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Abstract

This Ph.D. thesis’ goal is focused on the optimization of renewable energy resources deve-
lopment, specifically solar PV energy, using di�erent hybrid computational Machine Learning
techniques.

Energy is the engine of our society, allowing us performing almost every action taken by
human beings in our daily routine, and providing a constant evolution and development in all
our fields. Currently, fossil fuels entail the higher percentage of energy sources in our planet.
They have several advantages, such as easy and constant production, but, at the same time, they
present substantial disadvantages, like the extreme pollution associated with these resources,
and their contribution to global warming and climate change. This is the reason why the
largest and most powerful economies are working for a energy change towards renewable sources
for a sustainable development. In the introduction of this thesis, a large number of studies
are presented, which foresee a penetration by over a 50% of this kind of energies in the next
decades. Strong investments are being made in this field, looking for technology development
and, besides, introducing these energies into society as a matter to be taken into account, for it is
related to economic and social status. However, the development of energy systems mainly based
on renewable energy will surely be slow, since these energies depend on variables which are out
of our control, mainly atmospheric and climatic variables, which are intrinsically intermittent.
This matter must be taken into account, due to the amount of energy demanded by society at
the present, as well as the tremendous increase that is predicted for this demand in the future,
due to new technologies and new ways of daily routines, like electric vehicles or IoT, etc.

To obtain a solution for this problem, on one hand, it is fundamental to achieve the capability
of predicting the quantity of energy obtained in each moment, avoiding increases or decreases of
energy, being this matter the core of this Ph.D. Thesis, where the optimal feature selection for
predicting the quantity of global solar radiation in a given point is studied. On the other hand,
all the information to do the prediction process will be obtained from a numerical weather meso-
scale model called WRF (Weather Research and Forecasting), a static model based on di�erent
physic equations which involve di�erent variables like humidity, pressure or percentage of cloud
fraction in any point and di�erent heights in the planet. Additionally, dynamic information,
like global solar radiation can be obtained from a radiometric measuring point in Toledo, Spain,
allowing us to get a database of the solar global radiation in the past few years. The result of
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mixing both of these data will be added as inputs in our hybrid systems.
In this work, a deep analysis in the state of art for machine learning models is performed, so

as to solve the problems previously considered. Di�erent contributions have been proposed:

1. One of the pillars of this work is focused on the optimal feature selection in the exploitation
of solar PV radiation in a given point. For this purpose, Extreme-Learning Machine (ELM)
will be used as regressor element in the system, where the output of the ELM will be
calculated from the WRF outcome features added as inputs in the system.

2. The second contribution of this thesis is related to parameters selection problems. More
specifically, the use of EAs such as Grouping Genetic Algorithm (GGA) or Coral Reef
Optimization (CRO) hybridized with others ML are used as classifiers and regressors.
Regarding this, the GGA or CRO look for several subsets of basic parameters to solve the
problem, and the regressor employed provides the prediction in terms of the selected by the
Genetic Algorithm (GA), reducing the computational cost maintaining a good accuracy.

Finally, the several of the mentioned algorithms are applied in the same problem already
defined, in order to get the global solar radiation prediction in di�erent points, dealing to improve
previous results in other works and obtaining new applications and techniques, as new paths of
research in the future.



Resumen en Castellano

Esta Tesis doctoral tiene como objetivo la optimización de la explotación de recursos en-
ergéticos renovables, siendo en este caso el objetivo principal la energía solar fotovoltáica y la
predicción del recurso. El análisis llevado a cabo se fundamenta en la utilización de algoritmos
y técnicas computacionales meta-heurísticas híbridas, espećficamente algoritmos genéticos de
agrupamiento, algoritmos de arrecife de coral y redes neuronales artificiales.

La energía es el motor de nuestra sociedad, que nos permite realizar casi la totalidad de las
acciones que el ser humano hace a diario, propugnando una constante evolución y desarrollo
en cualquier ámbito de nuestra vida. Actualmente, los combustibles denominados fósiles son la
mayor fuente energética de nuestro planeta, tanto por la facilidad y continuidad en su obtención,
como porque gran parte de la tecnologá hasta hace poco tiempo estaba basada en su consumo.
Es sobradamente conocido que este tipo de energía son un recurso finito y extremadamente
contaminante, afectando al medio en el que vivimos. Debido a esto, las grandes economías
están apostando por un cambio paulatino en las fuentes de energía, siendo los recursos renova-
bles los que garantizan un futuro sostenible para nuestra forma de vida. Como veremos en la
introducción de esta tesis, numerosos estudios preveen una penetración de dichas fuentes por
encima del 50% en las próximas décadas. Las fuertes inversiones que se realizan en esta mate-
ria, para su desarrollo y ampliación en la penetración, hacen de ellas un elemento interesante
a niveles socio-económicos. Esta evolución será lenta y paulatina, ya que este tipo de energías
tienen un elemento que no podemos controlar (al contrario que en las energías fósiles) que es
su intermitencia intrínseca, ya que son energías que dependen de en muchos casos de fenómenos
naturales, fundamentalmente atmosféricos en el caso de la energía solar y eólica. El objetivo
final es conseguir que la penetración de estas energías renovables supere a las energías fósiles y
permita salvar el problema anteriormente descrito.

La mejor opción para conseguir una penetración elevada de los recursos renovables es desar-
rollar sistemas de predicción que permitan establecer el recurso disponible en el futuro próximo,
para poder adelantarnos a cualquier exceso o defecto de la producción. Este será un elemento
clave sobre el que gira la presente Tesis doctoral. Espećficamente, la selección de las variables
más importantes para realizar una predicción del recurso solarcon el menor error posible y que
nos permita realizar las gestiones oportunas en tiempo y forma.

En este aspecto, obtendremos toda la información para la predicción de un modelo numérico-
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meteorológico de meso-escala (WRF), el cual es un modelo estático y que, basado en distintas
ecuaciones físicas, aporta una serie de variables como la humedad, la presión o el porcentaje de
cielo nublado que obtendremos en cualquier lugar del planeta, a distintas alturas. Este modelo
puede ser utilizado para la predicción en sí mismo, pero usualmente sufre de falta de resolución
en la estimación de la radiación solar en un punto específico de la superficie. En esta Tesis se
utiliza una red neuronal de entrenamiento rápido para realizar la predicción final en el punto
deseado, usando los algoritmos metaheurísticos mencionados anteriormente para la selección de
las variables óptimas a usar en esta predicción.

En este trabajo se ha realizado un análisis del estado del arte de los modelos de aprendizaje
máquina que se utilizan actualmente, con el objetivo de resolver los problemas asociados a los
temas tratados con anterioridad. Diferentes contribuciones han sido propuestas:

1. Uno de los pilares esenciales de este trabajo está centrado en la selección de los parámetros
más importantes en la medición de la energía solar fotovoltaica en un punto dado. Con
este propósito, el algoritmo de Extreme Learning Machine (ELM), será utilizado como
elemento regresor del sistema, que permitirá calcular en un tiempo de cómputo mínimo,
el valor de la radiación solar global en función de las variables de entrada.

2. Otro de los aspectos tratados está relacionado con problemas de selección de característi-
cas para una óptima predicción de nuestro sistema regresor. Concretamente, con el uso de
algoritmos evolutivos como Algoritmos de Agrupación Genética (GGA) o los algoritmos
de Optimización de Arrecife de Coral (CRO) hibridados con otros métodos de aprendizaje
máquina como clasificadores y regresores. En este sentido, el GGA o CRO analizan difer-
entes conjuntos de características para obtener aquel que resuelva el problema con el menor
posible, y el regresor empleado proporciona la predicción en funcioÌn de las característi-
cas obtenidas por el GGA, reduciendo el coste computacional con gran fiabilidad en los
resultados.

Los diferentes algoritmos mencionados han sido aplicados a una serie de casos reales con
medidas de radiación solar del observatorio Astronómico de Toledo, España.
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La mayoría de corredores no corren porque quieran vivir más. Lo hacen porque quieren vivir al
máximo.

Haruki Murakami
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Publications of the compendium

This Ph.D. Thesis is composed of three main articles which form the core of the research
work carried out. The first two articles summarize the work carried out in the development of
Grouping Genetic Algorithms (GGA). The first one is a development of a hybrid GGA approach,
in this case with specific application to a problem of telecommunication network design, but
with extension to other optimization problems. In fact, the second article of the compendium
describes the application of the GGAs to a problem of solar radiation prediction from numerical
weather model, where the groups of the GGA deal with a problem of Feature Selection. The
last article of the compendium presents a di�erent approach to the problem, in which a Coral
Reefs Optimization with Species is proposed in a problem of solar radiation prediction.
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Chapter 1

Introduction

Today’s world is completely dependent on electricity, mainly produced based on fossil fuels
such as petroleum, natural gas or coal. Moreover, according to [112], the world primary energy
demand is projected to expand by almost 60% from 2002 to 2030, with an average increase of
1.7% per year. However, the high environmental impact of current energy resources, together
with the need for addressing the impact of climate change, led to an important development of
renewable energy sources [76]. The International Energy Agency (IEA) has stated that electricity
generation from renewable energy is expected to rise up to 39% by 2050 [13]. In fact, renewable
sources have experienced a huge growth in the last two decades, and they are today thought as
the resources which will erase fossil fuels from our society in the next fifty years. The prevalence
of renewable resources has several challenges, that must be solved before renewable energies
overtake fossils as primal energy resources. The most important issue with renewable energy
sources is to manage their inherent intermittence, which currently avoid that renewable energies
overpass 40% of penetration in the energetic mix.

Among renewable resources, solar, wind, geothermal, biomass and hydroelectric energy
sources are the main types of renewable energy. However, solar resource is currently thought as
the future renewable source, due to the extraordinary solar resource we have available. More
specifically, solar energy is a clean, extremely abundant and sustainable source of energy [37],
that poses a low risk to the environment. Solar energy development has been specially impor-
tant in mid-east and Southern Europe countries, plus North America, where the solar resource
is able to be exploited all year around [56], because the percentage of clear sky and the cloud
non-appearance is higher than in the rest of the world. Among these renewable resources, solar
photovoltaic was observed as the one of the world leading renewable energy sources.

1.1 Solar energy production in the world

Solar PV generation overtook bioenergy and is now the third-largest renewable electricity
technology in absolute figures, after hydropower and onshore wind. Moreover, Solar PV gene-
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8 Chapter 1. Introduction

ration increased 22% (+131 TWh) in 2019, representing the second-largest absolute generation
growth of all renewable technologies, slightly behind wind and ahead of hydropower. Despite
decelerating growth due to recent policy changes and uncertainties in China (the largest solar
PV market globally), 2019 was a year of record global growth in PV capacity. As competitive-
ness continues to improve, solar PV is still on track to reach the levels envisioned in the SDS,
which will require average annual growth of 15% between 2019 and 2030.

Solar PV electricity generation increased by 131 TWh globally in 2019, to research 720
TWh, second only to wind in absolute terms, to account for 2.7% of the electricity supply.
This growth was significantly lower than in 2018, however, because global solar PV capacity
additions stalled in 2018 and China’s deployment further contracted in 2019. This was mainly
as a result of a sudden change in China’s solar PV incentives to curb costs and address grid
integration challenges to achieve a more sustainable PV expansion. The European Union, India
and the United States contributed equally to the solar output increase. Solar PV generation rose
sharply in Southeast Asia, driven by a surge in new capacity in Vietnam from 0.1 GW to 5.4
GW. Capacity additions increased in the United States, the European Union, Latin America, the
Middle East and Africa, which together compensated for the slowdown in China, resulting in a
record year for PV deployment. Solar PV is well on track to reach the Sustainable Development
Scenario (SDS) level by 2030, which will require electricity generation from solar PV to increase
15% annually, from 720 TWh in 2019 to almost 3300 TWh in 2030.

Stimulated by strong policy support concentrated mostly in Europe, the United States and
Japan, deployment of distributed solar PV systems in homes, commercial buildings and industry
has been growing exponentially over the last decade. In most countries, commercial and resi-
dential systems already have electricity generation costs that are lower than the variable portion
of retail electricity prices. The increasing economic attractiveness of distributed PV systems
could therefore lead to a rapid expansion in the coming decades, attracting hundreds of millions
of private investors.

Regarding the solar energy growth by countries, in Germany, solar photovoltaic energy was
promoted in early 1970s, and now is a leading country in PV development in Europe [51]. In
2019, German PV plants produced about 46.5 TWh, an increase of 1.7 percent compared to
2018. In Japan, a lot of technology-push policies were promulgated for solar energy utilization
sine 1950s [129]. In 2019 the annual share of solar PV power generation in Japan increased from
6.5% in the previous year to 7.4%.

Comparing with other developed countries, the photovoltaic energy industry started rela-
tively late in China, but it experienced an explosive increase since 2000s [137]. Solar PV capacity
in China slowed for the second year in row to 30.1 GW in 2019. This expansion is significantly
lower than the 53.1 GW in 2017, when the government phased out feed-in tari�s and introduced
deployment quotas (in June 2018) to control costs and tackle grid integration challenges. Over-
all, this policy shift is expected to make solar PV technology more cost-competitive within and
outside China, leading to more sustainable development over the longer term. A large number
of subsidy-free projects were already in development in multiple chinese provinces in 2019. Dis-
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tributed solar PV capacity is expected to increase rapidly in China, driven by new auctions for
commercial and industrial applications and subsidies for residential systems.

Australia is a leading country in solar PV, with the highest level of the annual global solar
radiation [97]. In spite of this, solar energy only accounts for only 3% of the total power
consumed in the country, which remains behind wind energy (5%) and hydro-power (7%).

Growth in the United States was stable, with 13.2 GW of solar PV becoming operational in
2019, one quarter higher than 2018 additions, as a result of federal tax incentives and state-level
policies. In the European Union, solar PV additions increased 98% year-on-year in 2019 owing
to faster deployment in Spain, Germany and the Netherlands. Brazil installed a record-level 2.1
GW of new solar PV capacity in 2019, more than doubling its achievement in 2018. Generous
net metering incentives stimulated this rapid expansion, as residential and small commercial
consumers receive significant returns on their investments. US and EU growth increased and
higher Latin American capacity addition expansion was led by Brazil.

Covid-19 has led to construction delays, supply chain disruptions and weaker investment in
the PV sector in 2020. Utility-scale projects are susceptible to supply chain concerns, labour
constraints and construction delays, all leading to delays in project commissioning. The dis-
tributed PV sector is more at risk as it relies on both individuals and SMEs, who are more
severely a�ected by lockdown measures and any economic downturn resulting from Covid-19.
Despite the slowdown expected in 2020, acceleration of PV capacity deployment is likely to
continue in the medium-term, as the cost of electricity generation from solar PV is increasingly
cheaper than alternatives. The rapid recovery of the distributed PV sector will depend on the
pace of economic recovery and government policies. The impact of the Covid-19 crisis on PV
deployment is extensively covered in the IEA Renewable Energy Market Update released in May
2020 [85].

1.2 Solar radiation prediction and estimation problems

As the majority of renewable resources, solar power production is intrinsically stochastic, and
significant variations in solar energy production occur due to the presence of clouds, atmospheric
dust or particles [80]. This intermittency can cause problems to include solar production in the
energetic mix. The best option to manage this intermittence of the solar resource is to predict
the solar production of the most important plans, in the same way that wind production is
predicted in wind farms.

The basis to estimate solar radiation at any given location is to apply the classical astronom-
ical equations [109]. In addition, the well-known di�erent processes that modifies solar radiation
when it passes through the atmosphere can also be considered for a better approach: molecular
(or Rayleigh) scattering by the permanent gases, aerosol (or Mie) scattering due to particles
and the abortion by di�erent gases. Nevertheless, this scheme is very simple and more reliable
and robust methods are necessary to deliver accurate predictions. In this sense, many di�erent
approaches have been proposed to estimate or predict solar radiation amount in the last years.
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For longer prediction time horizons (e.g. 6 hours or more), physics-based or numerical
models are usually employed [28, 22, 49]. In the last years, these numerical models have been
improved by the use of Machine Learning (ML) or Artificial Intelligence (AI) algorithms for solar
radiation prediction or estimation problems, as we will further detail in Chapter 2. The problem
of solar energy prediction usually involves the accurate prediction of the solar radiation at a given
point (the solar plant facility), and this prediction depends completely on di�erent atmospheric
variables [92, 50, 57, 114, 119]. The majority of these approaches include di�erent inputs based
on geographical and atmospheric parameters such as latitude, longitude, temperature, wind
speed and direction, sunshine duration or precipitation [69, 74], among others.

1.3 Motivation and objective of the work

In the last years, there have been a massive interest in new algorithms for solar radiation
prediction, as will be detailed in Chapter 2. Many of the most successful approaches are in
fact ML-based approaches, which have exploited the capacity of ML algorithms of extracting
information from data. Some of these ML algorithms have just applied some of the state-of-
the-art algorithms such as di�erent types of Neural Networks (NN), Support Vector Regression
(SVR), Random Forest, etc. to a set of databases, with very little knowledge of the physics
behind the problem. This may lead to poor results in some cases, mainly when the prediction
time horizon is larger than 6 hours. In this cases, it is of major importance to take into account
the atmospheric conditions in order to obtain a robust prediction system for solar radiation.

There are basically two ways of including atmospheric information in ML prediction pro-
blems: one is to directly hybridize ML algorithms with numerical methods which provide the
atmospheric future state. In general it is not an easy task, and major problems of compatibility,
computational performance, etc. may arise. The second possibility is to consider input variables
which directly considers the atmospheric state, both as direct measurements whenever possible,
or variables from numerical models, such as meso-scale models or re-analysis etc. In [98] it is
possible to find a review of the most important data sources for Earth observation problems,
including data for prediction problems in renewable energy. This second case is usually the most
used, since avoid the problems of hybridization and computational complexity of a direct hy-
bridization with numerical models. However, there are other issues when considering this second
possibility. The most important one is that the number of predictive (input) variables can be
huge depending on the specific prediction problem, which in turn, may lead to poor performance
of ML approaches. Thus, it is completely necessary to apply Feature Selection mechanisms [96]
to improve the performance of ML algorithms in solar radiation and estimation problems.

In this Ph.D. Thesis, we propose a novel family of hybrid approaches based on ML for
solar radiation prediction and estimation problems. The hybrid meta-heuristic proposed include
a feature selection mechanism based on evolutionary algorithms, and a fast training neural
network (Extreme Learning Machine (ELM) [44]) which is able to obtain accurate results within
a very small computation time. Specifically, in a first proposal, we evaluate a novel grouping
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genetic algorithm (GGA) scheme as feature selection mechanism. The proposal consists of
evaluating the input features in each group formed in the GGA, and keeping the best performance
as final feature set for the ELM. Di�erent modifications of this scheme including alternative
crossover and evolution dynamics are proposed and evaluated in this Thesis, for solar radiation
prediction problems. A second algorithmic proposal is based on a new version of the Coral
Reefs Optimization (CRO) algorithm [93, 94], an recently proposed evolutionary approach which
has been successfully applied to di�erent optimization problems. In this case we exploit an
advanced version of the CRO in which di�erent species are considered within the algorithm,
each representing a possible encoding for an optimization problem. Each encoding represents in
this case a given number of inputs for the ELM in the solar radiation prediction problem. This
way, the Coral Reefs Optimization with Species (CRO-SP) is able to evolve di�erent encodings,
looking for the best one within a single population of the algorithm. In this case the CRO-SP
is also hybridized with a ELM to carry out the solar radiation prediction.

With these ideas in mind, the main objective of this Ph.D. Thesis is to evaluate the per-
formance of these new family of hybrid ML algorithms in specific problems of solar radiation
prediction, considering real data and input variables that consider the atmospheric state, both
direct measurements and data from numerical weather models.

1.4 Structure of the Thesis

The rest of this Thesis has been structured in the following way: Chapter 2 reviews the most
important previous work on ML algorithms for solar radiation prediction, and also the work
in the last years about Feature Selection, with a specific review of Feature Selection methods
in solar radiation prediction problems. Chapter 3 is devoted to describe the most important
algorithms and computational methods which will be used to construct the proposed family of
hybrid algorithms for solar radiation prediction. Specifically, we will review the most important
characteristics of Grouping Genetic Algorithms, Coral Reefs Optimization algorithms and Ex-
treme Learning Machines. The experimental part of the Thesis will be presented in Chapters
4 and 5, in which di�erent problems of solar radiation prediction and estimation are discussed.
Chapter 4 presents a novel hybrid approach formed by a Grouping Genetic Algorithm for feature
selection and an Extreme Learning Machine as predictor. In turn, chapter 5 presents the per-
formance of a hybrid Coral Reefs Optimization algorithm with Species, also hybridized with an
Extreme Learning Machine as predictive approach. The Thesis is closed with Chapter 6, where
the most important conclusions of this work are summarized. Finally, Chapter 6.2 presents some
future lines of research that this work has opened.





Chapter 2

Previous work: ML approaches in

solar prediction and algorithms for

feature selection problems

2.1 Machine learning for solar radiation prediction problems

The first models able to estimate the expected solar radiation with acceptable accuracy were
developed in the twentieth century. Probably the most well-known empirical model was the one
suggested by [5]. This model that estimates global solar radiation amount from sunshine duration
data, was subsequently modified by taking into account some other relevant meteorological
variables [109]. Despite their simplicity, the most serious constraint of this type of models is
that they are based on the assumption that the time series data used to predict the incoming solar
radiation are linear. However, the atmospheric system is chaotic and highly non-linear, which
inevitably a�ects the predictability of these models. To overcome this limitation, several authors
proposed the use of Numerical Weather prediction Models (NWM). These systems are able to
model the dynamics of the atmosphere, as well as the physical processes involved, by employing
a set of equations based on physical laws of motion and thermodynamics. Therefore, they can
be considered as a reliable approach to estimate incoming solar radiation. For example, in [80]
an interesting review on the performance of di�erent NWP models to forecast solar irradiance
in the US, Canada and Europe is presented. The evaluation includes forecasts based on global,
multiscale and mesoscale NWP models. Additionally, NWP models have demonstrated their
ability to provide useful solar radiation climate data sets, like the work of [79] where a 60
years (1950 to 2010) climatology of incident shortwave downward solar radiation at the surface
over the Iberian Peninsula is obtained from simulations performed using the WRF model. An
alternative approach is presented in [66], where an artificial neural network ensemble model is
proposed for the prediction of global solar radiation by exploiting information within infrared
Meteosat channels.
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selection problems

In the last years, many di�erent approaches have been proposed for global solar radiation
prediction, a lot of them using Machine Learning or Computational Intelligence techniques. The
majority of these approaches include di�erent inputs based on geographical and atmospheric pa-
rameters such as latitude, longitude, temperature, wind speed and direction, sunshine duration,
precipitation, etc. [69, 74]. According to [12], sunshine duration, air temperature and relative
humidity are the most widely used meteorological parameters to predict daily solar radiation
and its components. All these parameters are well correlated with the daily solar global radia-
tion as pointed out in [122]. In [67] a Bayesian framework for artificial neural networks, named
as automatic relevance determination method, was developed to evaluate the more relevant in-
put parameters in modelling solar radiation. In fact, neural computation paradigm has been
massively applied to this prediction problem, like in [8], where it is shown that Radial Basis
Functions (RBF) neural networks obtain excellent performance in the estimation of solar radi-
ation. In [30] a comparison between Multi-Layer Perceptrons (MLP) and RBF neural networks
in a problem of solar radiation estimation is carried out. Experiments in eight stations in Oman
show the good results obtained with the neural algorithms. A similar approach, also comparing
MLPs and RBFs (with di�erent predictive variables) has been recently proposed in [7], in this
case the authors test the neural network with data obtained in Iran. In [78] the performance of
a MLP in a problem of solar radiation prediction in time series is compared to that of ARMA,
Bayesian inference, Markov Chains and k-Nearest Neighbors models, for specific problems in
Corsica and Southern France. Another work dealing with solar radiation time series predic-
tion is [133], where a hybrid algorithm that involves an ARMA model and a time-delay neural
network is proposed. In [43] a neural network to predict hourly solar radiation in a region of
Turkey is proposed. The paper also introduces a 2D model for solar radiation useful for visual-
ization and data inspection. In [35], the forecasting of solar irradiance proposed utilizes features
extracted from all-sky images, such as the number of cloud pixels, frame di�erence, gradient
magnitude, intensity level, accumulated intensity along the vertical line of sun or the number
of corners in the image. Other works on solar radiation prediction involve ARMA models, as
[53] a hybrid approach based on ARMA and time delay neural networks has been successfully
tested in data from a solar station in Singapore. Another paper involving hybrid ARMA and
neural networks is [120], where this hybrid approach is successfully applied to solar radiation
prediction in di�erent cities of the French Mediterranean coast and Corsica. Alternative ap-
proaches that apply neural networks as prediction methodology also include novel predictive
variables, such as satellite data [110] or temperature and relative humidity [84]. Other machine
learning algorithms, such as Support Vector Regression (SVR) algorithms have been also applied
to solar radiation prediction problems from meteorological predictive variables [21, 136]. Specif-
ically, a least-square SVM is proposed in that work, comparing the results obtained with that of
auto-regressive and RBF neural networks. In [82] the potential of multi-layer perceptron neural
networks with back-propagation training algorithm is shown in a problem of global solar radi-
ation estimation in Iran. Results comparing the performance of the neural networks with that
of an empirical equation for global solar radiation prediction (Hargreaves and Samani equation)
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show good performance of the neural approach. In [11] a hybrid approach that includes hidden
Markov models and generalized fuzzy models has been proposed and tested in real solar irradi-
ation data in India. Finally, we discuss very recent hybrid approaches proposed to problems of
solar energy prediction, such as [75] where a SVR has been hybridized with a fire-fly algorithm
to select the best parameters of the SVR, or [70], where a hybrid SVR–Wavelets approach is
presented in a problem of horizontal global solar radiation prediction. The goodness of this
novel approach has been tested in a real problem of solar radiation estimation in Bandar Abbas
(Iran). Moreover, in [28], a post-processing technique (Kalman filtering) is used to improve the
hour-ahead forecasted Global Horizontal Irradiance (GHI) from 1) the measured GHI at the
ground, and 2) the Weather Research and Forecasting (WRF) meso-scale model, and results at
Reunion Island are provided.

In more recent years (from 2017 to 2020), the use of Machine Learning-based (ML) algorithms
[38] has consolidated as a reliable alternative/complement to NWP in solar energy prediction
problems. For example, [63] proposed a new day-ahead spatiotemporal prediction method for
solar radiation in order to ensure the e�cient operation of power systems. In [128] solar and wind
energy resources in North Korea were studied by using both satellite data and NWP reanalysis
variables. [39] proposed a deep learning hybrid model to predict solar radiation in two phases,
firstly a convolutional network is used to extract features, and secondly, a Long-Short-Term
Memory (LSTM) network is applied for the prediction stage. Moreover, [81] also used LSTM
for hourly day-ahead solar irradiance prediction achieving competitive results for a case of study
in Santiago, Cape Verde. [47] explored the blending of four models (Satellite, WRF-Solar,
Smart Persistence and CIADCast) by using Support Vector Machines aiming to improve GHI
and DNI forecasts in the Iberian Peninsula; [3] studied several categories of ML techniques such
as artificial neural networks, gradient boosting trees or classification and regression trees, among
others, for solar radiation estimation at two di�erent locations, Turkey and USA; [27] applied
ELMs to forecast long-term incident solar radiation over Australia using relevant satellite-based
input data extracted from the moderate resolution imaging spectroradiometer and enriched by
geo-temporal input variables; [33] evaluated the use of a hybrid Particle Swarm Optimization and
ELM (PSO-ELM), to accurately predict daily global solar radiation on seven stations located
on the Loess Plateau of China during 1961-2016; [73] evaluated the performance of a hybrid
neural network with simulated annealing in a problem of solar radiation prediction in Iran; [26]
proposed a novel pipeline combining artificial neural networks with satellite-derived (MODIS)
land surface temperature (LST) for forecasting long-term global solar radiation; [48] suggested
a hybrid model based on random forest and a firefly algorithm for a problem of global solar
radiation prediction in Malaysia. More recently, [64] assessed the application of deep learning
algorithms as a solar predictor, using a new strategy based on the portfolio theory in order to
reduce predictability errors. Furthermore, [86] undertook regression analysis of solar irradiance
in Iran, paying attention to the e�ect of di�erent types of storage tanks and of changes in
longitude and latitude. [77] proposed a recurrent neural network model to investigate how
emerging deep learning algorithms contribute to accurate solar radiation prediction, specially in
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comparison to swallow artificial neural networks. Some state-of-the-art reviews of ML models
widely used in solar energy prediction problems can be found in the works [121, 4, 72].

As it has been mentioned, some approaches consider the use of satellite images together with
ML techniques to estimate incoming solar radiation. For example, [135] uses fuzzy logic and
neural networks for estimating hourly global radiation from satellite images. In [87] an ELM
combined with satellite data and geographic variables is applied to a solar radiation prediction
problem over Turkey. [118] assessed the progress made by two di�erent sources of reanalysis
data, ERA5 and COSMO-REA6, in the estimation of surface irradiance. [134] proposes a deep
learning method based on embedding clustering and functional deep belief networks to estimate
solar radiation with data from a total of 30 stations from China. More recently, [23] evaluates
the performance of several ML regression techniques (multi-layer perceptrons, ELMs, Support
Vector Regressors and Gaussian Processes) in a problem of global solar radiation estimation
from geostationary satellite data.

Di�erent approaches discussing Extreme Learning Machine (ELM, a novel training method
for artificial neural networks) applications in solar radiation prediction problems have been
recently proposed, such as [87], where the ELM approach is applied to a solar radiation prediction
problem from satellite measures. In [2] a case study of solar radiation prediction in Saudi Arabia
is discussed comparing the performance of artificial neural networks with classical training and
ELMs. In [29] a hybrid wavelet-ELM approach is tested in a problem of solar radiation prediction
for application in a photovoltaic power station. Finally, in [91] a comparison of a support vector
regression algorithm and an ELM is carried out in a problem of direct solar radiation prediction,
with application in solar thermal energy systems, and in [92], where a hybrid ELM–Coral Reefs
Optimization is proposed for solar radiation prediction in Southern Spain. Finally, in [97]
developed a model by combining CRO with ELMs, where CRO works as a feature selection
function guided by the ELM algorithm, to predict daily global solar radiation in the Sunshine
State of Australia, achieving a competitive performance. That work is fully related to this Ph.D.
Thesis development.

2.2 Feature selection

2.2.1 Feature Selection in Machine Learning

Feature selection is an important task in Machine Learning related problems because ir-
relevant features, used as part of the training procedure of di�erent prediction systems, can
increase the cost and running time of the system, and make its generalization performance
much poorer[15, 131]. In its more general form, the FSP for a learning problem from data can
be defined as follows: given a set of labeled data samples (x1, y1), . . . , (xl, yl), where xi ∈ Rn and
yi ∈ R (or yi ∈ {±1} in the case of classification problems), choose a subset of m features (m < n),
that achieves the lowest error in the prediction of the variable yi.

There are two main paradigms/general approaches to face a FSP:
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• The wrapper approach to the FSP was introduced in [55]. In this approach, the fea-
ture selection algorithm conducts a search for a good subset of features using the classi-
fier/regressor itself as part of the evaluating function. Figure 2.1(a) shows the idea behind
the wrapper approach: the classifier/regression technique is run on the training dataset
with di�erent subsets of features. The features subset which produces the lowest esti-
mated error in an independent but representative test set is chosen as the final feature set.
For further reading on wrappers methods, the following classical works can be consulted
[62, 126, 88]. In the case of the wrapper method, the FSP admits a mathematical definition
as follows: The FSP consists of finding the optimum n-column vector ‡, where ‡i ∈ {1, 0},
that defines the subset of selected features, which is found as

‡o = arg min
‡,–
�� V (y, f(x ∗‡, –))dP (x, y)� , (2.1)

where V (⋅, ⋅) is a loss functional, P (x, y) is the unknown probability function the data was
sampled from and we have defined x ∗ ‡ = (x1‡1, . . . , xn‡n). The function y = f(x, –) is
the classification/regression engine that is evaluated for each subset selection, ‡, and for
each set of its hyper-parameters, –.

• In the filter approach to the FSP, the feature selection is performed based on the data,
ignoring the classifier algorithm. An external measure calculated from the data must
be defined in order to select a subset of features. After the search, the best feature
subset found is evaluated on the data by means of the classifier algorithm. Note that
filter algorithms performance completely depends on the measure selected for comparing
feature subsets. Figure 2.1(b) shows an example of how a filter algorithm works. Filter
methods are usually faster than wrapper methods. However, their main drawback is
that they totally ignore the e�ect of the selected feature subset on the performance of the
classification/regression algorithm during the search, so usually their performance is poorer
compared to wrapper approaches. Further analysis and application of filter methods can
be found in [115, 116].

• There are finally di�erent works which have combined both wrapper and filter methodolo-
gies to come up with hybrid approaches, which have been reported to have a very good
performance in specific applications [113, 45, 46, 34].

For both wrapper and filter methods, a binary representation can be used for the FSP, where
a 1 in the ith position of the binary vector means that the feature i is considered within the
subset of features, and a 0 in the jth position of the binary vector means that feature j is not
considered within the subset of features. Note that using this notation is equivalent to encode
the problem as the vector ‡ included in expression (2.1). Note also that there are 2n di�erent
subsets of features (being n the total number of features), and the problem is to select the best
one in terms of a certain measure, which can be either internal (wrapper methods) or external
(filter methods) to the classifier.
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Figure 2.1: (a) Outline of a Wrapper method; (b) Outline of a Filter method.

2.2.2 Feature selection in solar energy

In [35] a system for solar irradiance very short-term prediction (minutes time-horizon) is
proposed. The work uses a solar irradiance prediction scheme with features extracted from
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all-sky images. The idea is to obtain proper features from all-sky images derived from an all-
sky camera sited in Taiwan, apply a feature extraction algorithm to the images, and then use a
regression technique to predict a clearness index from them. In a second step, the clearness index
is used to calculate the desired solar irradiance together with the extraterrestrial solar irradiance
value, which only depends on astronomical variables. The features considered for the clearness
index estimation are related to the all-sky images obtained: number of cloud pixels, where a
RBR threshold method is applied to decide cloud pixels or not. Frame di�erence between images
in t and t−1 moments, which is important to locate moving clouds. Gradient magnitude, which
provides information corresponding to edges in an image. In this case, edges are often related
to cloud boundaries in all-sky images. Intensity level, since in the all-sky images the brightness
level of clear skies and cloudy skies are very di�erent. Accumulated intensity along the vertical
sun line. The idea of this feature is that if the sunlight is strong, the line caused by the sun
would cross the entire image, whereas in cloudy situations, the vertical line of sun would not
cross the image. Number of corners, since corners in all-sky images correspond to the details of
the clouds that have edges with at least two directions in a local patch of the sky. Using these
features, the proposed system applies a filter feature selection to di�erent images consisting in
ranking the features which have a higher correlation to the clearness index. The most relevant
features are then used in a linear regression system to estimate the clearness index from the
image. The results in real data from all-sky images in Taiwan collected in August 2011 show
that the proposed system is an accurate tool to estimate short-term solar irradiation prediction
locally. The experimental results shows an improvement in the short-term prediction of solar
irradiance of about 4% in comparison with the estimation of the solar irradiance directly from
weather variables.

In [124] a study of the main influencing input parameters for solar radiation prediction with
neural networks is carried out in di�erent locations of India, by using the Waikato Environment
for Knowledge Analysis (WEKA) software. Di�erent variables such as daily average tempera-
ture, minimum temperature, maximum temperature, altitude, sunshine hours and site location
are considered. The study uses a previous wrapper method with a regression tree implemented
in WEKA to select the best set of features. After this process, several neural networks from
WEKA are evaluated on this best set of features. Improvements over 13% are obtained after the
FSP process (comparing the neural networks without feature selection pre-processing) in some
of the locations considered. Note that also in this case, the small number of features involved
in the problems made possible an exhaustive search algorithm, which was implemented in the
WEKA software.

In [130] a feature extraction method is applied to select the best set of input parameters for
a Support Vector Machine (SVM) classifier, in order to reconstruct a database of weather types.
These weather types are directly connected with the photovoltaic power generation accuracy,
so the most useful features are extracted from photovoltaic data, and they serve as inputs in
a SVM, to reconstruct the database of weather types. As can be seen, this is a classification
problem used as a previous step in the estimation of photovoltaic power generation prediction
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for buildings.
In [83] a problem of forecasting the electricity power generation by a solar photo-voltaic

system is tackled. Short-term prediction (from 5 to 60 minutes ahead) is considered. Input
variables at di�erent previous times are considered: solar irradiance, temperature, humidity and
wind speed. A total of 4200 variables are finally available as inputs to predict the photo-voltaic
generation in the next hour, in intervals of 5 minutes. A filter method is used to select the best set
of variables for the prediction, in this case the correlation-based feature selection, which selects
the best set of variables with higher correlation with the objective variable. After this feature
selection, two machine learning algorithms are applied to generate the system’s prediction: an
ensemble of neural networks and a support vector regression approach. Experiments in power
data collected from the St. Lucia campus of the University of Queensland in Brisbane, Australia,
have shown that the neural network ensemble is able to outperform the SVR, obtaining solutions
around 1% better after applying the filter feature selection method proposed.

In [71] an adaptive neuro-fuzzy inference system (ANFIS) has been applied to select the
most influential variables in a daily horizontal di�use solar radiation prediction problem. Rel-
evant variables are considered in order to study how di�erent groups predict solar radiation:
daily di�use and global solar radiation on a horizontal surface, sunshine duration, minimum
air temperature, maximum air temperature, average air temperature, relative humidity, water
vapor pressure, daily maximum possible sunshine duration, solar declination angle and extrater-
restrial solar radiation on a horizontal surface. Four years of measured data from the Iranian
Meteorological Organization (January 2009 to December 2012) have been used. Analysis of the
best combination of 3 variables have been carried out, showing the %age of improvement when
considering 1, 2 or 3 variables. The best result obtained (3 variables) was over 30% better than
the solution of the system considering just 1 variable. No comparison results with alternative
approaches were shown in the work, which makes di�cult a further analysis of the proposal’s
performance.

In [132] a hybrid niching genetic algorithm – linear regression approach is used to estimate
global solar radiation in El Colmenar, Argentina. Data from 14 di�erent weather stations
were used in this work. Climatic variables such as daily average temperature, air humidity,
atmospheric pressure, cloudiness, and sunshine hours are considered. The idea is to reconstruct
the global solar radiation at El Colmenar from the data in the other 13 measurement stations. A
niching genetic algorithm with binary encoding is considered, in which a 1 stands for including
a given variable in the prediction, and a 0 stands for not including it. The linear regression
is used due to its good computational complexity performance and its interpretability, though
the authors admit that neural networks can obtain better results. The prediction obtained
is only compared with the niching genetic algorithm with di�erent number of individuals and
generations, with the best prediction result obtained with 200 individuals and 150 generations,
improving a 3% the solution of the algorithm with 50 individuals and 35 generations. A complete
comparison with alternative approaches is not provided.

Finally, [123] o�ers a first general review of some works dealing with relevant parameters
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selection in solar energy prediction problems, in a larger framework of solar energy prediction
with neural networks.





Chapter 3

Materials and Methods

3.1 Grouping Genetic Algorithms

The grouping genetic algorithm (GGA) is a class of evolutionary algorithm especially modi-
fied to tackle grouping problems, i.e., problems in which a number of items must be assigned to
a set of predefined groups. It was first proposed by Falkenauer [31, 32], who realized that tradi-
tional genetic algorithms had di�culties when they were applied to grouping problems. Thus,
in the GGA, the encoding, crossover and mutation operators of traditional GAs are modified to
obtain a compact algorithm, with a high performance in grouping-based problems. The GGA
has been successfully applied to di�erent optimization problems, within di�erent applications
[52]-[61], but it has not been applied in Feature Selection for ML algorithms (to our knowledge),
up until now.

3.1.1 Encoding in GGAs

The GGA considered in this work follows the classical grouping encoding initially proposed
by Falkenauer in [31], i.e. it is a variable-length genetic algorithm. The encoding is carried out
by separating each individual in the algorithm into two parts: c = [l�g], the first part is the
element section, whereas the second part is called the group section of the individual. As an
example, following our notation, in a solution for a problem with N elements (input variables
for a solar prediction problem) and k groups, the individual will have the following aspect:

l1, l2, . . . , lN � g1, g2, . . . , gk

Note that lj represents the group to which j-th predictive variable is assigned, whereas group
section keeps a list of tags associated to each of the groups of the solution. In a formal way:

lj = gi⇔ xj ∈ Ci. (3.1)

23
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Note also that the length of the element section is fixed for a given problem (equals N), but
the group section’s length is not fixed, but it varies from one individual to another. Thus the
GGA does not need as input parameter the number of groups, but it searches for the best k in
terms of the objective function.

As an example to fully clarify the GGA encoding, let us suppose the following individual:
1 3 2 1 4 1 1 2 3 2 1 3 4 2 1 � 1 2 3 4
This individual represents a solution with 4 groups of variables, and the following partition

of the input variables: {x1, x4, x6, x7, x11, x15}, {x3, x8, x10, x14}, {x2, x9, x12} and {x5, x13}.
3.1.2 Selection operator

Di�erent selection operators can be used in the GGA, since the GGA is not defined in
exploitation, but in exploration. we describe here a rank-based wheel selection mechanism,
previously used and described in [52], but note that any other selection mechanism such as
tournament-based selection would be also appropriate. In rank-based wheel selection, the indi-
viduals are first sorted in a list based on their quality. The position of the individuals in the list
is called rank of the individual, and denoted Ri, i = 1, . . . , ›, with › number of individuals in the
population of the GGA. We consider a rank in which the best individual x is assigned Rx = ›,
the second best y, Ry = › − 1, and so on. A fitness value associated to each individual is then
defined, as follows:

fi = 2 ⋅Ri

› ⋅ (› + 1) (3.2)

Note that these values are normalized between 0 and 1, depending on the position of the
individual in the ranking list. It is important to note that this rank-based selection mechanism is
static, in the sense that probabilities of survival (given by fi) do not depend on the generation,
but on the position of the individual in the list. As a small example, consider a population
formed by 5 individuals, in which individual 1 is the best quality one (R1 = 5), individual 2
the second best (R2 = 4), and so on. In this case, the fitness associated to the individuals are{0.33, 0.26, 0.2, 0.13, 0.06}, and the associated intervals for the roulette wheel are {0−0.33, 0.34−
0.6, 0.61 − 0.8, 0.81 − 0.93, 0.94 − 1}.

This process of selection is usually performed with replacement, i.e., a given individual could
be selected several times as one of the parents, however, individuals in the crossover operator
must be di�erent.

3.1.3 Crossover operator

The crossover operator defined as the current standard in the GGA is a version of the one
initially proposed by Falkenauer in [31]. The process follows a two parents – one o�spring
scheme, with the following steps:
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a. First, two individuals are randomly selected, and two crossing points are chosen in their
group part.

b. Insert the elements belonging to the selected groups of the first individual into the o�spring.

c. Insert the elements belonging to the selected groups of the second individual into the
o�spring, if they have not been assigned by the first individual.

d. Randomly complete the elements not yet assigned with elements from the current groups.

e. Remove empty clusters, if any.

f. Modify the labels of the current groups in the o�spring in order to numerate them from 1
to k.

Figure 3.1 shows an example of the standard crossover procedure for the GGA. The pro-
bability of crossover should be high in the first stages of the algorithm, and moderate in the
last ones in order to properly explore the search space. Thus, an adaptive crossover probability
could be implemented, defined in the following way:

Pc(j) = Pci + j

TG
(Pci − Pcf) (3.3)

where Pc(j) is the crossover probability used in a given generation j, TG stands for the total
number of generations of the algorithm, and Pci and Pcf are the initial and final values of
probability considered, respectively.

3.1.4 Mutation operator

Mutation operator includes small modifications in each individual of the population with
a low probability, in order to explore new regions of the search space and also escape from
local optima when the algorithm is near convergence. In this case, there can be di�erent proce-
dures which lead to good mutation operators. We present here two di�erent possible mutation
operators for a GGA in a Feature Selection problem:

• Mutation by group splitting: it consists of splitting a selected group into two di�erent
ones. The samples belonging to the original group are assigned to the new clusters with
equal probability. Note that one of the new generated groups will keep its label in the
group section of the individual, whereas the other will be assigned a new label (k+1). The
selection to the initial group to be split is carried out depending on the clusters’ size, with
more probability of split given to larger clusters.
As an example, we illustrate an application of this operator in the final individual from
the crossover operator (Figure 3.1), in the case when the initial group chosen to be split
is cluster 1:
2 2 1 3 3 4 4 5 2 1 4 2 5 1 4 � 1 2 3 4 5
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ind 1=[1 3 2 1 4 1 1 2 3 2 1 3 4 2 1 | 1 4]2 3

ind 2=[3 1 2 1 3 2 2 1 3 1 2 3 2 2 2 | 3]1 2
a)

offspring=[- 3 2 - - - - 2 3 2 - 3 - 2 - | 2 3]b)

offspring=[- 3 2 1' - 2' 2' 2 3 2 2' 3 - 2 2' | 2 3 1' 2']c)

d) offspring=[3 3 2 1' 1' 2' 2' 2 3 2 2' 3 2 2 2' | 2 3 1' 2']

e) offspring=[2 2 1 3 3 4 4 1 2 1 4 2 1 1 4 | 1 2 3 4]

Figure 3.1: Outline of the grouping crossover implemented in the GGA.

• Mutation by groups merging: it consists of merging two existing groups, randomly selected,
into one. As in mutation by group splitting, the probability of choosing the clusters
depends on their size. In order to illustrate this mutation, again an example in the final
individual from the crossover operator (Figure 3.1) is given. In this case, let us suppose
that the selected groups are clusters 2 and 4:

2 2 1 3 3 2 2 1 2 1 2 2 1 1 2 � 1 2 3

Similarly to the crossover case, we can also consider an adaptive version of the probability
of applying the mutation operators described above. Note that the two mutation operators
could be applied in a serial fashion (one after the other), with independent probabilities of
application, or just on their own. In this case, probability of mutation should be smaller in the
first generations of the algorithm and larger in the last ones, in order to have more opportunities
to escape from local minimums in the last stages of the evolution:

Pm(j) = Pmi + j

TG
(Pmf − Pmi) (3.4)

where Pm(j) is the probability of mutation used in a given generation j, TG stands for the
total number of generations of the algorithm, and Pmf and Pmi are the final and initial values
of probability considered, respectively.
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3.1.5 Replacement and elitism

In the proposed GGA, the population at a given generation j +1 is obtained by replacement
of the individuals in the population at generation j, through the application of the selection,
crossover, and mutation operators described above. An elitist scheme is also applied, so the
best individual in generation j is automatically passed on to the population of generation j +
1, ensuring that the best solution encountered so far in the evolution is always kept by the
algorithm.

3.2 The Coral Reefs Optimization Algorithm

The Coral Reefs Optimization algorithm (CRO) is an evolutionary-type algorithm proposed
in [99], which is based on simulating the corals’ reproduction and coral reefs’ formation processes.
It has been successfully applied to a number of di�erent applications and optimization problems
[100]-[65]. Basically, the CRO is based on the artificial modeling of a coral reef R, consisting of
a n ×m grid. We assume that each square (i,j) of R is able to allocate a coral ·ij (candidate
solution to the problem, called as x in the problem’s statement above). The CRO algorithm is
first initialized at random by assigning some squares in R to be occupied by corals (i.e. solutions
to the problem) and some other squares in the grid to be empty, i.e. holes in the reef where new
corals can freely settle and grow in the future. The rate between free/occupied squares in R
at the beginning of the algorithm is denoted as fl ∈ R(0, 1) and referred to as initial occupation
factor. Each coral is labeled with an associated health function f(·ij) ∶ A → R that corresponds
to the problem’s objective function. The CRO is based on the fact that the reef will evolve and
develop as long as healthier or stronger corals (which represent better solutions to the problem
at hand) survive, while less healthy corals perish.

After the reef initialization described above, the phase of reef formation is artificially sim-
ulated. This phase consists of – iterations: at each of such iterations the corals’ reproduction
in the reef is emulated by applying di�erent operators and processes as described in Algorithm
3: a modeling of corals’ sexual reproduction (broadcast spawning and brooding). After the
reproduction stage, the set of formed larvae (namely, newly produced solutions to the problem)
attempts to find a place on the reef to develop and further reproduce. This deployment may
occur in a free space inside the reef (hole), or in an occupied location, by fighting against the
coral currently settled in that place. If larvae are not successful in locating a place to settle after
a number of attempts, they are considered as preyed by animals in the reef. The coral builds a
new reef layer in every iteration.

We detail here the specific definition of the di�erent operators that form the classical CRO
algorithm:

1. Sexual reproduction: The CRO model implements two di�erent kinds of sexual repro-
duction: external and internal.
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Algorithm 1 Pseudo-code for the CRO algorithm
Require: Valid values for the parameters controlling the CRO algorithm
Ensure: A single feasible individual with optimal value of its fitness

1: Initialize the algorithm
2: for each iteration of the simulation do
3: Update values of influential variables: predation probability, etc.
4: Sexual reproduction processes (broadcast spawning and brooding)
5: Settlement of new corals
6: Predation process
7: Evaluate the new population in the coral reef
8: end for
9: Return the best individual (final solution) from the reef

(a) External sexual reproduction or broadcast spawning: the corals eject their ga-
metes to the water, from which male-female couples meet and combine together to
produce a new larva by sexual crossover. In Nature, some species are able to combine
their gametes to generate mixed polyps even though they are di�erent from each
other. In the CRO algorithm, external sexual reproduction is applied to a usually
high fraction Fb of the corals. The couple selection can be done uniformly at random
or by resorting to any fitness proportionate selection approach (e.g. roulette wheel).
In the original version of the CRO, standard crossover (one point or two-points) are
applied in the broadcast spawning process.

(b) Internal sexual reproduction or brooding: CRO applies this method to a fraction(1 − Fb) of the corals in the reef. The brooding process consists of the formation
of a coral larva by means of a random mutation of the brooding-reproductive coral
(self-fertilization considering hermaphrodite corals). The produced larvae is then
released out to the water in a similar fashion than that of the larvae generated through
broadcast spawning.

2. Larvae settlement: once all larvae are formed at iteration k through reproduction, they
try to settle down and grow in the reef. Each larva will randomly attempt at setting in a
square (i, j) of the reef. If the location is empty (free space in the reef), the coral grows
therein no matter the value of its health function. By contrast, if another coral is already
occupying the square at hand, the new larva will set only if its health function is better
than the fitness of the existing coral. We define a number of attempts Natt for a larva to
set in the reef: after Natt unsuccessful tries, it will not survive to following iteration.

3. Depredation: corals may die during the reef formation phase of the reef. At the end of
each iteration, a small number of corals can be preyed, thus liberating space in the reef
for the next iteration. The depredation operator is applied under a very small probability
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Pd, and exclusively to a fraction Fd of the worse health corals.

Figure 3.2 illustrates the flowchart diagram of the CRO algorithm, with the di�erent CRO
phases (reef initialization and reef formation), along with all the operators described above.
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Figure 3.2: Flowchart diagram of the original CRO algorithm.

3.3 Advanced CRO models

The basic CRO can be improved to obtain stronger versions of the meta-heuristic, based on
alternative processes that occur in coral reefs. We describe here three di�erent modifications of
the CRO algorithm, which improves the performance of this approach in specific applications.
First, we describe the CRO with species (CRO-SP), which helps tackle optimization problems
with variable length encodings. It is also useful for managing di�erent encodings of problems
within the same population, obtaining a competitive co-evolution algorithm. The second CRO



30 Chapter 3. Materials and Methods

version we present here is the CRO with substrates layer (CRO-SL). It has been useful to obtain
a competitive co-evolution algorithm in which di�erent searching procedures are applied to one
optimization problem within a single population. These model can be either exploration models,
repairing mechanisms, etc., and the only pre-requisite is that the objective function to evaluate
corals in the reef must be the same for the di�erent models considered. Finally, we show how
the CRO can be easily modified to obtain a multi-objective version of the algorithm.

3.3.1 CRO with species (CRO-SP)

The first modification of the CRO consists in considering di�erent coral species within a
single coral community. The objective of this modification is that each coral species represents
a di�erent model (or its hyper-parameters) out of T possible models. In this context, model
is generic, so it can represent either a di�erent encoding for the problem, a di�erent way of
calculate the objective function, etc. Specifically, the CRO with species is a new powerful way
of managing optimization problems with variable encodings. In this case, each species will
represent a di�erent encoding length, and the idea is that only corals of the same species can
reproduce in the broadcast spawning operator. Note however, that all the models compete
together in the larvae setting, since the objective function in all cases should be the same for all
the species.

The CRO with species was first introduced in [104] as a methodology to deal with a Model
Selection Problem, in an application of total energy consumption prediction in Spain. In [104]
each species represents a di�erent way of calculating the total energy consumption (a di�erent
model), and the idea was to obtain a competitive co-evolution approach that obtained th1e best
possible model in addition to alternative parameters such as the best prediction variables to feed
the prediction model. Note that the CRO with species can be used to evolve a competition of
di�erent regressions for a given problem, for example neural networks, support vector machines,
etc., in which the CRO encodes the parameters of each regressor. Since the concept of species
is open, it can be used to compare di�erent encodings for a given problem (binary, integer, real,
structures, etc.), in which each species corresponds to a given encoding.

Algorithm 2 shows an outline of the CRO containing multiple species. Note that the com-
petition among species will produce emerging behavior, so the best model (species) eventually
will dominate, and will occupy the majority of spaces in the reef.

3.3.2 CRO with Susbstrate Layer (CRO-SL)

The original CRO algorithm is based on the main processes of coral reproduction and reef
formation that occur in nature. However, there are many more interactions in real reef ecosystem
that can be also modelled and incorporated to the CRO approach to improve it. For example,
di�erent studies have shown that successful recruitment in coral reefs (i.e., successful settlement
and subsequent survival of larvae) depends on the type of substrate on which they fall after the
reproduction process [16]. This specific characteristic of coral reefs was first included in the CRO
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Algorithm 2 Pseudo-code for CRO algorithm with species
Require: Valid values for CRO parameters.
Ensure: The best model out of T possible.

1: Algorithm initialization (T di�erent species)
2: for each iteration of the CRO do
3: Update values of influential variables: mortality probability and the probability of asexual

reproduction
4: Asexual reproduction (budding or fragmentation)
5: Sexual reproduction 1 (broadcast spawning, only same species can reproduce)
6: Sexual reproduction 2 (brooding, only same species can reproduce)
7: Settlement of new larvae (competition among species)
8: Mortality process
9: Evaluate the new population in the reef (with the specific model given for each species)

10: end for

in [104], in order to solve di�erent instances of the Model Type Selection Problem for energy
applications. The CRO with substrates is a general approach: it can be defined as an algorithm
for competitive co-evolution, where each substrate layer represents di�erent processes (di�erent
models, operators, parameters, constraints, repairing functions, etc.). This idea of CRO with
substrate layers, was extended as a fully competitive co-evolution search mechanism in [101],
where each substrate layer represents a di�erent exploration mechanism. In [105] the interested
reader can find more details on alternative co-evolution versions of the CRO algorithm. In this
section we describe the main ideas of the CRO-SL as co-evolution search algorithm.

The inclusion of substrate layers in the CRO can be done, in a general way, in a straight-
forward manner: we redefine the artificial reef considered in the CRO in such a way that each
cell of the square grid R representing the reef is now defined by 3 indexes (i, j, t), where i and
j stand for the cell location in the grid, and index t ∈ T defines the substrate layer, by indicat-
ing which structure (model, operator, parameter, etc.) is associated with the cell (i, j). Each
coral in the reef is then processed in a di�erent way depending on the specific substrate layer in
which it falls after the reproduction process. Note that this modification of the basic algorithm
does not imply any change in the corals’ encoding. When the CRO-SL is focused on improving
the searching capabilities of the classical CRO approach, each substrate layer is defined as a
di�erent implementation of an exploration procedure. Thus, each coral will be processed in a
di�erent way in the reproduction step of the algorithm. Figure 3.3 shows an example of the
CRO-SL, with five di�erent substrate layers. Each one is assigned to a di�erent exploration
process, Harmony Search based, Di�erential Evolution, Gaussian Mutation, M-Points Crossover
or 2-Points Crossover. Of course this is only an example and any other distribution of search
procedures can be defined in the algorithm. In the specific CRO-SL tested in this paper, each
substrate layer only a�ects to the calculation of the larvae coming from the broadcast spawning
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process, whereas we have considered the same brooding procedure for all the corals in the reef.

(a)

(b)

HS DE M-Points

Crossover

Gaussian

Mutation

2-Points

Crossover

Figure 3.3: Example of CRO-SL and comparison with the original reef in the CRO; (a) Reef
considered in the original CRO; (b) Reef in the CRO-SL, where five substrate layers associated
with the broadcast spawning process have been considered (Harmony Search (HS), Di�erential
Evolution (DE), Gaussian Mutation, M-Points Crossover and 2-Points Crossover).

There are some important remarks that can be done regarding the CRO-SL approach. First,
note that the original CRO is a meta-heuristic based on exploitation of solutions, and leaves
the specific exploration open (in the same manner as, for example, Simulated Annealing [59]).
This way, the CRO-SL can be seen as a generalization of the original CRO, that does not
modify the dynamics of the algorithm (so it can be still outlined following Algorithm 3). The
only di�erence is the specific implementation of the broadcast spawning procedure, which now
depends on the specific substrate to which the coral is associated. Second, as has been previously
mentioned, the CRO-SL can be seen as a competitive co-evolution procedure. The CRO-SL is a
general procedure to co-evolve di�erent models, operators, parameter values, etc., with the only
requisite that there is only one health function defined in the algorithm. In this sense, note that
the CRO-SL makes a competitive co-evolution of di�erent searching models or patterns within
one population of solutions. Finally, note that this approach has been successfully applied to
a large number of previous applications, such as battery scheduling and topology design in
micro-grids [106, 54], image processing and registration [1, 9], WiFi channel assignment [19],
data clustering [117], antennas design [108], Feature Selection problems [125], climate data field
reconstruction [107], layout problems [36] or vibration cancellation problems in buildings [95, 18],
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among others.

3.3.3 Multi-objective CRO

The last modification of the CRO revised here is an adaptation to multi-objective problems,
firstly introduced in [102, 103]. In fact, it is a very easy task starting from the basic CRO
approach, and only the larvae setting process of the algorithm must be modified: once all the
larvae from broadcast spawning and brooding have been produced, they start the setting process
one by one, trying to established themselves into the reef. When an existing coral occupies a
given position in the reef that is tried by a larva, a fight for the space occurs. In the multi-
objective version of the CRO (MO-CRO), this fight for the space is based on domination of
solutions. Let us call �A to the coral currently occupying a given location on the reef, and �B

the larva challenging for the space. In the MO-CRO, �B wins the fight (and occupies the place
of �A) if and only if �A � �B, where � stands for the dominance operation see [103]. In any other
case, �A wins, and the challenging larva either tries another place in the reef, or die, depending
on its current Ÿ value. Note that in case of equivalency between solutions (�A ≡ �B), the current
solution in the reef is maintained. A second adaptation is needed in order to provide diversity to
the reef: In the MO-CRO, a fix number µ of corals with the same value in all objective functions
is allowed in the population. After the larvae setting process, the number of corals in the reef
with the same value in all objectives is obtained, let us call it —, and if µ < —, (— −µ) randomly
chosen corals are depredated. This adaptation will be known as Extreme Depredation Operator
(EDO). The pseudo-code of Algorithm 3 describes the MO-CRO process.

3.4 Multi-Layer Perceptrons

A multi-layer perceptron is a particular class of artificial neural network, which has been
successfully applied to solve a large variety of nonlinear problems, mainly classification and
regression tasks [42, 14]. The multi-layer perceptron consists of an input layer, a number of
hidden layers, and an output layer, all of which are basically composed by a number of special
processing units called neurons. All the neurons in the network are connected to other neurons
by means of weighted links (Figure 3.4). In the multi-layer perceptron, the neurons within a
given layer are connected to those of other layers. The values of these weights are related to the
ability of the multi-layer perceptron to learn the problem, and generalize from a su�ciently long
number of examples. The process of assigning values to these weights from labelled examples is
known as the training process of the perceptron. The adequate values of the weights minimizes
the error between the output given by the multi-layer perceptron and the corresponding expected
output in the training set. The number of neurons in the hidden layer is also a parameter to be
optimized [42, 14].

The input data for the multi-layer perceptron consists of a number of samples arranged
as input vectors, x={x1, . . . , xN}. Once a multi-layer perceptron has been properly trained,
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Algorithm 3 Pseudo-code for the MO-CRO algorithm
Require: Valid values for the parameters controlling the CRO algorithm
Ensure: A feasible optimal pareto front of solutions to the optimization problem

1: Initialize the algorithm: Set values for Pd, µ, Fa, Fb, Fd.
2: for each iteration k of the simulation do
3: ○ Sexual crossover process (Brooding):
4: for each brooding coral �i,j do
5: �i,j → �m

6: end for
7: ○ Sexual crossover process (Broadcast Spawning):
8: for couples of broadcast spawning corals �i,j and �k,j do
9: �i,j +�k,j → �b

10: end for
11: ○ Asexual crossover process (Fragmentation):
12: Fa of the best corals in the reef duplicate and are mutated �i,j → �c

13: ○ Settlement of new corals (dominant solutions prevail in the reef): {�m,�b,�b,�c} → �i,j

14: ○ Predation process (EDO operator):
15: for all corals in the reef do
16: eliminate copies of corals until just µ remain in the reef.
17: end for
18: ○ Calculate corals’ health f(�i,j) ∶ I → R,
19: end for
20: Return the pareto front formed in the coral reef

Figure 3.4: Structure of a multi-layer perceptron neural network, with one hidden layer.

validated and tested using an input vector di�erent from those contained in the database, it is
able to generate a proper output y. The relationship between the output and the input signals
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of a neuron is

Ë = Ï
�
�

n�
j=1 wjxj − ◊

�
� , (3.5)

where Ë is the output signal, xj for j = 1, . . . , n are the input signals, wj is the weight associated
with the j-th input, and ◊ is a threshold [42, 14]. The transfer function Ï is usually considered
as the logistic function,

Ï(x) = 1
1 + e−x

. (3.6)

The well-known Stochastic Gradient Descent (SGD) algorithm is often applied to train the
multi-layer perceptron [17]. One the the main issues with this and other adaptive algorithms for
training multi-layer perceptrons is their high computational cost, which makes their application
in hybrid approaches di�cult. In the next section we present the Extreme Learning Machine, a
fast training procedure for multi-layer perceptrons which solves this point.

3.5 Extreme-Learning Machines

An Extrem Learning Machi (ELM) [44] is fast training method for neural networks, which
can be applied to feed-forward perceptron structures (Figure 3.4). In the ELM, the network
weights of the first layer are set at random, and after this, a pseudo-inverse of the hidden-layer
output matrix is obtained. This pseudo-inverse is then used to obtain the weights of the output
layer which fits best with the objective values. The advantage of this method is not only that it it
is extremely fast, but also that it obtain competitive results versus other established approaches,
such as classical training for multi-layer perceptrons, or support-vector-regression algorithms,
etc. The universal-approximation capability of the ELM have been proven in [138].

The ELM algorithm can be summarized by considering a training set,

T = (xi, Ëi)�xi ∈ Rn
, Ëi ∈ R, i = 1,�, l,

an activation function g(x), and a given number of hidden nodes (Ñ), and applying the following
steps:

1. Randomly assign input weights wi and the bias bi, where i = 1,�, Ñ , using a uniform
probability distribution in [−1, 1].

2. Calculate the hidden-layer output matrix H, defined as follows:

H =
��������

g(w1x1 + b1) � g(w
Ñ

x1 + b
Ñ
)⋮ � ⋮

g(w1xl + b1) � g(w
Ñ

xN + b
Ñ
)
��������l×Ñ

. (3.7)
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3. Finally, calculate the output weight vector — as follows:

— =H†T, (3.8)

where H† is the Moore-Penrose inverse of the matrix H [44], and T is the training output
vector, T = [Ë1,�, Ël]T .

Note that the number of hidden nodes (Ñ) is a free parameter to be set before the training
of the ELM algorithm, and must be estimated for obtaining good results by scanning a range of
Ñ .
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Part II: Experiments and results
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Chapter 4

A GGA-ELM approach for global

solar radiation prediction from

numerical weather model inputs

4.1 Introduction

The objective of this chapter is twofold: first, we consider a problem of global solar radiation
prediction from numerical weather models, specifically the WRF meso-scale model [111], which
illustrate the case of input data from NWM. Thus, the WRF provides a prediction of atmospheric
variables at di�erent pressure levels in a given zone, that will be used as inputs in a prediction
system to estimate the global solar radiation at a di�erent point. The second contribution of
the chapter is the development of a hybrid grouping genetic algorithm – ELM (GGA-ELM)
algorithm to carry out this global solar radiation prediction. As previously explained, the GGA
proposed will perform a process of feature selection, focused on filtering the best features from
the WRF model to do the prediction, whereas the ELM approach will do the final prediction of
the global solar radiation at a given point, using the features selected by the GGA.

In this chapter, we discuss in detail the proposed algorithm, giving some variants of its
dynamics, that lead to di�erent performances. With this algorithmic framework in mind, we
then tackle a number of subproblems related to global radiation prediction: the first problem
considered consists of predicting the solar radiation registered in a given point P at time t +
x (for x = 0, . . . , 3), using as predictive variables the set V, or any subset of it. Note that
when x = 0, the problem is known as statistically downscaling the solar radiation prediction
of model M to point P . The ultimate goal of this approach for x = 0 (Subproblem 1) is to
evaluate what features (predictive variables) from the NWM are useful for this prediction. Note
that for x > 0 (Subproblem 2) we are evaluating the prediction performance of the system
only using as predictive variables the outputs of the WRF. Finally, we tackle in this paper a
forecasting problem that takes into account data from the NWM and also objective variable

39
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data measured at the measuring station considered (Subproblem 3). This last subproblem uses
the best predictive variables set found in Subproblem 1. Results for all these subproblems using
real data from Toledo’s radiometric station (Spain) will be discussed in the experimental part
of the chapter.

4.2 Problem formulation

The solar radiation problem considered can be stated in the following way: Let P be a given
location of the Earth’s surface where the global solar radiation (It) must be predicted (Ît), at a
given time t. To do this, let us consider the output, V, of a numerical weather meso-scale modelM, in a number M of nodes, consisting of the prediction at time t for N atmospheric variables,V = (Ï11, . . . , Ï1N , Ï21, . . . , Ï2N , . . . , ÏM1, . . . , ÏMN), as shown in Figure 4.1.

Note that M may provide an atmospheric variable at the ground level, or at the ground
level and also at di�erent pressure levels. In the latter, each pressure level is considered as a
di�erent variable n at node m, Ïmn.

The problem under study were analysed over 3 di�erent points of view, leading to 3 kind of
subproblems:

1. Subproblem 1 deals with the prediction of the global solar radiation registered in P at
time t, using as predictive variables the set V, or any subset of it. This type of problems
is usually known in other works as statistically downscaling the solar radiation prediction
of model M to point P .The ultimate goal of this approach is to evaluate what features
(predictive variables) from the Numerical Model are useful for this prediction.

2. Subproblem 2 increases the forecast horizon, predicting the global solar radiation in P at
time t+x (for x = 1, 2, . . . ,X ), considering the set V (or any subset) as predictive variables.

3. Subproblem 3 analyzes a forecasting problem at P considering previous radiation values.
For this purpose, the best set of features found by the GGA-ELM in Subproblem 1, i.e.V∗ = (Ï∗1 , . . . , Ï

∗K), where K is the number of optimal features obtained by the GGA-ELM
approach, have been used. In addition, we consider objective variable data measured at
point P for previous time tags (It−z), for z = 1, . . . ,Z), in the process of Ît+x forecasting,
for x = 1, 2, . . . ,X .

4.2.1 Location of the measurement station and objective variable data

This work predicts the global solar radiation at a given location P that pinpoints a Meteo-
rological State Agency of Spain (AEMET) station sited in Toledo (39○ 53’ 5”N, 4○ 02’ 43”W).
Toledo’s measuring station is located in the South Plateau of the Iberian Peninsula (See Figure
4.2), around 75 km south of Madrid (the capital of Spain) at an altitude of 515 m.
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Figure 4.1: Solar radiation prediction scheme used in this work for M = 4.

According to AEMET’s Climate Summary Guide (1981 - 2010), Toledo has an annual mean
temperature of 15.8○C, dry summers, an annual mean precipitation of 342.2 mm, and an annual
mean water vapour tension of 10.8 hPa. In the light of these figures and according to the Köppen
climate classification, Toledo could be classified as a Csa climate (Interior Mediterranean: Mild
with dry, hot summer). Regarding cloud cover, 27.7% annual days are categorized as cloud free,
53.2% present sky conditions categorized as few or scattered clouds, and the remaining 19.1%
are categorized as broken or overcast.

As objective variable data to train and test the algorithms, we consider one year of hourly
global solar radiation data (from May 1st, 2013 to April 30th, 2014) collected at Toledo’s mea-
suring station. To measure global solar radiation, a Kipp & Zonen CMP11 Pyranometer is used.
All radiation measurements gathered by the AEMET are made following the World Meteorologi-
cal Organization (WMO) standards included in the WMO Guide to Meteorological Instruments
and Methods of Observation (2008 edition, updated in 2010).

4.2.2 Model M: the Weather Research and Forecasting model (WRF)

In this experiment we use the well-known Weather Research and Forecasting (WRF) meso-
scale model asM [111]. WRF is an extremely powerful meso-scale numerical weather prediction
system designed for atmospheric research and also for operational forecasting needs. The WRF
was developed in collaboration by the National Center for Atmospheric Research (NCAR),
the National Centers for Environmental Prediction (NCEP), the Forecast Systems Laboratory
(FSL), the Air Force Weather Agency (AFWA), the Naval Research Laboratory, the University
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Figure 4.2: Location of the Toledo’s measuring station and the M = 2 WRF nodes considered
for the prediction.

of Oklahoma, and the Federal Aviation Administration (FAA) of the USA. The WRF has been
used in a wide range of meteorological [40] and renewable energy applications [20].

In this study, WRF model version 3.6 has been used. It has been run every 12 hours since
it was started in 2011. Meteorological data are calculated over a window ranging in latitude
from 34○ 33’ 43”N to 44○ 28’ 12”N , and in longitude from 4○ 25’ 12”W to 4○ 23’ 2”E. In this
window, the grid has 99 elements from West to East, and 59 elements from North to South,
roughly, each grid element covers 15×30 km2. Atmospheric values are calculated, in the vertical
dimension, at 37 levels above the ground, at ground level, and at four additional levels beneath
the surface. The grid type is Arakawa, that is to say that data are calculated at the center of
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each element, with a 72 seconds time step.
WRF is initialized by data coming from NCEP FNL Operational Global Analysis and works

in non-hydrostatic way. The short wave scheme used is that from MM5 shortwave (Dudhia), and
the long wave model is the RRTM (Rapid Radiative Transfer Model). A radiation time step of 30
minutes was applied to each radiation domain. The land surface fluxes were obtained by Monin-
Obukhov similarity theory, the surface physics was solved by the Unified Noah land surface
model and the Planetary Boundary Level (PBL) by means of the Yonsei University (YSU) PBL
scheme. The PBL was calculated at every basic time step, and five layers were considered in land
surface model. Cumulus retrieval parameters was done by using the new Kain-Fritsch scheme,
as in MM5 and Eta�NMM ensemble version, with a time step of 5 minutes.

Finally, micro-physics was carried out by the WSM 3-class scheme and the turbulent di�usion
option was to select 2nd order di�usion on model levels. This complements vertical di�usion
done by the PBL scheme.

WRF output at two points located at (39○ 51’N, 4○ 01’W) and (40○ 01’N, 4○ 01’W), are
selected as predictive variables for solar radiation (see Figure 4.2), both points are the 2 nearest
WRF’s points to the target location. Specifically, Table 4.1 shows the 46 variables considered
for each of these points, summing up a total of 92 predictive variables for this problem. They
are the following (at di�erent pressure levels):

- OLR: The top of atmosphere outgoing long-wave radiation (W �m2).

- GLW: The downward long-wave flux at ground surface (W �m2).

- SWDOWN: The downward short-wave flux at ground surface (W �m2).

- u: The horizontal wind component in the x direction at di�erent pressure levels (m�s).

- v: The horizontal wind component in the y direction di�erent pressure levels (m�s).

- CLDFRA: The fraction of clouds in each cell. Cloud fraction ranges from 0 (no clouds) to
1 (clouds in a spatial grid cell).

- QVAPOR: The water vapor mixing ratio (in kg�kg). This variable is defined as the ratio
of the mass of a water vapor to the mass of dry air.

- T : The temperature (in K) at di�erent levels. Note that this variable is not directly pro-
vided by the WRF model. Thus, we have obtained it from the WRF perturbation potential
temperature (T ′) which, in turn, is related with the potential temperature (◊) through the
relation ◊ = T

′ + 300. Potential temperature is simply defined as the temperature that an
unsaturated parcel of dry air would have if brought adiabatically and reversibly from its
initial state to a standard pressure, P0, typically 100000 Pa. Its mathematical expression
is as shown in Eq. 4.1, where Ÿ is the Poisson constant.
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T = ◊ � P

P0
�Ÿ

(4.1)

Table 4.1: Predictive variables used in the experiments (46 variables per node of the WRF
model).

variable units pressure levels (hPa)
OLR W �m2 -
GLW W �m2 ground

SWDOWN W �m2 ground
u m�s ground, 850, 700, 500, 400, 300, 200, 100, 50
v m�s ground, 850, 700, 500, 400, 300, 200, 100, 50

CLDFRA 1/0 ground, 850, 700, 500, 400, 300, 200
QVAPOR kg/kg ground, 850, 700, 500, 400, 300, 200, 100, 50

Temperature K ground, 850, 700, 500, 400, 300, 200, 100, 50

4.3 Specific GGA implemented

The GGA proposed for feature selection in this problem of solar radiation prediction follows
the encoding structure defined in Section 3.1.1. Specifically, every individual’s assignment part
is composed of 92 elements in this case, each corresponding to one of the predictive variables
provided by the WRF model, as explained in Section 5.2. Then, the group part is composed of
a variable number of elements (groups), as defined in Section 3.1.1.

4.3.1 Genetic operators

In this case, we have considered as selection operator a tournament-based mechanism, similar
to the one described in [127], as it has been shown to be one of the most e�ective selection op-
erators, avoiding super-individuals and performing an excellent exploration of the search space.
This operator allows that those individuals which are not the best solutions in our search space
to be selected as parents of the next generation in a few percentage of situations. This simple
action avoids the appearance of local minimums which introduce noise in our experiment.
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Regarding the crossover operator, di�erent versions of the operator described in Section 3.1.3
have been implemented for this problem, and their results obtained compared. For a clearer
description, notation used refers to those individuals acting as parents as Pi (i = 1, 2) and those
individuals acting as o�springs as Oi (i = 1, 2). The assignment and groups part of a certain
individual are referred as APi and GPi (for the parents), or AOi and GOi (for the o�springs).

The first crossover operator applied follows the guidelines initially proposed by Falkenauer
[31, 32], and described in Section 3.1.3, that leads to a two-parents/one-child mechanism. The
process (outlined in Figure 4.3) carried out by this first crossover operator, C1 hereafter, is the
following:

1. Randomly choose two parents from the current population: P1 and P2. The o�spring
individual, O1, is initialized to be equal to P2.

2. Randomly select, for the crossover, two points from GP1 . These two cross-points mark
down those groups in-between them, and those features assigned to these groups are se-
lected. In the example presented in Figure 4.3, the two crossover points select two groups:
group number 1 (G1) and group number 2 (G2). Note that, in this case, the features of
P1 belonging to groups G1 and G2 are 1, 2, 4, 5, and 6 (marked bold and underlined).

3. Insert those P1’s selected features (in their own positions) in O1. Then, attach at the end
of O1’s group section those new groups inherited from P1. In the example, it can be seen
that the assignment of the features 1, 2, 4, 5 and 6 of O1 has been inherited from P1, while
the rest of the nodes’ assignment has been inherited from P2.

4. Rename GO1 ’s groups to remove duplicates (note that the o�spring may have inherited
same groups’ numbering from both parents). In the example, GO1 = 1 2 3 4 5 6
1 2 is changed to GO1 = 1 2 3 4 5 6 7 8. Therefore, AO1 has to be modified
accordingly.

5. Remove, empty groups in O1, if present. In the example considered, it is found that
O1’s groups 1, 2, 3, and 6 are empty (there are no features belonging to them), so we can
eliminate these groups’ identification number and rearrange the rest accordingly. The final
o�spring is then obtained.
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Figure 4.3: Outline of the grouping crossover C1, implemented in the proposed GGA.
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In some initial experiments carried out for this problem, we realized that C1 crossover op-
erator produced a significant increment of the number of groups after a number of generations
of the GGA. This situation is due to the type of problem faced: all the groups perform better
in the first stages of the algorithm when the number of features decrease on them, and so the
algorithm tried to reduce the number of features by artificially increasing the number of groups,
adding noise to the fitness calculation process. We tried to correct this issue with this version of
the GGA crossover by introducing an alternative grouping crossover mechanism. Accordingly,
a two-parents/two-children crossover, C2, is also introduced. The C2 process is shown in Figure
4.4, and can be described as follows:

1. Randomly choose two parents from the current population: P1 and P2.

2. Randomly select, for the crossover, two points from GP1 and two points from GP2 . For each
parent, these cross-points mark down those groups in-between them, and those features
assigned to these groups are selected.

3. To build GO1 , use the selected section of GP1 . In the example, P1’s selected groups are G2
and G3, resulting in the o�springs group part GO1 = 2 3.
To build AO1 use the selected features inherited from P1.

4. If necessary, rename GO1 ’s groups so that groups’ numbering starts at 1.

5. Randomly allocate among the o�spring’s groups those blank features. The final first
o�spring is then obtained.

6. Repeat steps 2 to 5 using the second parent to obtain the second o�spring.

We decided to add a new procedure to reduce the number of groups when the experiment
grows in number of generations. A variable K which decides the maximum number of groups
each individual contains. If after the crossover, the number of groups is bigger than K, the
worst groups will be erased and their features randomly added to the rest of the groups.

Regarding mutation operator, a swapping mutation in which two items are interchanged is
applied in this problem. Thus, resulting in the assignment of features to di�erent groups. This
procedure is carried out with a very low probability (Pm = 0.01), to avoid increasing the random
search in the process [32].

4.3.2 Fitness function: ELM output

The fitness function considered for each element (group of features) of the GGA is obtained
by using the Root Mean Square Error (RMSE) of the prediction given by the ELM (see Section
4.3.2). RMSE is used in this work instead of other validation metrics, because large forecast
errors and outliers are weighted more strongly than smaller errors, as the latter are more tolerable
in solar radiation prediction [10, 60].
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Figure 4.4: Outline of the grouping crossover C2, implemented in the proposed GGA.

The RMSE formula is shown in Equation (5.1), where It stands for the global solar radiation
measured at a time t, Ît stands for the global solar radiation estimated by the ELM, and T stands
for the number of samples in the test set.

RMSE =
���� 1

T

T�
t=1 �Ît − It�2 (4.2)
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Note that RMSE is the only metric used at the ELM’s training phase. Nevertheless, to assess
the performance of the network (in the test phase), alternative metrics have been also used (see
Subsection 4.4.1).

4.3.3 GGA evolution dynamics

Feature selection is performed in this problem of solar radiation prediction with the GGA.
The possible 92 predicting variables of the problem are assigned to the di�erent groups defined
in the groups’ part of the individual. Since each individual is divided into several groups, there
are di�erent approaches to calculate the fitness function (given by Equation (5.1)), as all groups
may be used in this calculation, just one, and so on. In this work we have analyzed two di�erent
evolution dynamics for the GGA:

1. Dynamics D1: The fitness function given by Equation (5.1) is calculated for all groups in
each individual, and the fitness value is assigned by choosing the minimum value for all
the groups.

2. Dynamics D2: The fitness function is also given by Equation (5.1), but in this case we
choose to maximize the value of this equation for group G1, called “junk group”.

Note that D1 is the most intuitive way of the GGA evolution, where the individuals are
selected according to the best fitness value obtained for one of their groups. On the other hand,D2 is completely di�erent: in this case the idea is to concentrate those features that produce a
poor performance of the regressor in a given group (group G1 in this case). At the end of the
evolution, the test value is obtained using the features that are not present in the first group of
the best individual in the population. Note that D2 can be improved by eventually removing the
worst features out of the total available ones after a number of generations (÷). In order to do
this, after ÷ generations of the algorithm, we construct a ranking of those features that appear
the most in group G1 of all the individuals in the population. We then set a threshold (th) for
the number of times a given feature appears in group G1, and we remove those features that
appear in the ranking over threshold th. The GGA is then re-initialized without considering
those features that were removed in the previous step.

Regarding execution/computation time, note that D1 is heavier than D2. The reason for
this is that the number of groups analyzed per individual and generation are di�erent in each
dynamics: D1 needs to evaluate each group of each individual, whereas D2 evaluates only one
group per individual. For example, in a case of an average of 10 groups per individual, and 50
individuals, D1 checks 500 groups per generation against 50 groups evaluated by D2. In this
case, this suggests that D2 could carry out a deeper and faster search.
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4.4 Experiments and results

This section summarizes the experiments run to assess the proposed algorithm, together with
measures used to evaluate the accuracy of our approach, and to allow comparison with other
global solar radiation prediction tools.

Note these experiments consider global solar radiation prediction only for daytime hours
(average hourly data from 5 a.m. to 8 p.m.), as night hours present zero irradiance. In order to
create training and test sets to evaluate the performance, each day has been divided into several
blocks. For each block of 4 hours, a random hour is assigned to the test set, and the remaining
ones, in increasing order, to the training set. Thus, guaranteeing that all blocks and all days
are represented both in train and test. Finally, this procedure is carried out 10 times, and we
then provide average values of error in test (10-fold cross validation).

4.4.1 Forecasting accuracy measures

Following the guidelines given in [10], in order to assess the forecasting accuracy of for global
solar radiation prediction, conventional metrics such as RMSE (Equation (5.1)) and Pearson
Correlation Coe�cient, r

2, have been used in this experiment.
Moreover, to facilitate comparisons between the forecasts developed in this work and other

solar forecasts, another useful quality check is to analyze whether the proposed GGA-ELM model
performs better or worse than a given reference model [60]. Thus, forecast skill, s, defined by
Equation (4.3) has been also considered, where U stands for the uncertainty of solar availability,
i.e. the forecasting error of the proposed GGA-ELM model, and V refers to the variability of solar
irradiance. Taking into account that this variability can be attributed to cloud cover (mostly
stochastic) and solar position (mostly deterministic), it can be referred as the standard deviation
of the step-changes of the ratio of the measured solar irradiance to that of a clear-sky solar
irradiance. An easier procedure to obtain the forecast skill, and yet a good estimate [60], is to
consider that the ratio U�V can be approximated by the RMSEprediction�RMSEpersistence model.
Global solar radiation obtained with the persistence model at a point P and at a time t, will be
referred as IP er

t .

s = 1 − U

V
(4.3)

4.4.2 Subproblem 1

Subproblem 1 evaluates what WRF model outputs (the predictive variables) are more useful
in the global solar radiation prediction. To evaluate it, we have carried out several experiments
to test the proposed hybrid GGA-ELM algorithm. First, the GGA will perform a feature
selection out of the 92 possible atmospheric output variables considered. Note, that 92 features
are selected by an expert from the whole set of features coming from WRF. Then, the ELM will
perform the global solar prediction using those features selected by the GGA in the test set.
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The result for global solar radiation prediction with the ELM when no feature selection
is performed (tested on all the available features) is r

2 = 0.9283 and RMSE = 85.14 W �m2

(average of the 10-fold cross validation). Note that this is a baseline reference that should be
outperformed by the proposed algorithm. Figures 4.5 and 4.6 present the scatter plot and global
solar prediction in time, where it can be seen that the prediction fits rather well to the field
(measured) data. For a clearer representation, only the first 100 hours of the test output are
shown in all time graphs.
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Figure 4.5: Scatter plot of the global solar radiation prediction by the ELM without feature
selection.

Now, in order to test the hybrid GGA-ELM approach, several experiments were run showing
the results presented in Table 4.2. Note that due to the ELM’s output variability, when the
hybrid GGA-ELM approach is tested, small increases in the RMSE may occur at certain gen-
erations. In order to reduce this variability, the ELM is run “ times (“ = 10) at each iteration
(for both dynamics) and the average RMSE value is used as the individual’s fitness value (the
minimum RMSE of all possible groups in each individual for dynamics D1, or the maximum
RMSE in the individual’s group G1 for dynamics D2). Therefore, every generation in D1, the
algorithm runs “ ELMs for each group at each individual (“ ⋅NGroups), while every generation
in D2 only runs “ ELMs for group G1 at each individual, obtaining a big reduction in terms of
time computing.

The first experiments compare the two crossover operators presented in Section 4.3.1: C1
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Figure 4.6: Global solar radiation prediction in time by the ELM without feature selection.

Table 4.2: Comparative results of the solar radiation prediction before and after feature selection
with the GGA-ELM considering crossovers C1 and C2, and dynamics D1 and D2.

Experiments RMSE (W �m2) r
2

ELM (all features) 85.14 0.9283
GGA-ELM (C1, D1) 78.06 0.9382
GGA-ELM (C1, D2) 76.14 0.9406
GGA-ELM (C2, D1) 77.53 0.9401
GGA-ELM (C2, D2) 75.56 0.9415

(two-parents/one-child) and C2 (two-parents/two-children). It can be observed in Table 4.2 thatC1 presents slightly worse predictions than C2. Observing the evolution along generations for
the first crossover operator (C1), a continuous increase in the number of groups was detected,
and an upper bound in the number of groups to be created was imposed. Therefore, the number
of groups was restricted to a maximum of 10, 15, 20 or 25, and any group created over this
limit was destroyed and its items were randomly reallocated to existing groups. In spite of this
consideration, C2 was still found to outperform C1 in this problem. There is a reason detected
about this continuous increase in the number of groups when using C1 crossover: The ELM’s
output variability and the little variations between di�erent groups causes a large diversity in
our search space. At the same time, few features provide valuable information to increase the
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quality of the measure, then, its easier for the algorithm to get a large number of groups with a
low number of features on them.

The last experiments compare the two di�erent dynamics introduced in Section 4.3.3. The
first one, D1, computes the fitness function for all groups in each individual, and the minimum
value for all groups is set as the individual’s fitness value. The second one, D2, maximizes
each individual’s first group fitness function and assigns it as the individual’s fitness value.
Therefore, D1 must run the ELMs on all groups in each individual, while D2 only obtains G1’s
fitness function. Which means a large reduction in computation time. Moreover, D1 always
performs the ELMs on the initial number of features, while D2 removes several features every
÷ = 5 generations. This applied criterion requires that those features in G1 that appear at least in
40% of the individuals are removed, and evolution continues with a smaller feature population.
Let us focus on the second crossover operator (as it showed the best results), it can be seen
that the RMSE decreases from 77.53W �m2, when applying D1, to 75.56 W �m2 for D2, and
r

2 increases from 0.9401 to 0.9415, respectively. Figures 4.7 and 4.8 present, respectively, the
scatter plot and the solar prediction in time for both dynamics. Once again, it can be seen that
the prediction fits rather well to the measured data.

Analyzing the results of the 10-fold cross validation in the best experiment (crossover C2
and dynamics D2), it can be determined that the key predictive variables (features) are the
OLR, CLDFRA (at a pressure level corresponding to 700 hPa), QVAPOR (at a pressure level
corresponding to 700 hPa), and T (at a pressure level corresponding to 500 hPa), all for the
WRF output point located at (39○ 51’N, 4○ 01’W). Other five to nine less important features
complete the di�erent GGA-ELM’s solutions but their appearance in the individuals of each
best solution is not enough to be represented.

Finally, Figure 4.9 shows the amount of features removed after each ÷ generations, and it
can be seen that sometimes no features are removed because their appearance is lower than the
threshold marked. Moreover, Figure 4.10 presents the GGA-ELM’s performance, where it can
be observed that right after several characteristics are removed, the RMSE may increase, but
on the long run, better results are obtained.
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Figure 4.7: Scatter plot of the global solar radiation prediction after feature selection with C2
crossover operator, and following dynamics: (a) D1; (b) D2.
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Figure 4.8: Global solar radiation prediction in time after feature selection with C2 crossover
operator, and following dynamics: (a) D1; (b) D2.
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Figure 4.9: Feature removal along generations with C2 crossover operator, and following dynam-
ics D2.
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Figure 4.10: GGA-ELM’s performance along generations when ÷ = 5 for C2 crossover operator,
and following dynamics D2. Note that after ÷ generations, several features are removed.
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4.4.3 Subproblem 2

Subproblem 2 analyzes the prediction performance of the proposed GGA-ELM approach for
a 1, 2, and 3 hour ahead forecasting, considering only the best algorithms’ configuration found
in the previous subproblem (i.e. C2 crossover operator, and dynamics D2). Note that in this
subproblem only the outputs of the WRF model are used as predictive variables. Table 4.3
presents the results obtained for this experiment, as well as the forecasting skill of the proposed
GGA-ELM algorithm at point P .

Table 4.3: Global solar radiation prediction for a 1, 2, and 3 hour ahead forecasting, after
performing a feature selection with the GGA-ELM (considering crossover C2 and dynamics D2).

GGA-ELM (C2, D2) RMSE r
2

s

Forecast horizon: t+x (W �m2) (ref: IP er
t )

x=1 hour 111.76 0.8693 13%
x=2 hours 165.86 0.7173 30%
x=3 hours 200.36 0.5900 40%

It can be seen that the longer the forecast horizon is, the worse the proposed algorithm
predicts the global radiation (i.e. r

2 falls from 0.8693 to 0.5900). On the other hand, the fore-
cast skill shows that the GGA-ELM outperforms the persistence model as the forecast horizon
increases (FS from 13% to 40%). This situation is just what we expected during the process,
because the information given by the features is lower when the longer the forecast horizon is.

4.4.4 Subproblem 3

Subproblem 3 is also a forecasting experiment that analyzes prediction performance for a time
horizon t + x, x = 0, . . . ,X . In this subproblem, objective global solar radiation data measured
in Toledo’s station for times t−z, z = 0, . . . ,Z, are included as predictive variables. Note that in
this case, as in Subproblem 2, only the best algorithms’ configuration (i.e. C2 crossover operator,
and dynamics D2) and best features found in Subproblem 1 have been analyzed.

Table 4.4 presents the results obtained for a one and two hours ahead prediction, when
past and known global solar radiation data are included. Experiments considering station
measurements as input variables (ranging from one past value (z = 0) to six past values (z = 0
to 5)) are shown. For comparison purposes, forecast skill (s) is included.

It can be seen that, by performing a feature selection with the proposed approach, the predic-
tion skill improves over the use of all 92 WRF predictive variables. It is important to highlight
that when solar radiation from the previous hours are also considered as input, performance
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Table 4.4: Global solar radiation prediction for a 1 and 2 hours ahead forecasting (Ît+x). In-
put variables include those features selected with the GGA-ELM approach at Subproblem 1
(crossover C2 and dynamics D2), together with past station’s measurements (It−z), ranging from
z = 0 to z = 5.

Predictive variables: Predictive variables:
ELM (all features) + It−z GGA-ELM’s best features + It−z

RMSE r
2

s RMSE r
2

s

(W �m2) (ref: IP er
t+x ) (W �m2) (ref: IP er

t+x )
Forecast horizon: x=1
z = 0 106.62 0.8838 17% 100.12 0.8970 22%
z = 0, 1 101.82 0.8935 21% 82.37 0.9299 36%
z = 0, to 2 95.43 0.9074 26% 78.67 0.9366 39%
z = 0, to 3 92.16 0.9141 28% 78.28 0.9377 39%
z = 0, to 4 90.37 0.9182 30% 76.86 0.9405 40%
z = 0, to 5 90.96 0.9166 29% 76.53 0.9407 41%
Forecast horizon: x=2
z = 0 171.59 0.6921 27% 154.81 0.7317 35%
z = 0, 1 149.90 0.7652 37% 126.89 0.8311 46%
z = 0, to 2 133.88 0.8147 43% 116.64 0.8585 51%
z = 0, to 3 130.17 0.8264 45% 113.69 0.8670 52%
z = 0, to 4 128.08 0.8321 46% 113.46 0.8678 52%
z = 0, to 5 126.70 0.8340 46% 112.07 0.6899 53%

increases as well. Moreover, increase due to previous data seems to contribute more than any
other inputs. In all cases the GGA-ELM’s skill is better than the persistence model.

4.5 Conclusions

In this experiment we have presented a novel hybrid Grouping Genetic Algorithm–Extreme
Learning Machine (GGA-ELM) approach for accurate global solar radiation prediction problems.
The GGA is included to obtain a reduced number of features for the prediction, and the ELM
is used as a fast predictor for the solar radiation. The outputs from a numerical weather model
(WRF) are used as input features for the ELM, to be selected by the GGA. A real solar radiation
prediction problem for Toledo’s radiometric observatory (Spain) has been tackled to show the
goodness of the proposed approach.

Three subproblems have been analyzed then: First, in Subproblem 1, the prediction system
proposed only uses the output of the WRF as inputs, without any other additional information to
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do the prediction. This case consists of a downscaling of the global solar radiation prediction to
a point of interest. In this first subproblem we have introduced and tested di�erent refinements
to the GGA-ELM to improve the feature selection and prediction capabilities of the system: 1)
two di�erent GGA crossover operators, and 2) two di�erent dynamics for the algorithm, one
implying the ELM’s error minimization of any group of the GGA, and the second one implying
the ELM’s error maximization for a specific group of the GGA, followed by the removal and
re-initialization of the algorithm afterwards. For this first subproblem, we have found out
that the best algorithm’s configuration consists of a two-parents/two-children crossover plus the
maximization, removal and re-initialization dynamics, which obtains the best results in terms
of di�erent error measures. This algorithm’s configuration leads to a best solution with only 9
predictive features out of the initial 92.

The second and third subproblems are prediction problem, where we have tried to predict
the solar radiation at the point of interest at di�erent time tags t+x, but again using predictive
variables from the WRF only. In this case, the longer the forecast horizon, the better the GGA-
ELM’s performance is, in terms of di�erent error measures and forecast skill. Finally, we have
tackled a complete prediction problem by including previous values of measured solar radiation
(as features for the ELM) plus the predictive variables from the WRF. We have proven that
the inclusion of these previous radiation measures significantly improves the forecast skill with
respect to a base-line model.





Chapter 5

A CRO-SP Optimization Scheme for

Robust Global Solar Radiation

Statistical Downscaling

5.1 Introduction

In this chapter we propose a novel hybrid approach formed by a CRO-SP and an ELM to
optimally predict the Global Solar Radiation at a given location. We consider again a vast
set of meteorological and atmospheric variables provided by a numeric meso-scale model, the
WRF, at di�erent points close to the target location under study. Then, a CRO-SP algorithm
is used to determine the best subset of WRF variables that lead to a best forecast. In this case
the CRO-SP is well-suited for optimization problems with variable-length encodings. In our
work, each species in the CRO-SP algorithm represents the use of a di�erent number of WRF
variables, which quality will be evaluated by the ELM prediction accuracy.

5.2 Problem considered and input variables

The problem considered in this case is similar to that described in Section 5.2 for Subproblem
1. In this case the WRF model outputs considered in the study provides 116 variables, more
than in the previous example, which are the following:

- OLR: Top of atmosphere outgoing long-wave radiation (W �m2).

- GLW: Downward long-wave flux at ground level (W �m2).

- SWDOWN: Downward short-wave flux at ground level (W �m2).

- u: Zonal wind component at di�erent pressure levels (m�s).

61
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- v: Meridional wind component at di�erent pressure levels (m�s).

- w: Vertical wind component at di�erent pressure levels (m�s).

- PSFC: Atmospheric pressure at ground level (hPa).

- QVAPOR: Water vapor mixing ratio (in kg�kg). This variable is defined as the ratio of
the mass of water vapor to the mass of dry air.

- TSK: Surface skin temperature (K).

- TH2: Potential temperature at 2 meters above the ground (K).

- T’: Perturbation potential temperature (in K) at di�erent pressure levels. The relationship
between the perturbation potential temperature, T’, and the potential temperature, ◊, is
◊ = T

′ + 300.

- CLDFRA: Total cloudiness (fraction of clouds in each cell) at di�erent pressure levels.
Cloud fraction ranges from 0 (no clouds) to 1 (clouds in a spatial grid cell).

Table 4.1 shows the 58 variables analyzed for each grid point considered, indicating (when
needed) the di�erent pressure levels where they were obtained. Therefore, as two grid points
(M = 2) have been examined, a total of 116 variables have been used in this work.

5.3 Methodology

We use now the CRO-SP (Section 3.3.1) to determine which set of WRF outputs obtains
the best global solar radiation prediction. As in the previous case, fitness function considered
for each coral (individual) is obtained computing the Root Mean Square Error (RMSE) of the
global solar radiation prediction given by the ELM, as shown in Equation (5.1), where, again, It

stands for the global solar radiation measured at a time t, Ît stands for the global solar radiation
estimated by the ELM, and T stands for the number of samples in the test set.

RMSE =
���� 1

T

T�
t=1 �Ît − It�2 (5.1)

5.4 Experiments and results

This section describes the experiments run in this problem of solar radiation estimation.
Again, the aim is to predict the global solar radiation at a point P using as predictive variables
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the outputs of the WRF model obtained in two grid points close to P . The first step is to
determine the best predictive variables (feature selection) and has been addressed implementing
a CRO-SP algorithm with the parameters shown in Table 5.1.

Table 5.1: CRO optimization parameters.
Phase Parameter
Inicialization Reef size = 50 × 40 (2,000 positions)Si, i ∈ {1..5} (5 species)

fl0 = 0.75 (1,500 corals)
fl
Si
0 = 0.15 (300 corals per species)

External sexual reproduction Fb = 0.70
Random selection of broadcast spawners. Each possible coral
must be broadcast spawner at least once per iteration k.
New larva formation using 2-point crossover.

Internal sexual reproduction 1 − Fb = 0.20
Pi = 0.30

Larvae setting ÷ = 3
Identical corals are not allowed in the reef.

Asexual reproduction Fa = 0.05
Pa = 0.005

Depredation Fd = 0.15
Pd = 0.25 (it decreases with the number of iterations. At kmax,
Pd = 0)

Stop criteria kmax = 300 iterations.

To identify the best set and number of predictive variables, several experiments (Ei, i ∈[1, . . . , 3]) have been run in a 10-fold cross validation scheme. Each CRO-SP experiment Ei

consists of five subexperiments, each one of them analyzing a specific species Si (i ∈ [1, . . . , 5]),
i.e., all corals belonging to one species have the same number of features. The co-evolution of
these species leads quickly to a coral-reef colonized by the most suited corals. Once convergence
is reached, the best coral in the reef belongs to a specific species and its health function stands
for the RMSE value obtained in test. Note that to calculate the global solar radiation at each
iteration, the ELM has been run 3 times and the health function value assigned to the coral is
the average result obtained.

Table 5.2 presents the results obtained for each experiment: the average value of error in
test, the best coral’s RMSE and its corresponding species (in terms of the number of predictive
variables in that species).

The first experiment run, E1, is meant to resolve the order of magnitude of the number of
features to be considered (10, 20, 30, 40 or 50), and it can be observed that the best prediction
is found using 10 variables (RMSE = 68.21 W �m2). Experiments E2 and E3 are used to refine



64
Chapter 5. A CRO-SP Optimization Scheme for Robust Global Solar Radiation Statistical

Downscaling

Table 5.2: Experiments run considering di�erent species. Each species is represented by Si

Experiment Number of RMSE Best Species
features per species (W �m2)S1 S2 S3 S4 S5 Average Best coral

E1 10 20 30 40 50 69.50 68.21 10 features (S1)E2 6 8 10 12 14 69.33 68.16 8 features (S2)E3 7 8 9 10 11 69.16 68.03 8 features (S2)

the number of predictive variables to consider, both of them converging to best results when
the species encode 8 variables. Figure 5.1 presents the scatter plots for each experiments’ best
coral, showing the algorithm’s good performance in all cases.

Figure 5.2 presents the comparison in time between the measured and the predicted GSR
for experiment E3, the best experiment, where it can be seen that the prediction follows rather
well the field (target) data. Figure 5.3 shows the evolution with the number of iterations of the
best coral in this experiment. It corresponds to a coral encoding the use of 8 WRF variables
and presents a final RMSE of 68.03 W �m2 and a coe�cient of determination r

2 =0.9531.
It is interesting to analyze the behavior (evolution) of the di�erent species in the reef with

the number of iterations. Figure 5.4 shows this evolution for the best run of the best experiment,E3. In Figure 5.4(a) the random initialization of the reef is presented, where the reader can see
the positions occupied by each di�erent species and the free positions available at the reef. As
the number of iterations (k) increases (Figures 5.4(b)-(f)), it can be observed that the worst-
fitted species tend to die and are no longer present at the reef, as larvae from dominant species
outperform them. Finally, when the stop criteria is reached, the reef is colonized by the best
species which, in this particular experiment, is species S2 (corresponding to the use of 8 WRF
variables for the prediction).

Figures 5.5 to 5.7 show, for all experiments analyzed, the evolution with the number of
iterations of two important characteristics. First, the root mean square error of each species’ best
coral, which is depicted in subfigures (a). It is clear that the RMSE decreases with the number
of evolutions, but there is one exception: when a species is endangered (is being outperformed
by the rest) its RMSE increases abruptly. Right after this occurs, the RMSE is interrupted,
resulting in the disappearance of the worst-fitted species from the reef. Second, the number
of corals present in each species is analyzed in Figures 5.5(b), 5.6(b) and 5.7(b). It can be
observed that, at some points, the number of corals in some species drops down. This is directly
related to the occurrence of depredation phases. It is important to highlight that although in
the depredation phase the species are decimated, the evolution keeps recovering the best-fitted.

Next, Table 5.3 shows the name of the best coral’s WRF outputs selected for each experiment.
It can be seen that there are six variables: OLR, w at 400 hPa, CLDFRA at 200 hPa, T at 850
hPa and T at 400 hPa corresponding to the first grid point, and v at 500 hPa corresponding
to the second grid point, present in all experiments’ results. Therefore, we can conclude that
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these variables set the rough prediction while the other WRF outputs selected by the algorithm
perform the refinement. Thus, for the third experiment, the RMSE using these 6 variables (over
the same test sets) is 74.05 W �m2 and 72.59 W �m2, average and best values respectively. Once
the refinement takes place, these RMSE values drop down to 69.16 W �m2 and 68.03 W �m2

respectively (as stated in Table 5.2).

Table 5.3: Best predictive variables found for each experiment. Those variables present in all
three experiments’ results have been highlighted in bold face.
Experiment Best WRF outputs selected

Grid point #1 Grid point #2
E1 OLR, v (500 hPa),

w (400 hPa), PSFC,
CLDFRA (200 hPa), TH2,
T (850 hPa), u (50 hPa)
T (400 hPa),
u (100 hPa)

E2 OLR, v (500 hPa),
w (400 hPa), TH2
CLDFRA (200 hPa), w (300 hPa)
T (850 hPa),
T (400 hPa),

E3 OLR, v (500 hPa),
w (400 hPa), u (850 hPa)
CLDFRA (200 hPa), u (50 hPa)
T (850 hPa),
T (400 hPa),

Finally, in Table 5.4 the results are compared to those obtained with other techniques. First,
the reader can see the GSR prediction using the 116 WRF variables (no feature selection) as
inputs to the ELM. Then, feature selection is performed using three di�erent techniques: a
Genetic Algorithm (GA), a GGA (as described in [6]) and the proposed CRO-SP approach, and
the variables chosen are used as the inputs to the ELM. It can be seen that the best results are
obtained when the CRO with species is used.

5.5 Conclusions

In this chapter we have tackled a global solar radiation prediction problem by using a novel
co-evolution algorithm Coral Reefs Optimization algorithm with species (CRO-SP), combined
with an Extreme Learning Machine (ELM). The ultimate goal of this experiment has been
to evaluate what predictive variables from the numerical weather model (i.e. the WRF model)
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Table 5.4: Comparison of the results obtained with other metaheuristic techniques.
Metaheuristic technique RMSE (W �m2)

Average Best individual
No feature selection + ELM 88.24 87.25
Genetic algorithm + ELM 73.98 72.20
Grouping Genetic Algorithm + ELM [6] 74.73 73.66
CRO-SP + ELM 69.16 68.21

perform best. For this purpose, each species in the CRO-SP encodes a fixed and di�erent number
of variables to be analyzed and the best species comes out as a result of the co-evolution.

To determine the best set and number of predictive variables, three experiments have been
run in a 10-fold cross validation scheme and the RMSE has been used as common measure.
The experiment where 7, 8, 9, 10 and 11 variables are co-evolved (experiment E3), produces
an average best result of 69.19 W �m2 an a best result of 68.03 W �m2, turning in a 21.62 %
and 22.03 % improvement, respectively, over the average and best prediction without feature
selection.
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Figure 5.1: Scatter plot of the global solar radiation: (a) Experiment E1, (b) Experiment E2 and
(c) Experiment E3.
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Figure 5.2: Experiment E3. (a) Global solar radiation in time. (b) Deviation in time of the
predicted GSR from the measured GSR. Note that only a random time frame of 100 samples is
presented for clarity purposes.
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Figure 5.3: Experiment E3. Evolution with the number of iterations of the best coral’s RMSE.
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Figure 5.4: Experiment E3. Evolution of the species present in the reef after a certain number
of iterations (k): (a) k = 1, (b) k = 10, (c) k = 25, (d) k = 50, (e) k = 150, (f) k = 300.
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Figure 5.5: Experiment E1. Evolution with the number of iterations of: (a) RMSE of each
species’ best coral, and (b) Number of corals per species.
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Figure 5.6: Experiment E2. Evolution with the number of iterations of: (a) RMSE of each
species’ best coral, and (b) Number of corals per species.
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Figure 5.7: Experiment E3. Evolution with the number of iterations of: (a) RMSE of each
species’ best coral, and (b) Number of corals per species.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This Ph.D. thesis deals with the problem of global solar radiation prediction at a given point
from numerical weather models, specifically the WRF meso-scale model. We propose hybrid
neuro-evolutionary algorithms to deal with the large amount of features from the WRF, by
means of wrapper feature selection. For this, we propose the GGA-ELM approach in Chapter 4
and a hybrid CRO-SP plus ELM approach has been proposed in Chapter 5.

The use of this kind of techniques, based on hybrid techniques related to bio-inspired algo-
rithms [25], (either traditional such as evolutionary computation techniques, or new approaches
such as the Coral Reefs Optimization algorithm) produces strong and robust techniques for
solar radiation prediction, in which feature selection methods are integrated together with the
prediction algorithms, carried out by a fast-training neural network.

From the results of this research, di�erent conclusions can be raise, summarized here:

1. Hybrid prediction systems for optimal global solar radiation prediction have been proposed
in this work, where the WRF provides a prediction of atmospheric variables at di�erent
pressure levels at a given point, that will be used as inputs in the prediction system
(ELM) to estimate the global solar radiation prediction, and improved (by means of feature
selection) with di�erent hybrid bio-inspired algorithms.

2. A hybrid GGA-ELM has been proposed to obtain an optimal prediction of solar global
radiation at a given point of the Earth surface. The GGA algorithm proposed obtains the
best features from the WRF model to do the prediction, while the ELM will carry out
the final prediction of the global solar radiation. This is the first time that a grouping-
based algorithm is proposed for feature selection. Two di�erent dynamics and crossovers
are proposed in the GGA: D1 is a regular dynamic proposed in a GGA, in which all the
groups of features are evaluated by means of the ELM, and the best group is kept as
the solution to the feature selection. On the other hand, D2 is a novel contribution of

75
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this These, in which groups of the worst features from the WRF model are selected by
the GGA, and erased from the evolution to achieve the best prediction with the survival
features. This D2 has proven to be less computational costly than D1, and while obtaining
even better solutions. Regarding the crossover operators, C1 is a regular crossover operator
and C2 is a double crossover which provides extra diversity in the solutions, leading to
better results.

3. A hybrid CRO-SP and ELM system has been proposed to optimally predict the Global
Solar Radiation at a given location. In this case, the hybrid approach is able to cope
with di�erent encoding for individuals, dealing this way with individuals that encoded
from 6 to 50 features, and co-evolved them to obtain the best solar radiation predic-
tion. The contribution of this system is the application of a novel co-evolution algorithm
(CRO-SP+ELM) to predict the global solar radiation and improved the results previously
obtained with other techniques.

6.2 Future Research

Despite of the di�erent results and lines obtained from this Ph.D. thesis, there are several
directions in which studies could develop new research. Some of the research works that could
be addressed in the near future are following:

1. This thesis focuses in a meso-scale model, the WRF, as input generator for the di�erent
hybrid models applied. Next research could be the evaluation of the potential of the di�er-
ent hybrid models proposed with alternative NWM, or combination of them, to generate
new input variables to the hybrid system.

2. Di�erent meteorological, energy and renewable energy prediction and optimization pro-
blems could be proposed, such as [96] and [23], among others, to apply both algorithms
evaluated in this thesis and developing new results and improvements.

3. The ELM is applied as a regressor system to obtain the best prediction from the features
selected. Other regressors with enough fast training could be applied to hybridize with
the bio-inspired feature selection algorithms proposed, evaluating computational load, ex-
ecution timings and number of iterations to achieve a good solution within a reasonable
computational time.

4. This thesis focuses on mono-objective optimization problems. A strong extension of this
research would be to apply and adapt CRO the algorithm [99], both species evolution and
substrate layer 3, to be applied in multi-objective problems. In the research just proposed,
corals and larvaes are under modification to compete for a position in the coral, coevolving
with di�erent individuals from di�erent operators, such as genetic operator, bioinspired
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and others. In this case, a multi-objective algorithm obtains a Pareto front with di�erent
number of best solutions on the contrary as expected in a mono-objective problem.
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Appendix A. List of publications

This section presents a summary of the scientific publications obtained during the research
carried out in this Ph.D. Thesis, in addition to the publications of the Compendium. As can be
seen, the research work carried out has been extensive and has covered very di�erent algorithms
in Machine Learning, and also di�erent applications, in addition to solar radiation prediction.

6.3 Papers in International Journals

1. S. Salcedo-Sanz, R. García-Herrera, C. Camacho-Gómez, A. Aybar Ruiz and E. Alexan-
dre, “Wind power field reconstruction from a reduced set of representative measuring
points,” Applied Energy, vol. 228, pp. 1111-1121, 2018. (JCR: 7.900, Q1)

2. S. Salcedo-Sanz, A. Aybar-Ruiz, C. Camacho-Gómez and E. Pereira, “E�cient fractal-
based mutation in evolutionary algorithms from iterated function systems,” Communica-
tions in Nonlinear Science and Numerical Simulation, vol. 56, pp. 434-446, 2018. (JCR:
2.784, Q2)

3. L. Cornejo-Bueno, C. Camacho-Gómez, A. Aybar-Ruiz, L. Prieto, A. Barea-Ropero
and S. Salcedo-Sanz,“Wind power ramp event detection with a hybrid neuro-evolutionary
approach,” Neural Computing and Applications, vol. 32, no. 2, pp. 391-402, 2020. (JCR:
4.774, Q1)

6.4 Papers in International Conferences

1. L. Cornejo-Bueno, A. Aybar Ruiz, S. Jiménez-Fernández, E. Alexandre, J. C. Nieto-
Borge and S. Salcedo-Sanz, “A grouping genetic algorithm âÄ” Extreme learning machine
approach for optimal wave energy prediction,” 2016 IEEE Congress on Evolutionary Com-
putation (CEC), Vancouver, BC, pp. 3817-3823, 2016.

2. L. Cornejo-Bueno, A. Aybar-Ruiz, C. Camacho-Gómez, L. Prieto, A. Barea-Ropero and
S. Salcedo-Sanz, “A Hybrid Neuro-Evolutionary Algorithm for Wind Power Ramp Events
Detection,” IWANN, Cádiz, Spain, pp. 745-756, 2017.
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3. L. Cornejo-Bueno, C. Camacho-Gómez, A. Aybar-Ruiz , L. Prieto, and S. Salcedo-
Sanz, “Feature Selection with a Grouping Genetic Algorithm – Extreme Learning Machine
Approach for Wind Power Prediction,” CAEPIA, Conference of the Spanish Association
for Artificial Intelligence, Salamanca, Spain, pp. 373-382, 2016.

4. A. Aybar-Ruiz, J. Del Ser, J.A. Portilla-Figueras and S. Salcedo-Sanz,“A Grouping Har-
mony Search Algorithm for Assigning Resources to Users in WCDMA Mobile Networks,”
ICHSA, International Conference on Harmony Search Algorithm, Bilbao, Spain, pp. 190-
199, 2017.

6.5 National conferences

1. L. Cornejo-Bueno, C. Camacho-Gómez,A. Aybar-Ruiz, L. Prieto and S. Salcedo-Sanz,
“Feature Selection with a Grouping Genetic Algorithm - Extreme Learning Machine Ap-
proach for Wind Power Prediction”, XI Congreso Español de Meta-heurísticas, Algoritmos
Evolutivos y Bioinspirados (MAEB 2016), Salamanca, España, pp. 373-382, 2016.
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In  this  paper  we propose  a novel  Lamarckian  Hybrid  Grouping  Genetic  Algorithm  (LHGGA)  with  repair
heuristics  for  a problem  of  resources  assignment  to mobile  terminals  (or,  simply,  users)  in  Wide-band
Code  Division  Multiple  Access  (WCDMA)  networks.  We  propose  a novel  problem  formulation  that  takes
into  account  all the  interference  terms,  which  strongly  depend  on the  assignment  to be  done.  The  second
contribution  is  a cost  function  (to be  minimized)  with  weighted  components,  which  is composed  of  not
only  the  load  factors  (including  the  mentioned  interference  terms)  but  also  other  utilization  ratios  for
aggregate  capacity,  codes,  power,  and  users  without  service.  The  second  group  of  contributions  is  related
to  the  LHGGA  approach.  On  the one  hand,  we propose  a novel  encoding  scheme,  suitable  for  the  novel
problem  formulation.  On  the other  hand,  we  present  fully  tailored  operators.  We emphasize  the  proposal
of a repair  operator  of unphysical  candidates  (which  are substituted  by  their  repaired  versions),  and  a
crossover  operator,  able to acts  on  groups  (users  assigned  to a  base  station)  in  a  very  efficient  way.  The
proposed  LHGGA  exhibits  a superior  performance  than  that  of the conventional  method,  since  most  of
users  receive  the  demanded  services  along  with  a more  efficient  use  of resources  per  user.  The  LHGGA
approach  has  been  successfully  applied  to a  variety  of  scenarios:  different  number  of  users,  distributions,
or  users  profiles.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

According to the Global mobile Suppliers Association (GSA) there are cur-
rently 6.44 billion subscriptions worldwide using 3rd Generation Partnership
Project (3GPP) mobile networks [1]: Global System for Mobile Communications
(GSM) networks, Wide-band Code Division Multiple Access (WCDMA) networks
(also known Third Generation (3G) networks), and Forth Generation (4G) cellu-
lar  networks [1–3], such as Long Term Evolution (LTE) [4,5]. To provide the best
customer experience, these networks form a mobile access “ecosystem of Hetero-
geneous Networks”. The term Heterogeneous Network (HetNet) [6] is often used to
name a global network that consists of several mobile network technologies (GSM,
WCDMA  and LTE) covering the same geographical area [7], and also to describe the

! This paper is an improved version of the paper “A Novel Grouping Genetic
Algorithm for Assigning Resources to Users in WCDMA  Networks”, presented at
EvoComNet2015 and published in Applications of Evolutionary Computation: 18th
European Conference, EvoApplications 2015, Copenhagen, Denmark, April 8–10,
2015, Proceedings (Vol. 9028, p. 42). Springer.
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coexistence of different non-homogenous cells (macrocells, microcells, femtocells
[8–10]) to assure high data rates in small areas with large densities of users.

High Speed Packet Access (HSPA), based on WCDMA, is the most widely used
deployed mobile broadband technology in the world. In fact, HSPA is not a unique
technology, but a set of technologies that allow mobile operators to easily upgrade
their already deployed WCDMA  networks to support a very efficient provision of
speech services and mobile broadband data services (high speed Internet access,
music-on-demand, and TV and video streaming, to name just a few). Currently, 83%
of  mobile operators worldwide are investing and upgrading their WCDMA-based 3G
networks [11] and have 1.83 billion WCDMA  subscribers [1]. WCDMA/HSPA tech-
nology is expected to cover 90% of the world’s population by 2020, serving about 3.8
billion subscribers [12]. These figures illustrate the importance of properly planning
and dimensioning WCDMA  networks. The question that motivates this work is how
to  assign the limited WCDMA  resources to mobile terminals (users equipments, or,
simply, users).

One of these telecommunication resources are the available frequencies. In
WCDMA  cellular networks, a number of users are allowed to utilize simultaneously
the same frequency. To separate the communications, the network assigns a “chan-
nelization code” to each communication, so that only the corresponding receiver is
able  to extract the information that has been sent to it. However, a given amount
of  interference appears between communication links using the same frequency.
A  parameter called “load factor” is commonly used to quantify the influence of
interference. It is defined as the ratio between the interference and the total pertur-
bation (thermal noise + interference) [13–16]. The most used conventional approach
for  dimensioning WCDMA  networks is based on keeping the interference and load
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factor lower than a given characteristic thresholds [14,17]. The problem of assigning
users to the serving base station (BS) – also known “cell selection” [18] – is classically
tackled using algorithms that are based on the selection of the cell with the min-
imum propagation loss and/or leading to the maximal signal-to-interference plus
noise ratio (SINR).

However, the current ever increasing demand of higher speeds in mobile com-
munications [12] reveals that there are other resources that should be taken into
account. One of the most evident is based on the fact that the aggregation of
increasing numbers of users with higher data rates is leading to a bottleneck in
the  aggregation interface at the BS, in the sense that these aggregated rates could
be higher than the available backhaul capacity [19,20]. Other limiting resources
are the number of channelization codes (whose number is limited by the way  they
are  generated [13]) and the available power of base stations. In this respect, we
have recently tackled the problem of assigning these WCDMA  resources by using a
modified version of a Grouping Genetic Algorithm (GGA) [21], which made used of
approximated expressions of the load factors (since these did not take into account
all  the interferences). Notwithstanding, this approximation, which models the infer-
ences arriving from other cells as an average value, is useful and is often considered
when dimensioning WCDMA  networks [13–17].

In the present work we do take into account all the interferences, and proceed
further by proposing a Hybrid Grouping Genetic Algorithm (HGGA) with repair
heuristics [22] to manage the creation of unfeasible individuals. In general, the term
“hybrid” is applied to Evolutionary Algorithms (EA) –and to GGA, in particular– when
the repair method is used as a constraint handling procedure to reduce the search
space by only considering those feasible individuals. Note that, according to [22],
the  purpose of a hybrid algorithm is different from that of a memetic algorithm
[23]: whereas the local search in memetic algorithms is focused on the improve-
ment of the fitness of an individual, the repair method in a hybrid algorithm aims
to  not violate constraints, by reducing the search space only to feasible individuals.
Hybrid approaches with repair heuristics can be classified into “Lamarckian” and
“Baldwinian” approaches [24]. If the unfeasible chromosome is substituted by its
repaired version after the application of the local repair heuristic, the algorithm is
called Lamarckian [25]. Baldwinian [26] hybrid algorithms are those in which the
individual population does not change after the application of the repair heuristic,
only the fitness function being modified [22]. As will be shown later on, our approach
is  a Lamarckian HGGA.

With this in mind, the purpose of this work is to explore the feasibility of a
Lamarckian Hybrid Grouping Genetic Algorithm (LHGGA) with repair heuristics [22]
to near-optimally assign the WCDMA  resources (aggregated capacity, power, codes)
of  M base stations to N users, by minimizing a cost function composed of weighted
constituents such as the load factors (which include, as a novelty, a detailed modeling
of all possible interference signals), the fractions of available resources (aggregated
capacity, power, codes), and the fraction of users without service.  This is important
because a reduced number of users without service is perceived by customers as
high service availability, which help operators to increase market share.

The present research work differs from our previous work [21] in:

(1) We model and compute the load factors considering all the interference, which,
as  will be shown, are different depending on the base station any user is assigned
to.

(2) We propose an LHGGA with repair heuristics, which is an improved version of
the  GGA explored in [21], since the LHGGA implementation is able to repair
chromosomes encoding unphysical.

(3) The cost function to be minimized is more flexible than that of [21] in the sense
that its constituent elements (load factors, fractions of available resources –
aggregated capacity, power, codes – and fraction of users without service) may
be  multiplied by weight factors. This helps the designer prioritize one or sev-
eral  constituents. For instance, aiming at reducing the fraction of users without
service, a higher weight factor can be assigned to the fraction of users without
service.

(4) We have carried out a completely novel and more extensive set of experiments.
On the one hand, we compare the LHGGA performance to that of a conven-
tional approach (CA) that only minimizes the load factors. On the other hand,
we  have used the LHGGA approach to study the assignments in different scenar-
ios:  increasing number of users, different user distributions, or changes in users
profiles, with non-uniform traffic patterns. In all cases, the algorithm predicts
situations empirically proven by the experience of the operators.

The structure of the rest of this paper is as follows. While Section 2 reviews the
related works, Section 3 summarizes some WCDMA  fundamental aiming at bet-
ter  explaining the problem statement and different approaches. Section 4 focuses
on  describing in detail the our problem formulation (including detail models of
the  affecting interferences), along with a characterization of the resources to be
assigned. Section 5, which is the soft-computing core of our work, describes
the LHGGA we propose to tackle the aforementioned problem, emphasizing the
repair heuristics. We also focus on detailing the LHGGA encoding and the different
crossover and mutation operators implemented. Section 6 shows the experimental
work we  have carried out in order to show the good performance of the proposed
LHGGA. Finally, Section 7 completes the paper by discussing the main findings
obtained in this work.

2. Related work

We  have mentioned that the problem of assigning users to
base stations (or cell selection problem [18]) can be tackled using
classical algorithms based on the selection of the cell with the
minimum propagation loss and/or leading to the maximal signal-
to-interference plus noise ratio (SINR). One of these cell selection
algorithms is the “Best-Server Cell Selection” (BSCS) algorithm [3].
In this strategy, users are always assigned to the BS with the low-
est propagation loss. This BS is usually called “best base station”
(BBS) or best server (BSV). Although this algorithm leads to an
efficient use of radio resources, however it suffers from inefficien-
cies because the aggregate capacity of the BBS could be saturated
(“overloaded”). Other user assignment algorithm used in WCDMA
networks is the “Radio Prioritized Cell Selection” (RPCS) algorithm
[3]. In this algorithm, a list of candidate BSs is made as follows:
all the BSs having a difference in propagation loss (with respect to
the best base station) lower than a given propagation loss margin
(PLM) are considered as candidate BSs. Then, among the candidate
BSs whose capacity is not overloaded, the conventional RPCS algo-
rithm selects the BS having the minimum propagation loss, and the
user is assigned to it. This algorithm takes into account capacity
limits, but it comes at the expense of radio degradation because of
the potential selection of non-optimal cells.

A very interesting approach to optimize both the radio interface
and the backhaul capacity have been recently explored in [19] using
a cell selection algorithm called “Transport Prioritized Cell Selec-
tion” (TPCS) for any user uj. It works like the RPCS algorithm when
the already used capacity of all the BSs in the list of candidate BSs is
lower than a certain threshold. However, when the used capacity
of at least one of the candidate BSs is higher than such thresh-
old, the TPCS algorithm prioritizes BSs according to their capacity
occupancy. The authors made use of an analytical model based on
multi-dimensional Markov chains to assess the performance of the
TPCS algorithm, and validated its results using a Monte Carlo algo-
rithm. The results pointed out that this approach was useful to
achieve a more efficient use of backhaul capacity (when compared
to classical BSCS and RPCS cell selection algorithms). In a similar
line of research, [27] focused on the problem of base station assign-
ment in Orthogonal Frequency-Division Multiple Access (OFDMA)
cellular networks, and proposed a heuristic that made use of
Lagrange multipliers, leading to the conclusion that the algo-
rithm was able to give the same capacity but using less backhaul
resources.

For comparative purposes, Table 2 lists the pros. and cons. of
these methods when compared to the one we propose in this paper
and in our previous, simplified approach [21]. In that work, we
proposed a GGA [28–30] to assign resources (aggregate capacity,
power, codes) to users in WCDMA  networks, assuming simplified
versions of the load factors (the usual in text such as [13–16]), and
we did not make use of repair heuristics. The present work differs
from [21] in the contributions listed (1)–(4) in Section 1. Although
in a different approach from that in [21], the GGA  concept has
been already applied to other telecommunication problems such as
mobile communication network design [31–33], or OFDMA-based
multicast wireless systems [34].

Besides the proposal to optimize the radio interface and the
backhaul capacity [19], there are also some works, which are only
partially related to the underlying problem (focused only on the
jointly assignment of users to base stations and power [35,36], the
base stations and beam-forming schemes [37,38], or automatic pro-
cedures for the design of WCDMA  networks [39]). However, apart
from our preliminary approach [21], there appears to be no study
that combines all the factors (load factors and interferences, back-
haul capacity, power constrains, or number of codes) using Soft
Computing (SC) approaches.
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Table  1
List of acronyms used in this paper.

Acronym service Meaning

3G Third Generation
3GPP Generation Partnership Project
4G Forth Generation
AIS Artificial Immune System
BBS best base station
BS Base Station
BSCS Best-Server Cell Selection
BSV Best server
EA Evolutionary Algorithms
GA Genetic Algorithm
GEE Grouping Evolutionary Strategy
GGA Grouping Genetic Algorithm
GHS Grouping Harmony Search
GP Genetic Programing
GPS Grouping Particle Swarm Optimization algorithm
GSA Global mobile Suppliers Association
GSM Global System for Mobile Communications
HetNet Heterogeneous Network
HGGA Hybrid Grouping Genetic Algorithm
HSDPA High-Speed Downlink Packet Access
HSPA High Speed Packet Access
LHGGA Lamarckian Hybrid Grouping Genetic Algorithm
LTE  Long Term Evolution
nB Node B
OFDMA Orthogonal Frequency-Division Multiple Access
OVSF Orthogonal Variable Spreading Factor
PLM Propagation Loss Margin
PM Propagation model
PSO Particle Swarm Optimization
RPCS Radio Prioritized Cell Selection
SC  Soft Computing
SI Swarm Intelligence
SP Service Profile
SNIR Signal to noise-and-interference ratio
TPCS Transport Prioritized Cell Selection
WCDMA  Wide-band Code Division Multiple Access

SC approaches have dealt with other problems related to 3G
mobile networks optimization, although with different purposes,
such as [40], in which an evolutionary-based approach has been
proposed to cell size determination in the context of WCDMA
networks, taking into account different number of users and ser-
vices provided by the system. In other approach, Particle Swarm
Optimization (PSO) has also been explored to tackle the prob-
lem of base station configuration for planning WCDMA  networks
[41]. Genetic algorithms (GA) have been used widely in WCDMA
networks [42–45], for instance, for the problem of codes allocation
[43], and to optimize the location and configuration of base stations
in WCDMA  network planning [44]. Genetic algorithms have also
been applied to the deployment of base stations, taking into account
capacity and coverage in WCDMA  networks and using different
antenna heights [45]. The soft-computing approach of Genetic
Programing (GP) has been explored as a promising method for auto-
mated optimization design of base stations in WCDMA  networks
[46]. A hybrid optimization systems based on Swarm Intelligence
(SI) has been applied to multi-user scheduling in HSDPA (High-
Speed Downlink Packet Access) within 3G networks [47]. Artificial

Immune System (AIS) algorithms have also been applied to 3G
network optimization problems, just like in [48], where an arti-
ficial immune system has been used to solve a twofold problem in
which the users admission and control are considered. Recently,
[49] has explored an evolutionary multi-objective algorithm for
WCDMA  network planning which includes an iterative power con-
trol method with the simplification of neglecting the interference
arising from channels without no-load coverage.

As shown, although there is a considerable variety of research
works related to a greater or lesser degree to our proposal, to
the best of our knowledge, there appears to be no study that:
(1) formulates the assignment problem involving load factors
and interferences, backhaul capacity, power constrains, number of
codes, and number of users; and (2) tackles it by using an LHGGA
with repair heuristic aiming at finding near-optimal solutions to
the problem at hand.

3. WCDMA  background

We have mentioned in Section 1 that users in WCDMA  networks
are allowed to use simultaneously the same electromagnetic carrier
fC. To separate two  communications on the same carrier, the net-
work assigns a channelization code to each communication. This is
done by multiplying the user data (with bit rate Rb) by a code or
sequence of special bits (called “chips”), whose rate (“chip rate” W)
is a characteristic network parameter (W = 3.84 Mcps) much higher
than that of the user bit rate W ≫ Rb [14]. This concept has been
represented in Fig. 1. In this example, the code assigned to this com-
munication is {1, −1, 1, −1, −1, 1, −1, 1}. Note in Fig. 1 that each
bit of the user’s signal (d(t)) is multiplied by the code sequence {1,
−1, 1, −1, −1, 1, −1, 1}. In WCDMA  networks, Orthogonal Variable
Spreading Factor (OVSF) codes, which were originally proposed in
[50], are used as channelization codes. These codes are generated
from a code trees, based on the required data rates (Rb)[50–52].

Although orthogonal property helps ideally reduce interference,
however, the remaining communications using the same frequency
become somehow interference signals. This is illustrated in Fig. 2.
The dashed area represents the cell that is covered by a BS or “node
B” (nB), in WCDMA  terminology. Throughout this work, both words
will be used interchangeably. The nB labeled Bk in Fig. 2 will be used
as a “reference” throughout this paper aiming at better explaining
the most complex aspects of the involved interference terms. nBku
represents the number of user that the base station Bk is serving.
In particular, a reference user, ul, assigned to Bk, has also been rep-
resented. User ul, which emits a power pe(l), will be used later on
to explain how interference is calculated. pR,Bk

(l) represents the
power received at the base station Bk emitted by user ul. The total
interference must contains not only those interferences generated
by the users in the own cell (for instance, user uj in Fig. 2) but
also those arising from other users located in other cells (user um).
Note that apart from the interferences appearing in the uplink (UL)
–signals moving from the users to the BS– there are also others
in the downlink (DL). A representative example is the interference
produced by the base station Bq (q /= k), which interferes on the

Table 2
Comparison among different cell selection algorithms (or user assignment algorithms). See Table 1 for acronyms.

Method Pros Cons

BSCS • Efficient use of radio resources • Base station capacity can be overloaded [19]
• Considers neither codes, nor power, nor users without service

RPCS  • Includes BS capacity limits [19] • Radio degradation because of potential selection of non-optimal cells
•  Considers neither codes, nor power, nor users without service

TPCS  • Optimizes both radio interface and backhaul capacity [19] • Considers neither codes, nor power, nor users without service

HLGGA • Able to optimize radio resources, capacity, codes, power, and users • More complex interactions
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Fig. 1. (a) Simplified example of WCDMA  signal generation. (b) Each bit of the user’s
data, d(t), with a bit rate Rb(b/s) = 1/Tb (Tb being the bit period), is multiplied by the
code c(t) assigned to such communication. In this example, the code sequence is
{1,−1,1,−1,−1,1,−1,1}.  Tc is the chip period and W = 1/Tc is the chip rate.

DL signal corresponding to the link ul ↔ Bk, involving the serving
Bk and the reference user ul.

The load factor in all the up-links of the cell served by the nB Bk
– defined as the ratio between the interference and the total noise
(thermal + interference) [3,53,54] – can be estimated as

!UL(Bk) ≈ (1 + ") ·
nBku∑

j=1

1
1 + 1

(eb/n0)S(j) · W
RUL

b,S
(j) · #UL

S
(j)

(1)

Fig. 2. Simplified representation of the communication signals (blue solid line) and
interferences (black dashed lines) on the “reference” communication link ul ↔ Bk .
pR,Bk

(l) represents the power received at the base station Bk emitted by user ul .
The  total interference contains not only those interferences generated by the users
assigned to the “own cell” (uj ∈ Bk , j /= l) but also those arising from other users
located in “other cells” (user um ∈ Bq , q /= k). Note that a user, like ux , which is
closer to the Bk , could be however assigned to another Bq . See the main text for
further details. (For interpretation of the references to color in this figure legend,
the  reader is referred to the web  version of this article.)

where:

• " is the ratio between the inter-interference (or “other-cell inter-
ference” [3], coming from users in other cells, Bq, q /= k) and
intra-interference (or “own-cell interference” [3]) produced by
remaining users within the same own  cell Bk. Usually " is assumed
to be a constant average value (" = 0.55) in cells with omni-
directional antennas [3,53]. As will be shown later on, one of
the novelties of our work consists in modeling " as a function
that depends on the particular assignment of users to the base
stations.

• (eb/n0)S(j) is the value for the ratio between the mean bit energy
and the noise power density (including thermal noise and inter-
ference) required to achieve a given quality for service S. Note
that this service could be different for each user uj. For the pur-
pose of this paper, (eb/n0)S(j) is an input parameter provided by
the service requirements [3].

• RUL
b,S(j) is the bit rate of service S in the j uplink within cell Bk. It

is an input value stated by the service requirements. Throughout
this paper, uppercases “UL” and “DL” will be used for labeling,
respectively, uplink and downlink parameters.

• #UL
S (j) is a utilization factor, which is 1 for data service, and 0 <

#UL
S (j) < 1 for voice services [3].

In a similar way, the downlink load factor in the cell served by
nB Bk is [3]

!DL(Bk) ≈
[
(1 − ¯̨ ) + "̄

]nBku∑

j=1

(eb/n0)S(j)
W

RDL
b,S

(j) · #DL
S

(j)

(2)

where ¯̨  is an average orthogonality factor in the base station, and
"̄ is an average of " (across the cell), since in the DL, the ratio of
other-base stations to own-base station interference depends on
the user location and is thus different for each user j [3].

Finally, for the sake of clarity, Table 3 lists the symbols used in
this paper.

4. Novel problem formulation

As mentioned in Section 1, one of the novelties of this paper
when compared to the conventional approach and to our previous
work [21] consists in modeling in a more accurate way  the load fac-
tors (Section 4.1) and in constructing a cost function (with weights),
which makes use of not only the load factors but also some ratios
that measure the extent to which the other resources (aggregated
capacity, power, codes) are used (Section 4.2). Those aspect related
to the LHGGA algorithm we propose to tackled this problem will be
explained in Section 5.

4.1. A more accurate model of interference and load factors

To clearly distinguish these from those stated by Expressions (1)
and (2), and to ease the subsequent discussion, we label them as
!∗

UL and !∗
DL, respectively.

We  model the uplink load factor of cell Bk as

!∗
UL(Bk) =

nBku∑

j=1

(1 + "UL
uj→Bk

) · 1
1 + 1

(eb/n0)S(j) · W
RUL

b,S
(j) ·  #UL

S
(j)

(3)

where "UL
uj→Bk

is the ratio of other-cell to own-cell interference on

the uplink communication (superscript “UL”) between user uj and
node Bk, (subscript “uj → Bk”). As will be shown, "UL

uj→Bk
depends on

the assignment to be done. If, as usual, the other-cell to own-cell
interference ratio is assumed an average value (" = 0.55), then it
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Table  3
List of symbols used in this work.

Symbol Meaning

Aj Assignment vector of user uj

(eb/n0)S(j) Ratio between the mean bit energy and the noise power
density (including thermal noise
and interference) required to achieve a given quality for
service S of user number j.

¯̨  Average orthogonality factor in the base station
Bk Base station number k
C Cost function to be minimized
ci Chromosome number i
D  Statistical distribution
$nWS

u
Fraction of users without service

$Cod Fraction of codes
$CDL

Ag
Fraction of aggregate capacity in downlink

$CUL
Ag

Fraction of aggregate capacity in uplink

$PBk
Fraction of power emitted by base station Bk

!DL(Bk) Downlink load factor
!∗

DL(Bk) Downlink load factor (proposed)
!UL(Bk) Uplink load factor
!∗

UL(Bk) Uplink load factor (proposed)
iUL,Bq
uj→Bk

Uplink interference (on link uj → Bk) generated by users
assigned to other cells Bq

iUL,Bk
uj→Bk

Uplink interference (on link uj → Bk) generated by users
assigned to own cells Bk

ℓum,BX Total propagation loss in the link um → BX

Lum,BX Total propagation loss in the link um → BX , in dB
M  Number of base stations or nodes B
N  Number of users
nWS

u Number of user without service
nBku Number of users assigned to base station (nodeB) Bk

#DL
S (j) Utilization factor (of service S) in downlink j

#UL
S (j) Utilization factor (of service S) in uplink j

pR,Bk
(l) Power received at the base station Bk emitted by user ul

pe,um ≡ pe(m) Power emitted by user um

pBk |max Maximum power emitted by base station Bk

Pc Crossover probability
Pm Mutation probability
Psize Population size
RDL

b,S
(j) Downlink bit rate of service S in the j downlink

RUL
b,S

(j) Uplink bit rate of service S in the j uplink
ul User l
w! Weight factor for load factors
w$CA

Weight factor of aggregated capacity ratio
w$PBk

Weight factor of power ratio emitted by station Bk

w$Cod
Weight factor of code ratio

w$WS
nu

Weight factor of fraction of users without service

W  Chip rate
" Other-cell interference to own-cell interference ratio
"̄ Average (across the cell) of other-cell interference to

own-cell interference ratio
"UL

uj→Bk
Assignment-dependent other-cell interference to own-cell
interference ratio (proposed)

ϒj,k Signal to noise-and-interference ratio between uj and all
the base stations Bk

does not depend on index j and Expression (3) becomes into (1).
To understand clearly why "UL

uj→Bk
depends on the assignment, it is

first convenient to have a look at the way "UL
uj→Bk

is computed:

"UL
uj→Bk

=
i
UL,Bq
uj→Bk

i
UL,Bk
uj→Bk

(4)

where iUL,Bq
uj→Bk

and iUL,Bk
uj→Bk

are the uplink other-cell-interference (aris-

ing from users in other cells Bq /= Bk) and UL own-cell-interference
(from users inside the own cell Bk), respectively:

iUL,Bq
uj→Bk

=
∑

um ∈ Bq,Bq /=  Bk

pe,um

ℓum,Bq

(5)

iUL,Bk
uj→Bk

=
∑

um ∈ Bk,um /=  ul

pe,um

ℓum,Bk

(6)

In the interference Expressions (5) and (6), pe,um is the power
that each user um emits, and ℓum,BX is the total propagation loss in
the link um → BX (between user um and node BX). Note that BX = Bk
is the cell to be used for properly calculating the own-cell interfer-
ences while BX = Bq, with q /= k, the one for computing other-cell
interferences.

A key point to note in Expressions (5) and (6), which is not easy
to see intuitively, is that a generic user ux, which can be physically
located inside the cell coverer by its nearest base station (Bk in Fig. 2)
could be however be assigned to another base station that is farther
(Bq, q /= k in Fig. 2). We  use the notation “ux ∈ Bq” to mathemati-
cally express that user ux has been assigned to nodeB Bq. If this is the
case, ux ∈ Bq produces other-cell interference on the communication
links involving Bk (ul ↔ Bk).

That is, properly computing the different interference terms
(iUL,Bk

uj→Bk
and iUL,Bq

uj→Bk
) requires first to assign users to nBs. Only when

the users have been assigned to nBs, by forming groups of users
served by the assigned nBs, it is possible to know whether or not
user um belongs to uj’ group (Bk) or to another, and to discern
whether or not um in Expressions (5) and (6) produces other-
cell interference (if um ∈ Bq, q /= k) or own-cell interference (if
um ∈ Bk). Depending on the way  the assignment is done, "UL

uj→Bk
can

have very different values.
In turn, the propagation losses in Expressions (5) and (6) can be

computed as

ℓum,BX = 10Lum,BX
(dB)/10, (7)

Lum,BX (dB) being

Lum,BX (dB) = LPM
um,BX

+
∑

ı

Lı −
∑

'

G', (8)

where:

• LPM
um,BX

can be computed by using a “propagation model” (PM)
[55,56]. These propagation models for mobile communications
are complex models, make use of many parameters (frequency,
distance, antennas heights, and others [55–57]) and often need
empirical adjustments: Cost231 Walfisch-Ikegami model [58]
and Okumura–Hata propagation model [57,59–61]. For an urban
macro cell with base station antenna height of 30 m,  mobile
antenna height of 1.5 m and carrier frequency fC = 1950 MHz,  the
Okumura–Hata propagation model predicts a propagation loss

LPM
um,BX

(dB) = 137.4 + 35.2 · log [d(ul, BX )] , (9)

d(ul, BX) being the distance between the antennas of user’s device
ul and base station BX.

•
∑

ıLı represent the remaining losses (body loss, cable loss in the
base station, etc.)

•
∑

'G' is the sum of the antennas gains (both base station and
user device).

• Lı and G' are input data that depend on the service.

4.2. Including more ratio parameters in the problem

Each of these parameters aims to quantify the efficiency with
which an available resource R is used. In this respect, the utilization
ratio of resource R is defined ( =̇) as

$R=̇ Rused
Ravailable

(10)

The first telecommunication resource whose use would be opti-
mized is the available capacity for aggregating UL bit rates: CUL

Ag . In
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any base station Bk, the UL bit rates of any user uj for a service
S, RUL

b,S(j), must be aggregated for ulterior backhauling. The corre-
sponding aggregated capacity ratio in each Bk is defined as

$CUL
Ag

=̇ 1
CUL

Ag

nSku∑

j=1

RUL
b,S(j), (11)

Similarly, its counterpart for DL is defined as

$CDL
Ag

=̇ 1
CDL

Ag

nSku∑

j=1

RDL
b,S(j) (12)

Another important resource is the maximum power that the BS
has in order to serve the active users. We  model the efficiency in
its use as

$PBk
=̇ 1

pBk |max

nSku∑

j=1

pDL
Bk→uj

(13)

where pBk |max is the available maximum power of base station Bk,

and pDL
e,Bk

(j) is the power emitted by Bk for serving this user j.
Finally, if NS represents the number of different services (NS = 3,

in this study), and NSh
Cod is the number of available codes for serving

service Sh, the fraction on channelization codes in base station Bk is

$Cod=̇
NS∑

h=1

n
Bk
u,Sh

N
Sh
Cod

, (14)

Finally, the fraction of users without service is

$nWS
u

=̇nWS
u

N
(15)

where nWS
u is the number of users without service.

These ratios, along with the load factors, will allow us to propose
the novel cost function that we describe in the following subsection.

4.3. The complete mathematical formulation of the problem

Given a WCDMA  network with M base stations and N active
users, the problem consists in assigning (for each nB Bk, k = 1, 2, . . .,
M) the available resources (power, capacity and codes) to users by
minimizing the cost function

C = 1
M

M∑

k=1

[w! · (!∗
UL + !∗

DL) + w$CA
· ($CUL

Ag
+ $CDL

Ag
+)

+ w$PBk
· $PBk

+ w$Cod
· $Cod + w$WS

nu
· $WS

nu
], (16)

constrained to the conditions that all the ratios (3)–(15) are real
numbers ranging from 0 to 1. w( represents a weight factor for
any of the involved components: load, utilization ratios of capac-
ity, power, and codes, and fraction of users without services ((
= !UL, !DL, $CUL

Ag
, $CDL

Ag
, $PBk

, $Cod, $WS
nu

). Note that 0 ≤ ( ≤ 1 (see

Expressions (3)–(15)). The weight values w( can be chosen depend-
ing on the importance we want to give to any of the physical
quantities involved. This cost function differs from the one stated
in [21] just in the introduction of these weight values.

To tackle this problem we propose the LHGGA with repair
heuristics that follows.

5. Proposed Lamarckian Hybrid Grouping Genetic
Algorithm with repair heuristics

The Lamarckian Hybrid Grouping Genetic Algorithm with repair
heuristics we propose is a particular class of grouping genetic
algorithm in which the unfeasible individuals are modified by
a repair operator (“hybrid” GGA) and substituted by their cor-
responding repair version (“Lamarckian”). The grouping genetic
algorithm is a class of evolutionary algorithm especially modified
to tackle grouping problems, i.e., problems in which a number
of items must be assigned to a set of predefined groups. In our
problem, a number of N users have to be assigned to a number
of M base stations. The grouping genetic algorithm was first pro-
posed by Falkenauer [28,29], who  realized that traditional genetic
algorithms had difficulties when they were applied to group-
ing problems (basically, because the standard binary encoding
increases the space search size in this kind of problems). In the
GGA, the encoding, crossover and mutation operators of traditional
genetic algorithms are modified to obtain a compact algorithm with
very good performance in grouping problems, including telecom-
munication problems [31–34].

Assuming that the reader is familiar with the fundamentals the
GGA is based on, the following sections focus on describing only
the novel and/or the most particular aspects of the LHGGA we pro-
pose to tackle the difficulties underlying the problem stated in (4).
Specifically, we  emphasize the particular encoding of our problem
(Section 5.1), the repair heuristic (Section 5.2), the selection oper-
ator (Section 5.3, and the crossover and mutation 5.4) operators.

5.1. Problem encoding

The encoding we  use is a variation with respect to the classical
grouping encoding proposed initially by Falkenauer [28,29]. In this
classical approach, the encoding is based on separating each chro-
mosome c into two parts: c = [e|g], the first one being the element
section, while the second part, the group section. Since the number
of base stations in our network is constant (M), we have used the
following variations of the classical grouping encoding:

(1) The group section g is an (M + 1) length vector, whose elements
(labeled nBju ) represent the number of users assigned to each jth
base station (Bj). Subscript j ranges from −1 to M, j=−1 being
used to represent those users that are not connected to any
node, that is, those in an “imaginary” or virtual base station
that we  have labeled “base station −1”. As will be shown, this
group part is necessary since the crossover operator acts on the
group part and not on individual users. This is much more effi-
cient than applying this operators on the element part (as in a
conventional genetic algorithm) because, as proved by Falke-
nauer [28,29], classical genetic algorithms have difficulties in
grouping problems because their encoding increases the space
search.

(2) The element part e is an N-length vector whose elements (uBk
j )

mean that user uj has been assigned to base station Bk.

As an example, following our notation, in a trial solution with N
elements (users) and M groups (base stations), a candidate assign-
ment could be encoded by a chromosome

ci = [uBh
1 , uBp

2 , . . .,  uBj
i , . . .,  uBw

N | nB−1
u , nB1

u , nB2
u , . . .,  nBj

u , . . .,  nBM
u ],

(17)

where nB−1u is the number of users without service (nWS
u ), those that

have not been able to be assigned to any nB and do not have service.
We represents this by assigning then to a “virtual” nB labeled B−1.
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Note that
∑M

k=−1nBku = N, which simply states that the total
number of active users in the network are distributed among the
M base stations, including those nB−1u = nWS

u users which have not
received telecommunication resources.

5.2. Chromosome repairing operator

The reason that compels us to propose a chromosome repairing
operator, fully adapted to the problem at hand, is that the random
generation of the initial population, or the crossover and muta-
tion operators could produce candidate solutions which may  have
no physical sense. An example of such “bad candidates” could be a
chromosome cj encoding an individual in which one or several of
the efficiency ratios (defined by (3)–(15) between 0 and 1) are how-
ever greater than 1. Intuitively, this is the case when cj encodes, for
instance, a particular assignment in which there is a base station
with too many users that the aggregate DL capacity leads to a ratio
$CDL

Ag
(cj) > 1. This is an “overload” in the sense that the algorithm

is trying to use more capacity than the eNB actually has. Or in other
words, a violation of one of the constrains our problem involves.

The proper management of the problem’s constraint is a key
point for obtaining “good-quality solutions”. There are basically
two groups of strategies aiming at properly managing problem con-
straints in evolutionary algorithms [22]: introducing penalty terms
in the cost function [62–65], or repair heuristics [22,66–70]. We  have
selected repair heuristics in the detriment of penalty terms in the
cost function because repair operators have been found to perform
better in a most of Hybrid GGAs. See [22] for further details.

The propose chromosome repairing operator [22] works as fol-
lows:

(1) For any chromosome cj, compute its cost function, and check
their constituent components ((cj) to detect whether or not
one or several overloads (thresholds violations) have arisen
(for instance, $DL

CAg
(cj) > 1). If not, the chromosome is keeping

unchanged.
(2) But, if some overheads have been detected (((cj) > 1), then the

chromosome repairing operator selects at random a gene (user)
in the chromosome element part, and assigns it to another eNB
(also at random).

(3) The novel chromosome so generated is checked searching for
overloads.

(4) This process is repeated until a maximum number of iterations
is reached or the new assignment does not violate any constrain.
If the process ends with the maximum number of iterations, this
means that the user has not been able to be assigned to any BS
without violating some constrain, and thus is assigned to virtual
base station −1.

Note that as the unphysical chromosome is substituted by its
repaired version after the application of the described repair heuris-
tic, the algorithm is Lamarckian. This is why we  have labeled our
algorithm LHGGA.

5.3. Selection operator

Our selection operator is inspired by a rank-based wheel selec-
tion mechanism. In a first step, individuals are sorted in a list based
on their quality (measured by their cost function (C(ci)). The posi-
tion of the individuals in the list is called rank of the individual,  and
are labeled Ri, i = 1, . . .,  Psize, Psize being the population size. We
consider a rank in which the best individual (lowest cost function)
x is assigned Rx = Psize, the second best y, Ry = Psize − 1, and so on.

Thus we  can associate to each individual (assignment) i encoded by
chromosome ci a selection value

)i = 2 · Ri

Psize · (Psize + 1)
(18)

Note that these values )i, i = 1, . . .,  Psize, are normalized
between 0 and 1, depending on the position of the individual in
the ranking list. It is worth emphasizing that this rank-based selec-
tion mechanism is static, in the sense that probabilities of survival
(given by )i) do not depend on the generation, but on the position
of the individual in the list.

The process carried out by our algorithm consists in selecting
the parents for crossover using this selection mechanism. This pro-
cess is performed with replacement, i.e., a given individual can be
selected several times as one of the parents, however, individuals in
the crossover operator must be different. The final number of indi-
viduals that will be replaced by those obtained with the crossover
operator depends on a crossover probability,  fixed in 80% of the
individuals for a given generation of the algorithm. This and other
details of the tailored crossover and mutation operators we propose
are described in the following section.

5.4. Crossover and mutation operators

Note that, because of the particular encoding of the problem
used in this work (Section 5.1), the number of groups (M + 1,
because one of them is used to store the number of users which have
not been assigned to a base station) in each individual of the GGA  is
fixed (since the number of base stations M is a constant parameter
in the problem at hand). Due to this peculiarity, we propose a novel
crossover procedure fully adapted to the problem at hand. It works
in a two-parents one-offspring fashion, in the following way:

(1) Randomly select two individuals for the crossover operation
(father and mother).

(2) Generate the initial offspring as a simple copy of the father.
(3) Choose randomly K groups from non-empty groups in the

father.
(4) The users that were assigned to these K groups in the mother

individual, are now re-allocated to the corresponding groups in
the offspring.

To assist in understanding this, Fig. 3 shows an example of the
crossover implemented in the GGA. It is a simple case with N = 10
users and M = 3 base stations. For the sake of clarity, only 1 non-
empty group (K = 1) in the father has been selected: in this case,
the third group (represented inside a dashed square), which cor-
responds to base station 2, B2. This is because, as stated in our
encoding (17), the first group is used to store the number of users
without service (in this case, zero users). To help understand this
example, we remark the considerations that follows.

• The first considerations are related to the chromosome group part.
For the sake of clarity, let us focus on the father represented in
the uppermost part of Fig. 3. The first position of its group part,
used to quantify the number of users without service, is 0, what
means that all users have been assigned to a base station. The
remaining three positions (because M = 3 base stations) are used
to store the number of users nBku assigned to each base station
Bk. Specifically, the third position (dashed square) in the father’s
group part is used to store the number of users (3, in this exam-
ple) in base station B2 (⇒ nB2u = 3). Note that it is 3 because there
are 3 users assigned to base station B2 (those represented into
boxes in the element part of the father: users at positions 1, 3
and 10, respectively). To clearly understand the meaning of the
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Fig. 3. Outline of the tailored crossover operator used in the proposed LHGGA. In this example, the number of users to be assigned is N = 10, and the number of base stations
is  M = 3, what makes the number of groups be M + 1 = 4. See the main text for further details.

element part, it is convenient to remember that position j con-
tains the number of the base station to which the user j has been
assigned. For instance, position 1 contains “2”, what means that
user number 1 has been assigned to base station number 2: uB2

1 ,
following the notation we first stated in Section 4.

• As mention, in this example, only K = 1 non-empty group in the
father has been randomly selected: the third group inside the
dashed squared, which corresponds to base station 2. This implies
that the mother’s elements assigned to base station 2 (inside cir-
cles) have to be copied into their corresponding positions in the
offspring, as shown with the blue arrows. This generates a final
offspring in which there are 3 users in base station B1 (by sim-
ply counting the number of “1” on the element part ⇒ nB1u = 3),
5 users in B2 (⇒ nB2u = 5), and 2 user in B3 (⇒ nB3u = 2). Note
that nB1u + nB2u + nB3u = 3 + 5 +2 = 10 = N users. That is, all users have
been assigned to a base station. This implies that the number of
users with no service is (0 ⇒ nB−1u = 0) and, consequently, the first
position in the group part is “0”. This is why its group part is 0 3 5 2.

Note that the number of groups in the offspring individual still
remains fixed to M + 1, and that, in general, some of the groups could
become empty because of the crossover operation.

Regarding the mutation operator, we perform a per-gene muta-
tion on the users region of the chromosomes, and each user selected
to be mutated is re-assigned to a region different to its current
region.

6. Experimental work

We  have organized this section as follows:

• For comparative purposes, Section 6.1 summarizes our imple-
mentation of the conventional approach that aims to minimize
only the load factors.

• Aiming at having a unified framework for all the experiments,
in which these may  be replicated by other researchers, Section
6.2 focuses on describing the layout of the base stations that
we have considered. In this fixed deployment we have studied
different scenarios in which we vary the number of users, their
distributions, or service profiles (Sections 6.4–6.6).

• Once the experimental setup has been set, Section 6.3 compares
the performance of the proposed LHGGA to that of the conven-
tional approach (CA) stated in Section 6.1.

• Section 6.4 makes use of the proposed LHGGA to explore the
influence of the number of users: N = 250, 500, 750 active users.

• Section 6.5 applies the proposed LHGGA to study the influence
of different distributions of users, for instance, to model the sit-
uation in which users tend to concentrate in a cell because of an
unexpected event.

• Finally, Section 6.6 focuses on the applicability of the LHGGA to
different service profiles, and studies to what extent the number
of users without service increases as the percentage of users with
data services rises in the detriment of the voice service.

6.1. Conventional approach

Based on the background summarized in Sections 2 and 3, in the
conventional approach, a user uj is assigned to a node Bk only if the
increment in the loads and interferences do not violate some prede-
fined thresholds [53,71,72]. The problem of assigning users to base
stations can be tackled in a conventional approach by using clas-
sical cell selection algorithms such as BSCS or RPCS [18,3] (which
were reviewed in Section 2) or variations of them.

Specifically, we  have considered the following combination of
the BSCS and RPCS algorithms. For any user uj (with j = 1, 2, . . .,
N), we compute the SINR between uj and all the base stations Bk

(with k = 1, 2, . . .,  M): ϒj,k. This leads to a N × M matrix
[
ϒj,k

]
N×M

of SINR ratios. For any user uj, we  compute an “assignment vector”,
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Table  4
Values of the services parameters. ARM means Adaptive Multi-Rate.

Service, Si (Eb/N0)i (dB) RUL
b,i

(kbps) RDL
b,i

(kbps) #UL
i

= #DL
i

NDL
Ci

(codes)

“1” (ARM voice) 5 12.2 12.2 0.58 256
“2”  (data) 1.5 64 64 1 32
“3”  (data) 1 64 384 1 4

Aj, which contains a list of BSs, sorted from the one that provides
the best SINR to the one that gives the worst one. Initially, each
user uj is assigned to the nodeB with the corresponding best SINR
(“best base station” (BBS) in the BSCS algorithm [3,18]), that is, to
the first one of the assignment vector Aj. In any cell, the algorithm
checks whether or not the assignment leads to a load factor higher
that the threshold [53] (overload). In each overloaded cell (let say,
for instance, Bg), the user with the worst SINR with respect to Bg
(let say, for instance, uf) is detached from Bg and assigned to the
next non-overloaded BS of its assignment vector Af. The algorithm
iterates until either the cells are no longer overloaded, which may
cause some users fail to be assigned to any station.

Like the BSCS algorithm [18,19], this algorithm leads to an effi-
cient use of radio resources, but suffers from inefficiencies because
the aggregate capacity of the BBS could be saturated (“overloaded”).

6.2. Base station layout and experimental set up

6.2.1. Services and service profiles
We  have considered three different services, labeled Si = “1”, “2”,

and “3” in Table 4: while S1 is an Adaptive Multi-Rate (ARM) voice
service with RDL

b,1 = 12.2 kbps, S2 and S3 are data services at RDL
b,2 =

64 kbps and RDL
b,3 = 384 kbps, respectively. The characteristic values

of the parameters used for these three services have been listed
in Table 4, these parameters being: (Eb/N0)i (dB), RUL

b,i (kbps), RDL
b,i

(kbps), #UL
i = #DL

i , and NSh
Cod (codes).

With these services, there may  be different “service profiles”.
In this respect, for the sake of clarity, and in the effort of testing
our algorithm, we have considered two different service profiles.
“Service Profile” 1 (SP1) has 90% of users with service S1, 9% with
S2 and 1% with S3. “Service Profile 2” (SP2) is used to explore the
influence of an increasing number of users with data service in the
detriment of voice service: 67% of users with service S1, 24% with
S2 and 9% with S3.

6.2.2. Base stations layout and network parameters
Fig. 4 shows the layout of the base stations that we  have con-

sidered in this experimental work. Its purpose is to have a unified
framework for all the experiments, in which these may  be repli-
cated by other researchers. The base station layout represented in
Fig. 4 is a deployment with M = 9 base stations (red circles) dis-
tributed in a 16 km2 area. The minimum distance between two  base
stations is 1 km.  For the sake of clarity, the number of users repre-
sented in Fig. 4 is N = 100. These users are randomly distributed
with a uniform distribution. We  label it as D1 to clearly distinguish
it from other distribution (D2), which will be described in Section
6.5. Black +, green *, and blue ◦ symbols represent the users with
service S1, S2 and S3, respectively.

It is worth mentioning, on the one hand, that although in Fig. 4
we have considered a case with N = 100 users for clarity, the influ-
ence of a variable number of users (N = 250, 500, 750) have also been
studied in Section 6.4. On the other hand, although in Fig. 4 the loca-
tion of the N users have been randomly generated with a uniform
distribution (D1), nonetheless, Section 6.5 explores the influence of
other statistical distribution D2, like the one represented in Fig. 5.
For illustrative purposes, we have considered in 5 N = 100 users, in
which 50% of users have a Gaussian distribution (with mean value

Fig. 4. Example of a deployment with M = 9 base stations (red circles). Bk (with
k  = 1, 2, . . .,  9) labels the base stations (nodes B). The minimum distance between
two base stations is 1 km.  Black +, green *, and blue ◦ symbols represent the users
with service S1, S2 and S3, respectively. For the sake of clarity, the number of users
is  N = 100, randomly distributed with a uniform distribution. In other examples,
N  and its statistical distribution can adopt other values. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

(x = 1 km,  y = 1 km) – i.e., around nB B1 – and standard deviation
1 km)  and the remaining 50% are distributed uniformly on the rest
of the area.

Finally, apart from those parameters related to the classes of
service, there are other numerical data for the network parameters
used in our experiments [3]: ¯̨  = 0.65, "̄ = 0.55, W = 3.84 Mchip/s,
pBk |max = 36 W,  and CUL

Ag = CDL
Ag = 1536 kbps.

6.2.3. LHGGA parameters
The values of the LHGGA parameters that have been found to

work well in our experimental work are: crossover probability
Pc = 0.8, mutation probability Pm = 0.01, and population size Psize =
500 individuals.

Fig. 5. Example of a deployment with M = 9 base stations (red circles) and N = 500
users with a non-uniform distribution. 50% of users have a Gaussian distribution
with mean value (x = 1 km,  y = 1 km) – i.e., around nB B1 – and standard deviation
1  km.  Black +, green *, and blue ◦ symbols represent the users with service S1, S2 and
S3, respectively. (For interpretation of the references to color in this figure legend,
the  reader is referred to the web version of this article.)
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Fig. 6. Assignment of N = 500 uniformly distributed users to M = 9 base stations
achieved by the LHGGA algorithm. Each BS has been represented with a different
symbol (+, × , ♦ , ◃ , · · ·), so that any user attached, for instance, to B3 (♦-symbol), has
been represented with that symbol (♦).

We  have carried out 20 runs of each LHGGA algorithm, with
300 generations each. This generation number has been found to
be large enough for the algorithm to converge.

Once we have completed the description of the experimental
setup, we can begin now to compare our method with the conven-
tional one.

6.3. Comparing LHGGA and the conventional approach

Figs. 6 and 7, which show respectively the different assignments
that the LHGGA and CA algorithms have found, will assist us in
discussing this issue. Each BS in Figs. 6 and 7 has been represented
by a square box containing a different symbol (+, × , ♦ , ◃ , · · ·), so that
any user attached, for instance, to base station B3 (♦-symbol inside
the box), will be represented with that symbol (♦). This notation
helps properly analyze and understand the different assignments
that the LHGGA and CA algorithms generate. They correspond to
N = 500 users, which leads to a user density DU ≈ 31.25 users/km2.

Note that both Figs. 6 and 7 have identical user locations, but
differ in the way they are assigned to different stations. This can be
easily seen by taking a look at those users located in-between base
stations B6 and B9 in both figures. While in Fig. 6 the users are

Fig. 7. Assignment of N = 500 uniformly distributed users to M = 9 base stations
achieved by the CA algorithm. Like in Fig. 6, any BS has been represented with
a  different symbol (+, × , ♦ , ◃ , · · ·), so that, for instance, any user assigned to B3

(♦-symbol) has been represented with that symbol (♦).

Fig. 8. (a) Cost function constituent elements corresponding to the user assignment
computed by the conventional approach (gray bars) and the LHGGA method (blue
bars). (b) Fraction of resources per user found by the conventional approach (gray
bars) and the LHGGA method (blue bars). (For interpretation of the references to
color in this figure legend, the reader is referred to the web  version of this article.)

mostly labeled with green △-symbols (what means that they have
been assigned to B9 – △ symbol –), however, in Fig. 7, many of
these users located between stations B6 and B9 (which in Fig. 6
were mostly assigned to B9) are now however without service (rep-
resented with blue ⃝ symbols) since they have not been assigned
to any nB. The conventional approach assignment (Fig. 7) works
worse in the sense that it leaves more customers unserved.

To proceed further in this regard it is convenient to focus
on Fig. 8(a). It compares, respectively, the value of the different
constituents ((ς = !UL, !DL, $CUL

Ag
, $CDL

Ag
, $PBk

, $Cod, $WS
nu

) of the

minimized cost function, computed by the conventional approach
(gray bars) and by the proposed LHGGA method (blue bars).

The most relevant aspect arising in Fig. 8(a) is that the LHGGA
method assigns resources to many more users: the fraction of users
without service in the LHGGA assignment is only $WS

nu
|LHGGA = 3%

(mean value with standard deviation 1.2 × 10−4 over 20 runs).
This represents only 15 users in absolute terms, which is much
smaller than that achieved by the conventional assignment, which
is $WS

nu
|CA = 18% (i.e., 90 users). Note that $WS

nu
|LHGGA is 6 times

smaller than $WS
nu

|CA. In this respect, the LHGGA strategy is more
practical for the operator economical strategy since it help increase
the number of active users without having to draw upon novel and
cost deployments. Additionally, the higher service availability is
perceived by users positively and help operator increase market
share.

However, a critical look at Fig. 8(a) could lead to the mislead-
ing conclusion that the LHGGA algorithm does not minimize the
remaining parameters as well as the CA does. This could arise
from the observation that the values adopted by the remaining
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parameters (!UL, !DL, $CUL
Ag

, $CDL
Ag

, $PBk
, $Cod) computed by the CA

are slightly lower that those provided by the LHGGA approach. This
is because, as the CA has only been able to assign resources to a
reduced amount of users (500 − 90 = 410 = NCA

u ), then they use (as
a whole) a resource fraction smaller than that of the 500 − 15 =
485 = NLHGGA

u users that our LHGGA has properly assigned. The
fraction of resources used by the NLHGGA

u users is slightly supe-
rior (in absolute terms). This makes sense because there are more
active users (communication links) that, as a whole, consume more
resources in absolute terms.

However, in relative terms (that is, in resources used per active
communication link – or active user –), the situation is quite dif-
ferent. This has been illustrated in Fig. 8(b), in which the resources
assigned have been normalized by the number of served users. Note
that the proposed method leads to an assignment in which there
are more customers with the required service along with a lower
consumption-per-user than that achieved by the CA. The mean value
of the resources consumed per user in the LHGGA assignment is
88.40% of that consumed by users assigned by the CA.

The key conclusion deduced from this experiment is that the
proposed LHGGA exhibits a superior performance than that of the
conventional method (which minimizes only the load factors). The
proposed LHGGA not only assigns resources to more users (97% of
users, higher than 82% of users assigned by the CA) but also it does
it more efficiently, since the mean value of the resources consumed
per user in the LHGGA assignment is 11.60% lower than that of the
CA assignment.

Once we have illustrated the good performance of the LHGAA
proposal, the following sections aim at checking its performance
in more complex scenarios. Let’s start studying a scenario in which
the number of users varies.

6.4. Influence of number of users

In these experiments with varying number of users, we have
considered, as above, that these users are distributed in a uniform
way (distribution D1). The effects arising when users are located
using other distribution will be postpone to Section 6.5.

Specifically, we have explored a scenario with three different
numbers of users, N = 250, 500, 750 users, which lead to user den-
sities DU ≈ 15.62, 31.25, 46.87 users/km2/frequency, receptively.

In turn, we have carried out two classes of experiments. They
are related to the fact, mentioned before, that our cost function is
flexible in the sense it contains weights that assist the engineer to
emphasize a parameter or another. To illustrate this potential we
have considered here two classes of experiments with increasing
number of users. The first one consists in using the cost function
to be minimized without imposing any restrictions on the weights
(that is, all are unity), and explores the influence of the increasing
number of users in the network. The second set of experiments con-
sists in using the cost function with weights that help the LHGGA
reach an assignment that minimizes the number of users without
service.

In this respect, Figs. 9 and 10 will assist us in exploring these
effects. Fig. 9 represents the mean value and standard deviation
(over 20 runs of the LHGGA) of the cost function components
computed by the LHGGA method as a function of the number
of users N = 250 (blue bars), 500 (red bars), and 750 (green bars)
users. The cost function has no restriction on their weights (that is,
w! = w$CA

= w$PB
= w$Cod

= wnWS
u

= 1). On the contrary, the cost
function minimized in Fig. 10 corresponds to w! = w$CA

= w$PBk
=

w$Cod
= 1 and wnWS

u
= 10.

Comparing Figs. 9 and 10 is easy to note that using the cost
function without imposing any restrictions on the weights (that

Fig. 9. Mean value and standard deviation of the cost function constituent elements
corresponding to the user assignment computed by the proposed LHGGA as a func-
tion  of the number of users N = 250, 500, 750 users. The cost function has weights
w( = 1.

is, w( = 1, ∀(), the algorithm tends to minimize the components
as a whole (Fig. 9), while using wnWS

u
= 10 (Fig. 10) leads to better

solutions in terms of network availability (since there are far fewer
users without service). The designer has the freedom to select the
most suitable weights to the interests of the mobile operator.

6.5. Influence of different users distributions

Aiming at testing the algorithm in a common situation in which
part of the customers tend to be concentrated in a cell, we  have
designed the following experiment: the N = 500 users are randomly
distributed so that 50% are distributed around base station B1 with a
Gaussian distribution (mean = (1, 1) km,  standard deviation = 1 km),
and the other half of users are distributed uniformly on the rest of

Fig. 10. Mean value and standard deviation of the cost function constituent ele-
ments corresponding to the user assignment computed by the proposed LHGGA as
a  function of the number of users N = 250, 500, 750 users. The cost function has a
weight wnWS

u
= 10, while the remaining are unity.
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Fig. 11. Results computed by LHGGA as a function of two  different distribution of
the N = 500 users with service profile SP1. D1 corresponds to a uniform distribution.
D2 is a distribution in which 50% of user are distributed around B1 (mean = (1, 1) km,
standard distribution = 1 km)  and the other 50% of user are distributed uniformly on
the  rest of the 4 km × 4 km area.

the area. He have labeled this distribution “D2” to distinguish it
from the uniform distribution we have used so far (D1).

Fig. 11 shows the results computed by the LHGGA algorithm
as a function of the two aforementioned distributions (gray bar:
distribution D1; blue bars: distribution D2). When comparing to
the results corresponding to the uniform distribution used hitherto
(D1), an interesting point to note is that the fraction of users with-
out service increases from 0.03 (in distribution D1) to 0.29 (D2). In
the same trend, the fraction of codes used approaches 0.99, which
probably leads to leave many users without service, as shown in
Fig. 12. It represents, for clarity, only those users without service.
Note that most of them are in the area where there is a higher con-
centration due to the Gaussian distribution around B1. The results
represented in Fig. 11 make sense since the higher user density in
cell B1 has saturate the number of available codes, leading to the
increased number of users without service.

6.6. Influence of service profiles

To explore the influence of an increasing percentage of users
demanding data service in the detriment of the voice service, we
have considered two different service profiles. “Service Profile 1”

Fig. 12. Location of users without service in the assignment of Fig. 11. Most of them
are  in the area where there is a higher concentration due to the Gaussian distribution
around B1.

Fig. 13. Results obtained by the LHGGA for two different service profiles. Service
profile SP1 corresponds to 450 users with service S1, 45 with S2, and 5 with S3.
Service profile SP2 corresponds to 335 users with S1, 120 with S2, and 45 with S3.

(SP1) has 90% of users with service S1, 9% with S2 and 1% with S3.
Service Profile 2 (SP2) is used to explore the influence of an increas-
ing number of users with data service in the detriment of voice
service: 67% of users with service S1, 24% with S2 and 9% with S3.

Fig. 13 shows the results obtained for these two different data
service penetration. Service profile SP1, which is the one that we
have used in all the previous experiments, corresponds (for N = 500
users) to 450 users with service S1, 45 with S2, and 5 with S3, while
case SP2 corresponds to 335 users with S1, 120 with S2, and 45 with
S3. Note that the fraction of users without service increases from
0.03 (SP1, gray bar) up to 0.12 (SP2). The same trend is observed in
the DL capacity (since the data services requires more kbps than the
voice service) and in the fraction of codes. This make sense since a
greater percentage of user with data service may  lead to use more
intensively the limited number of codes for data services, which are
much less than those for voice (see Table 4).

7. Summary and conclusions

In this work we  have tackled the problem of assigning resources
(channelization codes, aggregated capacity, power) of M base sta-
tions (nodes B) to N users in Wide-band Code Division Multiple
Access (WCDMA) networks by proposing two  sets of novelties. The
first group is related to the problem formulation itself while the
second one focuses on tackling such problem formulation by using
a Lamarckian Hybrid Grouping Genetic Algorithm (LHGGA) with
repair heuristics.

The first contribution to the problem formulation consists in
modeling in detail all the interference terms on any communica-
tion link. This formulation is different from the GGA  approach [21],
which made used of approximated expressions of the load factors
(with inferences arriving from other cells modeled as an average
value, an approximation that is often used when dimensioning
WCDMA  networks [13–17]). Considering all the interferences is
crucial because these strongly depend on whether any user is
assigned to a base station or other. The second contribution to
the problem formulation is the proposal of a cost function (to be
minimized) whose constituent elements (load factors, fractions of
available resources – aggregated capacity, power, codes – and frac-
tion of users without service) are multiplied by weight factors. This
helps prioritize one or several constituents, for instance, in the
effort of reducing the number of users without user, an ongoing
concern for mobile operators. This cost function is different from
that in [21] in which all the constituents had the same contribution.

The second group of novelties focuses on tackling this constraint
problem (since all the constituent elements ( in the cost function
must be ( ≤ 1) by using an LHGGA with repair heuristics to manage
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the generation of unfeasible chromosomes (encoding trial solutions
with no physical meaning ( > 1). A GGA is proposed because its
crossover operator is able to acts on groups (users assigned to a
base station) in an efficient way, well established in literature. The
proposed GGA is called hybrid because the chromosome repairing
operator is just used as a constraint-handling algorithm to shrink
the search space to only individuals with physical meaning, and
called Lamarckian because the unfeasible chromosome is substi-
tuted by its repaired version. We  have defined a novel encoding
scheme specific for the problem at hand, and we  have also proposed
different variations of the GGA crossover and mutation operators,
suited for assignment problems in WCDMA  networks.

The first conclusion deduced from our experimental work is
that the proposed LHGGA exhibits a superior performance than
that of the conventional method (which minimizes only the load
factors). Specifically, the proposed LHGGA assigns resources to
more users (97% of users in a scenario with 31.25 users/km2, uni-
formly distributed) than the conventional one (82% of users), along
with a reduction of the resources-per-user: the mean value of the
resources consumed per user in the LHGGA assignment is 88.40%
of that consumed by users assigned by the conventional one.

The LHGGA algorithm has been tested in a variety of scenarios.
We have explored the influence of different user concen-

trations in a 4 km×4 km area. The LHGGA algorithm has been
found to be able to assign resources to the M = 9 base sta-
tions, with only 1% of users without service (for N = 250 users,
15.62 user/km2/frequency), 3% (for N = 500 users, 31.25 user/km2/
frequency), and 11% (for N = 750 users, 46.87 user/km2/frequency).

We have also tested the algorithm in a common situation
in which part of the customers tend to be concentrated in a
cell, 50% distributed around node B1 with a Gaussian distribution
(mean = (1,1) km,  standard deviation = 1 km), the other half of users
being uniformly distributed on the rest of the area. When com-
paring to the results corresponding to the uniform distribution, an
interesting point to note is that the fraction of users without service
increases from 0.03 to 0.29. In the same trend, the fraction of codes
used approaches 0.99, which leads to leave many users without
service, most of them in the area where there is a higher concen-
tration. The results make sense since the higher user density around
B1 make use of all the available codes of such base station, leading
to the increased number of users without service.

Finally, to explore the influence of an increasing percentage
of users demanding data services (S2 and S3) in the detriment of
voice service (S1), we have considered two different service pro-
files. “Service Profile 1” (SP1) has 90% of users with service S1, 9%
with S2 and 1% with S3. Service Profile 2 (SP2) is used to explore
the influence of an increasing number of users with data service
in the detriment of voice service: 67% of users with service S1, 24%
with S2 and 9% with S3. The algorithm predicts that the fraction of
users without service increases from 0.03 (SP1) up to 0.12 (SP2).
The same trend is observed in the DL capacity (since the data ser-
vices require more kbps than the voice service) and in the fraction
of codes. This make sense since a greater percentage of user with
data service may  lead to use more intensively the limited number
of codes for data services.

This second set of experiments lead to the final conclusion that
the proposed algorithm predicts well all phenomena that are well
known empirically by mobile operators.
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[52] S. Kasapović, N. Sarajlić, OVSF code assignment in UMTS networks, in:
Microwave and Telecommunication Technology (CriMiCo), 2010 20th Inter-
national Crimean Conference, IEEE, 2010, pp. 429–432.

[53] Nokia-Siemens Networks. Dimensioning WCDMA RAN. Technical Paper
available at http://www.slideshare.net/amini110/dimensioning-wcdma-ran-
36325000 (June 2007). RNC3267-trial. Nokia WCDMA  RAN, Rel. RA506, System
Library, v.1. DN70118376, Issue 2-0 en.

[54] J. Lempiä inen, M. Manninen, UMTS Radio Network Planning, Optimization and
QoS Management, Kluwer Academic Publishers, Dodrecht, 2003.

[55] T.K. Sarkar, Z. Ji, K. Kim, A. Medouri, M.  Salazar-Palma, A survey of various
propagation models for mobile communication, Antennas and Propag. Mag.
IEEE 45 (3) (2003) 51–82.

[56] T.S. Rappaport, et al., Wireless Communications: Principles and Practice, vol. 2,
Prentice Hall PTR, New Jersey, 1996.

[57] A. Tahat, Y. Alqudah, et al., Analysis of propagation models at 2.1 GHz for simu-
lation of a live 3G cellular network, in: Wireless Advanced (WiAd), 2011, IEEE,
2011, pp. 164–169.

[58] N. Belhadj, B. Oueslati, T. Aguili, Adjustment of Cost231 Walfisch-Ikegami
model for HSPA+ in Tunisian urban environments, in: 2015 2nd World
Symposium on Web  Applications and Networking (WSWAN), IEEE, 2015,
pp. 1–6.

[59] T. Acar, F. Caliskan, E. Aydin, Comparison of computer-based propagation mod-
els  with experimental data collected in an urban area at 1800 MHz, in: Wireless
and Microwave Technology Conference (WAMICON), 2015 IEEE 16th Annual,
IEEE, 2015, pp. 1–6.

[60] K. Uchida, N. Hadano, M.  Takematsu, J. Honda, Propagation estimation by
using building coverage and floor area ratios based on 1-ray model combined
with Okumura-Hata, in: 2014 17th International Conference on Network-Based
Information Systems (NBiS), IEEE, 2014, pp. 555–560.

[61] A. Aragon-Zavala, Antennas and Propagation for Wireless Communication Sys-
tems, John Wiley & Sons, Chichester, UK, 2008.

[62] C.A. Coello, Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: a survey of the state of the art, Comput. Methods
Appl. Mech. Eng. 191 (11) (2002) 1245–1287.

[63] G. Gréwal, S. Coros, D.K. Banerji, A. Morton, Comparing a genetic algorithm
penalty function and repair heuristic in the DSP application domain, Artif. Intell.
Appl. 3 (2006) 1–39.

[64] T. Bäck, M.  Schütz, S. Khuri, A comparative study of a penalty function, a repair
heuristic, and stochastic operators with the set-covering problem, in: Artificial
Evolution, Springer, 1996, pp. 320–332.

[65] T. Runnarson, X. Yao, Constrained evolutionary optimization-the penalty func-
tion  approach, Evolut. Optim. 8 (2002) 7–113.

[66] D. Orvosh, L. Davis, Using a genetic algorithm to optimize problems with feasi-
bility constraints, in: Proceedings of the First IEEE Conference on Evolutionary
Computation, 1994. IEEE World Congress on Computational Intelligence, IEEE,
1994, pp. 548–553.

[67] D. Orvosh, L. Davis, Shall we repair? genetic algorithms combinatorial opti-
mization and feasibility constraints, in: Proceedings of the 5th International
Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc., 1993, p.
650.

[68] P. Chootinan, A. Chen, Constraint handling in genetic algorithms using
a  gradient-based repair method, Comput. Oper. Res. 33 (8) (2006)
2263–2281.

[69] G.G. Mitchell, D. O?Donoghue, D. Barnes, M.  McCarville, GeneRepair – a repair
operator for genetic algorithms, in: GECCO, Citeseer, 2003, pp. 235–239.

[70] J. Gottlieb, G.R. Raidl, The effects of locality on the dynamics of decoder-based
evolutionary search, in: GECCO, 2000, pp. 283–290.

[71] D.N. Skoutas, A.N. Rouskas, A Scheduling algorithm with dynamic priority
assignment for WCDMA  systems, IEEE Trans. Mobile Comput. 8 (1) (2009)
126–138.

[72] J. Laiho, A. Wacker, T. Novosad, Radio Network Planning and Optimisation for
UMTS, John Wiley & Sons, Chichester, UK, 2006.

http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0170
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0175
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0180
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0185
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0190
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0195
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0200
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0205
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0210
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0215
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0220
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0225
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0230
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0235
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0240
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0245
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0250
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0255
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0260
http://www.slideshare.net/amini110/dimensioning-wcdma-ran-36325000
http://www.slideshare.net/amini110/dimensioning-wcdma-ran-36325000
http://www.slideshare.net/amini110/dimensioning-wcdma-ran-36325000
http://www.slideshare.net/amini110/dimensioning-wcdma-ran-36325000
http://www.slideshare.net/amini110/dimensioning-wcdma-ran-36325000
http://www.slideshare.net/amini110/dimensioning-wcdma-ran-36325000
http://www.slideshare.net/amini110/dimensioning-wcdma-ran-36325000
http://www.slideshare.net/amini110/dimensioning-wcdma-ran-36325000
http://www.slideshare.net/amini110/dimensioning-wcdma-ran-36325000
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0270
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0275
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0280
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0285
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0290
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0295
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0300
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0305
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0310
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0315
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0320
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0325
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0330
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0335
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0340
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0345
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0350
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0355
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360
http://refhub.elsevier.com/S1568-4946(16)30034-5/sbref0360


A novel Grouping Genetic Algorithm–Extreme Learning Machine
approach for global solar radiation prediction from numerical

weather models inputs
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Abstract

This paper presents a novel scheme for global solar radiation prediction, based on a hybrid neural-genetic algorithm. Specifically a
grouping genetic algorithm (GGA) and an Extreme Learning Machine algorithm (ELM) have been merged in a single algorithm, in such
a way that the GGA solves the optimal selection of features, and the ELM carries out the prediction. The proposed scheme is also novel
because it uses as input of the system the output of a numerical weather meso-scale model (WRF), i.e., atmospherical variables predicted
by the WRF at different nodes. We consider then different problems associated with this general algorithmic framework: first, we eval-
uate the capacity of the GGA–ELM for carrying out a statistical downscaling of the WRF to a given point of interest (where a measure
of solar radiation is available), i.e., we only take into account predictive variables from the WRF and the objective variable at the same
time tag. In a second evaluation approach, we try to predict the solar radiation at the point of interest at different time tags t þ x, using
predictive variables from the WRF. Finally, we tackle the complete prediction problem by including previous values of measured solar
radiation in the prediction. The proposed algorithm and its efficiency for selecting the best set of features from the WRF are analyzed in
this paper, and we also describe different operators and dynamics for the GGA. Finally, we evaluate the performance of the system with
these different characteristics in a real problem of solar radiation prediction at Toledo’s radiometric observatory (Spain), where the
proposed system has shown an excellent performance in all the subproblems considered, in terms of different error metrics.
! 2016 Elsevier Ltd. All rights reserved.

Keywords: Grouping genetic algorithm (GGA); Global solar radiation prediction; Solar energy; Extreme Learning Machines

1. Introduction

Solar energy is an important source of renewable and
clean energy, currently under expansion in different

countries of the world, and with a huge potential to con-
tribute significantly to the energy mix and nations’ econo-
mies of these countries. Solar energy development is
specially important in mid-east and southern Europe coun-
tries, where the solar resource can be better exploited all
year around (Kalogirou, 2014). Solar production is intrinsi-
cally stochastic (with reference to intra-hour solar forecast-
ing) and significant variations in solar energy production
occur due to the presence of clouds, atmospheric dust or
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particles. For longer time horizons (e.g. 6 h or more),
physics-based models are usually employed (Diagne et al.,
2014; Coimbra et al., 2013; Inman et al., 2013). Because
of this, prediction of the energy production in solar energy
plants is an important problem to integrate this renewable
energy in the system. The problem of solar energy predic-
tion usually involves the accurate prediction of the solar
radiation at a given point (the solar plant facility), and this
prediction depends completely on different atmospheric
variables (Inman et al., 2013; Khatib et al., 2012; Sozen
et al., 2004; Voyant et al., 2011).

In the last years, many different approaches have been
proposed for global solar radiation prediction, a lot of
them using Machine Learning or Computational Intelli-
gence techniques. The majority of these approaches include
different inputs based on geographical and atmospheric
parameters such as latitude, longitude, temperature, wind
speed and direction, sunshine duration, and precipitation
(Mellit and Kalogirou, 2008; Mubiru, 2008). According
to Bilgili and Ozoren (2011), sunshine duration, air temper-
ature and relative humidity are the most widely used mete-
orological parameters to predict daily solar radiation and
its components. All these parameters are well correlated
with the daily solar global radiation as pointed out in
Yacef et al. (2012). In López et al. (2005) a Bayesian frame-
work for artificial neural networks, named as automatic
relevance determination method, was developed to evalu-
ate the more relevant input parameters in modelling solar
radiation. In fact, neural computation paradigm has been
massively applied to this prediction problem, like in
Benghanem and Mellit (2010), where it is shown that
Radial Basis Functions (RBF) neural networks obtain
excellent performance in the estimation of solar radiation.
In Dorvlo et al. (2002) a comparison between Multi-Layer
Perceptrons (MLP) and RBF neural networks in a problem
of solar radiation estimation is carried out. Experiments in
eight stations in Oman show the good results obtained with
the neural algorithms. A similar approach, also comparing
MLPs and RBFs (with different predictive variables) has
been recently proposed in Behrang et al. (2010), in this case
the authors test the neural network with data obtained in
Iran. In Paoli et al. (2010) the performance of a MLP in
a problem of solar radiation prediction in time series is
compared to that of ARIMA, Bayesian inference, Markov
Chains and k-Nearest Neighbors models, for specific prob-
lems in Corsica and Southern France. Another work deal-
ing with solar radiation time series prediction is Wu and
Chan (2011), where a hybrid algorithm that involves an
ARMA model and a time-delay neural network is pro-
posed. In Hocaoglu et al. (2008) a neural network to pre-
dict hourly solar radiation in a region of Turkey is
proposed. The paper also introduces a 2D model for solar
radiation useful for visualization and data inspection. In
Fu and Cheng (2013), the forecasting of solar irradiance
proposed utilizes features extracted from all-sky images,
such as the number of cloud pixels, frame difference, gradi-
ent magnitude, intensity level, accumulated intensity along

the vertical line of sun or the number of corners in the
image. Other works on solar radiation prediction involve
ARMA models, as Ji and Chee (2011) a hybrid approach
based on ARMA and time delay neural networks has been
successfully tested in data from a solar station in Singa-
pore. Another paper involving hybrid ARMA and neural
networks is (Voyant et al., 2013), where this hybrid
approach is successfully applied to solar radiation predic-
tion in different cities of the French Mediterranean coast
and Corsica. Alternative approaches that apply neural net-
works as prediction methodology also include novel predic-
tive variables, such as satellite data (Senkal and Kuleli,
2009) or temperature and relative humidity (Rehman and
Mohandes, 2008). Other machine learning algorithms, such
as Support Vector Regression (SVR) algorithms have been
also applied to solar radiation prediction problems from
meteorological predictive variables (Chen et al., 2011;
Zeng and Qiao, 2013). Specifically, a least-square SVM is
proposed in that work, comparing the results obtained with
that of auto-regressive and RBF neural networks. In
Rahimikoob (2010) the potential of multi-layer perceptron
neural networks with back-propagation training algorithm
is shown in a problem of global solar radiation estimation
in Iran. Results comparing the performance of the neural
networks with that of an empirical equation for global
solar radiation prediction (Hargreaves and Samani equa-
tion) show good performance of the neural approach. In
Bhardwaj et al. (2013) a hybrid approach that includes hid-
den Markov models and generalized fuzzy models has been
proposed and tested in real solar irradiation data in India.
Finally, we discuss very recent hybrid approaches proposed
to problems of solar energy prediction, such as Olatomiwa
et al. (2015) where a SVR has been hybridized with a fire-
fly algorithm to select the best parameters of the SVR, or
Mohammadi et al. (2015), where a hybrid SVR-Wavelets
approach is presented in a problem of horizontal global
solar radiation prediction. The goodness of this novel
approach has been tested in a real problem of solar radia-
tion estimation in Bandar Abbas (Iran). Moreover, in
Diagne et al. (2014), a post-processing technique (Kalman
filtering) is used to improve the hour-ahead forecasted Glo-
bal Horizontal Irradiance (GHI) from (1) the measured
GHI at the ground, and (2) the Weather Research and
Forecasting (WRF) meso-scale model, and results at Reu-
nion Island are provided.

Different approaches discussing Extreme Learning
Machine (ELM, a novel training method for artificial neu-
ral networks) applications in solar radiation prediction
problems have been recently proposed, such as Sahin
et al. (2014), where the ELM approach is applied to a solar
radiation prediction problem from satellite measures. In
Alharbi (2013) a case study of solar radiation prediction
in Saudi Arabia is discussed comparing the performance
of artificial neural networks with classical training and
ELMs. In Dong et al. (2014) a hybrid wavelet-ELM
approach is tested in a problem of solar radiation predic-
tion for application in a photovoltaic power station.
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Finally, in Salcedo-Sanz et al. (2013) a comparison of a
support vector regression algorithm and an ELM is carried
out in a problem of direct solar radiation prediction, with
application in solar thermal energy systems, and in
Salcedo-Sanz et al. (2014), where a hybrid ELM-Coral
Reefs Optimization is proposed for solar radiation predic-
tion in Southern Spain.

In spite of this impressive amount of previous works on
Machine Learning approaches for solar radiation predic-
tion problems, there is still margin for improvement. Note
that very few papers among those discussed above use
numerical weather models outputs as inputs for prediction,
and this strategy has been successfully applied before in
wind speed prediction (Salcedo-Sanz et al., 2009,). Thus,
the use of numerical weather models’ prediction to feed
Machine Learning approaches in solar energy prediction
is a promising field that can produce efficient prediction
approaches. Moreover, the use of different meta-
heuristics to perform feature selection in different predic-
tion problems has been successfully reported in the litera-
ture, and (Salcedo-Sanz et al., 2002, 2014) refer the use
of evolutionary-type meta-heuristics. Nevertheless, the
use of novel evolutionary paradigms such as grouping
genetic algorithms (GGAs) has not been tested before, to
our knowledge, for feature selection in solar energy appli-
cations, thus representing a novelty of this work. GGA is
useful for feature selection since it is able to group different
sets of features and evaluate these sets under different
objective functions (best, average or even worst error mea-
sures can be used to guide the genetic search). Also, the use
of specific GGA operators is another novel characteristic
that has not been evaluated before in previous works deal-
ing with feature selection problems.

The objective of this paper is twofold: first, we consider a
problem of global solar radiation prediction from numeri-
cal weather models, specifically theWRFmeso-scale model.
WRF provides a prediction of atmospherical variables at
different pressure levels in a given zone, that will be used
as inputs in a prediction system to estimate the global solar
radiation at a different point. The second contribution of
the paper is the development of a hybrid grouping genetic
algorithm–ELM algorithm to carry out this global solar
radiation prediction. The grouping genetic algorithm
(GGA) proposed will perform a process of feature selection,
focused on filtering the best features from the WRF model
to do the prediction, whereas the ELM approach will do the
final prediction of the global solar radiation at a given
point, using the features selected by the GGA. We will dis-
cuss in detail the proposed algorithm, giving some variants
of its dynamics, that lead to different performances. With
this algorithmic framework in mind, we then tackle a num-
ber of subproblems related to global radiation prediction:
the first problem considered consists of predicting the solar
radiation registered in a given point P at time t þ x (for
x ¼ 0; . . . ; 3), using as predictive variables the set V, or
any subset of it. Note that when x ¼ 0, the problem is
known as statistically downscaling the solar radiation

prediction of modelM to point P. The ultimate goal of this
approach for x ¼ 0 (SubProblem 1) is to evaluate what fea-
tures (predictive variables) from the Numerical Model are
useful for this prediction. Note that for x > 0 (SubProblem
2) we are evaluating the prediction performance of the sys-
tem only using as predictive variables the outputs of the
WRF. Finally, we tackle in this paper a forecasting problem
that takes into account data from the Numerical Model and
also objective variable data measured at the measuring sta-
tion considered (SubProblem 3). This last subproblem uses
the best predictive variables set found in SubProblem 1.
Results for all these subproblems using real data from Tole-
do’s radiometric station (Spain), will be discussed in the
experimental part of the paper.

The structure of the rest of the paper is the following:
next section presents the problem formulation and
describes the WRF meso-scale model input variables
involved. Section 3 describes the proposed hybrid GGA–
ELM approach. Section 4 presents the main results
obtained in a real solar radiation prediction problem at
Toledo, Spain. Finally, Section 5 closes the paper by giving
some concluding remarks.

2. Problem formulation

The problem considered in this paper can be stated in the
followingway: letP be a given location of the Earth’s surface

where the global solar radiation (I t) must be predicted (Î t),
at a given time t. To do this, let us consider the output,V, of a
numerical meso-scale model M, in a number M of nodes,
consisting of the prediction at time t forN atmospheric vari-
ables, V ¼ ðu 11; . . . ; u 1N ; u 21; . . . ; u 2N ; . . . ; uM1; . . . ; uMN Þ, as
shown in Fig. 1.

Note that M may provide an atmospheric variable at
the ground level, or at the ground level and also at different
pressure levels. In the latter, each pressure level is consid-
ered as a different variable n at node m; umn.

SubProblem 1 deals with the prediction of the global
solar radiation registered in P at time t, using as predictive
variables the set V, or any subset of it. This type of problems
is usually known in other works as statistically downscaling
the solar radiation prediction of model M to point P.

SubProblem 2 increases the forecast horizon, predicting
the global solar radiation in P at time t þ x (for

Fig. 1. Solar radiation prediction scheme used in this work for M ¼ 4.
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x ¼ 1; 2; . . . ;X ), considering the set V (or any subset) as
predictive variables.

Finally, SubProblem 3 analyzes a forecasting problem at
P considering previous radiation values. For this purpose,
the best set of features found by the GGA–ELM in
SubProblem 1, i.e. V% ¼ ðu %

1; . . . ; u
%
KÞ, where K is the num-

ber of optimal features obtained by the GGA–ELM
approach, have been used. In addition, we consider objec-
tive variable data measured at point P for previous time

tags (I t&z), for z ¼ 1; . . . ;Z, in the process of Î tþx forecast-
ing, for x ¼ 1; 2; . . . ;X .

2.1. Location under study and objective variable data

This work predicts the global solar radiation at a given
location P that pinpoints a Meteorological State Agency of
Spain (AEMET) station sited in Toledo (39" 530 500N, 4" 020
4300W). Toledo’s measuring station is located in the South
Plateau of the Iberian Peninsula (See Fig. 2), around
75 km south of Madrid (the capital of Spain) at an altitude
of 515 m.

According to AEMET’s Climate Summary Guide
(1981–2010), Toledo has an annual mean temperature of

Fig. 2. Location of the Toledo’s measuring station and the M ¼ 2 WRF nodes considered for the prediction.
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15.8 "C, dry summers, an annual mean precipitation of
342.2 mm, and an annual mean water vapor tension of
10.8 hPa. In the light of these figures and according to
the Köppen climate classification, Toledo could be classi-
fied as a Csa climate (Interior Mediterranean: Mild with
dry, hot summer). Regarding cloud cover, 27.7% annual
days are categorized as cloud free, 53.2% present sky con-
ditions categorized as few or scattered clouds, and the
remaining 19.1% are categorized as broken or overcast.

As objective variable data to train and test the algo-
rithms, we consider one year of hourly global solar radia-
tion data (from May 1st, 2013 to April 30th, 2014)
collected at Toledo’s measuring station. To measure global
solar radiation, a Kipp & Zonen CMP11 Pyranometer is
used. All radiation measurements gathered by the AEMET
are made following the World Meteorological Organiza-
tion (WMO) standards included in the WMO Guide to
Meteorological Instruments and Methods of Observation
(2008 edition, updated in 2010).

2.2. ModelM: the Weather Research and Forecasting model
(WRF)

In this paper we use the well-known Weather Research
and Forecasting (WRF) meso-scale model as M
(Skamarock et al., 2005). WRF is an extremely powerful
meso-scale numerical weather prediction system designed
for atmospheric research and also for operational forecast-
ing needs. The WRF was developed in collaboration by the
National Center for Atmospheric Research (NCAR), the
National Centers for Environmental Prediction (NCEP),
the Forecast Systems Laboratory (FSL), the Air Force
Weather Agency (AFWA), the Naval Research Labora-
tory, the University of Oklahoma, and the Federal Avia-
tion Administration (FAA) of the USA. The WRF has
been used in a wide range of meteorological (Giannaros
et al., 2015) and renewable energy applications (Carvalho
et al., 2014).

In our study, WRF model version 3.6 has been used. It
has been run every 12 h since it was started in 2011. Mete-
orological data are calculated over a window ranging in lat-
itude from 34" 330 4300N to 44" 280 1200N, and in longitude
from 4" 250 1200W to 4" 230 200E. In this window, the grid has
99 elements from West to East, and 59 elements from
North to South, roughly, each grid element covers
15 ' 30 km2. Atmospheric values are calculated, in the ver-
tical dimension, at 37 levels above the ground, at ground
level, and at four additional levels beneath the surface.
The grid type is Arakawa, that is to say that data are cal-
culated at the center of each element, with a 72 s time step.

WRF is initialized by data coming from NCEP FNL
Operational Global Analysis and works in non-
hydrostatic way. The short wave scheme used is that from
MM5 shortwave (Dudhia), and the long wave model is the
RRTM (Rapid Radiative Transfer Model). A radiation
time step of 30 min was applied to each radiation domain.
The land surface fluxes were obtained by Monin–Obukhov

similarity theory, the surface physics was solved by the
Unified Noah land surface model and the Planetary
Boundary Level (PBL) by means of the Yonsei University
(YSU) PBL scheme. The PBL was calculated at every basic
time step, and five layers were considered in land surface
model. Cumulus retrieval parameters was done by using
the new Kain–Fritsch scheme, as in MM5 and Eta/
NMM ensemble version, with a time step of 5 min.

Finally, microphysics was carried out by the WSM 3-
class scheme and the turbulent diffusion option was to
select 2nd order diffusion on model levels. This comple-
ments vertical diffusion done by the PBL scheme.

WRF output at two points located at (39" 510N, 4"
010W) and (40" 010N, 4" 010W), are selected as predictive
variables (see Fig. 2). Specifically, Table 1 shows the 46
variables considered for each of these points, summing
up a total of 92 predictive variables.

The main variables considered are the following (at dif-
ferent pressure levels):

– OLR: the top of atmosphere outgoing long-wave radia-

tion (W=m2).
– GLW: the downward long-wave flux at ground surface

(W=m2).
– SWDOWN: the downward short-wave flux at ground

surface (W=m2).
– u: the horizontal wind component in the x direction at
different pressure levels (m/s).

– v: the horizontal wind component in the y direction dif-
ferent pressure levels (m/s).

– CLDFRA: the fraction of clouds in each cell. Cloud
fraction ranges from 0 (no clouds) to 1 (clouds in a spa-
tial grid cell).

– QVAPOR: the water vapor mixing ratio (in kg/kg). This
variable is defined as the ratio of the mass of a water
vapor to the mass of dry air.

– T: the temperature (in K) at different levels. Note that
this variable is not directly provided by the WRF model.
Thus, we have obtained it from the WRF perturbation
potential temperature (T0) which, in turn, is related with
the potential temperature (h) through the relation
h ¼ T 0 þ 300. Potential temperature is simply defined
as the temperature that an unsaturated parcel of dry

Table 1
Predictive variables used in the experiments (46 variables per node of the
WRF model).

Variable Units Pressure levels (hPa)

OLR W/m2 –
GLW W/m2 Ground
SWDOWN W/m2 Ground
u m/s Ground, 850, 700, 500, 400, 300, 200, 100, 50
v m/s Ground, 850, 700, 500, 400, 300, 200, 100, 50
CLDFRA 1/0 Ground, 850, 700, 500, 400, 300, 200
QVAPOR kg/kg Ground, 850, 700, 500, 400, 300, 200, 100, 50
Temperature K Ground, 850, 700, 500, 400, 300, 200, 100, 50
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air would have if brought adiabatically and reversibly
from its initial state to a standard pressure, P 0, typically
100,000 Pa. Its mathematical expression is as shown in
Eq. (1), where j is the Poisson constant.

T ¼ h
P
P 0

! "j

ð1Þ

3. The Grouping Genetic Algorithm

The grouping genetic algorithm (GGA) is a class of evo-
lutionary algorithm especially modified to tackle grouping
problems. In these problems, a certain set of predefined
groups bring together a certain number of items (i.e. in fea-
ture selection problems, several subsets of features). It was
first proposed by Falkenauer (1992, 1998), who realized
that traditional genetic algorithms had difficulties when
they were applied to grouping problems (mainly, the stan-
dard binary encoding increases the space search size in this
type of problems). GGAs have shown interesting perfor-
mances on different problems and applications (Agustı́n-
Blas et al., 2011; Brown and Sumichrast, 2005; James
et al., 2007a,b). Note that in the GGA, the encoding, cross-
over and mutation operators of traditional Genetic Algo-
rithms (GA) are modified to obtain a compact algorithm
with good performance in grouping problems. In this paper
we show how to apply the GGA to solve a feature selection
problem in a context of solar radiation prediction. We
structure the description of the GGA in Encoding, Opera-
tors and Fitness Function calculation.

3.1. Problem encoding

The GGA initially proposed by Falkenauer is a
variable-length genetic algorithm. The encoding is carried
out by separating each individual in the algorithm into
two parts: the first one is an assignment part that associates
each item to a given group. The second one is a group part,
that defines which groups must be taken into account for
the individual. In problems where the number of groups
is not previously defined, it is easy to see why this is a
variable-length algorithm: the group part varies from one
individual to another, as each individual may contain a dif-
ferent number of groups. In our implementation, an indi-
vidual c has the form c ¼ ½ajg). Example 1 shows an
individual in the proposed GGA presenting 10 features
and 4 groups, where group #1 includes features f1; 3; 9g,
group #2 features f2; 4; 10g, group #3 features {5,7}
and, finally, group #4 includes feature f6; 8g.

Example 1. 1 2 1 2 3 4 3 4 1 2 j1 2 3 4

In this work, every individual’s assignment part is
composed of 92 elements, each corresponding to one of
the predictive variables provided by the WRF model, as
explained in Section 2. Then, the group part is composed

of a variable number of elements (groups), resulting in
one individual having NG1

groups, while another one in
the same population may have NG2

groups.

3.2. Genetic operators

In this paper, the selection operator used is a
tournament-based mechanism, similar to the one described
in Yao et al. (1999), as it has been shown to be one of the
most effective selection operators, avoiding super-
individuals and performing an excellent exploration of
the search space.

Regarding the crossover operator, different versions of
this operator have been implemented and the results
obtained compared. For a clearer description, notation
used refers to those individuals acting as parents as P i

(i ¼ 1; 2) and those individuals acting as offsprings as Oi

(i ¼ 1; 2). The assignment and groups part of a certain indi-
vidual are referred as APi and GPi (for the parents), or AOi

and GOi (for the offsprings).
The first crossover operator applied follows the guideli-

nes initially proposed by Falkenauer (1992, 1998), that
leads to a two-parents/one-child mechanism. The process
(outlined in Fig. 3) carried out by this first crossover oper-
ator, C1, is the following:

1. Randomly choose two parents from the current popula-
tion: P 1 and P 2. The offspring individual, O1, is initial-
ized to be equal to P 2.

Fig. 3. Outline of the grouping crossover, C1, implemented in the
proposed GGA.
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2. Randomly select, for the crossover, two points from GP1
.

These two cross-points mark down those groups in-
between them, and those features assigned to these
groups are selected. In the example presented in
Fig. 3, the two crossover points select two groups: group
number 1 (G1) and group number 2 (G2). Note that, in
this case, the features of P 1 belonging to groups G1

and G2 are 1, 2, 4, 5, and 6 (marked bold and
underlined).

3. Insert those P 1’s selected features (in their own posi-
tions) in O1. Then, attach at the end of O1’s group sec-
tion those new groups inherited from P 1. In the
example, it can be seen that the assignment of the fea-
tures 1, 2, 4, 5 and 6 of O1 has been inherited from P 1,
while the rest of the nodes’ assignment has been inher-
ited from P 2.

4. Rename GO1
’s groups to remove duplicates (note that

the offspring may have inherited same groups’ number-
ing from both parents). In the example, GO1

= 1 2 3 4 5 6
1 2 is changed to GO1

= 1 2 3 4 5 6 7 8. Therefore, AO1

has to be modified accordingly.
5. Remove, empty groups in O1, if present. In the example

considered, it is found that O1’s groups 1, 2, 3, and 6 are
empty (there are no features belonging to them), so we
can eliminate these groups’ identification number and
rearrange the rest accordingly. The final offspring is then
obtained.

We realized that C1 crossover operator produces a signif-
icant increment of the number of groups after a number of
generations of the GGA, so we have tried to correct this
point by introducing an alternative grouping crossover.
Accordingly, a two-parents/two-children crossover, C2, is
presented. The C2 process is shown in Fig. 4, and can be
described as follows:

1. Randomly choose two parents from the current popula-
tion: P 1 and P 2.

2. Randomly select, for the crossover, two points from GP 1

and two points from GP2
. For each parent, these cross-

points mark down those groups in-between them, and
those features assigned to these groups are selected.

3. To build GO1
, use the selected section of GP1

. In the
example, P 1’s selected groups are G2 and G3, resulting
in the offsprings group part GO1

= 2 3.To build AO1
use

the selected features inherited from P 1.
4. If necessary, rename GO1

’s groups so that groups’ num-
bering starts at 1.

5. Randomly allocate among the offspring’s groups those
blank features. The final first offspring is then obtained.

6. Repeat steps 2 to 5 using the second parent to obtain the
second offspring.

Regarding mutation operator, a swapping mutation in
which two items are interchanged is applied. Thus, result-
ing in the assignment of features to different groups. This

procedure is carried out with a very low probability
(Pm ¼ 0:01), to avoid increasing the random search in the
process (Falkenauer, 1998).

3.3. Fitness function: the Extreme Learning Machine for
feature selection

Two main approaches may be applied for feature selec-
tion (Blum and Langley, 1997; Kohavi and John, 1997):
wrappers and filters. A wrapper approach uses the direct
output of the regressor as objective function, while filter
methods apply an external measure (for example, Mutual
Information), thus resulting in the algorithm’s performance
depending completely on the measure selected. Filter meth-
ods are usually faster than wrapper methods. On the other
hand, wrapper methods have been shown to be more
accurate.

In this work we consider wrapper feature selection based
on a GGA. Given a specific group of features a prediction
of the global solar irradiance must be performed to analyze
the goodness of the group of features. For this purpose,
the regressor chosen must be as accurate as possible, and
also very fast in its training process, in order to avoid
high computational burden for the complete algorithm.
The Extreme Learning Machine (ELM) (Huang et al.,
2006, 2011) is a very fast learning method, based on the
structure of multi-layer perceptrons, that shows excellent

Fig. 4. Outline of the grouping crossover, C2, implemented in the
proposed GGA.
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performance in classification and regression problems, and
it has been the regressor chosen to be optimized by means
of the feature selection process carried out by the GGA.

The most significant property of the ELM training, and
one of the reasons why it is so fast, is that it is trained just
by randomly setting the network weights, and then obtain-
ing the inverse of the hidden-layer output matrix (Huang
et al., 2006, 2012).

Given a training set C ¼ fðxi;yiÞjxi 2 Rn;yi
2 Rm; i ¼ 1; . . . ;Ng, where x stands for the predictive vari-
ables, and ystands for the objective variable. An activation
function, aðxÞ, and number of hidden nodes, ~N , the ELM
works as follows:

(1) Randomly assign inputs weights wi and bias
bi; i ¼ 1; . . . ; ~N .

(2) Calculate the hidden layer output matrix H, defined
as

H ¼
aðw1 * x1 þ b1Þ * * * aðw~N * x1 þ b~N Þ

..

.
* * * ..

.

aðw1 * xN þ b1Þ * * * aðw~N * xN þ b~N Þ

2

64

3

75

N'~N

ð2Þ

(3) Compute the output weight vector b as

b ¼ HyY; ð3Þ
where Hy stands for the Moore–Penrose inverse of
matrix H (Huang et al., 2006), and Y is the training

output vector, Y ¼ ½y1; * * * ;yN)
T .

Note that the number of hidden nodes (~N ) is a free
parameter of the ELM training, and must be estimated
to obtain good results. Usually, scanning a range of ~N val-
ues is the solution for this problem.

The fitness function considered for each element of the
GGA is obtained by using the Root Mean Square Error
(RMSE) of the prediction. RMSE is used in this work
instead of other validation metrics, because large forecast
errors and outliers are weighted more strongly than smaller
errors, as the latter are more tolerable in solar radiation
prediction (Beyer et al., 2011; Kleissl, 2013).

The RMSE formula is shown in Eq. (4), where I t stands

for the global solar radiation measured at a time t; Î t stands
for the global solar radiation estimated by the ELM, and T
stands for the number of samples in the test set.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1
Î t & I t
$ %2

r
ð4Þ

Note that RMSE is the only metric used at the ELM’s
training phase. Nevertheless, to assess the performance of
the network (in the test phase), alternative metrics have
been also used (see SubSection 4.1).

3.4. GGA evolution dynamics

Feature selection is performed with the GGA. All
possible 92 predicting variables are assigned to one of the

different groups defined in the groups’ part of the individ-
ual. Since each individual is divided into several groups,
there are different approaches to calculate the fitness func-
tion (given by Eq. (4)), as all groups may be used in this cal-
culation, just one, and so on. In this work we have
analyzed two different evolution dynamics for the GGA:

1. Dynamics D1: the fitness function given by Eq. (4) is cal-
culated for all groups in each individual, and the fitness
value is assigned by choosing the minimum value for all
the groups.

2. Dynamics D2: the fitness function is also given by Eq.
(4), but in this case we choose to maximize the value
of this equation for group G1.

Note that D1 is the most intuitive way of the GGA evo-
lution, where the individuals are selected according to the
best fitness value obtained for one of their groups. On the
other hand, D2 is completely different: in this case the idea
is to concentrate those features that produce a poor perfor-
mance of the regressor in a given group (group G1 in this
case). At the end of the evolution, the test value is obtained
using the features that are not present in the first group of
the best individual in the population. Note that D2 can be
improved by eventually removing the worst features out
of the total available ones after a number of generations
(g). In order to do this, after g generations of the algorithm,
we construct a ranking of those features that appear the
most in group G1 of all the individuals in the population.
We then set a threshold (th) for the number of times a given
feature appears in group G1, and we remove those features
that appear in the ranking over threshold th. The GGA is
then re-initialized without considering those features that
were removed in the previous step.

4. Experiments and results

This section refers the experiments run to assess the pro-
posed algorithm, together with measures used to evaluate
the accuracy of our approach, and to allow comparison
with other global solar radiation prediction tools.

Note these experiments consider global solar radiation
prediction only for daytime hours (average hourly data
from 5 a.m. to 8 p.m.), as night hours present zero irradi-
ance. In order to create training and test sets to evaluate
the performance, each day has been divided into several
blocks. For each block, a random hour is assigned to the
test set, and the remaining ones, in increasing order, to
the training set. Thus, guaranteeing that all blocks and
all days are represented both in train and test. Finally, this
procedure is carried out 10 times, and we then provide
average values of error in test (10-fold cross validation).

4.1. Forecast accuracy measures

Following the guidelines given in Beyer et al. (2011), in
order to assess forecast accuracy of global solar radiation,
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conventional metrics such as RMSE (Eq. (4)) and Pearson
Correlation Coefficient, r2, have been used in this paper.

Moreover, to facilitate comparisons between the fore-
casts developed in this work and other solar forecasts,
another useful quality check is to analyze whether the pro-
posed GGA–ELM model performs better or worse than a
given reference model (Kleissl, 2013). Thus, forecast skill, s,
defined in Eq. (5) has been also considered, where U stands
for the uncertainty of solar availability, i.e. the forecasting
error of the proposed GGA–ELM model, and V refers to
the variability of solar irradiance. Taking into account that
this variability can be attributed to cloud cover (mostly
stochastic) and solar position (mostly deterministic), it
can be referred as the standard deviation of the step-
changes of the ratio of the measured solar irradiance to
that of a clear-sky solar irradiance. An easier procedure
to obtain the forecast skill, and yet a good estimate
(Kleissl, 2013), is to consider that the ratio U =V can be
approximated by the RMSEprediction=RMSEpersistencemodel. Glo-
bal solar radiation obtained with the persistence model at
a point P and at a time t, will be referred as I Per

t .

s ¼ 1& U
V

ð5Þ

4.2. SubProblem 1

SubProblem 1 evaluates what WRF model outputs (the
predictive variables) are more useful in the global solar
radiation prediction. To assess it, we have carried out sev-
eral experiments to test the proposed hybrid GGA–ELM
algorithm. First, the GGA will perform a feature selection
out of the 92 possible atmospherical output variables con-
sidered. Then, the ELM will perform the global solar pre-
diction using those features selected by the GGA in the test
set.

The result for global solar radiation prediction with
the ELM when no feature selection is performed
(tested on all the available features) is r2 ¼ 0:9283 and

RMSE ¼ 85:14 W=m2 (average of the 10-fold cross valida-
tion). Note that this is a baseline reference that should be
outperformed by the proposed algorithm. Figs. 5 and 6
present the scatter plot and global solar prediction in time,
where it can be seen that the prediction fits rather well to
the field (measured) data. For a clearer representation, only
the first 100 h of the test output are shown in all time
graphs.

Now, in order to test the hybrid GGA–ELM approach,
several experiments were run showing the results presented
in Table 2. Note that due to the ELM’s output variability,
when the hybrid GGA–ELM approach is tested, small
increases in the RMSE may occur at certain generations.
In order to reduce this variability, the ELM is run c times
(c ¼ 10) at each iteration (for both dynamics) and the aver-
age RMSE value is used as the individual’s fitness value
(the minimum RMSE of all possible groups in each indi-
vidual for dynamics D1, or the maximum RMSE in the
individual’s group G1 for dynamics D2). Therefore, every
generation in D1, the algorithm runs c ELMs for each
group at each individual (c * NGroups), while every generation
in D2 only runs c ELMs for group G1 at each individual.

The first experiments compare the two crossover opera-
tors presented in Section 3.2: C1 (two-parents/one-child)
and C2 (two-parents/two-children). It can be observed in
Table 2 that C1 presents slightly worse predictions than
C2. Observing the evolution along generations for the first
crossover operator (C1), a continuous increase in the

Fig. 5. Scatter plot of the global solar radiation prediction by the ELM
without feature selection.

Fig. 6. Global solar radiation prediction in time by the ELM without
feature selection.

Table 2
Comparative results of the solar radiation prediction before and after
feature selection with the GGA–ELM considering crossovers C1 and C2,
and dynamics D1 and D2.

Experiments RMSE (W/m2) r2

ELM (all features) 85.14 0.9283
GGA–ELM (C1;D1) 78.06 0.9382
GGA–ELM (C1;D2) 76.14 0.9406
GGA–ELM (C2;D1) 77.53 0.9401
GGA–ELM (C2;D2) 75.56 0.9415
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number of groups was detected, and an upper bound in the
number of groups to be created was imposed. Therefore,
the number of groups was restricted to a maximum of
10, 15, 20 or 25, and any group created over this limit
was destroyed and its items were randomly reallocated to
existing groups. In spite of this consideration, C2 was found
to outperform C1 in this problem.

Analyzing C1’s evolution along generations, the total
number of groups tends to continuously increase, thus
affecting improvement of the algorithm. Because of this,
an upper bound in the maximum number of groups of
10, 15, 20 or 25 was set at each iteration, therefore destroy-
ing groups over this limit and randomly reallocating their
items to existing groups. In spite of this consideration, C2

was found to outperform C1 in this problem.
The last experiments compare the two different dynam-

ics introduced in Section 3.4. The first one, D1, computes
the fitness function for all groups in each individual, and
the minimum value for all groups is set as the individual’s
fitness value. The second one, D2, maximizes each

individual’s first group fitness function and assigns it as
the individual’s fitness value. Therefore, D1 must run the
ELMs on all groups in each individual, while D2 only

Fig. 7. Scatter plot of the global solar radiation prediction after feature
selection with C2 crossover operator, and following dynamics: (a) D1; (b)
D2.

Fig. 8. Global solar radiation prediction in time after feature selection
with C2 crossover operator, and following dynamics: (a) D1; (b) D2.

Fig. 9. Feature removal along generations with C2 crossover operator, and
following dynamics D2.
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obtains G1’s fitness function. Moreover, D1 always per-
forms the ELMs on the initial number of features, while
D2 removes several features every g ¼ 5 generations. This
applied criterion requires that those features in G1 that
appear at least in 40% of the individuals are removed,
and evolution continues with a smaller feature population.
Let us focus on the second crossover operator (as it showed

the best results), it can be seen that the RMSE decreases
from 77.53 W/m2, when applying D1, to 75.56 W/m2 for
D2, and r2 increases from 0.9401 to 0.9415, respectively.
Figs. 7 and 8 present, respectively, the scatter plot and
the solar prediction in time for both dynamics. Once again,
it can be seen that the prediction fits rather well to the mea-
sured data.

Analyzing the results of the 10-fold cross validation in
the best experiment (crossover C2 and dynamics D2), it
can be determined that the key predictive variables (fea-
tures) are the OLR, CLDFRA (at a pressure level corre-
sponding to 700 hPa), QVAPOR (at a pressure level
corresponding to 700 hPa), and T (at a pressure level cor-
responding to 500 hPa), all for the WRF output point
located at (39" 510N, 4" 010W). Other five to nine less
important features complete the different GGA–ELM’s
solutions.

Finally, Fig. 9 shows the amount of features removed
after each g generations, and it can be seen that sometimes
no features are removed. Moreover, Fig. 10 presents the
GGA–ELM’s performance, where it can be observed that
right after several characteristics are removed, the RMSE
may increase, but on the long run, better results are
obtained.

4.3. SubProblem 2

SubProblem 2 analyzes the prediction performance of
the proposed GGA–ELM approach for a 1, 2, and 3 h
ahead forecasting, considering only the best algorithms’
configuration found in the previous subproblem (i.e. C2

crossover operator, and dynamics D2). Note that in this
subproblem only the outputs of the WRF model are used
as predictive variables. Table 3 presents the results
obtained for this experiment, as well as the forecasting skill
of the proposed GGA–ELM algorithm at point P.

Fig. 10. GGA–ELM’s performance along generations when g ¼ 5 for C2

crossover operator, and following dynamics D2. Note that after g
generations, several features are removed.

Table 3
Global solar radiation prediction for a 1, 2, and 3 h ahead forecasting,
after performing a feature selection with the GGA–ELM (considering
crossover C2 and dynamics D2).

GGA–ELM (C2;D2) RMSE r2 s
Forecast horizon: t + x (W/m2) (ref: IPer

t )

x = 1 h 111.76 0.8693 13%
x = 2 h 165.86 0.7173 30%
x = 3 h 200.36 0.5900 40%

Table 4
Global solar radiation prediction for a 1 and 2 h ahead forecasting (Î tþx). Input variables include those features selected with the GGA–ELM approach at
SubProblem 1 (crossover C2 and dynamics D2), together with past station’s measurements (I t&z), ranging from z ¼ 0 to z ¼ 5.

Predictive variables: Predictive variables:
ELM (all features) þI t&z GGA–ELM’s best features þI t&z

RMSE r2 s RMSE r2 s
(W/m2) (ref: IPer

tþx) (W/m2) (ref: IPer
tþx)

Forecast horizon: x = 1
z ¼ 0 106.62 0.8838 17% 100.12 0.8970 22%
z ¼ 0; 1 101.82 0.8935 21% 82.37 0.9299 36%
z ¼ 0 to 2 95.43 0.9074 26% 78.67 0.9366 39%
z ¼ 0 to 3 92.16 0.9141 28% 78.28 0.9377 39%
z ¼ 0 to 4 90.37 0.9182 30% 76.86 0.9405 40%
z ¼ 0 to 5 90.96 0.9166 29% 76.53 0.9407 41%

Forecast horizon: x = 2
z ¼ 0 171.59 0.6921 27% 154.81 0.7317 35%
z ¼ 0; 1 149.90 0.7652 37% 126.89 0.8311 46%
z ¼ 0 to 2 133.88 0.8147 43% 116.64 0.8585 51%
z ¼ 0 to 3 130.17 0.8264 45% 113.69 0.8670 52%
z ¼ 0 to 4 128.08 0.8321 46% 113.46 0.8678 52%
z ¼ 0 to 5 126.70 0.8340 46% 112.07 0.6899 53%
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It can be seen that the longer the forecast horizon is, the
worse the proposed algorithm predicts the global radiation
(i.e. r2 falls from 0.8693 to 0.5900). On the other hand, the
forecast skill shows that the GGA–ELM outperforms the
persistence model as the forecast horizon increases (FS
from 13% to 40%).

4.4. SubProblem 3

SubProblem 3 is also a forecasting experiment that ana-
lyzes prediction performance for a time horizon
t þ x; x ¼ 0; . . . ;X . In this subproblem, objective global
solar radiation data measured in Toledo’s station for times
t & z; z ¼ 0; . . . ;Z, are included as predictive variables.
Note that in this case, as in SubProblem 2, only the best
algorithms’ configuration (i.e. C2 crossover operator, and
dynamics D2) and best features found in SubProblem 1
have been analyzed.

Table 4 presents the results obtained for a one and two
hours ahead prediction, when past and known global solar
radiation data are included. Experiments considering sta-
tion measurements as input variables (ranging from one
past value (z ¼ 0) to six past values (z ¼ 0 to 5)) are shown.
For comparison purposes, forecast skill (s) is included.

It can be seen that, by performing a feature selection
with the proposed approach, the prediction skill improves
over the use of all 92 WRF predictive variables. It is impor-
tant to highlight that when solar radiation from the previ-
ous hours are also considered as input, performance
increases as well. Moreover, increase due to previous data
seems to contribute more than any other inputs. In all cases
the GGA–ELM’s skill is better than the persistence model.

5. Conclusions

In this paper we have presented a novel hybrid Group-
ing Genetic Algorithm–Extreme Learning Machine
(GGA–ELM) approach for accurate global solar radiation
prediction problems. The GGA is included to obtain a
reduced number of features for the prediction, and the
ELM is used as a fast predictor for the solar radiation.
The outputs from a numerical weather model (WRF) are
used as input features for the ELM, to be selected by the
GGA. A real solar radiation prediction problem for Tole-
do’s radiometric observatory (Spain) has been tackled to
show the goodness of the proposed approach.

Three subproblems have been analyzed then: first, in
SubProblem 1, the prediction system proposed only uses
the output of the WRF as inputs, without any other addi-
tional information to do the prediction. This case consists
of a downscaling of the global solar radiation prediction
to a point of interest. In this first subproblem we have intro-
duced and tested different refinements to the GGA–ELM to
improve the feature selection and prediction capabilities of
the system: (1) two different GGA crossover operators, and
(2) two different dynamics for the algorithm, one implying

the ELM’s error minimization of any group of the GGA,
and the second one implying the ELM’s error maximization
for a specific group of the GGA, followed by the removal
and re-initialization of the algorithm afterwards. For this
first subproblem, we have found out that the best algo-
rithm’s configuration consists of a two-parents/two-
children crossover plus the maximization, removal and re-
initialization dynamics, which obtains the best results in
terms of different error measures. This algorithm’s configu-
ration leads to a best solution with only 9 predictive features
out of the initial 92.

The second subproblem is a prediction problem, where
we have tried to predict the solar radiation at the point
of interest at different time tags t þ x, but again using pre-
dictive variables from the WRF only. In this case, the
longer the forecast horizon, the better the GGA–ELM’s
performance is, in terms of different error measures and
forecast skill. Finally, we have tackled a complete predic-
tion problem by including previous values of measured
solar radiation (as features for the ELM) plus the predic-
tive variables from the WRF. We have proven that the
inclusion of these previous radiation measures significa-
tively improves the forecast skill with respect to persistence
model.
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Salcedo-Sanz, S., M Pérez-Bellido, A., Ortiz-Garcı́a, E.G., Portilla-
Figueras, A., Prieto, L., Correoso, F., 2009. Accurate short-term wind
speed prediction by exploiting diversity in input data using banks of
artificial neural networks. Neurocomputing 72 (4), 1336–1341.

Salcedo-Sanz, S., Casanova-Mateo, C., Pastor-Sánchez, A., Gallo-
Marazuela, D., Labajo-Salazar, A., Portilla-Figueras, A., 2013. Direct
solar radiation prediction based on soft-computing algorithms includ-
ing novel predictive atmospheric variables. In: Intelligent Data
Engineering and Automated Learning – IDEAL 2013. In: Lecture
Notes in Computer Science, vol. 8206, pp. 318–325.

Salcedo-Sanz, S., Casanova-Mateo, C., Pastor-Sánchez, A., Sánchez-
Girón, M., 2014. Daily global solar radiation prediction based on a
hybrid Coral Reefs Optimization – Extreme Learning Machine
approach. Sol. Energy 105, 91–98.

Salcedo-Sanz, S., Pastor-Sánchez, A., Prieto, L., Blanco-Aguilera, A.,
Garcı́a-Herrera, R., 2014. Feature selection in wind speed prediction
systems based on a hybrid coral reefs optimization – extreme learning
machine approach. Energy Convers. Manage. 87, 10–18.

Senkal, O., Kuleli, T., 2009. Estimation of solar radiation over Turkey
using artificial neural network and satellite data. Appl. Energy 86 (7–
8), 1222–1228.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M.,
Wang, W., Powers, J.G., 2005. A Description of the Advanced
Research WRF Version 2. National Center for Atmospheric Reserach,
Mesoscale and Microscale Meteorology Division, Technical Note.

Sozen, A., Arcakliogblu, E., Ozalp, M., 2004. Estimation of solar
potential in Turkey by artificial neural networks using meteorological
and geographical data. Energy Convers. Manage. 45, 3033–3052.

Voyant, C., Muselli, M., Paoli, C., Nivet, M.L., 2011. Optimization of an
artificial neural network dedicated to the multivariate forecasting of
daily global radiation. Energy 36 (1), 348–359.

Voyant, C., Muselli, M., Paoli, C., Nivet, M.L., 2013. Hybrid method-
ology for hourly global radiation forecasting in Mediterranean area.
Renew. Energy 53, 1–11.

A. Aybar-Ruiz et al. / Solar Energy 132 (2016) 129–142 141

http://refhub.elsevier.com/S0038-092X(16)00198-5/h0035
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0035
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0035
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0040
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0040
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0045
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0045
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0050
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0050
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0050
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0050
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0050
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0055
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0055
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0055
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0060
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0060
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0060
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0060
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0065
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0065
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0065
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0070
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0070
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0070
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0075
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0075
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0080
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0080
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0085
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0085
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0090
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0090
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0095
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0095
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0095
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0100
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0100
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0100
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0105
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0105
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0110
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0110
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0110
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0115
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0115
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0120
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0120
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0120
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0125
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0125
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0125
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0130
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0130
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0130
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0135
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0135
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0135
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0140
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0140
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0150
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0150
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0155
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0155
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0160
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0160
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0165
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0165
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0165
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0170
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0170
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0170
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0175
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0175
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0175
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0175
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0180
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0180
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0185
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0185
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0185
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0190
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0190
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0190
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0195
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0195
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0195
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0200
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0200
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0200
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0205
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0205
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0205
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0215
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0215
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0215
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0215
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0220
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0220
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0220
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0220
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0230
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0230
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0230
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0230
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0235
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0235
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0235
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0235
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0240
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0240
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0240
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0250
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0250
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0250
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0255
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0255
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0255
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0260
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0260
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0260


Wu, J., Chan, C.K., 2011. Prediction of hourly solar radiation using a
novel hybrid model of ARMA and TDNN. Sol. Energy 85, 808–817.

Yacef, R., Benghanem, M., Mellit, A., 2012. Prediction of daily global
solar irradiation data using Bayesian neural network: a comparative
study. Renew. Energy 48, 146–154.

Yao, X., Liu, Y., Lin, G., 1999. Evolutionary programming made faster.
IEEE Trans. Evol. Comput. 3 (2), 82–102.

Zeng, J., Qiao, W., 2013. Short-term solar power prediction using a
support vector machine. Renew. Energy 52, 118–127.

142 A. Aybar-Ruiz et al. / Solar Energy 132 (2016) 129–142

http://refhub.elsevier.com/S0038-092X(16)00198-5/h0265
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0265
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0270
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0270
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0270
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0275
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0275
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0280
http://refhub.elsevier.com/S0038-092X(16)00198-5/h0280


A CRO-species optimization scheme for robust global solar radiation
statistical downscaling

S. Salcedo-Sanz a, S. Jim!enez-Fern!andez a, *, A. Aybar-Ruiz a, C. Casanova-Mateo b, c,
J. Sanz-Justo b, R. García-Herrera d, e

a Department of Signal Processing and Communications, Universidad de Alcal!a, Alcal!a de Henares, Spain
b LATUV: Remote Sensing Laboratory, Universidad de Valladolid, Valladolid, Spain
c Department of Civil Engineering: Construction, Infrastructure and Transport, Universidad Polit!ecnica de Madrid, Madrid, Spain
d Department of Astrophysics and Atmospheric Sciences, Universidad Complutense de Madrid, Spain
e Department of Sedimentary Geology and Environmental Change, Instituto de Geociencias IGEO, UCM-CSIC, Madrid, Spain

a r t i c l e i n f o

Article history:
Received 22 December 2016
Received in revised form
21 February 2017
Accepted 26 March 2017
Available online 28 March 2017

Keywords:
Coral reefs optimization algorithm
CRO with species
Global solar radiation
Solar energy
Extreme learning machines

a b s t r a c t

This paper tackles the prediction of the global solar radiation (GSR) at a given point, using as predictive
variables the outputs of a numerical weather model (the WRF meso-scale model) obtained at a different
grid points. Prediction is obtained in this work using a Multilayer Perceptron (MLP) trained with Extreme
Learning Machines (ELMs). Provided that the number of WRF outputs is vast, we propose the use of a
Coral Reefs Optimization algorithm with species (CRO-SP) to obtain a reduced number of significant
predictive variables, therefore improving the global solar radiation prediction attained without feature
selection. The proposed system has been tested on real data from a radiometric station located at Toledo
(Spain) and average best results of RMSE of 69.19 W=m2 have been achieved, resulting in a 21.62%
improvement over the average prediction without considering the CRO-SP for the feature selection.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Solar energy is a clean and sustainable renewable source, with a
high potential for significant growth in future years. Solar energy
development is specially important in the Middle-East region,
southern Europe and in the USA, places where the solar resource
can be exploited all year around [1]. An important problem faced by
this renewable resource is its integration in the grid system,
because the energy produced by solar facilities is intrinsically sto-
chastic due to the presence of clouds, atmospheric particles, dust,
etc. In order to predict the solar production, an accurate global solar
radiation (GSR) at the solar plant is needed, and this radiation de-
pends completely on different atmospheric variables [2e4].

A vast set of different Machine Learning and Artificial Intelli-
gence techniques has been applied for the prediction of global solar
radiation [5]. Most of them use different machine learning tech-
niques, with inputs based on meteorological and geographical

parameters such as sunshine duration, air temperature, relative
humidity, wind speed, wind direction, cloud cover, precipitation,
etc [6,7]. According to [8] the design, control and operation of solar
energy systems requires long-term series of meteorological data
such as solar radiation, temperature, or wind data. Artificial Neural
Networks (ANNs) are one of the most applied methods in solar
radiation prediction problems. In Ref. [9] an exhaustive review on
solar radiation prediction using ANNs is presented, describing forty
two different researches, each one using as input variables several
of the above-mentioned parameters to predict the solar radiation.
In Ref. [10], the authors present a vast set of Artificial Intelligence
techniques (ANN, Fuzzy logic, Genetic algorithms, Expert systems,
etc.) applied to different photovoltaic applications: sizing of
photovoltaic (PV) systems, modeling, simulation and control of PV
systems or prediction of PV production using atmospheric or
meteorological data. In some of the works cited, also meteorolog-
ical and geographical parameters are used to increase the accuracy
of the systems implemented, such as in Ref. [11], where ANNs are
used with geographical parameters to estimate solar energy po-
tential in Turkey. In Ref. [12], different combinations of input vari-
ables are considered and tested with Multi-Layer Perceptrons

* Corresponding author. Department of Signal Processing and Communications,
Universidad de Alcal!a, 28871, Alcal!a de Henares, Madrid, Spain.

E-mail address: silvia.jimenez@uah.es (S. Jim!enez-Fern!andez).

Contents lists available at ScienceDirect

Renewable Energy

journal homepage: www.elsevier .com/locate/renene

http://dx.doi.org/10.1016/j.renene.2017.03.079
0960-1481/© 2017 Elsevier Ltd. All rights reserved.

Renewable Energy 111 (2017) 63e76

mailto:silvia.jimenez@uah.es
http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2017.03.079&domain=pdf
www.sciencedirect.com/science/journal/09601481
http://www.elsevier.com/locate/renene
http://dx.doi.org/10.1016/j.renene.2017.03.079
http://dx.doi.org/10.1016/j.renene.2017.03.079
http://dx.doi.org/10.1016/j.renene.2017.03.079


(MLP) and Radial Basis Function (RBF) neural networks. Moreover,
results are then compared to conventional GSR prediction models,
concluding that the ANN approaches perform better. In a similar
research approach [13], carries out a comparison between MLP and
RBF neural networks in a problem of solar radiation estimation.
Experiments in eight stations in Oman show the good results ob-
tained with the neural algorithms. The work in Ref. [14] presents
the performance of ANN in solar energy prediction in of Kuwait.
Two different training approaches, gradient descent and
Levenberg-Marquart algorithm are tested in five different Kuwaiti
locations. Recently, the use of Extreme Learning Machines (ELM) as
a fast training method for ANNs has been applied due to the good
GSR prediction results obtained. Sahin et al. [15] apply ELMs using
satellite measures, concluding that the ELM model performs better
than ANN with back-propagation in terms of GSR estimation and
computational time. The ELM's performance in alternative radia-
tion prediction systems is also described in Refs. [16e18].

Alternative strong regression algorithms have been applied in
solar radiation prediction problems. Support Vector Regression
(SVR) is one of these approaches, which has been successfully
exploited in solar radiation prediction. In Ref. [19] the SVR algo-
rithm has been mixed with a wavelet transform, in order to
improve the performance of the former. Results in an Iranian
coastal city have shown the performance of this hybrid proposal.
Also with a hybrid algorithm involving SVRs [20], presents a firefly
meta-heuristic with a SVR for global solar radiation prediction in
different locations of Nigeria. In Ref. [21] solar irradiation mapping
is tackled with SVR with exogenous data. Variable selection using a
genetic algorithm is also considered in order to improve the per-
formance of the SVR approach. In Ref. [22] a comparison between
the performance of SVR and ANNs is carried out, in a problem of
photovoltaic power generation. The work in Ref. [26] tackles a
problem of global solar energy prediction with SVRs considering
different prediction time horizons. Finally, in Refs. [23e25], a least-
square SVR has been implemented using meteorological and at-
mospheric data as predictive variables. Specifically, the results
obtainedwith the least-square SVR are compared to that of an auto-
regressive neural network and a RBF neural network.

Bayesian methodology has also been applied in solar energy
prediction problems. In Ref. [27] the description of a Bayesian
methodology to determine the most relevant meteorological input
parameters to an Artificial Neural Network (ANN) is introduced,
concluding that there are relevant input parameters (clearness
index and relative air mass) to estimate the direct irradiance. [28]
also discusses the performance of Bayesian networks in global
solar radiation prediction. Specifically, a comparison of GSR pre-
diction performance between Bayesian networks, multi-layer
perceptrons and empirical models is carried out. In Ref. [29],
several clusters are formed and a prediction model is trained for
each cluster to represent a different pattern in the stochastic
component of the solar radiation, obtaining better results than
ARMA or Time Delay Neural Networks. In Ref. [30], an approach
for daily global solar irradiation prediction based on temporal
Gaussian processes is discussed, improving the performance of a
number of alternative regressors such as neural networks, SVR or
regression trees.

Other approaches use all-sky or satellite images in order to
obtain solar radiation prediction. In Ref. [31], the prediction of the
solar radiation is based on different features extracted from all-sky
images, such as the number of cloud pixels, frame difference,
gradient magnitude, intensity level, accumulated intensity along
the vertical line of the sun or the number of corners in the image.
On the other hand [32], and [33] tackle the problem of solar radi-
ation prediction from satellite images, in different locations in
Turkey and Australia, respectively.

Hybrid approaches, i.e. algorithms which mix some kind of
regression techniques with predictors from different sources have
been quite used in solar energy prediction problems. In Ref. [34]
solar irradiation in India is analyzed using a hybrid approach that
combines Hidden Markov Models and generalized fuzzy models.
According to Diagne et al. [35], forecasting of global horizontal
irradiance (GHI) can be categorized according to the input variables
used, that also determine the forecast horizon where they perform
best. For instance, for time horizons from 4 to 6 h, the use of nu-
merical weather prediction (NWP) models typically outperforms
satellite-based predictions. Moreover, the use of the Weather
Research and Forecasting (WRF)meso-scalemodel (a regional NWP
model) hybridized with a Kalman filter reduces de GHI hour-ahead
forecast relative root mean square error (rRMSE) from 35.20% to
22.33% [36]. In Ref. [37] a hybrid approach formed by Time Delay
Neural Networks and Auto-regressive Moving Average (ARMA)
models is proposed for short-term (hourly) solar radiation predic-
tion in Singapore. A similar approach which also mixes ANN and
ARMAmodels is proposed in Ref. [38]. In this case, the performance
of the methodology is evaluated in different location of the
Southern French coast and Corsica. In Ref. [39] ANNs are mixed
with 2-D linear filters to obtain a hybrid approach for hourly solar
radiation prediction. In Ref. [40] ANNs are hybridized with nu-
merical weather prediction models for solving a problem of surface
solar irradiance prediction in Brazil. In Ref. [41] a mixed approach
formed by an ANNwith wavelet transform is proposed for solving a
problem of solar irradiance forecasting in 25 different locations of
Singapore.

Finally, in Ref. [42] a Grouping Genetic Algorithm (GGA) is mixed
with an ELM in a problem of solar radiation prediction at different
time horizons. In that work, the GGA determines which WRF
output variables best refine the GSR forecast (performed using the
above-mentioned ELM approach). In Ref. [43] a hybrid ELMeCoral
Reefs Optimization is proposed for solar radiation prediction in
Southern Spain, in which the CRO is used to modify the ELM
weights in order to improve its performance.

In this paper we propose the use of a novel hybrid approach to
optimally predict the GSR at a given location. For this purpose, we
use a vast set of meteorological and atmospheric variables pro-
vided by a numeric meso-scale model, the WRF, at different points
close to the target location under study. Then, a Coral Reefs
Optimization with species (CRO-SP) algorithm is used to deter-
mine the best subset of WRF variables that lead to a best forecast.
This problem is known in the literature as statistically downscaling
the GSR prediction of a meso-scale model to a given point [44].
Therefore, the ultimate goal of this approach is to evaluate what
features (predictive variables) from the numerical model are
useful for this forecast. The proposed CRO-SP algorithm is a novel
co-evolution algorithm recently described in Ref. [45], especially
well-suited for optimization problems with variable-length
encodings. In our work, each species in the CRO-SP algorithm
represents the use of a different number of WRF variables.
Furthermore, the proposed complete solar prediction system
(CRO-SP þ ELM) will be tested with real data from a radiometric
station in Toledo, Spain.

The structure of the rest of the paper is the following: next
section presents the problem formulation. Section 3 describes the
objective GSR dataset used to train and test the forecast system, and
the outputs of theWRFmeso-scalemodel used as input (predictive)
variables. Section 4 describes the CRO-SP algorithm that will
perform the feature selection and the ELM method for solar radi-
ation downscaling. Section 5 shows the main results obtained with
the proposed hybrid approach in a real solar radiation prediction
problem at Toledo, Spain. Finally, Section 6 closes the paper giving
some final conclusions and remarks.
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2. Problem formulation

Let I t be the global solar radiation in point P (a given location of
the Earth's surface) at time t and let bI t be the prediction of the
global solar radiation in P at the same time instant t.

Let M be a numerical meso-scale model and let V be the output
of the model, at a time t atm different points of a grid. V consists of
the prediction at time t of n different atmospheric variables, 4mn
(m2f1::Mg and n2f1::Ng). Note that some or all of these variables
may be registered at ground level ðl ¼ 0Þ or at different pressure
levels ðl2f0…L gÞ. The output of M can be expressed as
V ¼ ð411;…;41N;421;…;42N ;…;4M1;…;4MNÞ, as shown in Fig. 1.

3. Objective variable data and predictive variables considered

This research tackles the global solar radiation downscaling
from the WRF model outputs to a given point. In this work, P
pinpoints at the radiometric station of Toledo, Spain (39% 530N, 4%

020W). Fig. 2 (a) shows the measuring station's location within the
Iberian Peninsula. The predictive variables considered are the
outputs of the WRF model at the two grid points ðM ¼ 2Þ closest to
the station (in terms of the minimum euclidean distance) and
located at (39% 510N, 4% 010W) and (40% 020N, 4% 010W), respectively,
see Fig. 2(b).

3.1. Objective variable data

The objective variable data to train and test the algorithms
corresponds to one year (fromMay 1st, 2013 to April 30th, 2014) of
hourly global solar radiation data collected at Toledo's measuring
station. This station is located at 39% 530N latitude, 4% 020W longi-
tude and 515MASL. Two constraints have been considered: 1) night
hours present zero irradiance, and 2) a unique set of hours of in-
terest, regardless of the season, is needed. Therefore, hourly data

from 5 a.m. to 8 p.m. throughout the year is used in this analysis.

3.2. Predictive variables provided by the Weather Research and
Forecasting model (WRF)

In this work, the meso-scale model M considered is theWeather
Research and Forecasting (WRF) model [46] developed by the Na-
tional Center for Atmospheric Research (NCAR), the National Cen-
ters for Environmental Prediction (NCEP), the Forecast Systems
Laboratory (FSL), the Air Force Weather Agency (AFWA), the Naval
Research Laboratory, the University of Oklahoma, and the Federal
Aviation Administration (FAA) of the USA. WRF is a meso-scale
numerical weather prediction system that has been used in a
wide range of meteorological [47] and renewable energy applica-
tions [48]. Specifically, WRFmodel version 3.6 has been used in this
research, and meteorological data have been calculated over a
window ranging from 34% 340N to 44% 280N, and from 4% 250W to 4%

230E. In this window, the grid has 99& 59, each grid element covers
15 & 30 km2. Some of the atmospheric variables (outputs of the
WRF) are calculated at a pressure level corresponding to the ground
level ðl ¼ 0Þ, and some others at the ground level and at 36 pressure
levels above the ground in the vertical direction ðl ¼ 1…36Þ.

The WRF model outputs considered in the study are the
following:

- OLR: Top of atmosphere outgoing long-wave radiation ðW=m2Þ.
- GLW: Downward long-wave flux at ground level ðW=m2Þ.
- SWDOWN: Downward short-wave flux at ground level ðW=m2Þ.
- u: Zonal wind component at different pressure levels ðm=sÞ.
- v: Meridional wind component at different pressure levels
ðm=sÞ.

- w: Vertical wind component at different pressure levels ðm=sÞ.
- PSFC: Atmospheric pressure at ground level ðhPaÞ.

Fig. 1. Global solar radiation prediction scheme used in this work.
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- QVAPOR: Water vapor mixing ratio (in kg=kg). This variable is
defined as the ratio of themass of water vapor to themass of dry
air.

- TSK: Surface skin temperature (K).
- TH2: Potential temperature at 2 m above the ground (K).
- T0: Perturbation potential temperature (in K) at different pres-
sure levels. The relationship between the perturbation potential
temperature, T0, and the potential temperature, q, is
q ¼ T 0 þ 300.

- CLDFRA: Total cloudiness (fraction of clouds in each cell) at
different pressure levels. Cloud fraction ranges from 0 (no
clouds) to 1 (clouds in a spatial grid cell).

Table 1 shows the 58 variables analyzed for each grid point
considered, indicating (when needed) the different pressure levels
where they were obtained. Therefore, as two grid points ðM ¼ 2Þ
have been examined, a total of 116 variables have been used in this
work.

4. Methodology

In this work we use the Coral Reefs Optimization algorithmwith
Species to determine which set of WRF outputs obtains the best
global solar radiation prediction. In Subsection 4.1, the basic CRO
algorithm is introduced and in Subsection 4.2 a modification of the
CRO including species (with co-evolution of variable-length

encoding) is described to optimally tackle the feature selection.
Next, in Subsection 4.3, the fitness (or health) function to be
minimized by the abovementioned algorithm is presented, namely,
the Extreme Learning Machine training method.

4.1. The basic Coral Reefs Optimization algorithm

The Coral Reefs Optimization (CRO) Algorithm [49] is an
evolutionary algorithm based on the behavior of a coral reef that
has been applied to a number of energy applications [50,51]. Let R
be the reef represented by an R1 & R2 grid, where each position ði; jÞ
of R is able to allocate a coral or a colony of corals, Ci;j. Therefore, a
coral encodes a solution to the optimization problem under study.
Namely, a subset of the WRF atmospheric variables that will be
used to determine the GSR prediction: Ci;j ¼ ff1;f2;…;fKg, where
each fk may be any of the atmospheric variables in V.

The CRO algorithm first initializes some random positions of R
with random corals and leaves some other positions empty. These
holes in the reef are available to host new corals that will be able to
freely settle and grow in later phases of the algorithm. The rate
between free/occupied positions in R at the beginning of the al-
gorithm is a parameter of the CRO algorithm denoted as r0
ð0< r0 <1Þ.

The second phase simulates the processes of reproduction and
reef formation. The different reproduction mechanisms available in
nature are recreated by sequentially applying different operators.
These behaviors are:

1. External sexual reproduction or Broadcast Spawning.
Broadcast spawning consists of the following steps at each
iteration k of the algorithm:
1.a A random fraction of the existing corals is selected uni-

formly, turning these corals into broadcast spawners. The
fraction of broadcast spawners with respect to the overall
amount of existing corals in the reef will be denoted as Fb.

1.b Several coral larvae are formed. To generate each new larva,
two broadcast spawners are selected and a crossover oper-
ator or any other exploration strategy is applied. Note that
once two corals have been selected to be the parents of a
larva, they are not chosen anymore at iteration k for repro-
duction purposes. Corals' selection can be done randomly,

Fig. 2. Location of: (a) Toledo's measuring station in Spain and (b) the M ¼ 2 WRF grid points considered for the downscaling.

Table 1
Outputs of the WRF model used in the experiments as predictive variables (78
variables per point of the WRF model).

variable pressure levels (hPa)

OLR e

GLW ground
SWDOWN ground
u ground, 850, 700, 500, 400, 300, 200, 100, 50
v ground, 850, 700, 500, 400, 300, 200, 100, 50
w ground, 850, 700, 500, 400, 300, 200, 100, 50
PSFC ground
QVAPOR ground, 850, 700, 500, 400, 300, 200, 100, 50
TSK ground
TH2 ground
T0 ground, 850, 700, 500, 400, 300, 200, 100, 50
CLDFRA ground, 850, 700, 500, 400, 300, 200
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uniformly, or using any fitness proportionate selection
approach (e.g. roulette wheel).

2. Internal sexual reproduction or Brooding. Hermaphrodite
corals reproduce by brooding. This reproduction is modeled by
means of any kind of mutation mechanism and takes place on a
fraction of corals of 1' Fb. A percentage Pi of the coral is
mutated.

3. Larvae setting. Once the larvae are formed either through
external or internal reproduction, they will try to set and grow in
the reef. Each larva will randomly try to set in a position ði; jÞ of
the reef and, if the location is free, it will set. If the location is
already occupied, the new larva will set only if its health function
(fitness) is better than that of the existing coral. Moreover, the
CRO algorithm defines a parameter h that determines the
maximum number of tries a larva can attempt at each iteration k.

4. Asexual reproduction. Corals reproduce asexually by budding
or fragmentation. The CRO models this mechanism in the
following way: the whole set of corals in the reef are sorted
according to their level of health value (given by f ðCi;jÞ). Then, a
small fraction (denoted as Fa) of the available corals are dupli-
cated and mutated (with probability Pa) to provide variability,
and try to settle in a different part of the reef as in Step 3.

5. Depredation. Corals may die during the reef's formation.
Therefore, at the end of each reproduction iteration k, a small
number of corals in the reef can be depredated, thus liberating
space in the reef for next coral generation (iteration kþ 1). The
depredation operator is applied with a very small probability
ðPdÞ to a fraction ðFdÞ of the corals in the reef with worse health.

Fig. 3 illustrates the flowchart diagram of the CRO algorithm,
with the different CRO phases (reef initialization and reef forma-
tion), along with all the operators described above.

4.2. CRO algorithm with species: competitive co-evolution

The basic CRO can be improved to obtain stronger versions of
the meta-heuristic, based on alternative processes that occur in
coral reefs. We apply here the CRO-SP, a modification of the CRO
that implements co-evolution to deal with optimization problems
that present variable-length encodings. This advanced version of
the algorithm was first described in Ref. [45] for a problem of
optimal model selection.

Each coral species represents a different model (or its hyper-
parameters) out of N possible models, and the concept of model
is generic, so it can represent either a different encoding for the
problem, a different way of obtain the health function, etc.

Bearing into mind that each coral individual is encoded as
Ci;j ¼ ff1;f2;…;fKg, in this work, all corals belonging to a specific
species are made up of the same number of WRF variables, K. For
example, species S1 may represent solutions formed by K ¼ 10WRF
variables, while species S2 may represent solutions formed by
K ¼ 15 predictive variables. Only corals of the same species can
reproduce by external sexual reproduction described in Subsection
4.1. However, all species considered compete together in the larvae
setting step, as only one health function is used for all species. Note
that the competition among specieswill produce emerging behavior,
so the best model (species) will eventually dominate and occupy the
majority of spaces in the reef as the algorithm evolves. Algorithm 1
shows an outline of the CRO algorithmwith species (CRO-SP).

Fig. 3. Flowchart diagram of the original CRO algorithm.

S. Salcedo-Sanz et al. / Renewable Energy 111 (2017) 63e76 67



It can be concluded that this behaviour increases the effective-
ness of the algorithm, as different corals (individuals) belonging to
different species compete against one another at each iteration of
the algorithm. Traditional algorithms would evolve each experi-
ment (species) separately and, at the end, compare them. Thus,
resulting in longer processes. On the contrary, the main drawback
of the proposed algorithm is its computational complexity, due to
the competition at each iteration of all species present in the
experiment.

4.3. Extreme Learning Machines

The above-mentioned CRO-SP is directly applicable to any
problem of feature selection, since the number of features is usually
a parameter to be set previously to the optimization process. In this
problem of global solar radiation downscaling, feature selection is
essential, as 116 predictive variables are considered. Thus, each CRO
species is set to model a different number of features to be used in
the optimization process, and the objective (health) function to be
minimized is the downscaling error, given by a neural network
trained with an Extreme Learning Machine algorithm.

The Extreme Learning Machine (ELM) is a training method for
neural networks with the structure of multi-layer perceptrons. It
obtains an extremely fast training bymeans of randomly setting the
weights of the network's input layer, and then obtaining the
weights of the output layer by using the inverse of the hidden-layer
output matrix [52,53]. ELMs have shown excellent performance
both in classification and regression applications [54]. For this
reason, in this paper we have chosen the ELM as the regressor to

determine the global solar radiation at P.
In order to define the ELM process, consider a training set

G ¼ fðxi; yiÞjxi2ℝn; yi2ℝm; i ¼ 1;/;Ng, where x stands for the
predictive variables, and y stands for the objective variable. It is also
necessary to define an activation function for the neurons of the
network, aðxÞ, and number of hidden nodes, g. With these pa-
rameters, the ELM algorithms works as follows:

(1) Randomly assign the network's inputs weightswi and bias bi,
i ¼ 1;/;g.

(2) Calculate the hidden layer output matrix H, as

H ¼

2

4
aðw1,x1 þ b1Þ / a

!
wg,x1 þ bg

"

« / «
aðw1,xN þ b1Þ / a

!
wg,xN þ bg

"

3

5

N&g

(1)

(3) Calculate the output weight vector b as

b ¼ HyY; (2)

where Hy stands for the Moore-Penrose inverse of matrix H [52],
and Y is the training output vector, Y ¼ ½y1;/; yN)

T .
Finally, note that the number of hidden nodes (g) is a free

parameter of the ELM algorithm, so it must be estimated for a good
performance of the algorithm. Usually, the solution for this problem
is to scan a range of g values and keeping the value which produces
the best result.

4.4. Fitness function

The health or fitness function considered for each coral (indi-
vidual) is obtained computing the Root Mean Square Error (RMSE)
of the global solar radiation prediction, as shown in Eq. (3), where,
again, I t stands for the global solar radiation measured at a time t,
cI t stands for the global solar radiation estimated by the ELM, and T
stands for the number of samples in the test set.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

t¼1

$
bI t ' I t

%2
vuut (3)

RMSE is used in this work instead of other validation metrics,
because large forecast errors and outliers are weighted more
strongly than smaller errors, as the latter are more tolerable in
global solar radiation prediction [55,56].

5. Experiments and results

This section describes the experiments run in this work. Again,
the aim is to predict the global solar radiation at a point P using as
predictive variables the outputs of the WRF model obtained in two
grid points close to P. The first step is to determine the best pre-
dictive variables (feature selection) and has been addressed

Table 2
CRO optimization parameters.

Phase Parameter

Inicialization Reef size ¼ 50& 40 (2000 positions)
Si , i2f1::5g (5 species)
r0 ¼ 0:75 (1500 corals)
rSi
0 ¼ 0:15 (300 corals per species)

External sexual reproduction Fb ¼ 0:70
Random selection of broadcast spawners.
Each possible coral must be broadcast
spawner at least once per iteration k.
New larva formation using 2-point
crossover.

Internal sexual reproduction 1' Fb ¼ 0:20
Pi ¼ 0:30

Larvae setting h ¼ 3
Identical corals are not allowed in the reef.

Asexual reproduction Fa ¼ 0:05
Pa ¼ 0:005

Depredation Fd ¼ 0:15
Pd ¼ 0:25 (it decreases with the number of
iterations. At kmax , Pd ¼ 0)

Stop criteria kmax ¼ 300 iterations.

Table 3
Experiments run considering different species. Each species is represented by Si.

Experiment Number of features per species RMSE
ðW=m2Þ

Best Species

S1 S2 S3 S4 S5 Average Best coral

E1 10 20 30 40 50 69.50 68.21 10 features ðS1Þ
E2 6 8 10 12 14 69.33 68.16 8 features ðS2Þ
E3 7 8 9 10 11 69.16 68.03 8 features ðS2Þ
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Fig. 4. Scatter plot of the global solar radiation: (a) Experiment E1, (b) Experiment E2 and (c) Experiment E3.
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implementing a CRO-SP algorithm with the parameters shown in
Table 2.

To identify the best set and number of predictive variables,
several experiments (Ei, i2½1::3)) have been run in a 10-fold cross
validation scheme. Each CRO-SP experiment Ei consists of five
subexperiments, each one of them analyzing a specific species Si
ði2½1::5)Þ, i.e., all corals belonging to one species have the same
number of features. The co-evolution of these species leads quickly
to a coral-reef colonized by the most suited corals. Once

convergence is reached, the best coral in the reef belongs to a
specific species and its health function stands for the RMSE value
obtained in test. Note that to calculate the global solar radiation at
each iteration, the ELM has been run 3 times and the health func-
tion value assigned to the coral is the average result obtained.
Table 3 presents the results obtained for each experiment: the
average value of error in test, the best coral's RMSE and its corre-
sponding species (in terms of the number of predictive variables in
that species).

Fig. 5. Experiment E3. (a) Global solar radiation in time. (b) Deviation in time of the predicted GSR from the measured GSR. Note that only a random time frame of 100 samples is
presented for clarity purposes.
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The first experiment run, E1, is meant to resolve the order of
magnitude of the number of features to be considered (10, 20, 30,
40 or 50), and it can be observed that the best prediction is found
using 10 variables (RMSE ¼ 68.21 W=m2). Experiments E2 and E3
are used to refine the number of predictive variables to consider,
both of them converging to best results when the species encode 8
variables. Fig. 4 presents the scatter plots for each experiments'
best coral, showing the algorithm's good performance in all cases.

Fig. 5 presents the comparison in time between the measured
and the predicted GSR for experiment E3, the best experiment,
where it can be seen that the prediction follows rather well the field
(target) data. Fig. 6 shows the evolution with the number of itera-
tions of the best coral in this experiment. It corresponds to a coral
encoding the use of 8 WRF variables and presents a final RMSE of
68.03 W=m2 and a coefficient of determination r2 ¼ 0.9531.

It is interesting to analyze the behavior (evolution) of the

Fig. 6. Experiment E3. Evolution with the number of iterations of the best coral's RMSE. Note that the best coral belongs to species S2.

Fig. 7. Experiment E3. Evolution of the species present in the reef after a certain number of iterations (k): (a) k ¼ 1, (b) k ¼ 10, (c) k ¼ 25, (d) k ¼ 50, (e) k ¼ 150, (f) k ¼ 300.
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different species in the reef with the number of iterations. Fig. 7
shows this evolution for the best run of the best experiment, E3.
In Fig. 7(a) the random initialization of the reef is presented,
where the reader can see the positions occupied by each different
species and the free positions available at the reef. As the number
of iterations (k) increases (Fig. 7(b)-(f)), it can be observed that
the worst-fitted species tend to die and are no longer present at
the reef, as larvae from dominant species outperform them.
Finally, when the stop criteria is reached, the reef is colonized by
the best species which, in this particular experiment, is species
S2 (corresponding to the use of 8 WRF variables for the
prediction).

Figs. 8e10 show, for all experiments analyzed, the evolution

with the number of iterations of two important characteristics.
First, the root mean square error of each species' best coral,
which is depicted in subfigures (a). It is clear that the RMSE de-
creases with the number of evolutions, but there is one excep-
tion: when a species is endangered (is being outperformed by the
rest) its RMSE increases abruptly. Right after this occurs, the
RMSE is interrupted, resulting in the disappearance of the worst-
fitted species from the reef. Second, the number of corals present
in each species is analyzed in Figs. 8(b), 9(b) and 10(b). It can be
observed that, at some points, the number of corals in some
species drops down. This is directly related to the occurrence of
depredation phases. It is important to highlight that although in
the depredation phase the species are decimated, the evolution

Fig. 8. Experiment E1. Evolution with the number of iterations of: (a) The RMSE of each species' best coral, and (b) The number of corals per species.
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keeps recovering the best-fitted.
Next, Table 4 shows the name of the best coral's WRF outputs

selected for each experiment. It can be seen that there are six
variables: OLR,w at 400 hPa, CLDFRA at 200 hPa, T at 850 hPa and T
at 400 hPa corresponding to the first grid point, and v at 500 hPa
corresponding to the second grid point, present in all experiments'
results. Therefore, we can conclude that these variables set the
rough prediction while the other WRF outputs selected by the al-
gorithm perform the refinement. Thus, for the third experiment,
the RMSE using these 6 variables (over the same test sets) is 74.05
W=m2 and 72.59W=m2, average and best values respectively. Once
the refinement takes place, these RMSE values drop down to 69.16
W=m2 and 68.03 W=m2 respectively (as stated in Table 3).

Finally, in Table 5 the results are compared to those obtained
with other techniques. First, the reader can see the GSR prediction
using the 116 WRF variables (no feature selection) as inputs to the
ELM. Then, feature selection is performed using three different
techniques: a genetic algorithm, a grouping genetic algorithm (as
described in Ref. [42]) and the proposed CRO-SP approach, and the
variables chosen are used as the inputs to the ELM. It can be seen
that the best results are obtained when the CRO with species is
used.

6. Conclusions

This paper has tackled the global solar radiation prediction using

Fig. 9. Experiment E2. Evolution with the number of iterations of: (a) The RMSE of each species' best coral, and (b) The number of corals per species.
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as predictive variables the outputs provided by a numerical
weather model in a grid area over the target point (located at
Toledo, Spain). The selection of the best predictive variables and the
best grid points to be considered has been performed using the
novel co-evolution algorithm Coral Reefs Optimization algorithm
with species (CRO-SP), and the prediction has been obtained using a
Multilayer Perceptron trained with Extreme Learning Machines
(ELMs). The ultimate goal has been to evaluate what predictive
variables from the numerical weather model (i.e. the WRF model)
perform best. For this purpose, each species in the CRO-SP encodes

a fixed and different number of variables to be analyzed and the
best species comes out as a result of the co-evolution.

To determine the best set and number of predictive variables,
three experiments have been run in a 10-fold cross validation
scheme and the RMSE has been used as common measure. The
experiment where 7, 8, 9, 10 and 11 variables are co-evolved
(experiment E3), produces an average best result of 69.19 W=m2

an a best result of 68.03 W=m2, turning in a 21.62% and 22.03%
improvement, respectively, over the average and best prediction
without feature selection.

Fig. 10. Experiment E3. Evolution with the number of iterations of: (a) The RMSE of each species' best coral, and (b) The number of corals per species.
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Table 4
Best predictive variables found for each experiment. Those variables present in all
three experiments' results have been highlighted in bold face.

Experiment Best WRF outputs selected

Grid point #1 Grid point #2

E1 OLR, v(500 hPa),
w(400 hPa), PSFC,
CLDFRA (200 hPa), TH2,
T (850 hPa), u (50 hPa)
T (400 hPa),
u (100 hPa)

E2 OLR, v(500 hPa),
w(400 hPa), TH2
CLDFRA (200 hPa), w (300 hPa)
T (850 hPa),
T (400 hPa),

E3 OLR, v(500 hPa),
w(400 hPa), u (850 hPa)
CLDFRA (200 hPa), u (50 hPa)
T (850 hPa),
T (400 hPa),

Table 5
Comparison of the results obtained with other metaheuristic techniques.

Metaheuristic technique RMSE ðW=m2Þ

Average Best individual

No feature selection þ ELM 88.24 87.25
Genetic algorithm þ ELM 73.98 72.20
Grouping Genetic Algorithm þ ELM [42] 74.73 73.66
CRO-SP þ ELM 69.16 68.21
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