu, & Oliveira, 2017). Also, new 
technology eco-systems like mobile (Zhang, Lee, & Huang, 2003), cloud (Joshi, Joshi, & Rani, 
2017) and IoT (Minoli, Sohraby, & Kouns, 2017) are demanding custom security approaches. On the 
other hand, there is increasing regulatory pressure around data protection (Raab & Szekely, 2017), 
and a growing amount of business applications of big data (Choi, Chan, & Yue, 2016), which 
encourages companies to store high volumes of data, hence increasing the attack surface and the 
available threat vectors. 

1.2.1.2. Development paths 

1.2.1.2.1. Increase detection rate 

Recent surveys (Ahmed, Mahmood, & Hu, 2016) (Keegan, Ji, Chaudhary, Concolato, Yu, & Jeong, 
2016) (Buczak & Guven, 2015) and taxonomies (Qayyum, Islam, & Jamil, 2005) show that there are 
multiple intrusion detection techniques leveraging Machine Learning or Artificial Intelligence. They 
can be based on anomaly detection (unsupervised) or misuse detection (supervised). 

Common attacker activities are learnt and compared with current activity in misuse detection 
(Cannady, 1998). These malicious activities are labeled as such in the training dataset, which must 
be available for the learning process to occur. All other observations in this training dataset are 
labeled as normal activities. Unknown attacks are difficult to detect, because they were not present in 
the learning phase (Meira, Andrade, Praça, Carneiro, Bolón-Canedo, Alonso-Betanzos, & Marreiros, 
2020). 

It's also remarkable that datasets with labeled malicious activity are not widely available. There are 
some challenges specific to the intrusion detection field that make it hard to produce those datasets. 



For example, the activities surrounding a given action, that is, its context, heavily influence whether 
that action is considered an attack or not. In addition to this, recognizing an intrusion might require 
looking at a number of related events, often produced by more than one system. Therefore, a single 
event cannot be classified (alone) as an attack or legitimate. Lastly, there are multiple datasets with 
synthetic attack data, but datasets with realistic intrusions are scarce. Moreover, the research 
community cannot reliably assess attack statistics and indicators (Kuypers, Maillart, & Paté-Cornell, 
2016).  

In anomaly detection techniques, the focus is on learning legitimate activity, not malicious actions 
(Chimphlee, Abdullah, Sap, Srinoy, & Chimphlee, 2006), in order to discover patterns that don't 
align with that legitimate activity (Chandola, Banerjee, & Kumar, 2009). Attack labels are not 
needed. The main objective is to recognize actions that can't be fit to most usual activity learnt in the 
training phase (Chandola, Banerjee, & Kumar, 2009). This approach has proven to be effective to be 
able to spot intrusions (Meira, Andrade, Praça, Carneiro, Bolón-Canedo, Alonso-Betanzos, & 
Marreiros, 2020), for a number of reasons.  

First, evasion techniques cannot be easily applied. Their impact is much lower than in systems whose 
focus is to learn attack patterns. Second, because anomaly detection is based on broad and generally-
applicable principles, it can be applied to all elements of a technology ecosystem without reducing 
its effectiveness. Third, the evolution of intrusion vectors doesn't influence these techniques' 
performance, because knowledge about these vectors is not required at all.  

Moreover, anomaly detection exhibits the following advantages: they can detect unknown attacks, 
they can detect abuse of privileges, and they are not dependent on the underlying operating system 
(Liao, Lin, Lin, & Tung, 2013).  

However, anomaly detection also exhibits several disadvantages: they can take longer to produce an 
alert when malicious activity happens, detection is sometimes disabled while legitimate activity is 
being learnt, and the fact that these techniques are vulnerable to concept drift, because legitimate 
activity patterns can change overtime (Liao, Lin, Lin, & Tung, 2013) (Lane & Brodley, 1998). 
Besides, creating patterns of legitimate activity can become a hard task to accomplish (Zamani & 
Movahedi, 2013). Also, the volume of data to be processed by an IDS is quite significant, attacks 
represent just a small fraction of that data, and discovering effective criteria to separate legitimate 
and malicious activity is a hard task (Zamani & Movahedi, 2013).  

Anomaly detection requires more training data than supervised settings, which translates into higher 
demand for compute resources (Bashah, Shanmugam, & Ahmed, 2005). That training data can 
contain attacks, which can impact the quality of models produced (Estevez-Tapiador, Garcia-
Teodoro, & Diaz-Verdejo, 2004). Lastly, in some cases the assumption that legitimate behavior is 
frequent might not hold (Estevez-Tapiador, Garcia-Teodoro, & Diaz-Verdejo, 2004), and infrequent 
activity might not be related to attacks.  

Attackers could also influence anomaly detection algorithms to learn malicious activity as legitimate 
(Chebrolu, Abraham, & Thomas, 2005). By introducing small (incremental) changes in behavior 
over a long period of time, malicious activity would go unnoticed and would become part of the 
normal behavior profile. In any case, this manipulation requires details about how the algorithm was 
implemented, and the attacker must be able to generate activity while the algorithm is being trained. 

Lastly, the actual performance of anomaly detection techniques relies on a list of assumptions  
(Gates & Taylor, 2006): attacks are anomalous or rare, anomalous activity is malicious, definition of 



malicious is universal, attack-free data is available, simulated data (for those experiments in which 
legitimate activity is simulated) is representative, false alarm rate over 1% is acceptable, and 
administrators can interpret anomalies. 

1.2.1.2.2. Reduce false positive rate 

There are multiple approaches available for automated decision-making processes whose goal is to 
minimize false alarms. Most popular methods are adaptive learning (Pietraszek, 2004), similarity 
with confirmed alerts (Njogu & Jiawei, 2010), greedy aggregation algorithm (Harang & Guarino, 
2012), neuro-fuzzy approach (Alshammari, Sonamthiang, Teimouri, & Riordan, 2007), alert 
enrichment framework (Bakar, Belaton, & Samsudin, 2005), and outlier detection (Xiao, Jin, & Li, 
2010). 

Alert reduction and false positive minimization are problems that share the same principles in 
intrusion detection and fraud detection. 

1.2.2. Fraud detection 

1.2.2.1. Challenges 

Fraud detection shares key objectives with intrusion detection: maximize detection rate and 
minimize false positive rates, which lead to high performance. It differs from intrusion detection in 
the type of input features available to achieve that performance (Soh & Yusuf, 2019): Personal 
Account Number (PAN) and related details, transaction location, date and time, customer details, and 
the amount associated with the transaction. 

The set of indicators used to measure performance in fraud detection are equivalent to those for 
intrusion detection: precision, recall, accuracy, and false alarms ratio (Kumari & Mishra, 2019). 
Nevertheless, the lack of a universal dataset to be used as reference for comparing performance 
across algorithms prevents these metrics to be really useful for benchmarking purposes. However, 
there are promising proposals (Yang, Zhang, Ye, Li, & Xu, 2019) that leverage federated learning, 
which rely on data sharing among banks. These initiatives might solve the aforementioned issue. 

Fraud detection systems (FDS) are designed to detect fraudulent activity and trigger alerts. These 
systems implement techniques leveraging advanced detection methods, rule-based detection, 
artificial intelligence and statistical models. Transactions flagged as fraud must be reviewed by a 
fraud analyst (human expert) to check whether the FDS made the right decision or not. Significant 
cost reduction can be achieved by replacing these manual reviews with automated methods.  

Alert reduction is especially challenging in the fraud detection field due to the evolving nature of the 
payments sector. There are new channels and methods to execute payments and new customer 
segments are constantly found. As a consequence, the number of transactions is always increasing, 
which also increases the number of manual reviews required to detect fraud. Growing the team of 
experts effectively allows to handle additional workload, but doesn't scale in terms of cost. A better 
option is to implement automated methods to quickly discard false alarms with common patterns, so 
that experts only have to review the less trivial cases. 

1.2.2.2. Development paths 

1.2.2.2.1. Increase detection rate 

To increase detection performance, drivers in the fraud detection field resemble those seen for 
intrusion detection: feature selection and engineering (Singh & Jain, 2019) (Lucas, Portier, Laporte, 



Calabretto, Caelen, He-Guelton, & Granitzer, 2019), ability to leverage ensembles of models (Kim, 
Lee, Shin, Yang, Cho, Nam, 2019) (Prusti & Rath, 2019a) or hybrid models (Carcillo, Le Borgne, 
Caelen, Kessaci, Oblé, & Bontempi, 2019) (Prusti, Padmanabhuni, & Rath, 2019), incorporated 
domain expertise (Rushin, Stancil, Sun, Adams, & Beling, 2017), and deciding between misuse 
detection and anomaly detection techniques (Niu, Wang, & Yang, 2019).  

The underlying assumption in supervised models (misuse detection) is that current fraud can be 
recognized with a set of patterns that can be discovered and synthesized from past fraud data 
(Carcillo, Le Borgne, Caelen, Kessaci, Oblé, & Bontempi, 2019). In unsupervised models (anomaly 
detection), the underlying assumption is that legitimate activity can be baselined, and fraudulent 
activity is significantly different from that baseline. Lastly, hybrid systems come into play when the 
hypothesis is that standalone techniques fail to effectively detect fraud, and that using multiple 
techniques leveraging different approaches simultaneously is a preferred method. Recent research 
(Mittal & Tyagi, 2019) has evaluated the most innovative methods available today. The key 
conclusion is that, when it comes to accuracy, unsupervised methods yield better results (Mittal & 
Tyagi, 2019). 

Beyond the chosen algorithm, feature selection and engineering also plays a relevant role in obtained 
performance. A novel feature engineering framework (Zhang, Han, Xu, & Wang, 2019) has 
demonstrated to perform better when applied to several methods based on artificial intelligence. 

1.2.2.2.2. Reduce false positive rate 

This development path hasn’t been so extensively explored in the fraud detection field. However, 
given the similarity of this field with intrusion detection, it seems reasonable that these methods 
could be re-engineered to make them effective for fraud detection as well. 

 

  



2. Systematic review 
2.1. Motivation 

This systematic review focuses on unsupervised techniques based on anomaly detection, that have 
been applied to the intrusion detection domain. The reason behind setting this scope is that the main 
goal of this research, as described in the motivation and objectives section, is to reduce the 
dependence on well-known attack patterns in the intrusion detection field, and unsupervised 
techniques are best suited for this purpose. It’s therefore required to understand existing methods for 
unsupervised learning before enhanced techniques can be developed and tested. 

While supervised settings are also present in this research work, they are leveraged only as helpers or 
secondary techniques for specific functions. Therefore, and extensive review is not a requirement, 
and the relevant literature review is included in a separate section. 

Several anomaly detection methods have been applied to intrusion detection (Fernandes, Rodrigues, 
Carvalho, Al-Muhtadi, & Proença, 2019), with varying performance results. Moreover, recent 
surveys (Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017) (Liao, Lin, Lin, & Tung, 2013) 
(Kwon, Kim, Kim, Suh, Kim, & Kim, 2019) have focused on producing a taxonomy to classify these 
methods. There are other surveys focused on the usage of anomaly detection to detect cyber-attacks 
(Chandola, Banerjee, & Kumar, 2009). 

This review aims to provide a comprehensive and up-to-date reference of available techniques. It 
includes a brief description on how each of them operates, as well as their advantages, drawbacks 
and limitations, and what detection and false positive rates were obtained by researchers along the 
experimental testing phase, where available. 

Surveys and taxonomies on the field of intrusion detection have already been developed and made 
available to the security research community. Recent surveys include references to latest 
developments around neural networks (Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017) 
and extend the scope by including other aspects of security, like vulnerability assessments (Debar, 
Dacier, & Wespi, 2000). A recent taxonomy (Axelsson, 2000) focused on the actual systems used for 
intrusion detection, rather than their underlying techniques, while another (Liao, Lin, Lin, & Tung, 
2013) took a comprehensive approach to review and classify modern intrusion detection systems. 

The aforementioned reviews combine supervised and unsupervised techniques, misuse detection and 
anomaly detection approaches. Moreover, while several surveys focused on anomaly detection 
techniques for IDS already exist (Gyanchandani, Rana, & Yadav, 2012) (Garcia-Teodoro, Diaz-
Verdejo, Maciá-Fernández, & Vázquez, 2009), they include both misuse detection (supervised) and 
anomaly detection (unsupervised) algorithms. 

However, unsupervised techniques based on anomaly detection can only be assessed and compared 
when isolated from other available paradigms. Benchmarking cannot be accurate if some techniques 
make use of labeled data and others don't. Also, the ability to detect unknown attacks doesn't apply 
to misuse detection.  

On the other hand, even though hybrid systems represent a promising path in intrusion detection, 
current implementations weaken the agnostic nature of anomaly detection by incorporating pre-
existing patterns of well-known attacks. While the resulting performance is competitive, in most 
cases that performance is measured against known attacks, hence not measuring the real accuracy 
against any type of attack. 



These arguments have motivated this systematic review, which aims at: collecting research done 
with most relevant methods that fall into this category; assess the strengths, advantages and 
constraints of each of those methods; identify most promising areas of research to drive future 
efforts. 

2.2. Review method 
2.2.1. Planning the review 

The protocol used for this systematic review builds upon the following components: a set of research 
questions, sources of information, inclusion and exclusion criteria, and guidelines used to summarize 
results and focus the discussion and conclusions. 

2.2.2. Research questions 

The goal of this review was to collect, assess, classify and discuss available research on unsupervised 
techniques based on anomaly detection for intrusion detection.  

To plan the review, a list of research questions was identified. They are shown in Table 1. 

 

Research question Motivation 

(1) What is the current status of unsupervised methods based on 
anomaly detection in the IDS domain? 

It helps in understanding what methods 
have been researched and are available 
in the target domain. 

For this purpose, most popular 
techniques and algorithms are 
referenced and compared. Studies 
which compare and benchmark related 
methods are also included. 

(1.1) What algorithms and implementation approaches are used? 

(1.2) What detection and false positive rates do these methods 
achieve? 

(1.3) How applicable these methods would be to a real-life 
environment? 

(2) What criteria and processes are followed for data selection, 
feature extraction, and performance evaluation? 

It helps in understanding whether 
quality data is available to enable the 
development of effective methods, and 
whether obtained results are 
comparable. 

Multiple feature extraction strategies 
and their influence on performance are 
reviewed. 

Common criteria applied to measure 
performance of unsupervised methods 
for IDS are identified and assessed. 

(2.1) What datasets are leveraged to train, test, optimize and 
benchmark algorithms? 

(2.2) What feature extraction techniques lead to better results, 
and what features are typically extracted?  

(2.3) How is performance measured, and what metrics are used 
for that purpose? 

(3) Key sub areas It helps in understanding what methods 
should be used under different 
scenarios. 

(3.1) What are the main advantages and drawbacks of each 
method? 



(3.2) Which techniques are more likely to detect complex attacks 
which differ significantly from well-known attacks? 

Pros and cons of each technique are 
assessed. Techniques that are more 
resilient to advanced attackers are 
identified.  

Lastly, potential for generalization is 
evaluated.   

(3.3) Which techniques would remain accurate when applied to 
other intrusion datasets, and can therefore generalize well? 

Table 1. Research questions. 

 

2.2.3. Information sources 

For extensive coverage of the available literature in this research field, databases and information 
resources were researched. To the best of my knowledge, these resources are relevant for the target 
domain. 

2.2.3.1. Research databases 

Table 2 enumerates selected research databases. 

Database name URL 

archiv.org - Cornell University Library http://arxiv.org/ 

IEEE Xplore Digital Library http://ieeexplore.ieee.org/ 

ResearchGate https://www.researchgate.net/ 

SemanticScholar https://www.semanticscholar.org/ 

ScienceDirect http://www.sciencedirect.com/ 

CiteSeerX - The Pennsylvania State University http://citeseerx.ist.psu.edu/index 

SpringerLink https://link.springer.com/ 

ACM Digital Library - Association for Computing Machinery http://dl.acm.org/ 

Table 2. Research databases. 

 

2.2.3.2. Additional sources 

Table 3 enumerates selected additional sources. 

Database name URL 

Google Patents https://www.google.es/patents/ 

The Definitive Security Data Science 
and Machine Learning Guide 

http://www.covert.io/the-definitive-security-datascience-and-
machinelearning-guide/ 

Packet Storm https://packetstormsecurity.com/ 

Black Hat https://www.blackhat.com/html/archives.html 

Google Scholar https://scholar.google.com/ 

Table 3. Additional sources. 



 

2.2.4. Search criteria 

Keywords such “anomaly detection”, "intrusion detection" and "security" or "network security" were 
included in most abstract-related searches. They returned a significant number of results with 
varying levels of relevance.  

Table 4 enumerates the search strings for selected sources.  

Search no. Source Search string # 

1 archiv.org Subject: Computer science 

Abstract: anomaly detection intrusion detection 

76 

2 IEEE Xplore 
Digital Library 

(("Abstract":"anomaly detection") AND 
"Abstract":"intrusion detection") 

502 

3 ResearchGate Publications: anomaly detection intrusion security 1.000+ 

4 SemanticScholar "anomaly detection" intrusion security 10.757 

5 ScienceDirect pub-date > 1994 and TITLE-ABSTR-KEY("anomaly 
detection") and TITLE-ABSTR-KEY("intrusion 
detection")[All Sources(Computer Science)] 

126 

6 CiteSeerX abstract:("anomaly detection" "intrusion detection" 
"network security") AND year:[1995 TO 2017] 

600.997 

7 SpringerLink anomaly detection intrusion security 4.706 

8 ACM Digital 
Library   

anomaly detection intrusion security 52.609 

9 Google Patents "anomaly detection", "intrusion detection", "security" 4.296 

10 The Definitive 
Security Data 
Science and 
Machine Learning 
Guide 

Machine Learning and Security Papers 

Deep Learning and Security Papers 

Abstract: "anomaly detection" 

 

11 Packet Storm Files: anomaly detection pdf 19 

12 Black Hat "anomaly detection", "deep learning" 7 

13 Google Scholar "anomaly detection" "intrusion detection" security 18.400 

Table 4. Search strings. 

 

 

2.2.5. Inclusion and exclusion criteria 

The first filter applied to papers returned by each source was based on title. Intrusion detection 
papers not leveraging anomaly detection techniques, or vice versa, were tagged as irrelevant. Next, 
same criteria was applied to abstract. Given that an abstract describes in greater detail the actual 



research work performed, it allowed to further distinguish whether papers were or not under scope. 
Several research papers included "anomaly detection" or similar terms in their title but their abstract 
included references to supervised learning techniques, hence rendering them not relevant. 

Next, full text was reviewed. Again, implementations combining anomaly detection with supervised 
learning or leveraging labeled security data were discarded. Exceptions were applied to anomaly 
detection techniques used in a hybrid context that were worth mentioning for some reason. 

Additional relevant papers were found manually, using references of other papers, or using more ad 
hoc keyword searches. Particularly: 

• Papers describing a general-purpose technique that is then used for intrusion detection in 
other paper. They provide context and insights to understand how other researchers applied 
that technique to the domain under scope. 

• Papers related to feature extraction in an intrusion detection context. They are helpful to 
understand how relevant this process is to achieve acceptable performance levels. 

• Papers documenting network, system or application intrusions datasets. They are useful to 
understand what sources researchers leverage in the IDS field. 

• Papers related to topics included in the discussion. While these are not part of the core 
review, they provide direction and guidance on the most promising areas that must be 
considered in future research. 

This review is based on both qualitative and quantitative studies, published from 1997 to date. Prior 
security research is based on data that might not be representative of current network and systems 
configurations, or account for the complexity of services and applications commonly found in 
computer networks today. 

All included studies were written in English language. 

Figure 1 depicts the exclusion process. Search results pointed to 5.120 total papers, downsized to 
1.070 based on title, and 576 based on abstracts. These 576 papers were analyzed in detail to select a 
list of 240 papers.  

 

Figure 1. Article assessment procedure. 

 

2.2.6. Quality assessment 

The studies have been assessed for internal and external validity of results, as well as bias. 

Exclusion based on 
Title

Exclusion based on 
Abstracts

Exclusion based on 
Full Texts 

#5.120

Data sourceData sourceData source

#1.070 #576 #240



2.2.7. Data extraction 

The goal of the data extraction process was to answer questions in Table 1. Although it was not 
possible to answer all questions in all papers, the outcome, quality and relevance of the review was 
not negatively impacted. Each paper became highly relevant to answer certain questions, and so it 
made a relevant contribution to the overall review.  

The procedure applied can be described as follows: one author reviewed all the studies and gathered 
data from them. For data extraction consistency, a second researcher took a random sample of papers 
and extracted data from them. Results were then checked for discrepancies. In those cases, consensus 
conversations among authors were used to resolve them. 

2.3. Results 

2.3.1. Proposed taxonomy 

The techniques were classified into their underlying algorithms, in order to group together those that 
share the same foundational approach. Related techniques were compared as to assess what were 
their strengths and weaknesses, and whether results shared patterns or not (which would suggest that 
the algorithm was not key to obtain the results). 

The resulting classification is shown in Figure 2. 

 

Figure 2. Proposed taxonomy. 
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2.3.2. Datasets, feature selection and performance evaluation 

2.3.2.1. Datasets 

From a general perspective, intrusion detection data is commonly collected from network behavior, 
user commands, system calls, log files, system error logs, or hardware consumption (Wu & Banzhaf, 
2010). In practice, however, most intrusion detection implementations measured performance on 
KDDCup99 or NSL-KDD datasets (Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017). 
These datasets are considered to be very large (Wu & Banzhaf, 2010), so 10% of it is frequently 
used. However, using sampled datasets conflicts with the big data nature of intrusion detection data.  

On the other hand, artificially generated datasets might provide biased rates. Particularly, the false 
alarm rate could significantly differ depending on whether real or synthetic data is used (McHugh, 
2000), and data structure, which varies for real and synthetic intrusion data, influences detection 
performance. An anomaly-detection algorithm was applied to 165 datasets with different structure 
which were calibrated and to which anomalies were injected. The conclusion was that performance 
differed as much as an order of magnitude (Maxion & Tan, 2000). 

Also, several features in synthetic data (IP, time to live, TCP options and window size) have fixed 
and tight range, but a large range in real data (Mahoney & Chan, 2003b). The synthetic data doesn't 
include rare network packets, like those with bad checksums, garbage information in TCP fields that 
are not used, or IP fragmentation. Synthetic command-line data doesn't include malformed calls to 
applications, or wrong arguments. 

Time range is also a key feature in intrusion data. Small ranges can lead to inaccurate behavior 
modeling, which can impact performance. Even with a high volume of traffic in data, the timespan 
can be a few minutes (Balthrop, Forrest, & Glickman, 2002), which is insufficient to characterize 
legitimate behavior. 

Removing existing anomalies in training data when characterizing normal behavior also remains a 
challenge. With regards to this issue, a robust approach to removing anomalies from training data 
when building SOMs has been proposed (Rhodes, Mahaffey, & Cannady, 2000), in which several 
training sets train a map on each set, and then each set is filtered through other maps. This technique 
has not been leveraged by other researchers to account for the issue. 

Several attempts have been made to create synthetic anomalous data to train classifiers in a pseudo-
supervised fashion. In this approach, boundaries drawn to separate normal and anomalous data lead 
to more accurate detection of unknown attacks. Particularly, empirical studies (Fan, Miller, Stolfo, 
Lee, & Chan, 2004) showed that algorithms leveraging synthetic attacks detected more than 77% of 
the attacks not present in the training phase, and exhibited an accuracy beyond 50% per intrusion 
category. 

Lastly, it’s remarkable that only recent studies used real network data.  

2.3.2.2. Feature selection 

The method used to select relevant features can heavily influence the performance of an IDS 
leveraging artificial intelligence (Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017).  

This is especially true for highly dimensional datasets, which are common in the intrusion detection 
space. The curse of dimensionality problem (Erfani, Rajasegarar, Karunasekera, & Leckie, 2016), 



that arises when handling a high number of features, can pose a challenge to model legitimate 
behavior. Moreover, techniques based on clustering methods are more likely to be impacted by this 
issue, since they rely on identifying clusters of related feature values, which will not likely occur in 
multidimensional spaces. 

2.3.2.3. Performance metrics and evaluation 

Performance is typically measured by calculating detection accuracy and the ratio of false positives 
(Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017). 

The effectiveness of a technique is measured by the confusion matrix (Wu & Banzhaf, 2010), which 
contains figures for the following indicators: 

• True Negative: normal traffic tagged as normal. 
• True Positive: attack traffic tagged as attack. 
• False Negative: attack traffic tagged as normal. 
• False Positive: normal traffic tagged as attack. 

The following metrics are built on top of the previous indicators to provide more accurate 
performance measures: 

• True Negative Rate (TNR) 
• True Positive Rate (TPR) 
• False Negative Rate (FNR) 
• False Positive Rate (FPR) 
• Accuracy 
• Precision 

ROC (Receiver Operating Characteristic) curve can further assess IDS performance and compare the 
results obtained by different settings or systems (Wu & Banzhaf, 2010). It plots TPS on y axis and 
FPR on x axis, at single or multiple parameter settings. However, displaying true positives versus 
false positives doesn't allow researchers to understand the reasons for the obtained performance 
(McHugh, 2000). 

2.3.3. Detection techniques 

2.3.3.1. Neural networks 

Neural networks are interconnected group of nodes which map inputs (observations) to an output, 
which is typically a class label in a predictive modeling exercise. 

Neural networks are becoming popular in IDS research (Choksi, Shah, & Kale, 2014).  

It has been demonstrated that they can operate on raw signals (data), hence automating feature 
extraction and making this process dynamic (Saxe & Berlin, 2017), which tackles the need in 
intrusion detection to fine tune features as attacks evolve. In fact, it was able to outperform manual 
feature extraction on the benchmark tests, leading to a 5%-10% increase in detection rate, keeping a 
low false alarm rate of 0.1%.  

2.3.3.1.1. Clustering 

Clustering techniques are unsupervised methods that discover groups of related data observations. 
They are typically used for intrusion detection by attempting to form two clusters of normal and 



malicious data, or by forming multiple clusters of normal data and spotting data instances not fitting 
into any cluster, which are typically malicious. 

Most popular clustering methods based on neural networks are self-organizing maps and Adaptive 
Resonance Theory. Generally speaking, SOM shows less overhead and ability to handle coordinated 
intrusion (Ahmad, Abdullah, & Alghamdi, 2010). ART has demonstrated to deliver a higher 
detection rate, low false negative rate, higher maturity, and more cost effectiveness (Ahmad, 
Abdullah, & Alghamdi, 2010).  

2.3.3.1.1.1. Self-organizing maps 

SOM implement clustering through a neural network. They can be used to spot unknown attacks. 
There is extensive research in the intrusion detection field that leverages this technique under several 
varying settings (Kumar & Radhakrishnan, 2014) (Sarasamma, Zhu, & Huff, 2005) (Rhodes, 
Mahaffey, & Cannady, 2000) (Ramadas, Ostermann, & Tjaden, 2003) (Amini, Jalili, & Shahriari, 
2006).  

One key advantage of SOMs is that they can easily filter out existing intrusions in training data used 
to profile normal behavior. With large datasets and the strength of the neighborhood function, a 
given SOM limits how much diversity can exist. As intrusions represent a small fraction of the 
training set, the map will be dominated by legitimate activity. In fact, an intrusion-detection system 
grounded on SOM competitive network achieved better detection and false positive rates than other 
approaches based on neural network (Kumar & Radhakrishnan, 2014). However, they can exhibit a 
low detection rate for certain attacks, like U2R and R2L (Choksi, Shah, & Kale, 2014). 

Hierarchical or multi-layer SOMs are common for intrusion detection. In this setting, each layer uses 
only a few features from the set of available features. They can outperform single-layer SOMs in 
several attack types, and also increase overall detection rate (Sarasamma, Zhu, & Huff, 2005). In 
another research work (Kayacik, Zincir-Heywood, & Heywood, 2007), two-layer SOM obtained a 
1.38% false positives rate and a 90.4% detection rate with all the features (41) available in the KDD 
dataset. 

Moreover, when assigning a different network protocol to each layer, the ratio by which legitimate 
and malicious traffic differed was greater than an order of magnitude (Rhodes, Mahaffey, & 
Cannady, 2000). A similar setting (Ramadas, Ostermann, & Tjaden, 2003) assigning network 
services (HTTP, DNS and SMTP) to each layer obtained accurate results in three attack scenarios: 
buffer overflow in Sendmail, encapsulated HTTP traffic, and a buffer overflow in BIND. Extracted 
feature values for each connection were the following: interactivity (volume of requests per second), 
average size of questions (in bytes), average size of responses, idle question-answer time, idle time, 
and volume of connections. 

Hyperellipsoidal SOM with Gaussian radial basis function as transfer function and winner-take-all 
approach (Sarasamma & Zhu, 2006) achieved detection rates from 91.55% to 91.71%, with false 
positive rate between 2.68% and 4.84%, when tested with KDD Cup 99. Parameters for the transfer 
function were not precalculated using the training dataset, but an accretion approach updates them as 
each data observation is processed. This introduces a slight overhead in execution time which is 
compensated by detection performance levels.  

Another SOM implementation based on anomaly detection (Depren, Topallar, Anarim, & Ciliz, 
2005) tested against KDD Cup 99 obtained a detection rate of 98.96% and a FPR of 1.01%. It 



focused on the following features: service, duration, protocol, status flag, bytes sent and received. 
Three different SOMs were trained for each of the protocols (TCP, UDP, ICMP).  

SOM has also been implemented in combination with other techniques, particularly hypothesis 
testing (Hoglund, Hatonen, & Sorvari, 2000) and Decision-Making systems (Miller & Inoue, 2003). 
In the first case, the Anomaly P-value of a data instance was the number of BMU (Best Mapping 
Unit) distances calculated in the training phase that were greater than the BMU distance for that data 
instance, divided by the total amount of training data instances. When that p-value exceeded a 
threshold, the data instance was flagged as attack. In the second case, the Decision-Making system 
made the final decision based on the reputation level of each SOM, based on past performance and 
implemented through Reinforcement Learning. 

They have also been used to build a visualization tool (Girardin, 1999) for security analysts to 
discover network traffic anomalies, including intrusions (IP spoofing, FTP DoS, network scan and 
network hoping attacks), through topological classification of network events. 

Lastly, SOMs can be used to preprocess data when building profiles of normal network packets in a 
hybrid system (Shon & Moon, 2007), leveraging GA for feature selection and Enhanced SVM for 
classification. Highly dimensional datasets are translated into bidimensional spaces, making it easier 
for Enhanced SVM to identify anomalous instances. This hybrid method outperformed signature-
based systems Snort and Bro, achieving a detection rate of 99,99% and a FPR of 0,01% for one of 
the datasets used for testing. 

2.3.3.1.1.2. ART 

Adaptive Resonance Theory (ART) is similar to SOM, as it implements clustering through a neural 
network. 

In Adaptive Resonance Theory technique, an input vector is transferred to its best matching neuron, 
which outputs a negative signal to each of the other neurons to inhibit their output (Carpenter & 
Grossberg, 1987a). Each neuron then represents a category or cluster to which input vectors are 
classified. Several variants were created, including one to handle continuous inputs (Carpenter & 
Grossberg, 1987b), another to support fuzzy logic (Carpenter, Grossberg, & Rosen, 1991). 

They have also been applied to build an IDS (Chauhan, Pratap, & Dixit, 2015) (Amini, Jalili, & 
Shahriari, 2006). Compared to SOMs, with the same feature set (27 features generated from IP, TCP, 
UDP and ICMP headers), ART obtained a 97% accuracy, while SOM was slightly less accurate 
(95%) (Amini, Jalili, & Shahriari, 2006). When compared with FuzzyART (Durgin & Zhang, 2005), 
it was noted that the sensitivity of FuzzyART was much higher than that of SOM.  

2.3.3.1.2. Autoencoder or replicator neural networks 

An autoencoder is neural network with multiple layers which compresses and decompresses data in 
order to learn frequent patterns. As a result, legitimate activity is properly recognized but outliers 
(infrequent data) is not (Veeramachaneni, Arnaldo, Korrapati, Bassias, & Li, 2016). For example, a 
novel method for anomaly detection with deep autoencoders (Lyudchik, 2016) was used to recognize 
outliers (instances of digit '7') in the MNIST dataset of handwritten digits. 39 different models were 
tested. The model having the best performance, that is, having a high reconstruction error for an 
outlier and a low error for non-outliers, was the one with three hidden layers and six latent features. 

Autoencoders have been successfully leveraged for anomaly detection in previous research (Zhou & 
Paffenroth, 2017) (Fan, Wen, Li, Qiu, Levine, & Xiao, 2020) (Borghesi, Bartolini, Lombardi, 



Milano, & Benini, 2019) (Chen, Sathe, Aggarwal, & Turaga, 2017). They can even detect anomalies 
which linear techniques like PCA fail to spot (Sakurada & Yairi, 2014). For example, Kitsune 
(Mirsky, Doitshman, Elovici, & Shabtai, 2018) is an online IDS based on an ensemble of 
autoencoders which achieved a FPR of 0.1% with an average recall of 36,53%. The dataset used for 
testing was generated by launching attacks against a video surveillance network. 

Autoencoders can also be applied to feature selection processes. The obtained feature set is supplied 
as input to a classifier. Using a self-taught learning technique (Javaid, Niyaz, Sun, & Alam, 2016) 
led to 88.39% accuracy, 85.44% precision, 95.95% recall, and 90.4% F-measure against the NSL-
KDD dataset. A similar technique (Yu, Long & Cai, 2017) implementing stacked dilated 
convolutional autoencoders for pre-training stage, and a softmax classifier for fine-tuning led to 
90.65% precision, 88.80% recall, and 88.64% F-measure. In similar setting (Yan & Han, 2018) with 
stacked sparse autoencoders and SVM, authors reported 99.35% accuracy, 99.01% detection rate and 
0.13% FPR. 

Another research (Ludwig, 2017) combined unsupervised and supervised settings under an ensemble 
of the following algorithms: deep belief neural network, autoencoder, deep neural network, and 
extreme learning machine. It achieved 93% precision, 93% recall and 92% F-score against the NSL-
KDD dataset. A similar technique (Yousefi-Azar, Varadharajan, Hamey, & Tupakula, 2017), tested 
against KDD dataset, achieved 83.84% accuracy. The Taguchi method has also been integrated to 
stacked sparse autoencoders working as feature extractors (Karim, Güzel, Tolun, Kaya, & Çelebi, 
2018). Tested against the UNSW-NB15 dataset, it achieved 99.7% precision and 99.7% accuracy. 

Non-symmetric deep autoencoders have been leveraged for intrusion detection in combination with 
Random Forest. The autoencoder helped reduce the dimensionality of inputs without impacting 
detection performance (Shone, Ngoc, Phai, & Shi, 2018).  Obtained results led to 97.8% accuracy, 
99.99% precision, 97.85% recall, 98.15% F-score and 2.15% False Alarm Rate. 

Autoencoders (Alam et al, 2019), in this case implemented using memristors, were tested against the 
NSL-KDD dataset, leading to an accuracy of 92.91%. Similar research (Khan, Gumaei, Derhab, & 
Hussain, 2019), implementing a novel deep learning model with two stages, obtained 89.13% 
accuracy. Yet another research using autoencoders (Choi, Kim, Lee, & Kim, 2019) achieved 91.70% 
accuracy. 

Lastly, autoencoders’ reconstruction error has been leveraged for intrusion detection (Sun, Wang, 
Xiong, & Shao, 2018 (Meidan, Bohadana, Mathov, Mirsky, Shabtai, Breitenbacher, & Elovici, 
2018). Tested against KDD Cup 99 (Sun, Wang, Xiong, & Shao, 2018, it achieved an F-score of 
81.20%. When applied to botnet detection in IoT devices (Meidan, Bohadana, Mathov, Mirsky, 
Shabtai, Breitenbacher, & Elovici, 2018), it achieved a TPR of 100% and a FPR of 0.007±0.01. 

2.3.3.1.3. Other neural network approaches 

Evolutionary neural network (ENN) (Han & Cho, 2006) produced 0.0011% false positive rate at 
100% detection rate when tested system-call sequences in the BSM audit data of the IDEVAL 
dataset. ENNs have the advantage that both the weights and the network topology are learnt 
automatically, with no human intervention.  

Multilayered Feed Forward (MLFF) neural network (Tan, 1995) successfully identified abnormal 
commands, connection times, connections to hosts, services and programs, when trained with a set of 
UNIX users' commands, designed to capture their behavior. In a similar setting (Ryan, Lin, & 



Miikkulainen, 1998), a detection rate of 96% with a FPR of 7% was obtained. However, anomalous 
behavior was generated randomly, and so might not be representative of a real, more subtle, change 
in behavior to perform malicious actions. 

Recurrent Neural Network (RNN) were used to learn sequences of legitimate user actions, from 
login to logout, while excluding anomalies with a rule-based system (Debar, Becker, & Siboni, 
1992). It then predicted most probable next commands, allowing to recognize captured behavior 
through successful predictions, and anomalous behavior otherwise.  

Lastly, a semisupervised approach (Ghosh, Wanken, & Charron, 1998) trained a neural network with 
legitimate, random, and well-known malicious patterns for the lpr UNIX command. Highest 
detection rates were achieved with random inputs, which suggest that the use of this kind of inputs 
can potentially help in detecting unknown attacks. 

2.3.3.2. Fuzzy logic 

In this variant of traditional logic, the truth values of features are real numbers, instead of binary 
values. It’s applied to use cases where there is vagueness and uncertainty, as it’s the case for 
intrusion detection. 

When used in the form of fuzzy association rules mined during the training phase with normal 
network traffic (Bridges & Vaughn, 2000), it was able to recognize IP spoofing and port scanning 
attacks. These rules are then compared with those obtained when mining test data that contains 
anomalies. The similarity between both sets of rules quantifies the anomaly score. In this setting, 
extracted features were the amount of SYN, FIN, RST flags in TCP header, and the number of 
distinct destination ports during last 2 seconds. 

In a similar setting (Linda, Manic, Vollmer, & Wright, 2011), fuzzy rules were extracted from a 
previous clustering exercise that identified clusters of normal network traffic (learning directly from 
the stream of network packets). Fuzzy rules extraction was done through a fuzzy membership 
function (nonsymmetrical Gaussian) with different standard deviations for right and left sides. 
Classification was made based on maximum t-conorm to rules output, which is related to the degree 
of membership to a normal behavior cluster. Tests were performed against a dataset of 200.000 
packets containing anomalous network activity, achieving 99.36% correct classification rate with 
0.0% FPR and 0.9% FNR. 

2.3.3.3. Genetic algorithms 

This type of algorithm is a metaheuristic that resembles a natural selection process. They are used to 
discover high-quality solutions in search problems by leveraging operators such as mutation, 
crossover and selection. 

When combined with an unsupervised clustering approach (Aissa & Guerroumi, 2015), a GA 
achieved detection rates from 75% to 98%, and FPR from 1.3% to 0.12% against different subsets of 
KDD99 dataset. This technique created a cluster of rejected instances, including those not meeting 
the confidence interval set for the fitness function. This approach, called CG-AD, turned out to be 
more efficient than K-means. 

In another setting (Shon, Kim, Lee, & Moon, 2005), a GA was used to perform optimal feature 
selection from 24 attributes representing TCP and IP header fields. The fitness function leveraged 
anomaly and communication scores defined in MIT Lincoln Lab datasets (Shon, Kim, Lee, & Moon, 



2005). The feature sets obtained in the final generations (91-100, 15 out of 24 features selected) led 
to best detection rate (97,56%) and the lowest FPR (0%) when feeding an SVM-based IDS. 

2.3.3.4. Artificial Immune Systems 

2.3.3.4.1. Introduction 

Artificial Immune Systems (AIS) abstract human immune system and apply this abstraction to 
solving problems with computer systems. AIS design is suitable for intrusion detection due to these 
features (Kim, Bentley, Aickelin, Greensmith, Tedesco, & Twycross, 2007): distributed, disposable 
and multi-layered, as well as diverse, all of which increases robustness; self-organized, which 
provides adaptability; lightweight, which increases efficiency. 

The first implementation of an AIS-based intrusion detection system (Kephart, 1994) used six decoy 
programs to entice the potential virus to infect them. If that occurred, an algorithmic analysis of the 
infected decoy extracted relevant signatures by executing it with a debugger. These signatures were 
tested against a set of legitimate programs to avoid false positives. If tests were passed, the newly 
created signatures were added to the database of well-known viruses. 

On the other hand, a conceptual AIS-based multi-agent system (Dasgupta, 1999) made use of agents 
with different monitoring levels (user, system, process, packet) and Action/Decision agents to take 
action when an anomaly was detected, based on previously learnt normal behavior. While useful as a 
general framework, it doesn't provide any implementation insights. Another AIS-based high-level 
IDS (de Paula, de Castro, & de Geus, 2004) proposed several detection mechanisms resembling 
Human Immune System (HIS): evidence-based detector (policy violation), behavioral-based 
detector, signature extractor and knowledge base detector (misuse detection).  

2.3.3.4.2. Negative selection 

In negative selection (Forrest, Perelson, Allen, & Cherukuri, 1994), detectors are set up for a set of 
randomly generated non-self strings, representing patterns. If current behavior of one of the 
monitored entities matches one of those patterns, then that behavior is flagged as an anomaly. One of 
the most appealing features of negative selection, from an anomaly detection standpoint, is that no 
prior knowledge of intrusions is required, and so unknown attacks can be spotted (D’haeseleer, 
1996). However, the following factors influence performance: number of detectors, non-self space 
covered by each detector, and storage needed for the detector. Also, holes (non-self space that can’t 
be matched by any detector), constitute the biggest risk of this approach for intrusion detection.  

An IDS based on Negative Selection (Hofmeyr, 1999) showed high performance when tested against 
probing a port scanning exercises, and random connections. It generated self and non-self strings 
from TCP data paths (source IP, destination IP, and service). It implemented several features to make 
it more suitable for intrusion detection: more than a single representation, which helps to avoid 
holes; reducing false alarms with sensitivity levels and activation thresholds; co-stimulation by a 
human, which allows to avoid autoreactive detectors; generation of detections in a distributed 
fashion, which allows to adapt to self sets that change; detectors of dynamic nature, which helps to 
increment detection rates; and memory, so that detection based on signatures is also available. 

When tested with 28 fields of TCP headers and 16 fields of UDP/ICMP headers, high detection rates 
and low error rates were achieved (Kim, Bentley, Aickelin, Greensmith, Tedesco, & Twycross, 
2007). However, these results might be influenced by the use of simulated (and not real) intrusions. 



Negative Selection poses two additional issues: scalability and coverage. To obtain a detection rate 
of 80%, more than 643 million of detectors are required (Kim & Bentley, 2001a), and 1.000 
detectors are generated in 20 hours (these figures might be now obsolete, considering that more 
computational power is available nowadays).  

Dynamic Clonal Selection was added to the Negative Selection approach (Kim & Bentley, 2002) to 
mitigate the scalability issue, by capturing normal behavior using just a subset of self-antigens. 
Clonal Selection also increased detection rates of well-known attacks when used in a supervised 
approach (Kim & Bentley, 1999). In this setting, the primary IDS is helped by a secondary IDS that 
clones best performing detector sets, which makes it more specialized on most probable non-self 
antigens. The drawback of this approach is that it reduces the chance to detect novel attacks. Lastly, 
in another Clonal Selection implementation (Kim & Bentley, 2001b), detectors evolved towards the 
non-self patterns hidden in the collected non-self data, which essentially transforms the anomaly 
detection approach into a misuse detector. 

As for coverage, the permutation mask technique (Hofmeyr & Forrest, 1999) can significantly 
reduce holes. It consists of adding detectors with multiple representations (through permutation) but 
identical non-self space. The union of coverages of all detectors would likely reduce the resulting 
number of holes.  

Also, a Negative Selection variant for continuous data (Randomized Real-Valued Negative 
Selection) (Gonzalez, Dasgupta, & Niño, 2003) attempted to maximize coverage. However, when 
benchmarked (Stibor, Timmis, & Eckert, 2005) against three other algorithms (Real-Valued Positive 
Selection, OneClassSVM, and Parzen-Window) with KDD Cup 99 data, it was discovered that it was 
not appropriate for high-dimensional datasets as those found in the intrusion detection field. In 
another setting (González & Dasgupta, 2003), abnormal samples representing the non-self space 
were produced, while normal samples defined the self space. Both sets of samples were supplied as 
input to train a MLP neural network classifier. Tested with MIT-DARPA 98 and MIT-DARPA 99 
datasets and compared with a SOM-based implementation, this method showed equivalent detection 
rate but with a high FPR. Lastly, the effectiveness of this technique has been questioned (Stibor, 
Mohr, Timmis, & Eckert, 2005) in unsupervised settings, as its performance heavily depends on the 
self-radius parameter, which can only be accurately calculated when instances from the anomalous 
class are available in the training dataset. 

When combined with fuzzy rules (Gómez, González, & Dasgupta, 2003), the results obtained were a 
98,22% detection rate with a 1.9% FPR against KDD Cup 99 dataset, and a 94,63% detection rate for 
the DARPA 99 dataset, outperforming two other similar algorithms: Evolving Rule Detectors and 
Parallel Hill Climbing of Fuzzy Rules Detectors. 

Lastly, when combining Real-Valued Negative Selection with a MLP (Gonzalez & Dasgupta, 2002), 
results were comparable to those obtained with a SOM. Moreover, a higher detection rate could be 
achieved if a higher false positive rate was allowed. 

2.3.3.4.3. Danger theory 

Danger Theory is an evolution of the Negative Selection algorithm in which danger signals (unusual 
death of self-cells in the HIS context) are the triggers for immune response. The concept of danger 
signals is subject to interpretation when applied to network intrusion.  



An implementation combining elements of Danger Theory as artificial tissue, dentritic cells 
algorithm and T-cell algorithm was able to detect malicious code execution (Kim, Greensmith, 
Twycross, & Aickelin, 2010). This system required PAMPS (Pathogen Associated Molecular 
Patterns), that is, known security policy violations from systrace program. This requirement suggests 
that this technique is highly dependent upon existing knowledge about intrusion and hence couldn't 
be classified as unsupervised. Another setting (Greensmith, Twycross, & Aickelin, 2006) leveraging 
Dentritic Cells successfully detected ICMP scans through the high concentration of PAMPS 
(destination unreachable errors) and danger signals. 

An implementation based on lymphotic laws (Hashim, Munasinghe, & Jamalipour, 2010) effectively 
detected DoS, DDoS and worm attacks. Detection is based on three consecutive danger signals: 
initiation process, recognition process and co-stimulation process. First signal is triggered when 
network traffic deviating from normal profile is found. Second signal detects malicious anomalies 
present in the deviated traffic through a flow-level spectral analysis. Third signal estimates the 
significance level of the anomaly (to be considered an attack) through the likelihood-ratio of the 
traffic deviation. 

2.3.3.5. Swarm Intelligence 

Swarm Intelligence techniques are inspired by collective behavior observed in decentralized systems 
like those found in social insects or swarms. The aim of these techniques is to implement simple 
solutions for complex problems. 

A clustering algorithm based on ant colonies approach to self-organization (Ramos & Abraham, 
2005) was compared with Decision Trees, SVM and Linear Genetic Programming (LGP) leveraging 
KDD Cup 99 data and obtained notable results. In this approach, a set of agents move around the 
classification habitat using available information about pheromone concentrations. Also, a similar 
approach (Feng, Wu, Wu, Xiong, & Zhou, 2005) (Feng, Zhong, Xiong, Ye, & Wu, 2007) (Feng, 
Zhong, Ye, & Wu, 2006) based on advanced distance-based metrics (different from those used by 
most clustering techniques) claimed to successfully detect unknown intrusions.  

2.3.3.6. Graphs 

Graphs are data structures with finite set of nodes and pairs (edges) of these nodes. Graphs are used 
in multiple domains and use cases and are suitable for intrusion detection given the relational nature 
of their features (Veeramachaneni, Arnaldo, Korrapati, Bassias, & Li, 2016).  

Link prediction is a graph-based approach in which the anomaly score of a link between two nodes 
can be obtained through algorithms like preferential attachment, spreading activation, or generative 
models (Huang & Zeng, 2006). It successfully assigned the highest anomaly score to five 
synthetically generated fake e-mails inserted into the Enron e-mail corpus.  

A graph-based behavior modeling approach for use with system call sequences of a program (Gao, 
Reiter, & Song, 2004) was tested against common UNIX programs like proftpd, wu-ftpd, httpd, and 
httpd with chroot, obtaining promising results. The system built an execution graph that only 
accepted sequences aligned  with the program's control flow graph. This graph contained all possible 
executions, therefore representing legitimate behavior. 

Anomalous Substructure Detection and Anomalous Subgraph Detection (Cook & Holder, 2000) 
techniques were tested against 37 attack types of KDD Cup 99 data (Noble & Cook, 2003). The first 
one examined the entire graph and reported unusual substructures, while the latter partitioned the 



graph into subgraphs and determined how anomalous they were when compared to the rest. They 
both assigned a 'normality score' below a reasonable threshold to most attacks. In both cases, 
snmpgetattack and snmpguess attacks couldn't be detected, which suggests that further testing is 
required. 

2.3.3.7. Sequence learning 

Most sequence learning approaches rely on Markov models or Hidden Markov Models. However, 
other researchers have also been successful in this task by leveraging neural networks, instance-
based learning or even custom algorithms. 

2.3.3.7.1. Markov models 

Markov models have been used to profile legitimate system behavior from training data (Ye, 2000). 
Current system behavior is then analyzed to measure the probability that the model supports 
observed behavior. 

HMMs (Hidden Markov Models), a Markov model variant, has shown high discrimination power for 
system call sequences data and low discrimination power for shell command sequences (Yeung & 
Ding, 2003). This can be due to the fact that temporal relationships are key in the first scenario, but 
harmful in the latter. When tested against user shell activity (UNIX) (Lane & Brodley, 2003), similar 
conclusions were reached. Also, it was discovered that sequence length and number of states heavily 
influenced performance: longer sequences and more states led to better detection rate. However, 
results were not uniform across programs (ps, login, named and sendmail), which suggests that the 
underlying structure of the program must also be considered in the modeling process. The technique 
was further improved (Kruegel, Kirda, Mutz, Robertson, & Vigna, 2005) and obtained satisfactory 
results when tested against three dummy vulnerable programs and three real-world applications 
(apache2, ftpd, imapd).  

HMMs performance has been subject to improvement (Khreich, Granger, Sabourin, & Miri, 2009) 
by using a multi-HMM system in which each model was built with varying number of hidden states. 
The resulting models were combined with the Maximum Realizable ROC (MRROC). When applied 
to synthetic HIDS data, obtained performance was higher than the highest obtained with a single 
HMM or STIDE (sequence matching). 

When combined with a Naïve Bayes Classifier (that can properly handle the skewness in network 
traffic) (Karthick, Hattiwale, & Ravindran, 2012), an HMM with more than five states had 100% 
accuracy classifying all IPs from CAIDA (Hick, Aben, Claffy, & Polterock, 2007) as attack and IPs 
from DARPA (“MIT Lincoln Laboratory: DARPA Intrusion Detection Evaluation”, n.d.) as clean. 

With HsMM (Hidden Semi Markov Models) (Xie & Yu, 2008), the optimal configuration achieved a 
detection rate of 97% with 1,8% FPR when detecting application-level DDoS attacks in HTTP 
session data. HsMM is an extension of HMM with explicit state duration, which makes it suitable to 
model user HTTP sessions. Deviation from the mean entropy of training data measured the 
abnormality of an observed request sequence made by a given user.  

Lastly, combined with the Urn and Ball model (Rabiner, 1989), promising results were obtained in 
detecting whether a TCP session was anomalous or not (Joshi & Phoha, 2005). Urns were 5 features 
(from 41 features) of KDD Cup 99: duration, is_host_login, src_bytes, dst_bytes, and is_guest_login.  



2.3.3.7.2. Other sequence learning approaches 

Recurrent Neural Networks (RNNs) are neural networks which can learn sequences. When applied 
to intrusion detection (Al-Subaie & Zulkernine, 2007), they detected novel attacks and recognized 
new normal activity. They also reduce FPR and FNR, and generalize better than other IDS. 

By combining sequence learning with dimensionality reduction (Oka, Oyama, Abe, & Kato, 2004), a 
72.3% detection rate with a 2.5% FPR was obtained for anomalous sequences of user commands. In 
this approach, a user profiles were built by modeling the sequence' dynamic features, extracting 
principal features of the model, and producing a layered network from them.  

On the other hand, using a novel similarity measure (Lane & Brodley, 1997b) that counted adjacent 
matching tokens (strings), 66.177 tokens from 4 different users were successfully classified: users 
were similar to themselves and dissimilar to the other users. The set of sequences extracted in the 
training phase were compared against those obtained in the detection phase. The similarity measures 
of the set of sequences for a given user were aggregated through a smoothing filter, and the result 
was leveraged to classify the overall stream as normal or unusual.  

Using Instance-based learning (IBL) (Lane & Brodley, 1999) (Lane & Brodley, 1997a), a sequence 
learning approach in which temporal sequences of categorical observations are translated into a 
metric space through a similarity measure, users with a different behavior were clearly distinguished 
from profiled users, at an early stage. Tests were performed with UNIX user command-line data. 
These researchers later assessed the impact of concept drift (that occurs when statistical properties of 
features being modeled change over time) in user behavior modeling (Lane & Brodley, 1998). They 
compared three techniques (DAIP, truncate, U-ins). DAIP matched or outperformed truncate in 52% 
of true accept tests but performed worst on true detect nearly 85% of the time. The disparity was 
greater for U-ins, which was superior to truncate 60% of the time on true accept but worst 90% of 
the time on true detect tests.  

An Extended Finite State Automata (EFSA) that captured normal behavior of hosts and routers in a 
network (Sekar, Gupta, Frullo, Shanbhag, Tiwari, Yang, & Zhou, 2002) was tested against the 
DARPA 99 dataset, detecting all probing and DoS attacks with less than 10 false alarms per day. The 
mapping process modeled how often a transition was taken, and common values of state variables on 
a transition. These statistics were then recalculated in the detection phase. Anomalies were flagged 
when a significant deviation was found.  

Incremental Probabilistic Action Modeling (IPAM) (Davison & Hirsh, 1998) predicted the next 
command in a sequence of UNIX commands entered by a user for which a normal profile was built 
in advance. Compared to C4.5 classifier over 77 users, it outperformed C4.5 sixty times, tied once, 
and lost sixteen times. This algorithm worked under the assumption that recent activity influences 
future activity more than old activity, much in the same way as Markov models do. 

Lastly, Bayesian parameter estimation (Singer, 1999) detected 91% of all the Whisker (web 
vulnerability scanner) scans and previously unseen sequences of web pages requested by users (Cho 
& Cha, 2004). Attacks were detected by comparing real-time web logs with expected frequencies of 
the resulting sequences, with the underlying assumption was that sequences of pages requested by 
users will exhibit patterns.  



2.3.3.8. Time-series analysis 

Time series analysis has been consistently applied to domains other than intrusion detection for 
forecasting purposes. In particular, ARMA and its variants have been the preferred statistical models 
to perform time series analysis. 

GARMA models, which include generalized responses in the exponential family (Poisson counts, 
binary responses), have been successfully used to forecast cyberattacks (Pillai, Palaniappan, 
Abdullah, & Imran, 2015), with acceptable accuracy and sufficient early-warning time to defeat 
these attacks. 

Hierarchical Temporal Memory (HTM) has been used to detect anomalies in traffic received from 
real-time sensors (Ahmad, Lavin, Purdy, & Agha, 2017), outperforming other anomaly detection 
algorithms like CAD OSE, KNN CAD, Relative Entropy, Twitter AdVec, Skyline and Sliding 
Threshold on some but not all of the tests. HTM is based on an online sequence memory algorithm. 
In this approach, the prediction error or anomaly score is the gap between predicted sequence and 
current input.  

2.3.3.9. Reinforcement learning 

In this type of learning, agents operate in an environment and take actions to maximize the 
cumulative reward. This method has also been applied to the intrusion detection field. 

An adaptive neural network (Cerebellar Model Articulation Controller or CMAC) using RL for DoS 
(denial of service) detection (Cannady, 2000) achieved a response error of 1.94-07% for Ping Flood 
attacks and a response error of 8.53-14% for a type of attack for which hadn't been trained (UDP 
Packet Storm). The reinforcement learning component was implemented by providing feedback to 
the neural network from the protected system, from a number of system state-related indicators (CPU 
load, available memory, network load, etc.). 

A log correlation and association rule learning IDS used RL to increase (reward) or decrease 
(penalty) the importance of the rules that correctly pointed to log files containing attack patterns 
(Deokar & Hazarnis, 2012). Performance was not made available. 

Temporal-difference (TD) learning has been applied to sequential anomaly detection and tested 
against system-call sequences to spot multi-stage intrusions like buffer overflows, symlink attacks 
and Trojan programs (Xu, 2010). It outperformed HMM and supervised techniques like SVM and 
Naïve Bayes. This approach was based on a novel Markov reward model in which the learning 
prediction of value functions was equivalent to estimating the anomaly probabilities of the data 
sequences. TD learning algorithm was also tested (Xu, 2006) against KDD99 data and the MIT lpr 
system call data, confirming the suitability of this approach for intrusion detection. 

RL has also been used to minimize the information exchange volumes of IDS agents in a distributed 
architecture, and to improve the detection rates (Xu, Sun, & Huang, 2007). In this approach, 
observed sequences of source IP addresses were only shared with other agents if related to a DDoS 
attack.  

2.3.3.10. Dimensionality reduction 

In Principal Components Analysis (PCA), features are projected to a space with principal 
components. This projection is then reversed to recover the features from those principal components 
(Veeramachaneni, Arnaldo, Korrapati, Bassias, & Li, 2016). If only the first principal components 



(those explaining most variance in data) are used for projection and reconstruction, reconstruction 
error will be low for most observations and high for outliers.  

When tested against system calls in a dataset made available by the University of New Mexico and a 
UNIX command-line dataset produced by AT&T Research Lab (Wang, Guan, & Zhang, 2004), it 
obtained a 100% detection rate with a FPR of 2.75% for system calls, and 100% detection rate with 
0% FPR for UNIX command data. The algorithm measured the distance between the original vector 
and its projection, with a long distance representing unusual user or program behavior. Another 
similar approach (using the distance between major and minor principal components to the mean of 
the sample as anomaly score) (Shyu, Chen, Sarinnapakorn, & Chang, 2003) obtained 98.94% recall 
and a precision of 97.89%, with FPR of 0.92% against KDD Cup 99. 

Abnormal traffic subspace, another PCA-based technique, is characterized by the (n-k) remaining 
Principal Components (PC). In this setting, n is the total number of PCs and the k first Principal 
Components represent the normal traffic subspace. This approach was useful to identify volume-
related anomalies (Huang, Nguyen, Garofalakis, Jordan, Joseph, & Taft, 2006), which constitute a 
subset of the network intrusion categories. 

Lastly, multiscale streaming PCA and hierarchical streaming PCA added real-time anomaly 
detection (Kiran, 2017), a very convenient feature for a network intrusion detection system. 

2.3.3.11. Clustering 

This section includes clustering techniques not based on neural networks. 

A variant of the single-linkage clustering technique (Portnoy, 2000) obtained a maximum detection 
rate of 88% with 8,14% FPR, when tested with KDD Cup 99. The algorithm was trained with normal 
distances and identified clusters of normal and anomalous instances, with no feature selection, 
transformation or extraction process. 

By leveraging the first phase of BIRCH hierarchical clustering algorithm (Burbeck & Nadjm-
Tehrani, 2004), a detection rate of 95% and a FPR of 2.8% were achieved against KDD Cup 99 
dataset. The clusters hierarchy was built through incremental training. The detection process 
consisted of searching from the root the closest cluster feature. The distance from the centroid to the 
new data point was computed, with a high distance revealing an anomaly. 

Frequent baskets concept (Leung & Leckie, 2005) achieved a ROC curve of 0.867, comparable to 
other algorithms like KNN or SVM, when tested against KDD Cup 99. Data instances were 
transformed into sequences of frequent baskets, used to generate the FP-tree with the FP-growth 
algorithm, and clusters were then extracted using the count back method.  

A novel clustering algorithm (Last, Shapira, Elovici, Zaafrany, & Kandel, 2003) compactly 
represented and classified the content of web pages browsed by users in order to identify when a user 
performs abnormal activity. Tested against 1,000 vectors representing normal accesses and 100 
vectors representing abnormal accesses, TPR was 0.7 and FPR was 0.008. 

Transductive Confidence Machines for KNN (TCM-KNN) (Li, Fang, Guo, & Chen, 2007) achieved 
a detection rate of 99.48% with 1,74% FPR against KDD Cup 99 with no feature selection, and 
99,32% and 2,81%, respectively, with a subset of the features. In this approach, p-value associated 
with a strangeness ratio was calculated to identify anomalous observations.  



Lastly, the performance of three additional clustering methods applied to intrusion detection were 
compared (Syarif, Prugel-Bennett, & Wills, 2012): distance-based outlier detection approach led to 
80.15% accuracy, while EM clustering led to 78.06%, and K-Medoids led to 76.71%. 

2.3.3.12. Multivariate outliers detection 

OneClassSVM is a variant of the most recent SVM implementation (Cortes & Vapnik, 1995). It 
discovers a region where most training data is located, and labels those observations as one class. 
Observations outside the region are labeled as another class. 

Tested against 1998 DARPA Intrusion Detection Evaluation Data (Lazarevic, Ertoz, Kumar, Ozgur, 
& Srivastava, 2003), it achieved the best detection rate (84,2%) but also a high FPR (4%), compared 
to Density-Based Local Outliers (LOF), Nearest Neighbors (NN), and Mahalanobis Distance 
Outliers Detection. In this approach, the following types of features were produced from tcpdump 
files: connection-based, content-based, and time-based, most of them being simple counts and sums.  

Tested against KDD Cup 99 dataset (Eskin, Arnold, Prerau, Portnoy, & Stolfo, 2002), it achieved 
98% detection rate with a 10% FPR, and 100% detection rate when evaluated against system-call 
sequences, which suggests that this method might outperform HMM and other sequence learning 
methods. 

Lastly, two variants attempting to make OneClassSVM more robust to outliers (Amer, Goldstein, & 
Abdennadher, 2013) outperformed other standard unsupervised anomaly detection techniques in two 
of four datasets of UCI Machine Learning Repository. Both of them aimed at reducing the weight of 
outliers in computing the decision boundary.  

On the other hand, a kernel-based method that projected raw network traffic feature space into a 
highly dimensional feature space (Ahmed, Coates, & Lakhina, 2007) obtained results comparable to 
those of PCA-based methods. In this approach, the kernel trick (inner product of feature vectors) was 
used to produce a dictionary representing the region of normality through two different thresholds. 

2.3.3.13. Association Rule Learning 

Association rule learning (ARL) finds patterns and relations in data. It's a machine learning 
technique. As opposed to sequence learning, it does not account for the order of items. 

When implemented to isolate rare events in nominal time-series data (Mahoney & Chan, 2003a), it 
achieved a 64% detection rate at a threshold of 100 false positives against the IDEVAL dataset. The 
approach consisted of finding conditional rules to model legitimate patterns in a time series of tuples 
of nominal attributes (packet fields values, elements in an HTTP request or strings in a TCP session). 
An anomaly score was then produced based on the time since the rule was last triggered, the rule's 
support, and the number of allowed values for the attribute.  

When applied to modeling legitimate user command-line calls (Lee, Stolfo, & Mok, 1999), it was 
able to accurately detect anomalies in a subset of DARPA datasets. These anomalies had very low 
similarity scores (outside the range of legitimate behavior), which represented the likelihood that the 
current user behavior is aligned with recorded profile.  

More complex settings (Vaccaro, 1988) combined rule extraction and an evaluation process to model 
normal user/system behavior, given by a set of a attributes. A rule forest was generated with no a 
priori templates. Each rule was assigned a grade, based on its historical accuracy. An anomaly score 
was then calculated in the detection phase for each new transaction. Particularly, a score was 



obtained for each attribute, aggregated to obtain a transaction (set of attributes) score, and further 
aggregated to obtain a thread score (set of transactions for a given user/system). Each individual 
score was based on the number of rules fired and violated, and their grades. 

The Frequent Episodes Rules (FER) (Qin & Hwang, 2004a) was leveraged to enhance Association 
Rule Learning detection rates (Qin & Hwang, 2004b), with tests against NetAttack dataset achieving 
a detection rate of 47% for the following types of attack: DoS, R2L and portscan. This represents an 
average of 51% gain versus association rules. As opposed to association rules, which identifies 
relationships among attributes in a single connection, FER identify relationships among multiple 
connection records in a sequence. The underlying assumption justifying this approach is that 
sequence-related information is relevant to uncover attacks.  

Association Rule Learning has also been leveraged to extract rules from network traffic (Chan, 
Mahoney, & Arshad, 2003), which detected 117 attacks out of 201 in the DARPA 99 dataset (with 
50 to 75 rules and 10 false alarms per day). In this approach, the goal was to identify rules with high 
support along the training phase, and violations of those rules along the detection phase. A novel 
clustering algorithm was also implemented to discover outliers along the training phase, so that the 
data used in this phase could be considered attack-free. A similar approach (Chen, Lu, & Teng, 
1990) extracted rules from user activity, through Time-based Inductive Machine (TIM) algorithm 
(Chen, 1988), which accounts for the sequential order of the events in the antecedent of a rule. 

2.3.3.14. Other statistical modeling methods 

PAYL (Wang & Stolfo, 2004) is a technique that profiles payload byte frequency distribution and 
leverages Mahalanobis distance to measure similarity with expected distribution. Nearly 100% 
accuracy was achieved with 0.1% FPR for http, when tested against the 1999 DARPA IDS and data 
made available by Columbia CS department network. However, PAYL can be defeated with 
polymorphic blending attacks, that successfully evaded byte frequency-based detection systems by 
mimicking the statistical profile of normal behavior (Fogla, Sharif, Perdisci, Kolesnikov, & Lee, 
2006). An enhanced version developed later (Perdisci, Gu, & Lee, 2006) was less vulnerable to these 
attacks. This new version generated descriptions of the payload in multiple feature spaces with 
related features, whose relationships were identified through a clustering algorithm designed for text 
classification (Dhillon, Mallela, & Kumar, 2003). 

A variant of PAYL (Bolzoni, Etalle, & Hartel, 2006) with a two-tier architecture achieved a higher 
detection rate and a lower FPR than PAYL, and PHAD (Mahoney & Chan, 2002) (Mahoney & 
Chan, 2001), another payload-based anomaly detector. The first layer implemented a SOM to pre-
process data, and the second layer implemented PAYL to perform classification. SOM was found to 
be a useful method to pre-classifying packets. The assigned cluster then became an input to PAYL.  

K-means was leveraged to produce clusters of normal and anomalous traffic (Münz, Li, & Carle, 
2007), which led to successful detection of port scans and DoS attacks against both synthetic and real 
data. The algorithm was independently run for each of the services observed in the traffic, assuming 
that different protocols would exhibit different normal behavior profiles. Extracted features included 
number of packets, bytes and source-destination pairs per flow.  

Conditional probabilities were used (Stolfo, Hershkop, Bui, Ferster, & Wang, 2005) to detect 
anomalous file system accesses through the following features: user ID, working directory, 
command-line invoking the process, parent directory, filename, the three previously accessed files, 
and file access frequency. One order consistency check calculated the probability of a feature value, 



and another calculated the probability of a feature value conditioned on another feature. This system 
achieved 95% detection rate and a 2% FPR. 

Histograms have also been leveraged (Kind, Stoecklin, & Dimitropoulos, 2009) to represent flows 
for a set of features (source and target IP and port, TCP flags, protocol, packet size, and duration). 
When recalculated in the detection phase, those exceeding a distance to the clusters found in the 
training phase represented anomalies. When tested against 15 types of attacks of the IDEVAL 
dataset, 13 alarms were raised (86.7% accuracy).  

Another statistical approach (Ye, & Chen, 2001) was based on a statistic called X^2, equivalent to 
Hotelling’s T^2 statistic, but less computationally expensive. A sample of audit data for normal 
events (with 284 event types and a stream of 3019 events) from MIT Lincoln Laboratory was used 
for testing. The detection rate by audit event was 75% and reached 100% for intrusion session 
(password guessing, symlinks attacks, and unauthorized remote access). 71% of the intrusion 
sessions are detected at the first audit event. In a similar approach (Zhang, Li, Manikopoulos, 
Jorgenson, & Ucles, 2001), the resulting statistical model was used as input to a neural network-
based classifier. Yet another equivalent approach (Krügel, Toth, & Kirda, 2002) produced an 
anomaly score from three metrics (probability distribution of request length, character distribution of 
payload data in the request, and likelihood of a given request type). It achieved 100% detection rate 
against DNS and HTTP data with six different attack types. 

Markov models and statistical anomalies were combined (Kruegel & Vigna, 2003) to detect 
malicious HTTP requests, using the following features: length, character distribution, attribute 
presence or absence, attribute order, and structural inference (for which the Markov model was 
used). Three datasets with webserver logs were used for testing. Collectively, the models were able 
to detect all intrusion scenarios (buffer overflow, directory traversal, cross-site scripting, input 
validation and Code Red). 

Another technique successfully detected SYN flood attacks using Latent Dirichlet Allocation 
(Newton, 2012) in TCP/IP header data. The dataset used was made available by the University of 
North Carolina at Chapel Hill (UNC). IP address sessions were translated into documents, with 
words being target IP address/port number combinations. The resulting data was run through LDA to 
create two models in the training and detection phases, which were then compared using variational 
inference (log likelihood of documents in new data). A likelihood below the selected threshold was 
associated with an anomaly. 

Random forests were implemented under an unsupervised setting to build a classifier that was able to 
find service-related patterns and match each data instance with the right service (Zhang & 
Zulkernine, 2006). Data instances for which a class couldn’t be matched were considered anomalies. 
The method was tested against the KDD Cup 99 and achieved a 95% detection rate of with a 1% 
FPR. However, if false alarm rate was adjusted to 0.1%, detection rate dropped to 60%. 

Lastly, entropy measurement has been used for worm detection (Wagner & Plattner, 2005), by 
assuming that worm traffic is more uniform than normal traffic, and target IP addresses seen in flows 
are more random than those in normal traffic. Entropy was obtained through data compression. The 
method was successfully tested against Blaster and Witty worms. Authors warn, though, that this 
method is not suitable for slow worms, since other techniques might provide shorter time to 
detection. 



2.3.4. Comparison of techniques 

2.3.4.1. Ability to generalize 

From the vast array of techniques analyzed in this systematic review, it turns out that testing is 
commonly performed against a single dataset. These datasets belong to one of the following 
categories: network traffic, intrusion data, system calls, user command-line data, or audit events. 
While testing in any research experiment is limited by nature, the fact that most of the research work 
is based on a particular dataset or two datasets of the same category must be accounted for when 
assessing generalizability. If the results obtained with one dataset won’t export to data of different 
nature, then the proposed implementation will be solving the problem partially, as the underlying 
algorithm will not be suitable for intrusion detection in general, but for intrusions given particular 
input information.  

On the other hand, several experiments present performance results on a network protocol or service 
basis (Krügel, Toth, & Kirda, 2002) (Kruegel, Kirda, Mutz, Robertson, & Vigna, 2005), or are 
directly tested on a single service (Cho & Cha, 2004) (Kruegel & Vigna, 2003). This approach also 
represents a strong limitation of the proposed systems, prevent them from achieving comprehensive 
intrusion detection, even if the underlying algorithm is multipurpose and has been successfully 
applied to different use cases. 

Lastly, several experiments showed acceptable results on a given attack type (Huang, Nguyen, 
Garofalakis, Jordan, Joseph, & Taft, 2006) (Greensmith, Twycross, & Aickelin, 2006) (Xu, Sun, & 
Huang, 2007) and not the others present on the datasets used for testing. This is another sign of a 
general lack of generalization capabilities in the current research literature. 

The aforementioned lack of generalization doesn’t seem to be tied, however, to the particular 
algorithm or modeling technique used, but to the conceptual design of the experiment. In other 
words, the underlying techniques in each category might be suitable for a wider range of services, 
protocols, datasets or attack types, but clearly that fact hasn’t been the goal of any of the references 
reviewed. Having said that, the only promising approach (in the references included in this 
systematic review), from a generalization perspective, seem to be those systems based on neural 
networks (Saxe & Berlin, 2017) (Zanero & Savaresi, 2004), which can automatically extract features 
from supplied data or work with packet payload data directly. This feature effectively means that 
they don’t rely on a particular data structure to be effective, and so they could potentially generalize 
well. 

2.3.4.2. Detection of complex attacks 

In general, an intrusion detection technique based on an unsupervised setting is expected to find 
attack types that can’t be easily spot with more traditional approaches, like rules or signatures. In 
fact, the goal of anomaly detection is to identify suspicious activity by comparison with legitimate 
activity, not requiring any attack pattern knowledge in advance for effective detection. On the other 
hand, the use of general-purpose algorithms must lead to more sophisticated detections, that is, those 
that would go unnoticed to an experienced security analyst, or to a properly configured detection tool 
that relies on well-known patterns alone. 

When looking at the technique categories presented in this review, two categories seem to be 
theoretically best positioned for this task: clustering based on neural networks (SOM and ART), and 
Sequence Learning.  



In the first case, this is supported by the actual tests performed against datasets of very different 
nature, combined with their multi-layer capabilities, which allows them to produce specialized 
detection models across data inputs, protocols, services and attack types. This is a requirement for 
detection of complex attacks, whose traces can span multiple data sources.  

In the case of Sequence Learning, the ability to detect complex attacks is not so much supported by 
the diverse or heterogeneous scenarios in which these techniques have been evaluated, but rather by 
the nature of those complex attacks, which can be interpreted as a sequence of malicious steps. Any 
technique which relies on a single data point to detect attacks will be able to detect simple attacks, 
whereas a technique that can correlate (and even detect in order) several circumstances associated 
with an intrusion will be able to spot complex, multi-stage attacks. 

Regarding AIS, and particularly systems leveraging Negative Selection (NS) and Danger Theory 
(DT), their reliance on the non-self concept and the danger signals can make them less appropriate 
for complex attacks. The reason behind is that these attacks don’t show a uniform pattern of activity 
or leave consistent traces that could be easily captured by a set of detectors, but can rather adopt 
many different shapes with no similarity among them, thus requiring an infeasible number of 
detectors to be created. 

Fuzzy logic, graph, and Swarm Intelligence, on the other hand, are very general-purpose techniques. 
Therefore, their ability to detect complex attacks is linked to other components of the system, like 
data preprocessing or feature extraction. In the case of Reinforcement Learning, it seems to be a very 
experimental approach with very limited research work available. Lastly, statistical methods that rely 
on probability distribution of input data could be weak in detecting attacks which might not impact 
the observed probability distribution, like it’s the case of many stealthy attacks that generate almost 
no noise compared to legitimate activity. 

It’s also worth noting that several experiments included in this review (Bridges & Vaughn, 2000) 
(Hofmeyr, 1999) (Sekar, Gupta, Frullo, Shanbhag, Tiwari, Yang, & Zhou, 2002) (Münz, Li, & Carle, 
2007) can only detect attack types like DoS, probing and port scanning, which can be easily detected 
with static thresholds. These techniques, or the way they have been implemented, are likely far from 
being able to detect complex attacks that require no significant volumes of traffic or logs for success.  

2.3.4.3. Scalability 

Scalability refers to the ability to move from a laboratory exercise with a data sample to a real-life 
environment with significantly higher volumes of data.  

From the techniques reviewed, Negative Selection is the one for which scalability issues have 
already been identified (Kim & Bentley, 2001a). However, scalability might pose a serious risk for 
other detection categories: statistical methods, because capturing probability distribution is an 
intense computational task as data volume grows; Association Rule Learning, because managing a 
very large ruleset can become infeasible for timely intrusion detection; graphs, because memory 
consumption is linked to graph size, which in turn depends on the volume of data to be represented; 
Markov models, because this statistic model was designed to handle a small set of states, well below 
the potential requirements of real intrusion data; and Reinforcement Learning, for the same reason. 
In the case of Reinforcement Learning, though, more recent developments using neural networks 
suggest that scalability might no longer be an issue, but it’s yet to be demonstrated that these models 
can be successfully implemented for intrusion detection.  



2.3.5. Discussion 

Even though research which applies neural networks to intrusion detection is still under heavy 
development, the references included in this review suggest that techniques based on this approach 
are closer to offer generalizability, ability to detect complex attacks and scalability than any of the 
included categories. Their main disadvantage is that they require big datasets in order to produce 
accurate models; however, this requirement is very likely to be satisfied in real-life environments. 

Fuzzy logic accounts for uncertainty, which is a desirable feature in intrusion detection. However, 
the developments around this tool seem to focus on producing rules to model legitimate behavior. 
The resulting rulesets show acceptable detection rates, but the scalability of those implementations is 
at least questionable. The same applies to techniques based on Association Rule Learning. 

Genetic algorithms have proven to enhance another technique like clustering, and to optimize feature 
selection for accurate intrusion detection. However, from the references included in this review, they 
can’t still be used as standalone methods.  

Artificial Immune Systems have shown comparable performance to other methods; however, they 
suffer from scalability and coverage issues, and they are not suitable for detecting complex attacks, 
given their dependence on detectors, which are likely to represent known attack patterns. 

Swarm Intelligence has had a very limited focus so far. The results obtained by available research are 
comparable to other methods, and researchers claim that this technique can detect unknown attacks. 
However, there is little support from the research community to validate those claims and confirm 
whether they can be repeated under different testing scenarios. The sample applies to graphs, which 
also suffers from potential scalability issues, as discussed before. 

Sequence learning algorithms are by definition well suited to detect more complex attacks involving 
several steps that would take place in order for the intrusion to succeed. However, Markov models 
were designed to handle a small set of states, and therefore they can’t scale efficiently. On the other 
hand, RNNs, which are sequence learning neural networks, can both generalize and scale, but there 
is not enough literature to strongly support these claims. 

Reinforcement Learning is still a very experimental approach, and so pros and cons can be backed 
yet with enough experiments. 

Dimensionality reduction has obtained promising results against public and commonly used datasets. 
It’s a simple technique that combines feature extraction with detection. However, its simplicity might 
become an issue with real data where the underlying assumptions (for example, linearity in PCA) 
might not hold. Moreover, recent dimensionality reduction techniques based on deep neural 
networks, like autoencoders, could replace more traditional techniques in this category. 

Clustering techniques not based on neural networks have also obtained promising performance and 
are by definition well suited to detect unknown attacks. Their effectiveness, though, heavily relies on 
the feature selection process, which will make anomalous clusters arise more or less clearly. The 
same applies to multivariate outlier detection, where the right choice of kernel function is the key to 
properly separate normal and anomalous instances. 

Lastly, the vast array of statistical methods implemented for intrusion detection share their lack of 
generalization, since they have been tested against very specific datasets or attack types. 



2.3.6. Conclusions 

Depending on the particular intrusion detection use case, certain techniques could offer more 
advantages than the others. While there are techniques that are in theory better prepared to support a 
wide range of scenarios, like neural networks, each of the techniques included in this systematic 
review could successfully address a given intrusion detection need. In fact, future development paths 
are focusing on combining several techniques and even paradigms (supervised and unsupervised) in 
order to build upon the advantages of more than a single algorithm (Tsai, Hsu, Lin, & Lin, 2009). 
Another approach would be to reengineer methods that have been successfully applied in a 
supervised setting, so that they can also fit into unsupervised approaches. In fact, CNN has only been 
recently applied to building an IDS in an unsupervised setting. It has been though leveraged in 
supervised approaches (Upadhyay & Pantiukhin, 2017), which built a CNN from the DeepLearn 
ToolBox by Mathworks Matlab and obtained a classification error rate below 2% for the KDD99 
dataset. 

On the other hand, complex attacks are likely to span multiple datasets, which suggests that data 
fusion could be another development path. This engineering discipline makes inferences from 
activities, events and situations whose data is gathered from multiple sources.  

This approach would allow to achieve a higher degree of inference, including identity of intruder, 
behavior of intruder, situation assessment and threat analysis. Previous research (Bass, 2000) has 
already proposed to apply multisensor data fusion to intrusion detection systems. 

Lastly, all techniques presented in this review rely on trusted training data to successfully detect 
intrusions. However, an attacker could inject noise into the data used for training and trick the 
anomaly detector to model an attack as normal behavior. This adversarial noise issue has been 
analyzed by previous research (Kloft & Laskov, 2010). When using a simple learning algorithm like 
online centroid anomaly detection, using HTTP traffic and a set of well-known web application 
exploits, an attacker would need to control over 5-15% of the traffic used for training for a poisoning 
attack to succeed. In a similar setting, a poisoning attack led to same conclusions (Kloft & Laskov, 
2012). Both experiments suggest that the resilience of an algorithm to these attacks is a relevant 
feature for which extensive research is needed. 

2.3.7. Limitations of this review 

This systematic review follows a procedure commonly used in the research community that aims at 
providing extensive coverage of the topic under discussion and answer key questions related to the 
motivation and objectives of this research.  

However, this review has a number of inherent limitations. First, the extensive literature on the topic 
makes it hard to deliver full coverage and include every single research work that might be relevant 
to the discussion. Therefore, some references that could have also been included in this review might 
be missing. For the same reason, this review has focused on popular techniques with several research 
experiments associated with them. Niche methods or very custom approaches that are not supported 
by different researchers have been discarded in the process. 

Lastly, obtained conclusions are based on relevant findings of previous research and how they have 
been interpreted in the context of this research work’s motivation and objectives. Other researchers 
describing those findings from another perspective or evaluate them under a different context might 
obtain different conclusions. 



In any case, to the best of my knowledge, this systematic review constitutes an in-depth assessment 
and provides a solid foundation to the rest of this research work.  

2.3.8. Supporting background research 

This section includes research literature that doesn’t fit into the scope of the systematic review but 
had to be reviewed prior to starting the developments associated with this research work. 

2.3.8.1. Intrusion detection 

In this section, relevant research literature in which supervised learning has been applied to intrusion 
detection is presented and discussed. These references were included for comparison purposes: they 
allow to measure the relative degree of success obtained by this research work’s developments, that 
is, to what extent these developments outperform any of the performance results obtained with 
techniques that have prior knowledge of attack patterns. 

Most common classifiers (Ahmed, Mahmood, & Hu, 2016) used to build an IDS are based on SVM, 
Bayesian networks, neural networks, and rule mining methods.  

SVM, used in combination with Deep Belief Networks for feature extraction, achieved (Marir, 
Wang, Feng, Li, & Jia, 2018) 90.47% precision, 97.21% recall and 93.72% F-measure when tested 
against UNSW-NB15. An IDS based on Bayesian networks (Kruegel, Mutz, Robertson, & Valeur, 
2003) leveraging OS calls triggered by the DARPA 1999 dataset (Mahoney & Chan, 2003b) 
achieved accuracies ranging from 75% to 100%. Deep learning has reported enhanced performance 
(Kwon, Kim, Kim, Suh, Kim, & Kim, 2019). These include (Zhao, Yan, Chen, Mao, Wang, & Gao, 
2019): autoencoders, Deep Belief Networks, Deep Boltzmann Machines, Recurrent Neural Networks 
(RNN) and Convolutional Neural Networks (CNN).  

Deep Belief Networks, used in combination with Modified Density Peak Clustering Algorithm 
(MDPCA-DBN), obtained 90.21% accuracy against UNSW-NB15 dataset. A variant of Boltzmann 
Machines (Aldwairi, Perera, & Novotny, 2018), Restricted Boltzmann Machines, was trained with 
the ISCX dataset (Shiravi, Shiravi, Tavallaee, & Ghorbani, 2012) using Contrastive Divergence 
(CD) and Persistent Contrastive Divergence (PCD) algorithms. It achieved 88.6% (CD) and 89.0% 
(PCD) accuracies, 88.4% (CD) and 84.2% (PCD) true positive rates, and 88.8% (CD) and 93.8% 
(PCD) true negative rates.  

RNNs have been leveraged to model sequences of basic network parameters and predict legitimate 
future behavior (Radford, Apolonio, Trias, & Simpson, 2018). When focusing on protocol-bytes 
sequences, Area Under the Curve (AUC) ranged from 0.78 to 0.84. On the other hand, a CNN (Saxe 
& Berlin, 2017) was able to detect attacks using OS and application-level resources as input, 
including URLs, files and registry keys. The system achieved a detection rate ranging from 97.8% to 
99.3%. 

Natural Language Processing (NLP) implemented through an artificial neural network has been used 
to build an IDS (Mimura & Tanaka, 2017). Particularly, Paragraph Vector algorithm was used, 
which creates embeddings for documents. An SVM classifier was also leveraged to classify 
legitimate and malicious traffic. The aim of this research was to detect command-and-control activity 
generated by malware. Precision ranged from 77% and 99%, and recalled ranged from 69% and 
100%. With another NLP technique, based on skip-gram models (Carrasco & Sicilia, 2018), 99.2% 
precision and 82.07% recall were reported. 



CNNs are useful to detect malicious URLs, file paths and registry keys. The obtained detection rate 
ranged from 97.8% to 99.3% (Saxe & Berlin, 2017). Another method based on Cerebellar Model 
Articulation Controller and RL was able to successfully detect DoS attacks (Cannady, 2000). The 
obtained error was 3.28E-05%. 

Previous research (Kumar, Glisson, & Cho, 2020) compared the performance of MeanShift, K-
means, and Fuzzy C-Means. Detection rate was 79.1%, 82.3%, and 84.6%, respectively, and 
accuracy was 81.2%, 77.2%, and 82.1%. The dataset used was KDD 99. Another research (Nawir, 
Amir, Yaakob, & Lynn, 2019) tested five classification algorithms against the UNSW-NB15 dataset: 
Naïve Bayes, Averaged One Dependence Estimator (AODE), RBFN, MLP, and J48 trees. 
Accuracies ranged from 76.12% to 98.71% (J48 trees).  

Deep learning was tested (Fernández & Xu, 2019) in both supervised and unsupervised settings to 
detect intrusions in the CIC IDS 2017 dataset. 96.77% TPR and 0.52% FPR were obtained with the 
supervised approach, and 0.013% FPR and 76.70% FNR with the unsupervised (autoencoder) 
setting.  

Another research (Meftah, Rachidi, & Assem, 2019) performed feature selection, using Recursive 
Feature Elimination and Random Forest, to find top performing features and input them to several 
binary classifiers. Best results were obtained by Support Vector Machines (SVM), with an accuracy 
of 82.11% when tested against the UNSW-NB15 dataset. Also, a variation of SVM with a new 
scaling method obtained an accuracy of 85.99% against UNSW-NB15 (Jing & Chen, 2019). 

Previous research discovered that feature selection optimization (Parker, Yoo, Asyhari, Chermak, 
Jhi, & Taha, 2019) led to an accuracy of 98.04% in the Aegean Wi-Fi Impersonation Attack 
Detection dataset. Another research (Blaise, Bouet, Conan, & Secci, 2020) developed a technique 
that detects bots (malware) through clustering, by classifying new hosts either as bots or benign ones 
based on distances to labeled clusters. Tested against CTU-13 dataset, the obtained F1-Score ranged 
from 80% and 93%.  

Lastly, Convolutional Neural Networks were used by another research (Van Huong & Hung, 2019) 
to detect intrusions in IoT systems. The obtained average accuracy was 98.9%. 

2.3.8.2. Fraud detection 

In this section, research literature focused on increasing fraud detection rate are presented and 
discussed. Their obtained results are useful to determine to what extent this research work’s 
development provide comparable performance or even outperform existing approaches. Supervised 
and unsupervised learning techniques are included. 

Recent research states that credit card fraud detection can be best implemented by using artificial 
neural networks (Rushin, Stancil, Sun, Adams, & Beling, 2017), after evaluating the performance 
obtained by both neural networks and other techniques like SVM, AIS, KNN, Dempster Shafer 
Theory, decision trees, logistic regression, association rule learning, active learning, Cardwatch 
(Aleskerov, Freisleben, & Rao, 1997) and several others. 

From a set of classifiers that included random forest, KNN, decision trees, and logistic regression, 
the latter achieved best accuracy (Soh & Yusuf, 2019).  

In terms of skewness, techniques like C5.0 classifier, SVM, neural networks and logistic regression 
obtained better results than KNN, AIS, Naïve Bayes or Bayesian Belief Network (Makki, Assaghir, 
Taher, Haque, Hacid, & Zeineddine, 2019). On the other hand, imbalanced data is better managed by 



neural networks, compared with SVM, decision trees and random forest (Parthasarathy, Ramanathan, 
JustinDhas, Saravanakumar, & Darwin, 2019). 

Extreme Gradient Boosting (GB) and Random Forest (RF), both supervised methods, obtained better 
results (in terms of AUROC metric) than Restricted Boltzmann Machine (RBM) and Generative 
Adversarial Networks, which had obtained top performance among unsupervised methods. The vales 
ranged from 98.8% to 98.9%. The chosen feature selection method is also a driver performance. In 
particular, filter and wrapper methods obtained better accuracy for PART and J48 decision trees 
(Singh & Jain, 2019). It also obtained better sensitivity and precision levels for random forest, J48 
decision tree and AdaBoost. 

A novel method leveraging a non-parametric approach exploited data reduction to extract relevant 
transactions (Vardhani, Priyadarshini, & Narasimhulu, 2019), while another leveraging DeepWalk 
and decision trees with Gradient Boosting obtained an F1 score which ranged from 61.43% to 
71.84%. 

The hypersphere model (Chen, Zhang, Liu, Yang, Meng, & Wang, 2019) has been used in an 
unsupervised setting to model normal user activity, obtaining better performance than other methods. 
On the other hand, Local Outlier Factor (LoF) and Isolation Forest have outperformed other artificial 
intelligence techniques (Sharmila, Kumar, Sundaram, Samyuktha, & Harish, 2019). 

A neural network trained to recognize sequences has proven to achieve notable performance (Yang 
& Xu, 2019). This method also makes it easier to interpret model results, and is better prepared to 
tackle concept drift. In fact, higher performance is observed in malicious credit card transactions 
when concept drift is accounted for (Lucas, Portier, Laporte, Calabretto, He-Guelton, Oblé, & 
Granitzer, 2019). Hidden Markov Models have delivered better precision and recall compared to 
other fraud detection systems (Lucas, Portier, Laporte, Calabretto, Caelen, He-Guelton, & Granitzer, 
2019). 

When skewness is accounted for, unsupervised methods show higher performance than supervised 
techniques (Mittal & Tyagi, 2019). On the other hand, when data is oversampled (using a method 
like SMOTE), accuracy increases in supervised techniques (Varmedja, Karanovic, Sladojevic, 
Arsenovic, & Anderla, 2019). Lastly, accuracy might decrease if several scores are combined to 
come up with a final score (Carcillo, Le Borgne, Caelen, Kessaci, Oblé, & Bontempi, 2019). 

Better accuracy is obtained when SVM, KNN and MLP classifiers are implemented together. The 
comparison was done against standalone classifiers, including these three and several others (Naïve 
Bayes, Extreme Learning Machine) (Prusti & Rath, 2019a) (Prusti, Padmanabhuni, & Rath, 2019). A 
variant of AdaBoost and stacking ensemble technique obtained better accuracy (94.5%) than other 
methods as stacking, AdaBoost, RF, logistic regression, and DT  (Prabhakara, Kumarb, Ponnarb, 
Sureshb, & Jayandhiranb, 2019). 

Semantic fusion (Darwish, 2020), with artificial bee colony algorithm (ABC) and k-means clustering 
obtained a high accuracy. Indeed, higher accuracy is obtained if customers are classified into groups 
before transactions are processed (Kasa, Dahbura, Ravoori, & Adams, 2019). 

Previous fraud detection research (Dornadula & Geetha, 2019) compared the accuracy of five 
different algorithms with a novel technique implementing oversampling, behavioral pattern 
extraction, and feedback management. Authors obtained the following results: Local Outlier Factor 
(45.82%), Isolation Forest (58.83%), Logistic Regression (97,18%), Decision Trees (97.08%), and 



Random Forest (99.98%). A similar research (Varmedja, Karanovic, Sladojevic, Arsenovic, & 
Anderla, 2019) concluded that Random Forest leads to best results, with 99.96% accuracy. Yet 
another study (Kang, 2019) that compared Random Forest and Boosted Trees led to accuracies of 
98.98% and 99.24%, respectively. Lastly, another research (Kumar, Soundarya, Kavitha, Keerthika, 
& Aswini, 2019) leveraging Random Forest obtained 90% accuracy. 

Another research (Misra, Thakur, Ghosh, & Saha, 2020) proposed a two-stage model in which an 
autoencoder was used for feature engineering and several algorithms (Multi Layered Perceptron, K-
nearest Neighbor, logistic regression) for classification. The resulting F-score ranged from 77.15% to 
82.65%. On the other hand, SVM was the algorithm of choice of another recent research (Gupta, 
2019), that used a dataset with ten years of credit card transactions. It achieved an accuracy on 
90.00% in the classification task. Similarly, another research (Latif, Kulkarni, Molkire, & Nangare, 
2020) leveraging Naïve Bayes theorem achieved 94.57% accuracy. 

Paysim1 dataset was leveraged to for performance comparison of DT, neural networks, and 
SVM(Shahed, Ibrahim, & Akter, 2019). The accuracies obtained were 94.04%, 96.14%, and 97.83%, 
respectively. Undercomplete autoencoders (Misra, Thakur, Ghosh, & Saha, 2020) have also been 
tested against the Paysim1 dataset, achieving 85.34% precision and 80,15% recall. 

Yet another research (Shukur & Kurnaz, 2019) geared towards algorithm comparison concluded that 
Isolation Forest was the best-performing technique, with 99.7% accuracy. Another study (Safa & 
Ganga, 2019) that compared Naïve Bayes, logistic regression and K-Nearest Neighbors obtained 
accuracies of 83.00%, 97.69% and 54.86% respectively. Lastly, other approaches which have proven 
their effectiveness in improving classification results for fraud detection include Generative 
Adversarial Networks (GAN) (Fiore, De Santis, Perla, Zanetti, & Palmieri, 2019), deep learning and 
hybrid ensemble (Kim, Lee, Shin, Yang, Cho, Nam, 2019), a hybrid model (Prusti & Rath, 2019b) 
combining decision tress, SVM, and KNN models, and an optimized SVM model combined with the 
Random Under Sampling (RUS) technique (Pambudi, Hidayah, & Fauziati, 2019). 

Lastly, the combination (Eshghi & Kargari, 2019) of decision trees, transaction sequences and user 
activity (semisupervised setting) improved detection rate by 7%. 

2.3.8.3. Alert reduction 

In this section, research literature related to this research work’s development around fraud detection 
optimization is presented and discussed. 

2.3.8.3.1. Intrusion detection 

ALAC (Adaptive Learner for Alert Classification) prototype leveraged adaptive learning for 
classification of alerts in real time. The system (Pietraszek, 2004) learnt decisions patterns from 
human expertise, and leveraged a RIPPER classifier (Cohen, 1995). RIPPER (Lee, 1999) delivers 
generalization accuracy and concise conditions. False alarm rate dropped by 30% (Lippmann, 
Haines, Fried, Korba, & Das, 2000) when tested with DARPA 1999 dataset. 

Clustering also allows to reduce alert volume (Njogu & Jiawei, 2010). Data was enriched with 
evidence and vulnerability assessment data. The reduction rate was 78%, using the DARPA 1999 
data for testing. 

Greedy aggregation, also a clustering algorithm, obtained an 83.2% reduction rate (Harang & 
Guarino, 2012) for Snort (open-source IDS) alerts. Alerts were classified into groups of meta-alerts, 
with common details. 



Snort IDS alerts included in DARPA 1999 data were used to test a method (Nauck, Nauck, & Kruse, 
1999) using Jrip and NEFCLASS. Jrip is a RIPPER implementation in Weka. Detection rate was 
88% with the first (Jrip), and 84.63% with the latter (NEFCLASS). 

A reduction rate of 35.04% was obtained (Bakar, Belaton, & Samsudin, 2005) with data enrichment 
through an alert quality framework. The quality level was calculated based on criteria like reliability, 
sensitivity, accuracy and correctness. Additional details like vulnerability details were included. The 
vulnerability information applied to OS, applications, and network services. 

Lastly, frequent pattern-based outlier detection (He, Xu, Huang, & Deng, 2005) has been applied to 
alert reduction, with rates ranging from 86% to 92% (Xiao, Jin, & Li, 2010). The dataset used was 
extracted from traffic in a network with 10 systems. 

2.3.8.3.2. Deep learning for decision-making automation 

Deep Learning (DL) can automate decision-making activities for intrusion detection (McElwee, 
Heaton, Fraley, & Cannady, 2017), loan application processing (Srivastava, 1992), managerial 
decision making (Hill & Remus, 1994), medical diagnosis and treatment prescription (Liang, Zhang, 
Huang, & Hu, 2014), and clinical imaging classification (Ciritsis, Rossi, Eberhard, Marcon, Becker, 
& Boss, 2019). The combination of rules and artificial neural networks (Tan, Quah, & Teh, 1996) 
can also support the automation of these processes. 

A classifier based on a deep neural network (McElwee, Heaton, Fraley, & Cannady, 2017) was able 
to triage IDS alerts. The groups into which alerts were classified had meaning for human experts, 
which confirmed its effectiveness. 

Business judgement can also be automated with artificial neural networks. For example, they were 
applied (Srivastava, 1992) to loan applications, using data about companies with a label indicating 
whether they defaulted or not. Decisions were taken using the same criteria as humans. 

On the other hand, Deep Learning (DL) outperformed rules and shallow neural networks for medical 
diagnosis (Liang, Zhang, Huang, & Hu, 2014). It also resembled criteria used by human experts in 
this field better than other methods. 

Lastly, a Deep CNN outperformed humans in tasks like classification of clinical images (Ciritsis, 
Rossi, Eberhard, Marcon, Becker, & Boss, 2019). Data used for testing included 101 images from an 
internal dataset (accuracy from 87.1% to 93.1% for dCNN and from 79.2% to 91.6% for humans) 
and 43 from an external dataset (AUC 96.7% for dCNN and 90.9% for humans). Both were extracted 
from the Breast Imaging Reporting and Data System (BI-RADS).  

 

 

 

 

  



3. Materials and methods 
3.1. Research overview 

In this section, an overview of the research work done is presented. The work is split into four 
different developments, each of them addressing one or more of the objectives shown in the 
introductory section of this document. 

3.1.1. Unsupervised intrusion detection 

In order to reduce the dependence on well-known attack patterns for effective intrusion detection in 
the cybersecurity field, an unsupervised technique was developed that can accurately distinguish 
malicious network activity by comparing it with legitimate behavior (Carrasco & Sicilia, 2018). 

A variant of word2vec (skip-gram) was applied. The technique captures the relationship among 
nodes (entities) in a network, as well as its legitimate activity. In the detection stage, attacks are 
detected by measuring how far is observed activity from expected activity for the entities (Carrasco 
& Sicilia, 2018). 

The technique aims to increase artificial intelligence’s contribution to intrusion detection, by 
improving in one or more aspects the existing methods. It leverages UNSW-NB15 (Moustafa & 
Slay, 2015) public intrusion dataset, which allows proposed approach to be validated, replicated and 
improved in the future by the research community.  

3.1.2. Supervised fraud detection optimization 

Multiple settings leveraging deep neural networks were tested to assess whether they could capture 
the criteria used by humans to discard false positives in anomalous credit card transactions (Carrasco 
& Sicilia, 2020). The underlying neural networks had already demonstrated to deliver notable 
performance in other fields (Liu, Wang, Liu, Zeng, Liu, & Alsaadi, 2017). 

This development also aims to increase artificial intelligence’s contribution to fraud detection, by 
improving in one or more aspects the state-of-the-art methods found in research literature. 

3.1.3. Semisupervised intrusion detection 

In order to demonstrate that unsupervised intrusion detection can be augmented by supervised 
learning, a deep autoencoder leveraging xgboost algorithm for feature selection was designed and 
tested. In fact, three approaches were implemented and compared: excluding source and target IP 
addresses from the feature set, including all available features, and selectively including features, 
based on the feature importance metric supplied by xgboost algorithm. In addition to this, One-Hot 
Encoding and logarithmic scale discretization were used for feature engineering purposes.  

This development leverages UNSW-NB15 (Moustafa & Slay, 2015) public intrusion dataset, which 
allows proposed approach to be validated, replicated and improved in the future by the research 
community. 

3.1.4. Unsupervised cross-domain malicious behavior detection 

In order to prove that artificial intelligence can evolve towards cross-domain applications, an 
unsupervised technique leveraging topic modeling was designed, implemented and tested against 
three datasets of network traffic, Internet of Things (IoT) malware traffic, and payment transactions. 



In an attempt to build upon this previous research on NLP and topic modeling, LDA was selected as 
the baseline algorithm of proposed technique. On top of the algorithm, it was developed: a feature 
engineering technique that converts both categorical and numerical feature values into words, and a 
tailored scoring mechanism for anomaly detection. Also, the concept of entity was shifted from the 
subject performing the action to the action being performed. 

Publicly available datasets in each field were used. UNSW-NB15 (Moustafa & Slay, 2015) was 
selected for intrusion detection, Paysim1 (“Synthetic Financial Datasets For Fraud Detection”, 2017) 
for payments fraud detection, and IoT-23 (“IoT-23 Dataset: A labeled dataset of Malware and 
Benign IoT Traffic”, n.d.) for malware detection in IoT devices. The datasets all share the trait of 
capturing forms of malicious behavior, while being diverse in the environments from which data is 
extracted. They all have been used in previous research, hence allowing to compare results with 
those obtained by other authors. 

 

3.2. Datasets 

3.2.1. UNSW-NB15 

Synthetic datasets support most intrusion detection research (Gogoi, Bhuyan, Bhattacharyya, & 
Kalita, 2012). The reason behind this is that real traffic data have only become available very 
recently. In this research, UNSW-NB15 (Moustafa & Slay, 2015) was used. It contains realistic and 
recent legitimate activity, and recent attack types belonging to 9 categories: Fuzzers, Analysis, 
Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode and Worms. 

UNSW-NB15 was made available by the Australian Centre for Cyber Security (ACCS), and created 
with PerfectStorm (“PerfectStorm”, n.d.). With tcpdump, 100 GB of traffic was sniffed. 49 features 
were produced with Argus and Bro-IDS. Label classified observations into normal or attack. Data is 
delivered as 4 CSV files. For this research, they have been combined into a single file with 2,218,763 
observations of normal activity and 321,283 attacks.  

The file was used for training and testing in the following developments: unsupervised intrusion 
detection, semisupervised intrusion detection, and unsupervised cross-domain malicious behavior 
detection. 

Other common datasets used in the IDS field include KDD Cup 99 and NSL KDD, an enhanced 
version of KDD Cup 99. KDD Cup 99 suffers from two statistical issues (Tavallaee, Bagheri, Lu, & 
Ghorbani, 2009): a significant number of redundant records, which leads to a bias towards more 
frequent observations, and artificially high accuracy measures, which prevents from proper 
performance comparison among algorithms. While NSL KDD partially solves these issues, it doesn’t 
represent modern attack environments, as it is still based on the same malicious traffic of KDD Cup 
99. IDEVAL, also a very popular dataset for intrusion detection, also suffers from several issues 
(Mahoney & Chan, 2003b). 

UNSW-NB15 solves some of the key issues with datasets as KDD Cup 99 and NSL-KDD (Moustafa 
& Slay, 2016), including: lack of recent attack types, lack of recent normal activity, and different 
distribution of training and testing sets. 



3.2.2. Paysim1 

Paysim1 (“Synthetic Financial Datasets For Fraud Detection”, 2017) is a synthetic dataset of 
payment transactions. It was produced from 1 month of real transactions recorded by a mobile 
money service in Africa. It was produced using Paysim (Lopez-Rojas, Elmir, & Axelsson, 2016), a 
financial mobile money simulator designed to support fraud detection research. The dataset contains 
6,354,407 observations of legitimate transactions, and 8,213 of fraudulent transactions. 

Dataset features are enumerated in Appendix 8.2. 

This dataset was used for the unsupervised cross-domain malicious behavior detection development. 

3.2.3. IoT-23 

IoT-23 (“IoT-23 Dataset: A labeled dataset of Malware and Benign IoT Traffic”, n.d.) is a dataset of 
malware traffic from IoT devices. It contains 20 malware traces executed in IoT devices, and three 
samples of legitimate traffic. Traffic was recorded in the Stratosphere Laboratory, AIC group, FEL, 
CTU University, Czech Republic. It was published in January 2020. Its purpose is to allow 
researchers to design algorithms suitable for IoT-related malware detection. From all the available 
captures, CTU-IoT-Malware-Capture-1-1 was selected for this research. It contains 469,275 
observations of legitimate traffic, 539,465 observations of port-scanning activity, and 8 observations 
of C&C (Command & Control) malicious traffic. 

Dataset features are enumerated in Appendix 8.3. 

This dataset was used for the unsupervised cross-domain malicious behavior detection development. 

3.2.4. Fraud dataset 

446,076 real alerts issued during 6 months of anomalous credit card transactions from a payment 
processing organization in Spain were also used in this research (Carrasco & Sicilia, 2020).  

The percentage of confirmed and discarded alerts is included in Table 5.  

 

Label # Records Percentage (%) 

Confirmed 195,265 43.77% 

Discarded 250,811 56.22% 

Table 5. Dataset label distribution. 

 

The feature set is described in Table 6 (Carrasco & Sicilia, 2020).    

 

Feature Description Type Cardinality Range 

Amount Amount in local currency. Numerical N/A [ 0,  
231.014,48 ] 

Day of month Day of month. Numerical N/A [ 1, 31 ] 

Hour Hour. Numerical N/A [ 0, 23 ] 



Data Input PoS identification method for 
credit card. 

Categorical 21 N/A 

Authentication 
method 

PoS customer authentication 
method. 

Categorical 12 N/A 

Response code Code returned by the payment 
processing platform after 
processing. 

Categorical 59 N/A 

Merchant type 
(international) 

Type of business, based on 
international codes. 

Categorical 507 N/A 

Merchant type 
(domestic) 

Type of business, based on 
Spanish codes. 

Categorical 325 N/A 

City - Categorical 54 N/A 

Country - Categorical 187 N/A 

Issuing bank Bank that issued the credit card. Categorical 107 N/A 

Score Risk level assigned by the fraud 
detection system. 

Numerical 100 N/A 

Label Human expert decision: confirm 
or discard. 

Binary 2 N/A 

Table 6. Input columns. 

 

This dataset was used for the supervised fraud detection optimization development. 

 

3.3. Algorithms 
3.3.1. Skip-gram modeling 

The word2vec algorithm transforms words into embeddings (vectors). The CBOW variant predicts a 
word from context, while the skip-gram variant predicts context from a given target word (Mikolov, 
Chen, Corrado, & Dean, 2013).  



In skip-gram, the goal is to obtain high probability (cosine similarity) for words that belong to the 
context of the target word. This variant is more suitable for data with many records, like it is the case 
for intrusion detection. The reason for this is that it manages context-word pair as a single 
observation. Training speed and quality of embeddings was improved by algorithm extensions 
(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). 

The skip-gram algorithm was modified in this research (Carrasco & Sicilia, 2018), so that it can 
accurately detect intrusions. The underlying assumption was that both nodes in a network and the 
connections they initiate (behavior) can be represented as words. 

word2vec and skip-gram have been leveraged in multiple domains. The skip-gram variant can 
uncover relationships among cancer patents (Whitehead & Johnson, 2017). It can also uncover 
semantic information in medical words (Zhou, Fu, Qiu, Zhang, & Liu, 2017), perform protein 
classification (Islam, Heil, Kearney, & Baker, 2017), predict consumer acceptance (Kim, Ha, Choi, 
& Moon, 2018), extract sentiment information against movie reviews (Chakraborty, Bhattacharyya, 
Bag, & Hassanien, 2018), model harmony (Sears, Arzt, Frostel, Sonnleitner, & Widmer, 2017), 
evaluate human judgment (Hollis, Westbury, & Lefsrud, 2017), and infer psycholinguistic properties 
(dos Santos, Duran, Hartmann, Candido, Paetzold, & Aluisio, 2017).  

In anomaly detection, skip-gram can detect deviations in log files (Bertero, Roy, Sauvanaud, & 
Trédan, 2017). In cybersecurity, word2vec can be applied to feature engineering (Zhuo, Zhang, & 
Son, 2017). It can also find learn semantics of attack types, to be used as input to a CNN classifier 
(Barot, Zhang, & Son, 2016). 

3.3.2. Topic modeling 

Topic modeling is a NLP method used for discovering latent topics in a corpus of documents. 
Originally proposed in 1998 (Papadimitriou, Raghavan, Tamaki, & Vempala, 2000), it was further 
developed from a probabilistic standpoint (Hofmann, 2013). It has been applied to multiple fields: 
themes and trends discovery in transportation research (Sun & Yin, 2017), anomaly detection in 
video data (Girdhar, Cho, Campbell, Pineda, Clarke, & Singh, 2016), anomalous event detection in 
text documents (Shin, Choi, Choi, Langevin, Bethune, Horne, 2017), spatio-temporal event analytics 
on social media (Choi, Shin, Choi, Langevin, Bethune, Horne, 2018), insider threat detection (Kim, 
Park, Kim, Cho, & Kang, 2019), anomaly detection in multi-view data (Zhang, Iwata, & Kashima, 
2017), and supply-chain analysis (Bansal, Gualandris, & Kim, 2020). Latent Dirichlet Allocation 
(LDA) (Blei, Ng, & Jordan, 2003) is a topic modeling variant developed in 2003 that builds upon the 
original development (Papadimitriou, Raghavan, Tamaki, & Vempala, 2000), using a hierarchical 
Bayesian model.  

LDA can describe network behaviors, and is a promising approach for detecting zero-day attacks and 
other network threats (Cramer & Carin, 2011). It has also been proposed to detect unauthorized 
access in SSH logs (Aswani, Cronin, Liu, & Zhao, 2015) and malicious user behavior (Huang, 
Kalbarczyk, & Nicol, 2014), by modeling topics of legitimate and attack-related activities.  

3.3.3. Neural networks 

3.3.3.1. Multi-Layer Perceptron 

MLP is a feedforward neural network with at least 3 layers (input, output, and hidden). Neurons are 
fully connected and implement a non-linear activation function. Backpropagation is leveraged to 
minimize the loss function.  



3.3.3.2. Convolutional Neural Network 

CNN architecture is also based on multiple layers (input, output, and hidden). It's implemented as 
sequences of convolution (sliding dot product of input and a rectifier linear unit) and max pooling 
(non-linear down-sampling) operations with a fully connected layer. 

3.3.3.3. Deep autoencoders 

DAE is a neural network used to reduce dimensionality. It's leveraged in unsupervised settings. It 
compresses input and decompresses it back (output). Outliers are easily uncovered because they 
obtain a high reconstruction error. 

An autoencoder is a class of neural network for unsupervised learning that produces efficient 
encoded representations of input data (Liou, Cheng, Liou, & Liou, 2014). It’s commonly used for 
dimensionality reduction purposes. When its architecture includes several hidden layers, it’s 
considered a deep autoencoder. A standard deep autoencoder architecture is visually depicted in 
Figure 3. 

 

Figure 3. Deep autoencoder neural network structure. 

 

The autoencoder learns compressed representations of training data, from which it generates output 
that resembles the original input. This reconstruction task is shown in Figure 4 for both handwritten 
digit recognition and (simplified) network traffic events. To achieve their goal, autoencoders try to 
minimize a loss function which express reconstruction error of frequently observed inputs. The 
reconstruction error is defined as follows: 
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where 1! represents each component of the input vector, -is the input length, and 13! represents each 
component of the reconstructed input. 

 

 

Figure 4. Deep autoencoder behavior in handwritten digit recognition and in intrusion detection. 

 

3.4. Experimental setting 

3.4.1. Unsupervised intrusion detection 

3.4.1.1. Dataset 

UNSW-NB15 (Moustafa & Slay, 2015) was used. Its features are enumerated in Appendix 8.1. 

3.4.1.2. Feature engineering 

The hypothesis for feature engineering is that a system owned by an attacker will connect to network 
nodes and ports that were not observed in the past, before it was compromised (Carrasco & Sicilia, 
2018). In this context, only four features related to network connections were selected: source IP, 
destination IP, destination port and protocol.  

The other features were not used, for the reasons described next: 

• Aggregated features. Producing them requires a lot of computation power in a real network, 
which would impact real time performance. 

• Protocol-related. These features are not generally available, and so including them would 
restrict proposed approach to very specific environments. 



• Application-based. If included, they would restrict detection capabilities to those applications. 

• Time-based. They can be easily manipulated by an attacker. 

The overall objective was to design an approach that could be applied to real datasets. 

Compared to other methods that use the 49 features (Bamakan, Wang, & Shi, 2017), proposed 
approach has low storage requirements (from 586.4 MB to 101.2 MB, an 82.7% reduction rate). The 
issue with having to process big data has been pointed out by other researchers (Garvey & Lunt, 
1991) and is minimized with proposed approach (Carrasco & Sicilia, 2018).  

The dport feature was transformed: only the most frequent values were kept, while the others were 
replaced by a default value. This transformation helped to increase performance because it allows to 
discriminate connections to well-known and unusual services (Carrasco & Sicilia, 2018). 

3.4.1.3. Neural network design 

TensorFlow (Abadi et al, 2016) is an open-source machine learning framework that has been applied 
in fields like robotics, computer vision, natural language processing and speech recognition. It was 
created by Google.  

TensorFlow was used in this research as the underlying framework to implement skip-gram. The 
resulting neural network architecture had the following layers: input, embeddings, and a softmax 
classifier (output). 

Figure 5 displays the neural network architecture used for skip-gram: 

 

 

 

Figure 5. Skip-gram neural network architecture. 

 

Embeddings are initialized with random values ([-1, 1]). These values represent a sample from a 
uniform distribution. Weighs are populated from a normal distribution and updated through SGD 
(Stochastic Gradient Descent) with Adagrad optimizer (which adjusts learning rate based on 



parameter frequency), while all bias values are set to zero (0). Adagrad is the most suitable optimizer 
because it properly handles sparse data (as One-Hot encoding inputs used in our approach). 

The training process creates a set of normalized embeddings that can be used to calculate cosine 
similarity between entities (network nodes and network connections) (Carrasco & Sicilia, 2018).   

Other parameters in the design were adjusted through grid search, as shown later. On the other hand, 
the micro batch function was customized to properly encode inputs. 

3.4.1.4. Algorithm reengineering 

word2vec handle words in a document. Microbatches contains pairs of target word and context word. 
These data points are used to refine embeddings in each iteration. This approach allows to predict 
whether a word is in the context of a target word or not (negative sampling).  

This approach is visually depicted in Figure 6. 

 

Figure 6. Skip-gram modeling for text classification and as IDS. 

 

In proposed approach (Carrasco & Sicilia, 2018), target words represent network nodes, or systems, 
that connect to other nodes. Context words, in turn, represent connection details, or connection types. 
Connections are defined by a target IP, a protocol and a destination service, represented by a port 
number.  

Therefore, context around a target word represent most probable connections of a given network 
node, and obtained embeddings (of network nodes and network connections) meet the following 
criteria: nodes whose embeddings are similar (close) connect to similar nodes and services; if the 
embedding of a node is similar (close) to the embedding of a connection, the node frequently creates 
that type of connection to other nodes; if the embeddings of two network connections are similar 
(close), then they are initiated by the same nodes (Carrasco & Sicilia, 2018). As a result, embeddings 
that are far from each other represent unusual connections for a network node, or nodes whose 
connection profile is very different. 

During training, embeddings are obtained. After that, for each recorded event, a network node and its 
connection details are extracted, and their embeddings' similarity is obtained. Low similarity means 
infrequent activity. Multiple events associated with a given node represent infrequent activity are a 
signal of anomalous activity taking place. 

This approach is visually depicted in Figure 7: 



 

Figure 7. Examples of normal and anomalous interactions. 

 

Leveraging a set of embeddings helps to reduce the FPR, because the model doesn't only spot 
infrequent activity of a given node by comparing current activity with historical records of  that 
node, but also compares that activity with the one of similar nodes (which obtain similar 
embeddings, as explained before). This means that inference goes well beyond what it is known 
about a given node, and expands to what it is collectively known about nodes exhibiting similar 
behavior in the past. If a given normal behavior for a given node is, for some reason, not observed in 
the training phase, that lack of information won't generate false positives if that behavior is observed 
for other similar nodes (Carrasco & Sicilia, 2018). 

3.4.1.5. Microbatch building function 

In order to apply skip-gram to intrusion detection, the microbatch function originally included in 
TensorFlow implementation was redesigned. After the redesign, each record supplied to the neural 
network for processing is a list of items (the equivalent to a document in the original form of the 
algorithm), in which the first item (target word) is a network node (p = 0.8) or connection details (p 
= 0.2), and the remaining items are the connections initiated by that node (context). If a node initiates 
a connection multiple times (in the training data), the corresponding item is found in the list multiple 
times as well. Therefore, each record contains all connection types associated with a node (Carrasco 
& Sicilia, 2018). 

The microbatch function takes consecutive samples (with no overlap) of the dataset. This sampling is 
controlled by the batch_size parameter. If the first item is a node, the algorithm learns the 
relationship between that node and its connections. If the first item is a connection, the algorithm 
learns the relationship between a connection of a node and the remaining connections of that node. 
This stochastic approach was included in order to learn accurate embeddings (Carrasco & Sicilia, 
2018). 



The set of connections included in each record is randomly chosen. The num_skips parameter 
controls how many connections are sampled for a record, that is, what is the bandwidth or depth of 
the context.  

3.4.1.6. Distance measurement 

The algorithm generates a vector for each word (node or connection). With these vectors, it's feasible 
to discover which words are close to a given word, that is, which items exhibit a high similarity 
(cosine similarity): 
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The similarity ranges from -1 to 1, with 1 representing the shortest distance (angle with 0 degrees) 
and -1 representing the longest distance (angle with 180 degrees).  

The similarity measure is obtained for each event observed in the detection stage, by multiplying the 
normalized embedding of the node initiation a connection by the transposed embedding of the 
initiated connection (Carrasco & Sicilia, 2018).  

3.4.1.7. Visual inspection 

In order to measure accuracy, a rigorous performance measurement method was applied. 
Nevertheless, before that method was run, visual inspection of the results obtained in the training 
phase was useful to confirm the initial hypothesis (Carrasco & Sicilia, 2018). This inspection 
provides a deeper understanding of the results of the modeling exercise. Moreover, it allows to check 
whether clusters of nodes and connections are naturally formed, that is, whether normal behavior 
actually exists and whether nodes' behavior can be classified into groups (for example, workstations 
and servers, which should exhibit radically different behavior). 

In order to plot embeddings, they were transformed into bidimensional vectors using tSNE (t-
Distributed Stochastic Neighbor Embedding) algorithm (Van Der Maaten, 2014). tSNE (Van der 
Maaten & Hinton, 2012) is a method to reduce dimensionality that allows to display in a XY graph 
records of a high-dimensional dataset (Van Der Maaten, 2009). This algorithm is included in scikit-
learn Python package. The tSNE configuration used is included in Table 7. Figure 8 shows the 
scatter plot associated with the optimal neural network configuration (C1), which suggests that 
network nodes exhibit similar behavior and can be classified into groups according to that behavior. 

 

Parameter Value 

perplexity 50 

n_components 2 

init pca 

n_iter 5000 

Table 7. tSNE parameters. 

 



 

Figure 8. Scatter plot of obtained embeddings. 

 

3.4.1.8. Performance evaluation criteria 

Proposed evaluation criteria are based on popular metrics used in IDS research: precision and recall 
(Wu & Banzhaf, 2010). Their formulas are the following: 
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F-score, which is also commonly used in the IDS field, is derived from precision and recall: 

H' = 2	 ∙ 	
D!"#)&)$%	 ∙ !"#766
D!"#)&)$% + !"#766 

True positives (tp) represent events considered an attack that are an attack. False positives (fp) 
represent events wrongly tagged as an attack which are normal traffic. False negatives (fn) represent 
attack events erroneously tagged as normal. Precision represents the proportion of true positives 
detected among events tagged as attacks. Recall represents the proportion of attacks detected among 
all observed events. 

3.4.1.9. Experiment setup 

3.4.1.9.1. Training and test datasets 

1,938,118 records (76.3%) were sampled to train the model. The training set included no attacks, as 
required in an unsupervised setting. 601,928 records (23.6%) were sampled to measure model 
accuracy.  

280,645 records in the test set represented normal traffic, while 321,283 records were actual attacks. 



3.4.1.9.2. Parametrization 

Optimal neural network configuration (higher precision and higher recall, with recall having higher 
priority) was discovered through grid search. 

Table 8 shows what parameters were considered for the grid search (Carrasco & Sicilia, 2018): 

Parameter Value 

batch_size # of records returned by microbatch function.  

num_skips # of context items for a target word. 

valid_size # of records used for validation. 

num_steps # of epochs. 

embedding_size # of embedding vector dimensions. 

Table 8. Neural network parameters. 

 

3.4.2. Semisupervised intrusion detection 

3.4.2.1. Dataset 

UNSW-NB15 was used to test proposed approach. 

3.4.2.2. Feature engineering 

UNSW-NB15 dataset contains 49 features that can be grouped into the following categories: IP 
addresses, categorical features, and numerical features. A different engineering technique was 
applied to each of these categories.  

For source and destination IP addresses, each of the four octets was encoded as eight binary ([0, 1]) 
values.  

One-Hot Encoding (OHE) was applied to categorical features. It produces a vector in which one 
single element is set to one (1), and the rest are set to zero. The length of the vector equals the 
number of unique values. Therefore, this encoding scheme creates orthogonal vectors, whose 
distance to all other vectors is the same. This property is required for categorical features in which 
there is no relationship between values, that is, all values are equally different from the rest. Table 9 
and Table 10 show this encoding technique for two sample features (target port and network 
protocol, respectively). For unknown values in the test process, that is, those not found in the training 
dataset, a vector with all components set to zero was generated. 

 

Target port value Assigned Index One-hot Encoded Value 

0 0 100000000000 

9999 (default) 1 010000000000 

80 2 001000000000 

25 3 000100000000 



53 4 000010000000 

111 5 000001000000 

5190 6 000000100000 

22 7 000000010000 

21 8 000000001000 

143 9 000000000100 

6881 10 000000000010 

179 11 000000000001 

Table 9. Target port encoding. 

 

Network protocol 
value 

Assigned Index One-hot Encoded Value 

ospf 0 100000000 

icmp 1 010000000 

tcp 2 001000000 

arp 3 000100000 

udp 4 000010000 

igmp 5 000001000 

udt 6 000000100 

rtp 7 000000010 

esp 8 000000001 

Table 10. Network protocol encoding. 

 

For numerical features, the following logarithmic scale discretization formula was applied: 

F(1) = J6$K'%(1), 1 ≠ 0
0, 1 = 0 

Once discretized, these feature values were transformed into numerical vectors using the 
aforementioned One-Hot Encoding scheme.  

Lastly, infrequent destination ports were identified in the dataset and relabeled with a default value 
(9999).   

3.4.2.3. Feature selection 

In proposed setting, three different feature selection approaches were tested. 

In the first approach, all features were included. In the second approach, numerical features with 
more predictive power, IP addresses (source and target), and categorical features were selected. 



Predictive power was obtained through xgboost's feature importance metric. This metric is calculated 
for a single decision tree by measuring the amount that each feature split point enhances performance 
in terms of the Gini index, weighted by the number of instances the node is responsible for. Obtained 
importance is then averaged across all decision trees in the model. Gini index is calculated as 
follows: 
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where P is the number of classes (two in proposed scenario, normal or attack), and D! is the 
probability of an instance being classified to class ). 

Most important features, as ranked by xgboost, are shown in Figure 9. 

 

 

Figure 9. Top features by xgboost importance. 

 

In the third approach, all features but IP addresses were selected. Table 11 enumerates the features 
included in each approach.  

 

Approach Included features 

All features srcip, dstip, dsport, proto, state, service, is_sm_ips_ports,  ct_state_ttl, 
is_ftp_login, ct_ftp_cmd, dur, sbytes, dbytes, sttl, dttl, sloss, dloss, 
Sload, Dload, Spkts, Dpkts, swin, dwin, stcpb, dtcpb, smeansz, 
dmeansz, trans_depth, res_bdy_len, Sjit, Djit, Sintpkt, Dintpkt, tcprtt, 



synack, ackdat, ct_flw_http_mthd, ct_srv_src, ct_srv_dst, ct_dst_ltm, 
ct_src_ltm, ct_src_dport_ltm, ct_dst_sport_ltm, ct_dst_src_ltm 

xgboost 
features 

srcip, dstip, dsport, proto, state, service, is_sm_ips_ports, ct_state_ttl, 
is_ftp_login, ct_ftp_cmd, ct_srv_dst, sttl, smeansz, sbytes, stcpb, 
ct_dst_sport_ltm, dttl, dloss, Sintpkt, ct_dst_src_ltm, synack, Sload, 
dbytes, tcprtt 

No IP 
addresses 

dsport, proto, state, service, is_sm_ips_ports,  ct_state_ttl, 
is_ftp_login, ct_ftp_cmd, dur, sbytes, dbytes, sttl, dttl, sloss, dloss, 
Sload, Dload, Spkts, Dpkts, swin, dwin, stcpb, dtcpb, smeansz, 
dmeansz, trans_depth, res_bdy_len, Sjit, Djit, Sintpkt, Dintpkt, tcprtt, 
synack, ackdat, ct_flw_http_mthd, ct_srv_src, ct_srv_dst, ct_dst_ltm, 
ct_src_ltm, ct_src_dport_ltm, ct_dst_sport_ltm, ct_dst_src_ltm 

Table 11. UNSW-NB15 features included in each feature selection approach. 

 

The motivation behind the second approach (letting xgboost select features) was to check whether 
excluding features with less predictive power would lead to higher performance. This has been 
investigated by other researchers using Linear Discriminant Analysis (Dahiya & Srivastava, 2018), 
with positive results. On the other hand, the motivation behind the third approach (excluding IP 
addresses) was to measure the impact on performance of training the model with frequent 
connections between known IP addresses. Lastly, timestamps were excluded in the three cases, 
because proposed detection method must not rely on attacks taking place at a given timeframe or in a 
given sequence. 

3.4.2.4. Neural network design 

TensorFlow (Abadi et al, 2016) is a machine learning framework created by Google. It allows to 
perform training and inference for neural networks. Keras is an open-source neural network Python 
package that leverages TensorFlow as backend. I  

In this research, a deep autoencoder was implemented with Keras, using TensorFlow as backend 
engine. The design process implied setting the parameters enumerated in Table 12.  

 

Parameter Description 

Layer 1 size Size of the first hidden layer of the encoder. 

Layer 2 size Size of the second hidden layer of the encoder. 

Layer 3 size Size of the third hidden layer of the encoder, which represents the 
compressed input. 

Batch size # of records returned by microbatch function as input. 

Epochs # of epochs. 

Table 12. Neural network parameters. 

 



All configurations shared the structure of layers shown in Table 13. 

Name Type Activation 

Input  Dense 
 

- 

Hidden 1(encoder) Dense RELU 

Hidden 2 (encoder) Dense RELU 

Hidden 3 (compressed) Dense RELU 

Hidden 2 (decoder) Dense RELU 

Hidden 1 (decoder) Dense RELU 

Output Dense sigmoid 

Table 13. Autoencoders Layers Structure. 

 

Lastly, Adam optimizer (Kingma & Ba, 2014) was selected to minimize loss function. The parameter 
values shown in Table 14 were set for proposed implementation. 

Parameter Symbol Value 

Learning rate ! 0.009 

Forgetting factor for gradients %! 0.9 

Forgetting factor for second moments of gradients %" 0.999 

Small scalar used to prevent division by 0 & 10#$ 

Table 14. Adam Optimizer parameters. 

 

3.4.2.5. Training and detection 

The training process aimed at leveraging the proposed autoencoder to learn legitimate traffic 
patterns. For this purpose, the UNSW-NB15 dataset was split into a train dataset, containing normal 
instances, and a test dataset, containing both normal and attack instances. Table 15 shows the size of 
each dataset and their respective proportion of normal and attack instances. 

Dataset Size # normal instances (%) # attack instances (%) 

Train 1,897,478 1,897,478 (100%) 0 (0%) 

Test 642,566 321,283 (50%) 321,283 (50%) 

Table 15. Train and test datasets. 

 

The assumption was that, in the detection process, attack inputs would be rare, compared to normal 
activity. Therefore, they would exhibit a higher reconstruction error than normal inputs. In other 



words, low reconstruction errors would be associated with normal traffic, while high reconstruction 
errors would be associated with attack traffic. This approach is depicted in Figure 10. 

 

 

Figure 10. Training and detection approach. 

 

 

Figure 11. Transformed Reconstruction Errors for normal instances. 

 



 

Figure 12. Transformed Reconstruction Errors for attack instances. 

 

Therefore, setting a threshold allows proposed system to accurately classify inputs as normal or 
attack traffic. In order to find an accurate and stable threshold for each autoencoder configuration, 
the obtained reconstruction error was transformed by taking (and negating) 6$K'%	of its value, which 
represents its order of magnitude. The resulting value was designated as Transformed Reconstruction 
Error (TRE): 

QGR = 	−6$K'% S
1
- ×	/

(1! − 13!)"
#

!$'
T				 

where - is input length. 

Figures 11 and 12 show histograms of normal and attack Transformed Reconstruction Errors for an 
example autoencoder configuration. 

3.4.2.6. Performance evaluation criteria 

In the field of IDS, the following metrics are commonly used for model comparison: accuracy, 
precision, recall and F-score: 

=##(!7#8 = 	
'D + '%

'D + '% + FD + F% 

 

C!"#)&)$% = 	
'D

'D + FD 

 

G"#766 = 	
'D

'D + F% 



 

H' = 2	 ∙ 	
D!"#)&)$%	 ∙ !"#766
D!"#)&)$% + !"#766 

 

where true positives ('D) refer to attack traffic observations correctly classified, false positives (FD) 
are legitimate traffic observations incorrectly classified as attacks, false negatives (F%) are attack 
traffic observations incorrectly classified as legitimate traffic, and true negatives ('%) are legitimate 
traffic observations correctly classified. 

3.4.3. Cross-domain malicious behavior detection 

3.4.3.1. Datasets 

The following datasets were used: UNSW-NB15, Paysim1 and IoT-23. 

3.4.3.2. Entity definition 

Typically, behavior modeling techniques take the subject performing actions as the entity whose 
behavior has to be modeled (Kim, Park, Kim, Cho, & Kang, 2019) (Blaise, Bouet, Conan, & Secci, 
2020).  In this research, however, the action being performed was used as the entity. This decision 
was made to avoid detecting attacks or fraud by simply spotting subjects (attackers or fraudsters) that 
were not present in the training phase, which only contains legitimate activity. 

Table 16 shows what features were used to form the entity in each dataset: 

 

Dataset Entity features Description 

UNSW-NB15 proto, service Connection, represented by protocol and service features. 

Paysim1 type Transaction type. 

IoT-23 proto, service Connection, represented by protocol and service features. 

Table 16. Features used as entity in each dataset. 

 

3.4.3.3. Feature engineering 

In this research, a feature engineering technique that translates events (or transactions) into words 
was developed. For each event, the entity (action being performed) was extracted. Each entity 
represented a document. Content (feature values) of all events of a given entity represented words of 
that document. The resulting corpus was a set of entities (documents) whose documents’ words were 
the feature values present in their events.  

Target datasets contained both numerical and categorical features. Therefore, data transformation 
was needed to ensure that the resulting item could be translated into a word regardless of the feature 
type. For this purpose, a two-stage encoding technique was used. 

In the first stage, feature values were prefixed with the feature name. This was done to ensure that 
same values present in different features were translated into different words in the documents where 
they appear. In the second stage, numerical values were discretized using a logarithmic scale or by 



dividing its value by ten (10), depending on their range. For numerical features with a range that 
spans more than one order of magnitude, the logarithmic scale was used, while the remaining 
numerical features were divided by ten. 

Logarithmic scale is applied with the following formula: 

F(1) = 	6$K10 U
1
7V × 	10															1 ≥ 7 

F(1) = 	0							1 ≤ 7 

where 7 is parameter that is set to percentile 1 if all values are lower than 1, or to 1 otherwise. 

3.4.3.4. Scoring 

The initial purpose of the topic modeling algorithm was to discover latent topics in a corpus of 
documents. This translates into two probability distributions: the probability of a document (entity) 
containing a topic, and the probability of a word (feature value) representing a topic. These two 
probability distributions are represented by matrices R and Q, respectively.  

In this research, these probability distributions were used to compute the probability of an event (D) 
representing legitimate behavior. The following two probability metrics were tested to assess which 
one exhibited higher performance: 

D)!& = min{R! ∙ Q', … , R! ∙ Q#}		 

D*+) =/R! ∙ Q,

#

,$%
 

1 ≤ )	 ≤ 	_ 

where M is the number of unique entities, - is the number of feature values in each event (except 
from entity-related features), R! is the document-topic probability vector for document (entity) ), and 
Q, is the word-topic probability vector for word (feature value) `. 

3.4.3.5. Performance evaluation 

Performance evaluation was done using common metrics in the field of intrusion detection systems 
(Elhamahmy, Elmahdy, & Saroit, 2010): precision, recall, accuracy and F-score.  

Accuracy is the proportion of the total number of the correct detections (both legitimate activity and 
attacks) relative to the dataset size. F-score (F1) measures the balance between precision and recall.  

Their formulas are as follows: 

=##(!7#8 = 	
'D + '%

'D + '% + FD + F% 

C!"#)&)$% = 	
'D

'D + FD 

G"#766 = 	
'D

'D + F% 

H' = 2	 ∙ 	
D!"#)&)$%	 ∙ !"#766
D!"#)&)$% + !"#766 



where 'D is the number of attacks correctly detected, '% is the number of legitimate events correctly 
classified, FD is the number of legitimate events incorrectly classified as attacks, and F%is the 
number of attacks incorrectly classified as legitimate activity. 

3.4.3.6. Training and test datasets 

Target datasets were split into legitimate and malicious activity. A subset of the legitimate activity 
and all the malicious activity (with a proportion of 50% each) was used for testing, and the 
remaining legitimate activity was used for training. This split approach (with the same number of 
observations for both classes) ensures that performance evaluation metrics remain consistent and 
reliable, with the same number of observations for both classes. 

3.4.3.6.1. UNSW-NB15 

Table 17 shows how the UNSW-NB15 dataset was split for training and testing: 

 

Subset Number of observations 

Legitimate 2,218,763 

Malicious 321,283 

Train 1,897,480 

Test (legitimate) 321,283 

Test (malicious) 321,283 

Test (all) 642,566 

Table 17. UNSW-NB15 train and test datasets. 

 

Table 18 shows how features were transformed, using the feature engineering method described in 
section 3.3. 

 

Discretization technique Features 

Logarithmic scale dur, sbytes, dbytes, sloss, dloss, Sload, 
Dload, Spkts, Dpkts, stcpb, dtcpb, 
smeansz, dmeansz, res_bdy_len, Sjit, 
Djit, Sintpkt, Dintpkt, ackdat, tcprtt, 
synack. 

Divide by 10 sttl, dttl, swin, dwin, trans_depth, 
ct_srv_src, ct_srv_dst, ct_dst_ltm, 
ct_src_ltm, ct_src_dport_ltm, 
ct_dst_port_ltm, ct_dst_src_ltm. 

None (categorical) is_sm_ips_ports, ct_state_ttl, 
ct_flw_http_mthd, is_ftp_login, 
ct_ftp_cmd. 

Table 18. Feature transformations for UNSW-NB15 dataset. 



 

3.4.3.6.2. Paysim1 

Table 19 shows how the Paysim1 dataset was split for training and testing: 

 

Subset Number of observations 

Legitimate 6,354,407 

Malicious 8,213 

Train 6,346,194 

Test (legitimate) 8,213 

Test (malicious) 8,213 

Test (all) 16,426 

Table 19. Paysim1 train and test datasets. 

 

Table 20 shows how features were transformed, using the feature engineering method described in 
section 3.3. 

 

Discretization technique Features 

Logarithmic scale amount, newbalanceOrig, 
oldbalanceDest, newbalanceDest, 
oldbalanceOrig 

Divide by 10 - 

None (categorical) - 

Table 20. Feature transformations for Paysim1 dataset. 

 

3.4.3.6.3. IoT-23 MC11 

Table 21 shows how the IoT-23 MC11 dataset was split for training and testing: 

 

Subset Number of observations 

Legitimate 469,275 

Malicious 539,473 

Train 234,638 

Test (legitimate) 234,637 

Test (malicious) 539,473 

Test (all) 774,110 



Table 21. IoT-23 MC11 train and test datasets. 

 

Table 22 shows how features were transformed, using the feature engineering method described in 
section 3.3. 

 

Discretization technique Features 

Logarithmic scale duration, orig_bytes, resp_bytes, 
orig_ip_bytes, resp_ip_bytes 

Divide by 10 orig_pkts, resp_pkts 

None (categorical) conn_state, history 

Table 22. Feature transformations for IoT-23 MC11 dataset. 

 

3.4.3.7. Model parametrization 

Gensim is a robust, open-source, scalable and platform-independent Python library for topic 
modeling (“Gensim: topic modelling for humans”, n.d.). Gensim’s LDA implementation was used in 
this research. 

This implementation provides multiple parameters for customization. The two key parameters 
influencing performance, based on tests performed, were the number of topics and the number of 
passes. 

Table 23 describes these parameters and their default values: 

 

Name Description Default value 

num_topics # of requested latent topics to be 
extracted from the training corpus. 

100 

passes # of passes through the corpus during 
training. 

1 

Table 23. LDA model parameters in scope. 

 

3.4.4. Supervised fraud detection alert optimization 

3.4.4.1. Dataset 

The fraud dataset described in the section devoted to datasets was used. 

3.4.4.2. Statement of the problem 

Multiple neural network implementations were subject to a training exercise. The goal for these 
neural networks was to learn how to discard false alerts, in order to reduce the amount of alerts 
requiring manual review (Carrasco & Sicilia, 2020). 



3.4.4.3. Feature engineering 

Both numeric and categorical features are present in the dataset used for testing. All features were 
transformed into fixed-length binary vectors. The actual transformation procedures applied to 
features were as follows (Carrasco & Sicilia, 2020): 

Binary. Applied to categorical features. Values were indexed with a positive (greater than or equal 
to zero) integer. The obtained index was then translated a binary vector. Vector length equaled the 
amount of bits required to represent the highest binary value. 

Table 24 shows an example of the results for a feature with 5 values. 

 

B = 	 {B', B", … , B-} 

Label # Records Percentage (%) 

B! 0 000 

B" 1 001 

B% 2 010 

B& 3 011 

B' 4 100 

Table 24. Binary encoding example. 

 

OHE (One-Hot Encoding). Applied to categorical features. Values were indexed with a positive 
(greater than zero) integer. The obtained index was then translated a binary vector. Vector length is 
associated with the number of unique feature values. All vector values (bits) are set to zero, except 
from the value at the position represented by the index (set to one).  

Table 25 shows an example of the results for a feature with 5 values. 

 

O = 	 {O', O", … , O-} 

Feature value Index Encoded value 

O! 0 00001 

O" 1 00010 

O% 2 00100 

O& 3 01000 

O' 4 10000 

Table 25. One Hot Encoding example. 

 

Binning. Applied to numeric features. Feature values were assigned to bins. Bins were defined by 
applying thresholds derived from the feature value range. 



Table 26 shows which bins applied to numeric features. 

 

Feature name Bin thresholds 

Score [ -∞, 10, 20, 30, 40, 50, 60, 70, 80, 90, 
∞	] 

Day of month [ -∞, 10, 20, ∞ ] 

Hour [ -∞, 4, 8, 12, 16, 20, ∞ ] 

Amount [ -∞, 10, 100, 1000, 10000, 100000, ∞ ] 

Table 26. Bin thresholds. 

 

3.4.4.4. Architecture design criteria 

Both supervised and unsupervised settings were considered in this research (Carrasco & Sicilia, 
2020).  

MLP (Multi Layer Perceptron) and CNN (Convolutional Neural Networks) are artificial neural 
networks used for classification (supervised learning) of observations with fixed length. DAE (Deep 
Autoencoders) leverage unsupervised learning, which requires no labeled data. In other words, Deep 
Autoencoders learn without prior knowledge of fraud patterns.  

Table 27 shows each architecture parameters. 

 

Label # Records 

MLP # of hidden layers 

Hidden layer sizes 

CNN # of convolutional layers 

Input layer shape 

DAE # of hidden layers 

Hidden layer sizes 

Common (MLP, 
CNN, DAE) 

Batch size 

Learning rate 

# of epochs 

Table 27. Neural network key parameters. 

 

3.4.4.5. Performance evaluation criteria 

The most popular evaluation metrics for classification tasks are precision and recall. They are also 
leveraged in the fraud detection domain (Kumari & Mishra, 2019). 



 

C!"#)&)$% = 	
'D

'D + FD 

G"#766 = 	
'D

'D + F% 

 

where true positives ('D) refer to alerts flagged for fraudulent transactions, false positives (FD) refer 
to alerts flagged for legitimate transactions, false negatives (F%) refer to the lack of a triggered alert 
for fraudulent transactions, and true negatives ('%) refer to legitimate transactions that triggered no 
alert. 

Precision and recall values were calculated for the assessed neural network architectures (Carrasco & 
Sicilia, 2020). The AUC (Area Under the Curve) was obtained from the ROC (Receiver Operator 
Characteristic). For supervised settings (MLP, CNN), a threshold representing the probability 
beyond which an observation would be assigned to the fraud class was set. For the unsupervised 
setting (DAE), a threshold representing the reconstruction error beyond which an observation would 
be assigned to the fraud class was set. 

Reconstruction error was calculated as follows: 

!"#$%&'!(#')$%	"!!$! = 	−6$K'% S
1
-	/

(1! − 13!)"
#

!$%
T				 

where - equals input length, 1! represents each input dimension, and 13! is represents each output 
dimension. Output represents the reconstructed (after compression and decompression) input. 

The effective alert reduction rate was calculated for each configuration based on the aforementioned 
performance metrics (Carrasco & Sicilia, 2020). The rate, in this scenario, represents the percentage 
of alerts that can be automatically discarded as false positives, requiring no manual review by a 
human fraud expert. The rate is described together with a rate of misclassification, that is, how much 
actual fraud is missed due to the proposed approach tagging it as a false positive. 

3.4.4.6. Training and test datasets 

For both supervised and unsupervised settings, data was split into training and testing datasets. For 
supervised settings (MLP, CNN), 80% of the alerts were included in the training dataset, and 20% of 
the alerts were included in the testing dataset. In the case of the Deep Autoencoder, it was trained 
with 201,995 false positives. For testing, 48,816 false positive alerts and 195,265 true alerts were 
used as input. 

Table 28 includes the number of alerts (for the training and testing datasets) in each configuration 
(Carrasco & Sicilia, 2020): 

 

Identifier Test dataset 
size 

Test dataset 
size 
(legitimate) 

Test dataset 
size (fraud) 

MLP2BE256H82 89,216 50.168 39,048 



MLP2BE128H164 89,216 50.168 39,048 

MLP2OH128H918 89,216 49,624 39,592 

MLP3OH256H512 89,216 49,907 39,309 

MLP3BE256H512 89,216 50,117 39,099 

MLP3OH256H918 89,216 49,911 39,305 

CNN2OH100LR10-3 89,216 50,231 38,985 

CNN2OH100LR10-1 89,216 50,137 39,079 

DAE4BE256 244,081 48,816 195,265 

DAE4OH256 244,081 48,816 195,265 

Table 28. MLP neural network architectures. 

 

3.4.4.7. Parametrization 

Grid search was used to adjust the parameters initially set for each architecture. These initial 
parameters are included in Tables 29, 30, and 31 (Carrasco & Sicilia, 2020). Grid search was useful 
to measure how much each of these parameters was influencing performance. 
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MLP2BE256H82 2 Binary Binning 256 10#% 82 250 

MLP2BE128H164 2 Binary Binning 128 10#" 164 1,000 

MLP2OH128H918 2 OHE Binning 128 10#" 918 250 

MLP3OH256H512 3 OHE Binning 256 10#% 512 250 

MLP3BE256H512 3 Binary Binning 256 10#% 512 250 

MLP3OH256H918 3 OHE Binning 256 10#% 918 250 

Table 29. MLP parametrization. 
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CNN2OH100LR10-3 2 OHE Binning 100 10#% 31x31 25,000 

CNN2OH100LR10-1 2 OHE Binning 100 10#! 31x31 25,000 



Table 30. CNN parametrization. 
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DAE4BE256 4 Binary Binning 256 10#" 55 (1) 
37 (2) 

250 

DAE4OH256 4 OHE Binning 256 10#" 612 (1) 
408 (2) 

500 

Table 31. DAE parametrization. 

 

  



4. Results 
4.1. Introduction 

Obtained results in each of this research work’s developments are presented and discussed in this 
section. 

4.2. Unsupervised intrusion detection 

An attack was identified in proposed approach by measuring the cosine similarity between the 
network node and the connection observed in the event. The threshold was zero. Therefore, if the 
similarity was negative, the event was classified as an attack. In the same way, a positive value 
represented normal activity (Carrasco & Sicilia, 2018). 

The total number of distinct network nodes and connections was 2,830 in the test dataset. Each of 
these combinations was evaluated to determine whether they represented legitimate or malicious 
activity. The results obtained with assessed configurations are enumerated in Table 32. 
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C1 8 2 90,000 4 1,122 9 1,454 245 98.14 0.197208 0.9920 0.8207 

C2 16 2 90,000 4 1,103 7 1,456 264 99.01 0.360984 0.9936 0.8068 

C3 32 2 90,000 4 1,109 8 1,455 258 99.18 0.626274 0.9928 0.8112 

C4 16 4 90,000 4 1,114 7 1,456 253 98.48 0.364535 0.9937 0.8149 

C5 16 4 90,000 8 1,119 9 1,454 248 97.55 0.367023 0.9920 0.8185 

C6 16 4 90,000 16 1,118 14 1,449 249 97.79 0.366863 0.9876 0.8178 

C7 16 4 180,000 4 1,103 6 1,457 264 98.89 0.355693 0.9945 0.8068 

C8 16 4 360,000 4 1,096 7 1,456 271 99.30 0.359761 0.9936 0.8017 

C9 32 4 360,000 8 1,088 5 1,458 279 99.30 0.624516 0.9954 0.7959 

Table 32. Configuration parameters and results. 

 

As seen in the table (Carrasco & Sicilia, 2018), performance was not influenced by batch size, 
embedding size or skips length. On the other hand, convergence was achieved with a low number of 
epochs, possibly due to the (small) size of the dataset. 

C1 was the optimal configuration (Carrasco & Sicilia, 2018). Precision and recall values for this 
configuration were 99.20% and 82.07%, respectively. F-score was 89.82%, accuracy was 91.02%, 
and false positive rate was 0.61%. No knowledge of attack patterns was required to achieve these 
figures. On the other hand, while this precision value was outperformed by other configurations, the 
recall of those configurations was suboptimal. 



UNSW-NB15 dataset has been extensively chosen to measure intrusion detection performance 
(Bamakan, Wang, & Shi, 2017). Table 33 shows how proposed approach's performance compares to 
other methods (Hodo, Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017): 

 

Technique Dataset Requires 
prior 
knowledge 

False 
positive rate 

Accuracy Detection 
rate 

Precision 

Skip-gram UNSW-NB15 No 0.61% 91.02% 82.07% 99.20% 

MLP-BP KDD Cup’99 Yes 8.51% - 81.96% 90.58% 

RBF KDD Cup’99 Yes 1.2% - 99.2% - 

SOM KDD Cup’99 No 1.38% - 90.4% - 

ART KDD Cup’99 No 3.86% - 96.13% - 

LSTM-RNN KDD Cup’99 No 10.04% 96.93% 98.88% - 

DBN KDD Cup’99 Yes 0.76% 93.49% - 99.18% 

Ramp-KSVCR UNSW-NB15 Yes 2.46% 93.52% 98.68% 98.60% 

Table 33. Performance comparison with other neural network-based techniques. 

 

Neither precision nor accuracy were disclosed for MLP-BP (Hodo, Bellekens, Hamilton, Tachtatzis, 
& Atkinson, 2017). The value shown for precision was calculated from disclosed rates (detection 
rate, false positives, false negatives). The same exercise is done for SOM (Kayacik, Zincir-
Heywood, & Heywood, 2007), using detection and false positive rate. Neither precision nor accuracy 
were disclosed (or could be obtained from disclosed rates) for ART (Hodo, Bellekens, Hamilton, 
Tachtatzis, & Atkinson, 2017).  

False positive rate was not included for LSTM-RNN in the study comparing methods (Hodo, 
Bellekens, Hamilton, Tachtatzis, & Atkinson, 2017), but was found in the original research work 
(Kim, Kim, Thu, & Kim, 2016). For DBN implementation, supplied true positive and false positive 
rates allowed to calculate precision.  

Proposed approach outperforms the aforementioned methods in key metrics like false positive rate. 
Keeping this rate as low as possible is a challenge in the field of IDS (Pietraszek, 2004). Proposed 
approach achieves a low false positive rate with notable accuracy and detection rate values. 
Moreover, these figures are achieved without training the algorithm with attack data. The algorithm 
is also compact in terms of input features, as it only requires four features that can be easily extracted 
from any network source. 

The dataset used for testing has been recently produced (2015) and correct issues found in other 
datasets (Gogoi, Bhuyan, Bhattacharyya, & Kalita, 2012) used by the methods with which proposed 
approach is compared. These other datasets contain records that exhibit redundancy, which 
introduces bias (Gogoi, Bhuyan, Bhattacharyya, & Kalita, 2012), and leads to artificially high 
measures of accuracy (Buczak & Guven, 2015). 



4.3. Semisupervised intrusion and fraud detection 

The set of tested neural network configurations are presented, and the optimal configuration is 
identified. Obtained results are compared to similar techniques and discussed. 

A set of configurations with varying values for these parameters (shown in Table 34) were defined, 
in order to measure their influence on performance levels. 

Optimal parameters were discovered by measuring the performance obtained by each configuration 
in Table 34. In proposed setting, optimal meant higher accuracy. For each of the feature selection 
approaches described in section 3.3, three parameter configurations were tested. These 
configurations were designed to measure the influence of batch size and neural network layer sizes. 
Table 34 includes tested configurations and their performance levels. 
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C1 All features 305 16 4 1 10 64 0.9344 0.9743 0.9529 

C2 All features 305 32 4 1 10 32 0.9365 0.9668 0.9506 

C3 All features 305 32 4 1 10 64 0.9396 0.9826 0.9597 

C4 Random forest 207 16 4 1 10 64 0.9322 0.9655 0.9477 

C5 Random forest 207 32 4 1 10 32 0.9584 0.9999 0.9783 

C6 Random forest 207 32 4 1 10 64 0.9462 0.9810 0.9626 

C7 No IP addresses 241 16 4 1 10 64 0.9601 0.9577 0.9589 

C8 No IP addresses 241 32 4 1 10 32 0.9048 0.8701 0.8893 

C9 No IP addresses 241 32 4 1 10 64 0.9458 0.9563 0.9507 

Table 34. Parameter configurations and results. 

 

Table 34 shows that neither layer size structure nor batch size strongly influenced performance 
levels, regardless of the feature selection approach. On the other hand, ten epochs were set for all 
configurations, as more epochs didn't drove any performance improvement. This, however, might 
not hold for bigger datasets. As for the feature selection approach, including IP addresses in the 
training process didn't consistently improve performance: configurations excluding them (C7) 
performed better than those that included them (C1), in terms of accuracy. However, selecting 
features based on the importance attributed by xgboost slightly enhanced the metrics, as observed for 
configurations C5 and C2. 

C5 was the optimal configuration, with 95.84% precision and 99.99% recall, leading to an F-score of 
97.87%. Accuracy was 97.83%, and the FPR 4.33%.  

Table 35 summarizes how proposed system's performance compares to previous research. Proposed 
system outperformed all other methods in terms of detection rate (recall) and obtained comparable 



performance in other metrics like accuracy and precision. S-NDAE (Shone, Ngoc, Phai, & Shi, 
2018) and SSAE+SVM (Yan & Han, 2018) techniques obtained higher accuracy, but they were 
tested against a dataset with less recent attacks and unrealistic traffic, as reported by other authors 
(Tavallaee, Bagheri, Lu, & Ghorbani, 2009). Both methods are based on a supervised setting, which 
fully relies on labelled data, while proposed approach is semisupervised (labeled data is only used 
for feature selection). On other hand, the system based on Taguchi method and stacked sparse 
autoencoders obtained higher accuracy and precision, but it is also based on a supervised setting. 
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Proposed approach Yes UNSW-
NB15 

No 4.33% 97.83% 99.99% 95.84% 

Ramp-KSVCR (Bamakan, 
Wang, & Shi, 2017) 

No UNSW-
NB15 

Yes 2.46% 93.52% 98.68% 98.60% 

DBN+SVM (Marir, Wang, 
Feng, Li, & Jia, 2018) 

No UNSW-
NB15 

Yes - - 97.21% 90.47% 

MDPCA-DBN (Yang, Zheng, 
Wu, Niu, & Yang, 2019) 

No UNSW-
NB15 

Yes 17.15% 90.21% 96.22% 87.30% 

S-NDAE (Shone, Ngoc, Phai, 
& Shi, 2018) 

Yes KDD Yes 2.15% 97.85% 97.85% 99.99% 

Self-taught learning (STL) 
(Javaid, Niyaz, Sun, & Alam, 
2016) 

Yes NSL KDD Yes - 88.39% 95.95% 85.44% 

Stacked Dilated Convolutional 
Autoencoders (Yu, Long & 
Cai, 2017) 

Yes CTU-UNB / 
Contagio-
CTU-UNB 

Yes - - 88.80% 90.65% 

SSAE+SVM (Yan & Han, 
2018) 

Yes NSL KDD Yes 0.13% 99.35% 99.01% - 

Deep Neural Net Ensemble 
(Ludwig, 2017) 

Yes NSL KDD Yes - - 92.00% 93.00% 

Taguchi + stacked sparse 
autoencoders (Karim, Güzel, 
Tolun, Kaya, & Çelebi, 2018) 

Yes UNSW-
NB15 

Yes - 99.70% - 99.70% 

Autoencoder (Yousefi-Azar, 
Varadharajan, Hamey, & 
Tupakula, 2017) 

Yes KDD No - 83.84% - - 

Table 35. Performance comparison. 

 



4.4. Cross-domain malicious behavior detection 

Based on the proposed model parametrization options, configurations shown in Table 36 were tested 
for the three datasets under consideration. For each configuration, the parameters used and 
performance evaluation metrics are displayed. 
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UNSW-NB15 5 1,000 ,()* 0.9707 0.9458 0.9443 0.9715 0.9579 0.9573 0.9585 

UNSW-NB15 5 1,000 ,+,( 0.7883 0.7041 0.6535 0.8245 0.7390 0.7146 0.7596 

UNSW-NB15 5 25,000 ,()* 0.9583 0.9485 0.9480 0.9588 0.9534 0.9531 0.9536 

UNSW-NB15 5 25,000 ,+,( 0.7984 0.7008 0.6423 0.8378 0.7401 0.7119 0.7632 

UNSW-NB15 10 25,000 --./ 0.9719 0.9454 0.9438 0.9727 0.9582 0.9576 0.9588 

UNSW-NB15 10 25,000 ,+,( 0.8162 0.7456 0.7136 0.8393 0.7765 0.7615 0.7897 

Paysim1 5 1,000 ,()* 0.7775 0.9023 0.9202 0.7366 0.8284 0.8429 0.8111 

Paysim1 5 1,000 ,+,( 0.9916 0.7073 0.5883 0.9950 0.7917 0.7385 0.8269 

Paysim1 5 25,000 ,()* 0.7788 0.9067 0.9241 0.7375 0.8308 0.8453 0.8134 

Paysim1 5 25,000 ,+,( 0.9916 0.7080 0.5896 0.9950 0.7923 0.7395 0.8273 

Paysim1 10 25,000 --./ 0.7648 0.9414 0.9560 0.7060 0.8310 0.8498 0.8068 

Paysim1 10 25,000 ,+,( 0.9916 0.7075 0.5887 0.9950 0.7919 0.7388 0.8270 

IoT-23 MC11 5 1,000 ,()* 0.9998 0.9291 0.8245 0.9999 0.9468 0.9037 0.9632 

IoT-23 MC11 5 1,000 -01- 0.9998 0.9296 0.8259 0.9999 0.9472 0.9046 0.9635 

IoT-23 MC11 5 25,000 ,()* 0.9998 0.9291 0.8245 0.9999 0.9468 0.9037 0.9632 

IoT-23 MC11 5 25,000 ,+,( 0.9998 0.9296 0.8259 0.9999 0.9472 0.9046 0.9635 

IoT-23 MC11 10 25,000 ,()* 0.9998 0.9291 0.8245 0.9999 0.9468 0.9037 0.9632 

IoT-23 MC11 10 25,000 ,+,( 0.9998 0.9291 0.8245 0.9999 0.9468 0.9037 0.9632 

Table 36. Parameter configurations and results. 

 

Obtained results suggest that performance is not heavily influenced by the number of topics or 
algorithm’s passes, even though optimal configurations were achieved with different parameter 
values in the three datasets. 



As for the probability metric, D)!& leads to poor performance in UNSW-NB15 and Paysim1 datasets 
but delivers a comparable (and slightly higher) accuracy in IoT-23 MC11. In fact, all configurations 
tested with IoT-23 MC11 led to similar performance. This could be explained by the stationarity 
behavior of IoT devices, and the fact that most attack traffic belongs to port scanning activities, 
which differ significantly from legitimate traffic. Therefore, legitimate traffic can be easily modeled 
by LDA, leading to high detection performance regardless of the parameters used. 

Performance achieved for UNSW-NB15 and IoT-23 MC11 is notably higher than the one obtained 
for Paysim1. One possible reason for this is that the former two contain a richer feature set, leading 
to greater discriminative capabilities when topic modeling is applied. Also, UNSW-NB15 metrics 
are more uniform across classes (legitimate, malicious) than those for Paysim1 or IoT-23 MC11. 
Again, the nature of the datasets and their features could partially explain this behavior. Lastly, 
proposed method seems to perform better when classifying network traffic, but still obtains 
acceptable results for the other two datasets. 

Figures 13, 14 and 15 show the ROC curves obtained for the optimal configuration in each dataset. 

 

 

Figure 13. ROC curve for dataset UNSW-NB15. 

 

 

Figure 14. ROC curve for dataset Paysim1. 

 



 

Figure 15. ROC curve for dataset IoT-23 MC11. 
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Proposed method UNSW-NB15 No 95.82% 95.86% 95.82% 

Autoencoder (Choi, Kim, Lee, & Kim, 
2019) 

KDD Cup 99 No 91.70% - - 

Averaged One Dependence Estimator 
(AODE) (Nawir, Amir, Yaakob, & 
Lynn, 2019) 

UNSW-NB15 Yes 97.26% - - 

Support Vector Machine (SVM) + 
Recursive Feature Elimination, Random 
Forest (Meftah, Rachidi, & Assem, 
2019) 

UNSW-NB15 Yes 82.11% - - 

Support Vector Machine (SVM) + 
Scaling method (Jing & Chen, 2019) 

UNSW-NB15 Yes 85.99% - - 

Table 37. Performance comparison for network attacks. 
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Proposed method Paysim1 No 83.21% 77.92% (0) 

90.97% (1) 

84.45% 

92.68% (0) 

73,74% (1) 

83.21% 

Decision tree 
(Shahed, Ibrahim, & 
Akter, 2019) 

Paysim1 Yes 94.04% 94.00% (0) 

98.00% (1) 

100.00% (0) 

43.00% (1) 



Support Vector 
Machine (Shahed, 
Ibrahim, & Akter, 
2019) 

Paysim1 Yes 96.14% 96.00% (0) 

98.00% (1) 

100.00% (0) 

64.00% (1) 

Artificial Neural 
Network (Shahed, 
Ibrahim, & Akter, 
2019) 

Paysim1 Yes 97.83% 98.00% (0) 

92.00% (1) 

99.00% (0) 

87.00% (1) 

Undercomplete 
autoencoder (Misra, 
Thakur, Ghosh, & 
Saha, 2020) 

Paysim1 No 99.94% 85.34% 80.15% 

Table 38. Performance comparison for payments fraud. 
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Proposed method IoT-23 No 95.82
% 

95.05% 94.72% 

DEMISe (Parker, Yoo, Asyhari, 
Chermak, Jhi, & Taha, 2019) 

Aegean Wi-
Fi 
Impersonatio
n Attack 
Detection 

Yes 98.04
% 

- 99.07% 

BotFP-Clus (& = 0.50) (Blaise, Bouet, 
Conan, & Secci, 2020) 

CTU-13 Yes - 74.00% 100.00% 

BotFP-MLP (Blaise, Bouet, Conan, & 
Secci, 2020) 

CTU-13 Yes - 85.00% 85.00% 

BotFP-SVM (Blaise, Bouet, Conan, & 
Secci, 2020) 

CTU-13 Yes - 93.00% 93.00% 

BotFP-Clus (& = 0.10) (Blaise, Bouet, 
Conan, & Secci, 2020) 

CTU-13 Yes - 100.00% 85.00% 

Convolutional Neural Network (Van 
Huong & Hung, 2019) 

Self-
generated 

Yes 98.9% - - 

Table 39. Performance comparison for IoT malware traffic. 

 

Table 37 shows that proposed method outperforms (Choi, Kim, Lee, & Kim, 2019), (Meftah, 
Rachidi, & Assem, 2019) and (Jing & Chen, 2019) in terms of accuracy, and provides comparable 
performance to AODE (Nawir, Amir, Yaakob, & Lynn, 2019). However, AODE works with labeled 
data, while proposed method doesn’t require prior examples of attack traffic. 



Table 38 shows that proposed method exhibits lower accuracy than the other techniques, but it 
provides higher recall ratios for the fraud class than decision trees (Shahed, Ibrahim, & Akter, 2019) 
or SVM (Shahed, Ibrahim, & Akter, 2019). It also delivers lower precision and recall than Artificial 
Neural Network (Shahed, Ibrahim, & Akter, 2019), but it requires no prior knowledge of fraudulent 
transactions. Lastly, it delivers precision and recall ratios comparable to those obtained with the 
undercomplete autoencoder (Misra, Thakur, Ghosh, & Saha, 2020). 

Table 39 shows that proposed method outperforms BotFP-MLP (Blaise, Bouet, Conan, & Secci, 
2020) and BotFP-SVM (Blaise, Bouet, Conan, & Secci, 2020) techniques in terms of precision and 
recall, while providing comparable (but more stable) performance to both configurations of BotFP-
Clus. It performs slightly worse than DEMISe (Parker, Yoo, Asyhari, Chermak, Jhi, & Taha, 2019) 
and Convolutional Neural Network (Van Huong & Hung, 2019), but it requires no knowledge of 
malicious traffic for training. 

4.5. Supervised fraud detection optimization 
Obtained results are summarized in Tables 40 to 49 (Carrasco & Sicilia, 2020).  
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Table 40. MLP2BE256H82 performance. 
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Table 41. MLP2BE128H164 performance. 
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Table 42. MLP2OH128H918 performance. 
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Table 43. MLP3OH256H512 performance. 
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Table 44. MLP3BE256H512 performance. 
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Table 45. MLP3OH256H918 performance. 
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Table 46. CNN2OH100LR10-3 performance. 
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Table 47. CNN2OH100LR10-1 performance. 
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Table 48. DAE4BE256 performance. 
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Table 49. DAE4OH256 performance. 

 

The supervised learning approaches (MLP, CNN) obtained higher performance than the Deep 
Autoencoder. 

The AUC was 0.52 for the Deep Autoencoder when using binary encoding, and 0.48 for OHE. This 
performance level might be explained by the fact that alerts contain biased normal activity 
(transactions tagged as potential fraud by the fraud detection system (Carrasco & Sicilia, 2020). 

MLP architectures with less hidden layers exhibited higher AUC values. OHE exhibited higher AUC 
performance than binary encoding, while batch size, epochs and learning rate didn’t impacted 
obtained performance (Carrasco & Sicilia, 2020). 

MLP2OH128H918 achieved top AUC (0.87). With a value of 0.2 set for the threshold, tradeoff 
between average precision (0.78) and recall (0.75) was optimal. Fraud class obtained 0.67 precision 
and 0.88 recall (Carrasco & Sicilia, 2020). 

 

Figure 16. MLP2BE256H82 ROC.  Figure 17. MLP2BE128H164 ROC. 



 

Figure 18. MLP2OH128H918 ROC.   Figure 19. MLP3OH256H512 ROC. 

 

Figure 20. MLP3BE256H512 ROC.   Figure 21. MLP3OH256H918 ROC. 

 

Figure 22. CNN2OH100LR10-3 ROC.  Figure 23. CNN2OH100LR10-1 ROC. 



 

Figure 24. DAE4BE256 ROC.    Figure 25. DAE4OH256 ROC. 

 

Table 50 and Table 51 shows the confusion matrixes for threshold values 0.1 and 0.2: 

 

Predicted class Legitimate Fraud Total 

Real class    

Legitimate 28,120 21,504 49,624 

Fraud 3,249 36,343 39,592 

Total 31,369 57,487 89,216 

Table 50. Confusion matrix (threshold = 0.1) 

 

Predicted class Legitimate Fraud Total 

Real class    

Legitimate 32,367 17,257 49,624 

Fraud 4,849 34,743 39,592 

Total 37,216 52,000 89,216 

Table 51. Confusion matrix (threshold = 0.2) 

 

The alert reduction rate was 35.16%: 

31,369
89,216 = 	0.3516	(35.16%) 

to detect 91.79% of fraud (8.21% misclassification rate): 

36,343
39,592 = 	0.9179	(91.79%) 



Alert reduction rate could grow to 41.47% with a slightly higher misclassification rate: 

37,216
89,216 = 	0.4147	(41.47%) 

to detect 87.75% of fraud (12.25% misclassification rate): 

34,743
39,592 = 	0.8775	(87.75%) 

 

 

  



5. Discussion 
5.1. Introduction 

In this section, the conclusions extracted from obtained results are presented and discussed. Final 
conclusions, related to the motivation and objectives of this research work, are also included.   

5.2. Unsupervised intrusion detection 

Proposed approach obtained 99.20% precision, 82.07% recall, 91.02% accuracy, and 0.61% false 
positive rate. The obtained false positive rate outperforms other similar methods (Carrasco & Sicilia, 
2018). Furthermore, these figures were obtained without training the algorithm with attack data. 

Proposed approach only requires four basic network-related features, which significantly lowers 
storage requirements. Other methods (Bamakan, Wang, & Shi, 2017) require the 49 features of 
UNSW-NB15. It also delivers a model in which results can be explained. Modeled behavior 
considers both known behavior of the node, and the behavior observed for similar nodes (Carrasco & 
Sicilia, 2018), which allows to extend the method to perform Peer Group Analysis (Botros, Diep, & 
Izenson, 2004) (Diep, Botros, & Izenson, 2003). 

5.3. Semisupervised intrusion and fraud detection 

In this research, a semisupervised learning system for intrusion was designed and tested. It was based 
on a deep autoencoder, a popular neural network architecture for anomaly detection. The proposed 
feature engineering approach transformed both categorical and numerical features into binary vectors 
that could be processed as inputs by the autoencoder. On the other hand, three feature selection 
techniques were tested, showing that selecting features based on their importance led to higher 
performance, but modeling frequent connections didn't consistently improve results. 

The optimal configuration of proposed semisupervised intrusion detection system achieved 95.84% 
precision, 99.99% recall, 97.83% accuracy, and 97.87% F-score, with a false positive rate of 4.33%. 
With such recall (detection rate) value, proposed approach outperforms other similar techniques. On 
the other hand, the proposed system delivers this performance under a semisupervised setting, which 
is more suitable for detecting unknown attacks than techniques based on learning known attack 
patterns. 

5.4. Cross-domain malicious behavior detection 

Optimal configurations of proposed LDA-based technique led to accuracies of 95.82%, 83.21% and 
94.72% for the UNSW-NB15 (network attacks), Paysim1 (payments fraud), IoT-23 (IoT malware 
traffic) datasets, respectively. These accuracies are comparable to, or even outperform, several state-
of-art methods in each of the targeted fields. 

This work demonstrates that topic modeling, particularly LDA, can be successfully applied to 
malicious behavior detection in three different, unrelated datasets used in previous literature. It 
achieves this objective without relying on a particular feature set structure, by transforming 
categorical and numerical features into words. It redefines the traditional concept of entity, switching 
from IP address or user to connection (protocol, service) or transaction type. Lastly, it applies a 
tailored scoring mechanism for anomaly detection, leveraging the data structures created by the LDA 
algorithm. 



5.5. Supervised fraud detection optimization 

Alert reduction rates was the motivation behind the assessment of several deep neural networks used 
in the fraud detection field. This reduction rate was enabled by the ability of each architecture to 
automate detection of false alerts (Carrasco & Sicilia, 2020). 

The set of alerts used as input was processed to determine which of them were false positives. 

A reduction rate of 35.16% was obtained with the optimal architecture. This configuration caught 
91.79% of fraud (obtaining a 8.21% misclassification rate). The reduction rate was 41.47% if the 
percentage of caught fraud cases dropped to 87.75% (obtaining 12.25% misclassification rate) 
(Carrasco & Sicilia, 2020). This reduction rate implies less cost of human specialists, whose 
workload would be significantly lowered by proposed approach. 

As a result, deep neural networks are a promising development path to obtain cost efficiencies in 
fraud detection (Carrasco & Sicilia, 2020).  

  



6. Conclusions 
The conclusions of this research are strongly connected with the original objectives of the work. For 
this reason, they are included in separate sections, one for each objective. 

6.1. Reduce the dependence on well-known attack patterns through AI 
In this research work, a novel unsupervised learning technique based on skip-gram models was 
designed, developed and tested against a public dataset with popular intrusion patterns. A high 
accuracy and a low false positive rate were achieved by modeling legitimate activity, without 
knowledge of these attack patterns. 

Therefore, capturing frequent network behavior is an effective method to discover known and 
unknown attacks, as the related activity is significantly different from legitimate interactions. 
Moreover, relying on well-known attack patterns can provide a false sense of security, since 
unknown patterns will let sophisticated attacks go unnoticed. 

6.2. Cross-domain applications and use cases of AI 

The current state of artificial intelligence is far from AGI (Artificial General Intelligence), in which a 
machine can use general problem-solving methods and doesn't require to be trained on specific use 
cases. However, designing AI techniques that can solve a set of related problems is feasible, as 
demonstrated by this research. 

Particularly, it was proven that an AI method like topic modeling can be successfully applied to three 
related domains (network attacks, payments fraud, IoT malware traffic) that share some structure and 
principles. A high accuracy was achieved in the three scenarios, even though the malicious activity 
significantly differs from one domain to the other. However, as the topic modeling was performed 
against legitimate activity, these differences didn't impact results. 

This exercise also proves that, while choosing the right algorithm is important to solve a problem, 
framing the problem properly can be even more important. This is especially true when the chosen 
algorithm shouldn't solve a standalone problem but a set of related problems. 

6.3. Augment unsupervised intrusion detection with supervised learning 
A thorough discussion exists in the research community as to whether supervised or unsupervised 
techniques perform better when it comes to intrusion detection. There have been multiple proposals 
that leverage ensemble or hybrid models, in which both are integrated to maximize performance. 

However, no extensive literature exists on how a supervised learning method can augment an 
unsupervised setting in the intrusion detection use case. In this research work, this augmentation was 
achieved by prioritizing or selecting features that could discriminate best whether a given activity 
was legitimate or malicious. Obtained results showed that this technique can outperform other 
similar techniques. 

Therefore, augmentation of unsupervised learning with supervised-related insights is an effective 
method to increase intrusion detection accuracy of an algorithm trained with legitimate activity only, 
while not limiting these detection capabilities with well-known attack patterns. 



6.4. Reduce false positive ratio of fraud detection systems 

While automated detection is key in any malicious behavior detection use case, manual review by 
human experts is still required. Therefore, making this process more efficient helps to further 
improve the overall detection process. 

In this research work, it was proven that part of this manual review can also be automated without 
significantly impacting accuracy. In other words, human judgement can be captured by an algorithm 
(in this case, a neural network) to quickly discriminate legitimate activity. 

Therefore, in the malicious behavior detection use case, and particularly in fraud detection, the focus 
must go beyond the initial or real-time automation and expand to optimizing manual work performed 
by experts as well. 

6.5. Research directions 
Part of this research work was published as journal papers (Carrasco & Sicilia, 2018) (Carrasco & 
Sicilia, 2020). This opens up the opportunity to extend the research in a number of directions. 

First, cross-domain application of AI methods can be further explored in the intrusion detection field. 
As businesses and supporting technology becomes more complex and heterogeneous, the need to 
develop methods that can be reused across fields becomes more important. Having the ability to 
apply an AI technique to multiple set of problems can lead to significant efficiencies and pave the 
road to more general reasoning systems that could detect malicious behavior regardless of what the 
exact environment is. 

Also, augmentation of a given technique with another that takes a different approach might have 
more applications to intrusion detection than the one shown in this research. As the intrusion 
detection literature is extensive and well-grounded, it might be the time to rethink how existing 
knowledge on the field can be combined in such a way that a higher-order knowledge can be 
extracted. 

Lastly, while using fully automated and optimized methods to solve problems is desirable, exploring 
ways to mimic human decision-making processes can also help to further optimize a process. In this 
research work the focus was on reducing the false positive ratio, but intrusion detection requires 
multiple other activities where human experts play a relevant role. These could be candidates to 
achieve similar optimizations. 
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8. Appendices 
8.1. UNSW-NB 15 dataset feature set 

Id. Name Type Description 

1 srcip nominal Source IP address. 

2 sport integer Source port number. 

3 dstip nominal Destination IP address. 

4 dsport integer Destination port number. 

5 proto nominal Transaction protocol. 

6 state nominal Indicates to the state and its dependent protocol. 

7 dur float Record total duration. 

8 sbytes Integer Source to destination transaction bytes. 

9 dbytes integer Destination to source transaction bytes. 

10 sttl integer Source to destination time to live value. 

11 dttl integer Destination to source time to live value. 

12 sloss integer Source packets retransmitted or dropped. 

13 dloss integer Destination packets retransmitted or dropped. 

14 service nominal 
http, ftp, smtp, ssh, dns, ftp-data ,irc  and (-) if not 
much used service. 

15 Sload float Source bits per second. 

16 Dload float Destination bits per second. 

17 Spkts integer Source to destination packet count. 

18 Dpkts integer Destination to source packet count. 

19 swin integer Source TCP window advertisement value. 

20 dwin integer Destination TCP window advertisement value. 

21 stcpb integer Source TCP base sequence number. 

22 dtcpb integer Destination TCP base sequence number. 

23 smeansz integer Mean of the packet size transmitted by the src. 

24 dmeansz integer Mean of the packet size transmitted by the dst. 

25 trans_depth integer 
Pipelined depth into the connection of http 
request/response transaction. 

26 res_bdy_len integer 
Uncompressed content size of data transferred from 
the http server. 

27 Sjit float Source jitter (ms). 



28 Djit float Destination jitter (ms). 

29 Stime 
timestam
p 

Record start time. 

30 Ltime 
timestam
p 

Record last time. 

31 Sintpkt float Source interpacket arrival time (ms). 

32 Dintpkt float Destination interpacket arrival time (ms). 

33 tcprtt float 
TCP connection setup round-trip time: sum of synack 
and ackdat. 

34 synack float 
TCP connection setup time: time between SYN and 
SYN_ACK. 

35 ackdat float 
TCP connection setup time: time between 
SYN_ACK and ACK. 

36 is_sm_ips_ports binary 
If source (1) and destination (3) IP addresses equal 
and port numbers (2) (4) equal then 1 else 0. 

37 ct_state_ttl integer 
Number for each state (6) according to specific range 
of values for source/destination time to live (10) (11). 

38 ct_flw_http_mthd integer 
Flows with methods such as GET and POST in http 
service. 

39 is_ftp_login binary 
If the ftp session is accessed by user and password 
then 1 else 0.  

40 ct_ftp_cmd integer Flows with a command in ftp session. 

41 ct_srv_src integer 
Connections with same service (14) and source 
address (1) in 100 connections according to last time 
(26). 

42 ct_srv_dst integer 
Connections that contain the same service (14) and 
destination address (3) in 100 connections according 
to last time (26). 

43 ct_dst_ltm integer 
Connections of the same destination address (3) in 
100 connections according to last time (26). 

44 ct_src_ ltm integer 
Connections of the same source address (1) in 100 
connections according to last time (26). 

45 ct_src_dport_ltm integer 
Connections with same source address (1) and 
destination port (4) in 100 connections according to 
last time (26). 

46 ct_dst_sport_ltm integer 
Connections with same destination address (3) and 
source port (2) in 100 connections according to last 
time (26). 



47 ct_dst_src_ltm integer 
Connections with same source (1) and destination 
address (3) in 100 connections according to last time 
(26). 

48 attack_cat nominal Name of each attack category.  

49 Label binary 0 for normal and 1 for attack records. 

 

8.2. Paysim1 dataset 

Name Type Description 

step numeric 
A unit of time. 1 step is 1 hour of time. Total steps 744 
(30 days). 

type 
categoric
al 

CASH-IN, CASH-OUT, DEBIT, PAYMENT and 
TRANSFER. 

amount numeric Amount of the transaction in local currency. 

nameOrig 
categoric
al 

Customer who started the transaction. 

oldbalanceOrg numeric Initial balance before the transaction. 

newbalanceOrig numeric New balance after the transaction. 

nameDest 
categoric
al 

Customer who is the recipient of the transaction. 

oldbalanceDest numeric Initial balance recipient before the transaction. 

newbalanceDest numeric New balance recipient after the transaction. 

isFraud binary Flag: legitimate transaction, fraudulent transaction. 

isFlaggedFraud binary 
Flag: an attempt to transfer more than 200.000 in a 
single transaction. 

 

8.3. IoT-23 MC11 dataset 

Name Type Description 

ts time Timestamp. 

uid string Unique identifier. 

id.orig_h addr Source IP address. 

id.orig_p port Source port. 

id.resp_h addr Target IP address. 

id.resp_p port Target port. 

proto enum Protocol. 



service string Service. 

duration interval Connection duration. 

orig_bytes count Bytes sent by source IP address to target IP 
address. 

resp_bytes count Bytes sent by target IP address to source IP 
address. 

conn_state string Connection state. 

local_orig bool Local source address. 

local_resp bool Local target address. 

missed_bytes count Missed bytes. 

history string History. 

orig_pkts count Packets sent by source IP address to target IP 
address. 

orig_ip_bytes count IP bytes sent by source IP address to target IP 
address. 

resp_pkts count Packets sent by target IP address to source IP 
address. 

resp_ip_bytes count IP bytes sent by target IP address to source IP 
address. 

tunnel_parents    set[string] Tunnel parents. 

label    string Label: Benign, Malicious. 

detailed_label string Detailed label. 

 


