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1. Introduction 

This paper combines two different areas within the field of matrix analysis and applications, and more specifically in the 

interrelationship between them. On the one hand, we work with Bohemian matrices and, on the other, with generalized 

inverse matrices. Therefore, in this introduction, each of these two subfields of matrix analysis will be discussed first, and 

then we will focus on the interconnection of both areas that, ultimately, is where this paper is most concerned. However,

as a first, and quick, orientation to the topics let us recall that: (1) a Bohemian matrix is a matrix whose entries belong to a

prescribed subset of a field, (2) an inner inverse of an m × n matrix A over a ring is an n × m matrix X , over the same ring,

such that AXA = A . As commented below, in this introduction, Bohemians appear in many applications, and inner inverses

play an important role in the representation of many other generalized inverses. 

One of the working fronts of this paper is the study of matrices whose entries belong to a fixed subset, generally

bounded, of a ring; in practice, it is usually the ring Z of the integer numbers. We are also concerned with structured Bo-

hemian matrices. Particular instances of these types of matrices are Metzler matrices (see Briat [5] ), Bernoulli matrices (see

Tikhomirov [43] ), Hadamard matrices (see Horadam [21] ), etc. In 2015, Steven Thornton and Rob Corless, in a poster at EC-

CAD at the Fields Institute, refered to these matrices as “Bohemian” matrices; the name of Bohemian matrix is a mnemonic 

for bo unded he ight m atrix of i ntegers. So, a matrix is called Bohemian if its entries come from a fixed, usually finite and

discrete set, called the population . However, the study of this type of matrix has a much more extensive history, though

not under that name. As source references in this topic one can mention, among others, Taussky [39] , and Taussky [40] ,

where matrices with integer entries are studied. 
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This type of matrix offers multiple areas of working, among others: the development of theoretical properties, the study 

of computational issues, and their applications (see e.g. Chan [7] , Sendra [30] , Thornton [42] for a panoramic view of the

field). Concerning the theoretical aspects one may mention the analysis of properties that relies on algebraic properties that 

could endow the Bohemians, with a fixed population, with some algebraic structure. In this sense, the study of inverse Bo-

hemian matrices plays a fundamental role. In this direction, it is worth mentioning the works [8,10,16,17] , and section 5.3.3

in Thornton [42] , as well as indicating that the motivation of this current work resides ultimately in these types of the-

oretical questions. Furthermore, many authors have addressed the study of characteristic polynomials, the eigenvalues, the 

determinants, etc, of these matrices (see e.g. Chan [7] , Chan et al. [8] , 9 ], Corless [11] , Corless and Thornton [13] , 14 ], Fasi and

Porzio [18] , Feng and Fan [19] , Thornton [42] ) as well as to the closely related problem of studying the zeros of polynomials

with coefficients belonging to a fixed population (see e.g. Borwein and Jorgenson [3] , Borwein and Pinner [4] , Christensen

[ 12,23,29 ], Odlyzko and Ponnen [27] ). 

To approach the computational problems related to Bohemian matrices with finite population, since the set of analysis is 

then finite, one may consider brute-force computation. However, in practice, the cardinality of the set under analysis is vast: 

typically the cardinality grows faster than exponentially with the dimension. A deeper theoretical analysis of the problem is 

required; our contribution in this paper is a clear example of this assertion. Nevertheless, an important aspect associated to 

this situation is the design and development of experiments of reasonable size that can generate conjectures to be studied 

afterwards. One may check some such conjectures at the Characteristic Polynomial Database [41] ; see also [26] . 

Concerning applications of Bohemian matrices, one may mention Metzler matrices appearing in sign-pattern matrices 

(see e.g. Briat [5] , Hall and Li [20] ), signal processing, when using Bernoulli matrices (see e.g. Lu et al. [24] ), or error cor-

recting codes when working with Hadamard matrices (see e.g. Horadam [21] ), etc. 

The other working front of the paper is the field of generalized inverses. Probably, the most famous generalized inverses 

are the Moore–Penrose inverse, and the Drazin inverse (see e.g. Ben-Israel and Greville [2] , Campbell and Meyer [6] , Drazin

[15] , Rao [28] , Wang et al. [46] ). Nevertheless, the family of generalized inverses is much larger than just these two types

and is usually introduced by a collection of conditions: the Penrose axioms. To be more precise, let K be a field and ϕ an

involutory automorphism over K ; that is, ϕ ◦ ϕ is the identity (see e.g. Sendra and Sendra [33] , Stanimirovi ́c et al. [35] ); the

underlying idea of the involutory automorphism is to have a generalized notion, of the concept of conjugation in C , to be

applied over other fields. Then, for a given m × n matrix A = (a i j ) , over K , we consider the axioms 

(1) AX A = A (2) X AX = X (3) AX = X 

∗A 

∗ (4) X A = A 

∗X 

∗

where X is an n × m matrix over K , and where A 

∗ (respectively X ∗) denotes the transpose matrix of ϕ(A ) = (ϕ(a i j )) . If X

satisfies the four axioms, X is called the Moore–Penrose inverse; for the Drazin inverse, two additional conditions are re- 

quired (see e.g. Drazin [15] , Sendra and Sendra [31] , 32 ] for further details). For S ⊂ { 1 , 2 , 3 , 4 } , in the literature, the notation

A { S} is used to represent the set of all matrices X satisfying the conditions in S. In addition, one can also analyze generalized

inverses with a prescribed kernel and/or range space (see Ke et al. [22] , Stanimirovi ́c et al. [36] , 38 ]). 

In this paper, we are interested in the set A { 1 } . Matrices in A { 1 } are called inner inverses of A . There are important

reasons to focus our attention on inner inverses. First, it seems to be the simplest case because A { 1 } has the geometric

structure of a linear affine variety (see [37] ). In addition, due to the representation theorem of Urquhart (see Stanimirovi ́c

et al. [37] , Urquhart [44] , 45 ]), many generalized inverses can be expressed or represented by means of inner inverses. 

Let us denote by B m ×n (P ) the set of all m × n Bohemian matrices with population P . In general, given a non-singular

A ∈ B n ×n (P ) , it holds that A 

−1 �∈ B n ×n (P ) . So, the natural question of which nonsingular matrices have Bohemian inverse

w.r.t. the same population arises. Such matrices are called rhapsodic 1 . For instance, if P is a subfield of K , all non-singular

matrices in B n ×n (P ) are rhapsodic. Another well known set of examples of this type of matrix are the unimodular matrices,

that is, matrices in B n ×n (Z ) whose determinant is ±1 . Other examples are the Mandelbrot matrices (see Theorem 6 in

Chan et al. [8] ). In [42] , the rhapsodic problem is analyzed introducing a weaker requirement, namely, A 

−1 is similar to

a Bohemian matrix. Also, in Martínez-Rivera [25] , in the frame of the conjecture of Barrett, Butler and Hall (see Barrett

et al. [1] ), the author studies inverses of equimodular matrices, which are square matrices which entries have all the same

modulus; an equimodular matrix may well be Bohemian. 

Now, let us take A ∈ B m ×n (P ) not necessarily invertible or rectangular. The new natural step is to study the rhapsodic

behavior of the generalized inverses; that is, to analyze whether the generalized inverses of A belong to B n ×m 

(P ) . A very

first step in this direction can be found in Chu et al. [10] where, for a very special type of latin square, they study when

the Moore–Penrose inverse is again a latin square. Besides the interest of a wider analysis of the Moore–Penrose case, the

next step is to study other generalized inverses. In this paper, we focus on inner inverses. To approach the problem of

computing the inner Bohemian inverses of a given Bohemian matrix, one may try to use brute-force computation. That is, 

for a given finite population, compute all Bohemian matrices and then check those that are inner inverses of the given one.

However, Tables 1–3 show that the brute-force strategy is not feasible already for quite modest dimensions. 

In this paper, we present a complete analysis for some special types of Bohemian matrices, namely full matrices and 

well–settled matrices (see Definitions 1 and 2 ); we observe that full matrices are particular instances of equimodular ma- 

trices (see Martínez-Rivera [25] ). More precisely, the contributions of this paper are: 
1 Yes, this is based on a joke. Several people still find this joke funny, because “Number theory is the Queen of Mathematics.”
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Table 1 

Case of full matrices of type I with P = { 0 , ±1 } size n × (n − 1) . 

n × (n − 1) # (Inner Bohemians) # (Bohemians) = 3 n (n −1) 

2 × 1 2 9 

3 × 2 126 729 

4 × 3 69.576 531.441 

5 × 4 363.985.680 3.486.784.401 

6 × 5 17.812.283.544.870 205.891.132.094.649 

7 × 6 806.9792.560.277.356.314 109.418.989.131.512.359.209 

8 × 7 33.609.055.109.399.933.461.665.528 523.347.633.027.360.537.213.511.521 

Table 2 

Case of full matrices of type II with P = { 0 , ±1 } where the first block is n × (n − 1) and the second is 

n × (n − 2) . 

n × ((n − 1) + (n − 2)) # (Inner Bohemians) # (Bohemians) = 3 n (2 n −3) 

3 × (2 + 1) 2.907 19.683 

4 × (3 + 2) 363.985.680 3.486.784.401 

5 × (4 + 3) 4.024.604.728.349.450 50.031.545.098.999.707 

6 × (5 + 4) 3.800.557.141.293.418.496.841.798 58.149.737.003.040.059.690.390.169 

Table 3 

Case of well–settled matrices, where P = { 0 , ±1 } , and with two diagonal block of full 

matrices of type I and orders n × (n − 1) each. 

2 n × (2 n − 2) # (Inner Bohemians) # (Bohemians) = 3 4 n (n −1) 

n = 2 → 4 × 2 36 6561 

n = 3 → 6 × 4 315 . 630 . 756 282 . 429 . 536 . 481 

n = 4 → 8 × 6 26 . 357 . 375 . 491 . 548 . 319 . 296 79 . 766 . 443 . 076 . 872 . 509 . 863 . 3611 

 

 

 

 

 

 

 

 

 

1. A complete description of the inner inverses of full matrices over any field (see Theorem 1 ). 

2. A complete description of the inner Bohemian inverses of full matrices for any population from any field (see Theorem 2 ).

3. A complete description of the inner Bohemian inverses of well–settled matrices for any population from any field (see 

Theorems 3 –5 ). 

4. For the population P = { 0 , ±1 } we give exact formulas for the number of Bohemian matrices of full and well–settled

matrices, respectively (see Corollaries 2 and 3 ). 

The paper is structured as follows. In Section 2 we introduce the notation, the basic definition and establish some tech-

nical lemmas. In Section 3 the case of full matrices is analyzed, and finally in Section 4 the results are extended to the

well–settled case. We conclude the paper with a section devoted to conclusions and open problems. 

2. Notation and preliminaries 

We start by fixing some notation and terminology that will be used throughout this paper. In the sequel, R is a commu-

tative integral domain with unit, and K a field containing R. One may think of R as Z and of K as either Q or R or C . K 

m ×n 

denotes the set of m × n matrices over K . When necessary, for A ∈ K 

m ×n , we will write A mn to indicate that the matrix A is

m × n . For A ∈ K 

m ×n 1 and B ∈ K 

m ×n 2 , we denote by ( A B ) ∈ K 

m ×(n 1 + n 2 ) the matrix obtained by attaching B at the right of

A . Similarly, for A ∈ K 

m 1 n and B ∈ K 

m 2 n we denote by (
A 

B 

)
∈ K 

(m 1 + m 2 ) ×n 

the matrix obtained by attaching B below A . 

Furthermore, we denote by 1 the matrix with 1 in all its positions, by 0 the zero matrix, and by I is the identity matrix.

Similarly, we will write −1 to denote the matrix with −1 in all its positions. Moreover, we will write 
(

±1 ∓1 
)

to refer

simultaneously to the matrices 
(

1 −1 
)
, 
(

−1 1 
)
; analogously if the attachment is done vertically. 

In addition, if S ⊂ K 

m ×n , and P, Q are matrices of suitable orders, we will denote by P S Q the set 

P S Q = { P SQ | S ∈ S } 
Similarly, we will use the notation P S or S Q . Furthermore, for λ ∈ K , we will write 

λS = { λS | λ ∈ S } , 
and 

S 

T = { S T | S ∈ S } , 
where S T means the transpose matrix of S. 
3 
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Now, we recall the two main notions to be used in the paper, namely, Bohemian matrix and inner inverse. Let P ⊂ R be

a fixed population. A P - Bohemian matrix (or simply a Bohemian matrix if there is no ambiguity) is a matrix whose entries

belong to P . Furthermore, we denote by B m ×n (P ) the set of all m × n P -Bohemian matrix. That is 

B m ×n (P ) = 

{
(a i j ) ∈ K 

m ×n | a i j ∈ P 

}
. 

Alternatively, B m ×n (P ) = P 

m ×n . 

Let A ∈ K 

m ×n . An inner inverse of A is a matrix X ∈ K 

n ×m such that AXA = A . We introduce the notation A { 1 } to represent

the set of all inner matrices of A . That is 

A { 1 } = 

{
X ∈ K 

n ×m | AX A = A 

}
. 

Finally, we introduce the notion of inner Bohemian inverse. Let A ∈ B m ×n (P ) . We say that X ∈ K 

n ×m is a inner Bohemian

inverse of A if X ∈ B n ×m 

(P ) and AXA = A , that is, if X ∈ B m ×n (P ) ∩ A { 1 } . We will denote by A B (P ) { 1 } the set of all P –inner

Bohemian inverses of the P -Bohemian matrix A . 

The main goal of this paper is to analyze the set A B (P ) { 1 } for A ∈ B m ×n (P ) . Just to show that we are not facing a trivial

question, we observe that even though A { 1 } � = ∅ (see Stanimirovi ́c et al. [37] ), the set A B (P ) { 1 } may be empty. For instance,

for 

A := 

(
1 1 0 

1 0 0 

)
∈ B 2 ×3 ({ 0 , 1 } ) , 

it holds that 

A { 1 } = 

{ ( 

0 1 

1 −1 

x 1 x 2 

) 

with x i ∈ K 

} 

. 

Therefore A B ({ 0 , 1 } ) { 1 } = ∅ , since −1 / ∈ P = { 0 , 1 } . Furthermore, if A = 0 ∈ K 

m ×n then A { 1 } = K 

n ×m and A B (P ) { 1 } = B n ×m 

(P ) . 

We finish this section with some technical lemmas on inner inverses that will be used in the next sections. 

Lemma 1. Let A ∈ K 

m ×n , let P ∈ K 

m ×m and Q ∈ K 

n ×n be non-singular matrices, and let λ ∈ K \ { 0 } . It holds that 

1. (A { 1 } ) T = A 

T { 1 } . 
2. (λA ) { 1 } = 

1 

λ
(A { 1 } ) . 

3. Q (PAQ ) { 1 } P = A { 1 } . 
Proof. 

(1) X ∈ (A { 1 } ) T ⇔ X = Y T with Y ∈ A { 1 } ⇔ X = Y T and AY A = A ⇔ X = Y T and A 

T Y T A 

T = A 

T ⇔ X ∈ A 

T { 1 } . 
(2) X ∈ (λA ) { 1 } ⇔ λAXλA = λA ⇔ A (λX ) A = A ⇔ λX ∈ A { 1 } ⇔ X ∈ 

1 
λ
(A { 1 } ) . 

(3) Let X ∈ Q (PAQ ) { 1 } P . Then, there exists Y ∈ (PAQ ) { 1 } such that X = Q Y P ; in particular (PAQ ) Y (PAQ ) = PAQ . So,

AXA = AQY PA = P −1 (PAQY PAQ ) Q 

−1 = P −1 (PAQ ) Q 

−1 = A . Thus, X ∈ A { 1 } . Conversely, let X ∈ A { 1 } . Then, AXA = A . X

can be expressed as X = Q Q 

−1 XP −1 P , and PAQ (Q 

−1 XP −1 ) P AQ = P AXAQ = P AQ . Thus Q 

−1 XP −1 ∈ (PAQ ) { 1 } and hence

X ∈ Q (PAQ ) { 1 } P . 
�

Lemma 2. Let A = 

(
B m n 1 0 m n 2 

)
∈ K 

m ×(n 1 + n 2 ) . Then 

A { 1 } = 

{(
X n 1 m 

Y n 2 m 

)∣∣∣∣ X n 1 m 

∈ B m n 1 { 1 } , Y n 2 m 

∈ K 

n 2 ×m 

}
. 

Proof. We observe that (
B m n 1 0 m n 2 

)(X n 1 m 

Y n 2 m 

)(
B m n 1 0 m n 2 

)
= 

(
B m n 1 X n 1 m 

B m n 1 0 m n 2 

)
. 

Now, the result follows by taking into account that, in order to be an inner inverse of A , the previous matrix has to be equal

to 
(

B m n 1 0 m n 2 

)
. �

3. Inner Bohemian inverses of full matrices 

In the section we analyze the inner Bohemian inverses of certain types of Bohemian matrices. In the next section, we

extend the results to a larger class of Bohemian matrices. We start by introducing the notion of a “full” matrix. 

Definition 1. We say that A ∈ K 

m ×n is full if A has one of the following forms 

(1) Full matrix of type I: A = 

(
±1 m n 

)
. 
4 
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(2) Full matrix of type II: A = 

(
±1 m n 1 ∓1 m n 2 

)
. 

(3) Full matrix of type III: A = 

(
±1 m n 1 0 m n 2 

)
. 

(4) Full matrix of type IV: A = 

(
±1 m n 1 ∓1 m n 2 0 m n 3 

)
. 

Remark 1. We observe that, because of Lemma 2 , it is enough to analyze inner Bohemian inverses of full matrices of type

I and II. Furthermore, by Lemma 1 , we may restrict our study to the cases 
(
1 m n 

)
, and 

(
1 m n 1 −1 m n 2 

)
. 

Furthermore, the transpose matrices of full matrices will also be covered. Moreover, taking into account Lemma 1 (5) 

with P and Q suitable permutation matrices, one deduces that the assumption on the position of the each of the blocks

does not affect our analysis. So, in the sequel, without loss of generality, we limit our study to the types I and II. 

We start by analyzing the inner inverses of full matrices. For this purpose, we first fix some notation. 

Notation: For X ∈ B n ×m 

(P ) , with P ⊂ K , we introduce the notation S(X ) = sum of all the entries of X . 

In the next technical lemma we analyze the effect of the left-right multiplication of a matrix X by full matrices. 

Lemma 3. 

1. Let X ∈ K 

n ×r . Then 1 m n X 1 r s = S(X ) 1 m s . 

2. Let X ∈ K 

n ×r . Then 1 m n X 
(

1 r s 1 −1 r s 2 

)
= S(X ) 

(
1 m s 1 −1 m s 2 

)
. 

3. Let X = 

(
X 1 

X 2 

)
, with X i ∈ K 

n i ×r . Then, (
1 m n 1 −1 m n 2 

)
X 

(
1 r s 1 −1 r s 2 

)
= 

(
S(X 

1 ) − S(X 

2 ) 
) (

1 m s 1 −1 m s 2 

)
4. Let X = 

(
X 1 

X 2 

)
, with X i ∈ K 

n i ×r . Then, (
1 m n 1 −1 m n 2 

)
X 1 r s = 

(
S(X 

1 ) − S(X 

2 ) 
)

1 m s 

Proof. Let us prove the first statement. Let C i denote de sum of the entries of the i th column of X . Then, 

1 m n X 1 r s = 

⎛ 

⎝ 

C 1 . . . C r 
. . . 

. . . 
C 1 . . . C r 

⎞ 

⎠ 1 r s = 

( 

r ∑ 

i =1 

C i 

) 

1 m s = S(X ) 1 m s . 

Statement (2) follows similarly. 

To prove the third statement, let C k 
i 

denote the sum of the entries of the i th column of X k , and let αk = C 1 
k 

− C 2 
k 

. Let

A = 

(
1 m n 1 −1 m n 2 

)
and B = 

(
1 r n 1 −1 r n 2 

)
. Then, 

A X B = 

⎛ 

⎝ 

C 1 1 − C 2 1 . . . C 1 r − C 2 r 

. . . 
. . . 

C 1 1 − C 2 1 . . . C 1 r − C 2 r 

⎞ 

⎠ B 

= 

⎛ 

⎝ 

α1 . . . αr 

. . . 
. . . 

α1 . . . αr 

⎞ 

⎠ B 

= 

⎛ 

⎜ ⎜ ⎝ 

∑ m 

k =1 αk . . . 
∑ m 

k =1 αk 

. . . 
. . . ∑ m 

k =1 αk . . . 
∑ m 

k =1 αk ︸ ︷︷ ︸ 
m ×s 1 

−∑ r 
k =1 αk . . . −∑ r 

k =1 αk 

. . . 
. . . 

−∑ r 
k =1 αk . . . −∑ r 

k =1 αk ︸ ︷︷ ︸ 
m ×s 2 

⎞ 

⎟ ⎟ ⎠ 

= 

(∑ r 
k =1 αk 

)
B = 

(
S 
(
X 

1 
)

− S 
(
X 

2 
))

B. 

Statement (4) follows similarly. �

The next result characterizes the inner inverses of full matrices over K . 

Theorem 1 (Inner inverses of full matrices) . 

1. If A = 

(
1 mn 

)
∈ K 

m ×n , 

A { 1 } = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

⎛ 

⎜ ⎜ ⎝ 

1 −∑ nm −1 
k =1 λk λ1 . . . λm −1 

λm 

λm +1 . . . λ2 m −1 

. . . 
. . . 

. . . 

⎞ 

⎟ ⎟ ⎠ 

, λi ∈ K 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

. 
λ(n −1) m 

λ(n −1) m +1 . . . λnm −1 

5 
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2. If A = 

(
1 mn 1 −1 m n 2 

)
∈ K 

m ×n , 

A { 1 } = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 −∑ n 1 m −1 
k =1 

λk + 

∑ n 2 m 

k =1 
μk λ1 . . . λm −1 

λm 

λm +1 . . . λ2 m −1 

. . . 
. . . 

. . . 
λ(n 1 −1) m 

λ(n 1 −1) m +1 . . . λn 1 m −1 

μ1 μ2 . . . μm 

. . . 
. . . 

. . . 
μ(n 2 −1) m +1 μ(n 2 −1) m +2 . . . μn 2 m 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, λi , μ j ∈ K 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

. 

Proof. We prove statement (2). Statement (1) follows analogously. Let A denote the right hand side set in the statement. A

direct manipulation shows that A ⊂ A { 1 } . On the other hand, A can be seen as a linear affine subspace of K 

mn of dimension

mn − 1 . Since A { 1 } , as a linear affine space, has dimension mn − rank (A ) 2 = mn − 1 (see Stanimirovi ́c et al. [37] ), we get the

equality of both sets. �

The next theorem states the structure of the inner Bohemian inverses of full matrices. 

Theorem 2 (Inner Bohemian inverses of full matrices) . 

1. Let P ⊂ K , such that 1 ∈ P , and let A = 1 m n ∈ K 

m ×n . Then 

(A ) B (P ) { 1 } = { X ∈ B n ×m 

(P ) | S(X ) = 1 } . 
2. Let P ⊂ K , such that ±1 ∈ P , and let A = 

(
1 m n 1 −1 m n 2 

)
∈ K 

m ×n . Then 

A B ( P ) { 1 } = 

{(
X 

1 

X 

2 

)
∈ K 

n ×m 

∣∣∣∣X 

i ∈ B n i ×m 

( P ) , i ∈ { 1 , 2 } , 
S 
(
X 

1 
)

= 1 + S 
(
X 

2 
) }

Proof. (1) If X ∈ { X ∈ B n ×m 

(P ) | S(X ) = 1 } , by Lemma 3 (1), one has that 1 m n X 1 m n = S(X ) 1 m n = 1 m n , and hence X ∈
(1 mn ) B (P ) { 1 } . Conversely, let X ∈ (1 mn ) B (P ) { 1 } . Then, X can be expressed as in Theorem 1 (1), and clearly S(X ) = 1 . There-

fore, X belongs to the set on the right side of the statement. 

(2) follows similarly using Lemma 3 (2) and Theorem 1 (2). �

Using the previous theorem we can deduce the cardinality of the inner Bohemian inverses of full matrices for some 

populations. 

Corollary 1. Let 1 ∈ P ⊂ N . 

1. If 0 �∈ P , then #((1 m n ) B (P ) { 1 } ) = 0 , unless m = n = 1 when #((1 m n ) B (P ) { 1 } ) = 1 . 

2. If 0 ∈ P , #((1 m n ) B (P ) { 1 } ) = mn . 

Proof. Let X ∈ (1 m n ) B (P ) { 1 } . By Theorem 2 (1), it holds that S(X ) = 1 . Since 0 �∈ P , and since P does not contain negative

numbers, then: if mn > 1 , it holds that S(X ) = mn > 1 , and hence (1 m n ) B (P ) { 1 } = ∅ ; if mn = 1 then the only inner inverse is

the matrix (1). This proves (1). For statement (2), using Theorem 2 (1), the inner Bohemian inverses of (1 m n ) are precisely

the matrices of the canonical basis of C n ×m ; this proves (2). �

In the following, we analyze the number of inner Bohemian inverses of full matrices. We start our analysis with the

population P = { 0 , ±1 } ⊂ K ; note that the case P = { 0 , 1 } is already covered by the previous corollary. 

Corollary 2. Let P = { 0 , ±1 } . 

1. #((1 m n ) B (P ) { 1 } ) = 

� nm −1 
2 


 ∑ 

s =0 

(
nm 

s 

)(
nm − s 

s + 1 

)
. 

2. # 

((
1 m n 1 −1 m n 2 

)
B (P ) 

{ 1 } 
)

= 

n 2 m ∑ 

r 2 =0 

n 2 m ∑ 

s 2 =0 

� (n 1 + n 2 ) m −1 

2 
−r 2 
 ∑ 

s 1 =0 

(
n 1 m 

s 1 

)(
n 2 m 

s 2 

)(
n 2 m − s 2 

r 2 

)(
n 1 m − s 1 

1 + r 2 + s 1 − s 2 

)
. 

Proof. For a matrix X we denote by N 

+ (X ) , and by N 

−(X ) , the number of entries of X equal to 1 and equal to −1 , respec-

tively. 

Let us prove (1). By Theorem 2 

(1 mn ) B (P ) { 1 } = { X ∈ B n ×m 

(P ) | S(X ) = 1 } = 

{
X ∈ B n ×m 

(P ) | N 

+ (X ) = N 

−(X ) + 1 

}
. 
6 
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Let s represent the possible values of N 

−(X ) , with X ∈ B n ×m 

(P ) , Clearly, s ∈ { 0 , . . . , nm } . The number of matrices X ∈
B n ×m 

(P ) such that N 

+ (X ) = s + 1 is (
nm − s 

s + 1 

)
. 

Moreover there exist 
(

nm 

s 

)
possible matrices X ∈ B n ×m 

(P ) such that N 

−(X ) = s . On the other hand, we have that N 

+ (X ) + s ≤
nm and N 

+ (x ) = s + 1 . Thus, 0 ≤ s ≤ � nm −1 
2 
 . This proves statement (1). 

Let us prove (2). By Theorem 2 , the inner inverses are of the form (
X 

1 

X 

2 

)
where X i ∈ B n i ×m 

(P ) , i ∈ { 1 , 2 } , and N 

+ (X 1 ) − N 

−(X 1 ) = 1 + (N 

+ (X 2 ) − N 

−(X 2 )) . Let r i and s i denote N 

+ (X i ) and N 

−(X i ) ,

respectively. Then, the cardinality of the set of inner Bohemian inverses is ∑ 

(r 1 ,r 2 ,s 1 ,s 2 ) ∈ I 

(
n 1 m 

s 1 

)(
n 2 m 

s 2 

)(
n 2 m − s 2 

r 2 

)(
n 1 m − s 1 

r 1 

)
, 

where 

I = { (r 1 , r 2 , s 1 , s 2 ) ∈ N 

4 | r i , s i ∈ { 0 , . . . , n i m } , i ∈ { 1 , 2 } , and r 1 − s 1 = 1 + r 2 − s 2 } . 
Clearly, r 1 = 1 + r 2 + s 1 − s 2 , and using that 0 ≤ r i + s i ≤ n i m , one deduces that 0 ≤ s 1 ≤ � (n 1 + n 2 ) m −1 

2 − r 2 
 . This ends the

proof. �

Remark 2. One may observe that the sequence { #((1 m 1 ) B (P ) { 1 } ) } m ∈ N (see Corollary 2 (1) taking n = 1 ) appears as the

sequence { a m 

} m ∈ N in OEIS A005717 (see Sloane [34] ). Furthermore, the sequence { #((1 m n ) B (P ) { 1 } ) } m ∈ N , for a fixed n > 1 ,

appears as the subsequence { a mn +1 } m ∈ N . 

In Tables 1 and 2 we show the number of inner Bohemian inverses of some full matrices of several dimensions. We

observe that the third column in each table gives the number of corresponding Bohemian matrices with population { 0 , ±1 } ,
which is 3 n (n −1) and 3 n (2 n −3) , respectively. On the other hand, we note that the second column of Table 1 appears as the

subsequence { a n (n −1)+1 } n ∈ N of the sequence { a m 

} m ∈ N in OEIS A005717 (see Remark 2 and Sloane [34] ). Note that the num-

bers in the second column of the Tables 1 and 2 come from Corollary 2 (1), and Corollary 2 (2), respectively. 

4. Inner Bohemian inverses of well–settled matrices 

In this section, we analyze the inner inverses of a wider class of Bohemian matrices. We start by introducing the notion

of a “well–settled” matrix. 

Definition 2. We say that A ∈ K 

m ×n is well–settled if, after multiplying by suitable permutation matrices P, Q , it holds that

PAQ is of the form 

PAQ = 

⎛ 

⎝ 

M p 1 q 1 0 0 

0 

. . . 0 

0 0 M p s q s 

⎞ 

⎠ (4.1) 

where each M p i q i is full (see Definition 1 ). 

We say that a well–settled matrix is pure if all matrices M p i q i are of the same type, either ±1 or 
(

±1 ∓1 
)
; other-

wise, we say that the matrix is mixed . 

The following matrices are examples of well–settled matrices: (
1 0 0 

0 1 1 

)
, 

(
1 0 0 

1 0 0 

)
, 

(
1 0 0 

0 0 0 

)
. 

However, (
1 1 0 

1 0 0 

)
is not well–settled, while (

0 1 0 

1 0 1 

)

7 
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is, because (
0 1 

1 0 

)(
0 1 0 

1 0 1 

)( 

0 1 0 

1 0 0 

0 0 1 

) 

= 

(
1 0 0 

0 1 1 

)
. 

Remark 3. From the theoretical point of view, reasoning as in Remark 1 , we may restrict our analysis, without loss of gener-

ality, to well–settled matrices whose involved full matrices are of the form 1 or 
(

1 −1 
)
. Moreover, using Lemma 1 (3),

we may also assume that P and Q are the corresponding identity matrices. 

From the computational point of view, the natural question of deciding whether a given Bohemian matrix is well–settled 

arises. We do not deal in this paper with this problem. Of course, since the number of possible applicable permutation

matrices is finite, one may consider a brute-force approach to solve this problem. 

In Section 3, Theorems 1 and 2 , we have seen that inner Bohemian inverses of full matrices are related to the formula

S(X 1 ) = 1 + S(X 2 ) . We will see that a similar phenomenon happens for well–settled matrices. But, first, we need to introduce

the notion of “balanced” matrix that will play an important role in the following. 

Definition 3. Let X ∈ K 

r×s and let r 1 , r 2 ∈ Z be such that r 1 > 0 , r 2 ≥ 0 and r 1 + r 2 = r. We say that X is (r 1 , r 2 ) –balanced if

X can be expressed as 

X = 

(
X 

1 

X 

2 

)
, 

where X i ∈ K 

r i ×s , and S(X 1 ) = S(X 2 ) . 

Remark 4. We observe that if X is (r 1 , 0) –balanced means that S(X ) = 0 . 

The following lemma, which is a direct consequence of Lemma 3 , shows the relation between balanced matrices with

the right-left multiplication of a matrix by full matrices. 

Lemma 4. 

1. If 1 mn X1 rs = 0 ms , with X ∈ K 

n ×r , then X is (n, 0) –balanced. 

2. If 1 mn X 
(

1 r s 1 −1 r s 2 

)
= 0 m (s 1 + s 2 ) , with X ∈ K 

n ×r , then X is (n, 0) –balanced. 

3. If 
(

1 m n 1 −1 m n 2 

)
X 
(

1 r s 1 −1 r s 2 

)
= 0 m (s 1 + s 2 ) , with X ∈ K 

(n 1 + n 2 ) ×r , then X is (n 1 , n 2 ) –balanced. 

4. If 
(

1 m n 1 −1 m n 2 

)
X1 rs = 0 m s , with X ∈ K 

(n 1 + n 2 ) ×r , then X is (n 1 , n 2 ) –balanced. 

Proof. It follows from Lemma 3 . �

The next two lemmas extend the previous result to pure well–settled matrices. 

Lemma 5. Let 

A = 

⎛ 

⎝ 

ε1 1 p 1 q 1 . . . 0 p 1 q s 

. . . 
. . . 

. . . 
0 p s q 1 . . . εs 1 p s q s 

⎞ 

⎠ ∈ K 

m ×n , and X = 

⎛ 

⎝ 

X 

11 
q 1 p 1 

. . . X 

1 s 
q 1 p s 

. . . 
. . . 

. . . 

X 

s 1 
q s p 1 

. . . X 

ss 
q s p s 

⎞ 

⎠ ∈ K 

n ×m , 

where εk ∈ {−1 , 1 } . If AXA = 0 mn , then for all i, j ∈ { 1 , . . . , s } X i j 
q i ,p j 

is (q i , 0) –balanced. 

Proof. We observe that 

AX A = 

⎛ 

⎝ 

ε2 
1 1 p 1 q 1 X 

11 
q 1 p 1 

1 p 1 q 1 . . . ε1 εs 1 p 1 q 1 X 

1 s 
q 1 p s 

1 p s q s 

. . . 
. . . 

. . . 

εs ε1 1 p s q s X 

s 1 
q s p 1 

1 p 1 q 1 . . . ε2 
s 1 p s q s X 

ss 
q s p s 

1 p s q s 

⎞ 

⎠ 

So, the equality AXA = 0 implies that each of the above products, of the form 1 p i q j X 
jk 

q j p k 
1 p k q k , is the zero matrix. Therefore,

the result follows from Lemma 4 . �

Lemma 6. Let V p i q i = 

(
1 p i q i 1 −1 p i q i 2 

)
, where q i = q i 1 + q i 2 , and let 

A = 

⎛ 

⎝ 

ε1 V p 1 q 1 . . . 0 p 1 q s 

. . . 
. . . 

. . . 
0 p s q 1 . . . εs V p s q s 

⎞ 

⎠ ∈ K 

m ×n , X = 

⎛ 

⎝ 

X 

11 
q 1 p 1 

. . . X 

1 s 
q 1 p s 

. . . 
. . . 

. . . 

X 

s 1 
q s p 1 

. . . X 

ss 
q s p s 

⎞ 

⎠ ∈ K 

n ×m , 

where εk ∈ {−1 , 1 } . If AXA = 0 mn then, for all i, j ∈ { 1 , . . . , s } , X i j 
q i ,p j 

is (q i 1 , q i 2 ) –balanced. 
8 
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Proof. We observe that 

AX A = 

⎛ 

⎝ 

ε2 
1 V p 1 q 1 X 

11 
q 1 p 1 

V p 1 q 1 . . . ε1 εs V p 1 q 1 X 

1 s 
q 1 p s 

V p s q s 

. . . 
. . . 

. . . 

εs ε1 V p s q s X 

s 1 
q s p 1 

V p 1 q 1 . . . ε2 
s V p s q s X 

ss 
q s p s 

V p s q s 

⎞ 

⎠ 

So, the equality AXA = 0 implies that each of the above products, of the form V p i q j X 
jk 

q j p k 
V p k q k , is the zero matrix. Therefore,

the result follows from Lemma 4 . �

We analyze next the inner Bohemian inverses of ±1 –pure well–settled matrices. 

Theorem 3. (Inner Bohemian inverses of ±1 –pure well–settled matrices) 

Let P ⊂ K , such that ±1 , 0 ∈ P , and let 

A = 

⎛ 

⎝ 

ε1 1 p 1 q 1 0 0 

0 

. . . 0 

0 0 εs 1 p s q s 

⎞ 

⎠ ∈ K 

m ×n 

where εk ∈ {−1 , 1 } . It holds that 

A B (P ) { 1 } = 

⎧ ⎨ 

⎩ 

⎛ 

⎝ 

B 

11 
q 1 p 1 

. . . B 

1 s 
q 1 ,p s 

. . . 
. . . 

. . . 

B 

s 1 
q s p 1 

. . . B 

ss 
q s p s 

⎞ 

⎠ ∈ K 

n ×m 

∣∣∣∣∣∣
B 

ii 
q i p i 

∈ (εi 1 p i q i ) B (P ) { 1 } 
B 

i j 
q i p j 

is (q j , 0) -balanced if i � = j 

⎫ ⎬ 

⎭ 

. 

Proof. Let X ∈ B n ×m 

(P ) be expressed as 

X = 

⎛ 

⎝ 

X 

11 
q 1 p 1 

. . . X 

1 s 
q 1 p s 

. . . 
. . . 

. . . 

X 

s 1 
q s p 1 

. . . X 

ss 
q s p s 

⎞ 

⎠ ∈ K 

n ×m , 

Then, the equality AXA = A can be written as ⎛ 

⎝ 

(ε1 1 p 1 q 1 ) X 

11 
q 1 p 1 

(ε1 1 p 1 q 1 ) . . . ε1 εs 1 p 1 q 1 X 

1 s 
q 1 p s 

1 p s q s 

. . . 
. . . 

. . . 

εs ε1 1 p s q s X 

s 1 
q s p 1 

1 p 1 q 1 . . . (εs 1 p s q s ) X 

ss 
q s p s 

(εs 1 p s q s ) 

⎞ 

⎠ = 

⎛ 

⎝ 

ε1 1 p 1 q 1 0 0 

0 

. . . 0 

0 0 εs 1 p s q s 

⎞ 

⎠ 

We have that (εi 1 p i q i ) X 
ii 
q i p i 

(εi 1 p i q i ) = εi 1 p i q i . So, X ii q i p i 
∈ (εi 1 p i q i ) B (P ) { 1 } . For i � = j, we have that 1 p i q i X 

i j 
q i p j 

1 p j q j = 0 p i q j . So, by

Lemma 4 , if i � = j, X 
i j 
q i p j 

is (q j , 0) -balanced. �

We analyze now the inner Bohemian matrices of (±1 ∓ 1 ) -pure well–settled matrices. 

Theorem 4 (Inner Bohemian inverses of. (±1 ∓ 1 ) -pure well–settled matrices) 

Let P ⊂ K , such that ±1 , 0 ∈ P , let V p i q i = 

(
1 p i q i 1 −1 p i q i 2 

)
, where p i 1 + q i 2 = q i , and let 

A = 

⎛ 

⎝ 

ε1 V p 1 q 1 0 0 

0 

. . . 0 

0 0 εs V p s q s 

⎞ 

⎠ ∈ K 

m ×n , 

where εk ∈ {−1 , 1 } . It holds that 

A P 

{ 1 } = 

⎧ ⎨ 

⎩ 

⎛ 

⎝ 

B 

11 
q 1 p 1 

. . . B 

1 s 
q 1 ,p s 

. . . 
. . . 

. . . 

B 

s 1 
q s p 1 

. . . B 

ss 
q s p s 

⎞ 

⎠ ∈ K 

n ×m 

∣∣∣∣∣∣
B 

ii 
q i p i 

∈ ( εi V p i q i ) B ( P ) { 1 } 
B 

ij 
q i p j 

is ( q i 1 , q i 2 ) − balanced if i � = j 

⎫ ⎬ 

⎭ 

. 

Proof. The proof is analogous to the proof of Theorem 3 using Lemma 6 . �

In the next theorem we analyze the case of mixed well–settled matrices. 

Theorem 5. (Inner Bohemian inverses of mixed well–settled matrices) 

Let P ⊂ K , such that ±1 , 0 ∈ P , and let 

A = 

⎛ 

⎝ 

M p 1 q 1 0 0 

0 

. . . 0 

0 0 M p s q s 

⎞ 

⎠ ∈ K 

m ×n 
9 
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be a mixed well–settled matrix. Then, A B (P ) { 1 } is the set ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

⎛ 

⎝ 

B 

11 
q 1 p 1 

. . . B 

1 s 
q 1 ,p s 

. . . 
. . . 

. . . 

B 

s 1 
q s p 1 

. . . B 

ss 
q s p s 

⎞ 

⎠ ∈ K 

n ×m 

∣∣∣∣∣∣∣∣∣

B 

ii 
q i p i 

∈ ( M p i q i ) B ( P ) { 1 } 

B 

ij 
q i p j 

is 

⎧ ⎪ ⎨ 

⎪ ⎩ 

( q i , 0 ) − balanced 

if M p i q i = ±1 p i q i 

( q i 1 , q i 2 ) − balanced 

if M p i q i = ±
(
1 p i q i 1 −1 p i q i 2 

)
. 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

. 

Proof. Let X ∈ B n ×m 

(P ) be expressed as in the statement of Lemma 5 . Then, the equality AXA = A can be written as ⎛ 

⎝ 

M p 1 q 1 X 

11 
q 1 p 1 

M p 1 q 1 . . . M p 1 q 1 X 

1 s 
q 1 p s 

M p s q s 

. . . 
. . . 

. . . 

M p s q s X 

s 1 
q s p 1 

M p 1 q 1 . . . M p s q s X 

ss 
q s p s 

M p s q s 

⎞ 

⎠ = 

⎛ 

⎝ 

M p 1 q 1 0 0 

0 

. . . 0 

0 0 M p s q s 

⎞ 

⎠ 

We have that M p i q i X 
ii 
q i p i 

M p i q i = M p i q i . So, X ii q i p i 
∈ (M p i q i ) B (P ) { 1 } . For i � = j, we have that M p i q i X 

i j 
q i p j 

M p j q j = 0 p i q j . So, by

Lemma 4 , if i � = j, 

X 

ij 
q i p j 

is 

⎧ ⎪ ⎨ 

⎪ ⎩ 

( q i , 0 ) − balanced if M p i q i = 1 p i q i and M p j q j = 1 p j q j 

( q i , 0 ) − balanced if M p i q i = 1 p i q i and M p j q j = 

(
1 p j q j1 −1 p j q j2 

)
( q i 1 , q i 2 ) − balanced if M p i q i = 

(
1 p i q i 1 −1 p i q i 2 

)
and M p j q j = 1 p j q j 

( q i 1 , q i 2 ) − balanced if M p i q i = 

(
1 p i q i 1 −1 p i q i 2 

)
and M p j q j = 

(
1 p j q j1 −1 p j q j2 

)
�

In the following, we analyze the cardinality of the set of inner Bohemian matrices of well–settled matrices, when the 

population is { 0 , ±1 } . Let us first state some technical properties. 

Lemma 7. 

1. # { X ∈ B p×q ({ 0 , ±1 } ) | S(X ) = 0 } = 

pq ∑ 

i =0 

(
pq 

i 

)(
pq − i 

i 

)
. 

2. # 

{
X ∈ B (p 1 + p 2 ) ×q ({ 0 , ±1 } ) ∣∣ X is (p 1 , p 2 ) − balanced 

}
= 

q t ∑ 

k = −q t 

q T ∑ 

i =0 

( 

q t ∑ 

j= −q t 

(
qt 

j 

)(
qt − j 

k + j 

)) (
q T 

i 

)(
q T − i 

k + i 

)
, 

where t = min { p 1 , p 2 } and T = max { p 1 , p 2 } . 
Proof. (1) Let i ∈ { 0 , . . . , pq } denote the number of 1’s in X . For a fixed i ∈ { 0 , . . . , pq } there are 

(
pq 
i 

)
different matrices X

with exactly i entries equal to 1. For each of these matrices X , since S(X ) = 0 , the number of −1 ’s has to be pq − i . So, for

each of these matrices we have 

(
pq −i 

i 

)
ways of choosing the matrix entries being equal to −1 . So, the cardinality of the set

is 
pq ∑ 

i =0 

(
pq 

i 

)(
pq − i 

i 

)
. 

(2) We assume w.l.o.g. that t = p 1 and T = p 2 , and let X be expressed as 

X = 

(
X 

1 

X 

2 

)
where X i is a p i × q matrix. Let k = S(X 1 ) . Clearly, k ∈ {−t q, . . . , t q } . Moreover, since t ≤ T , for each X 1 ∈ B p 1 ×q ({ 0 , ±1 } )
there exist α(k ) > 0 matrices X 2 ∈ B p 2 ×q ({ 0 , ±1 } ) , such that S(X 1 ) = S(X 2 ) . Let us compute α(k ) . Let i ∈ { 0 , . . . , qT } denote

the number of −1 ’s in X 2 . Then, since S(X 2 ) = k , then the number of 1’s in X 2 has to be k + i . Now, we have that 

α(k ) = 

T q ∑ 

i =0 

(
qT 

i 

)(
qT − i 

k + i 

)
. 

Furthermore, the number of matrices X 2 such that S(X 2 ) = k for a fixed k , is 

j= q T ∑ 

j= −q T 

(
q T 

j 

)(
q T − j 

k + j 

)
. 

Combining all the previous, the result follows. �

Using the previous results we can now give formulas for the cardinality of the { 0 , ±1 } –inner Bohemian matrices of well–

settled matrices. For this purpose we introduce the following notation 
10 
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1. F 1 (m, n ) = #((1 m n ) B (P ) { 1 } ) (see Corollary 2 (1)). 

2. F 2 (m, n 1 , n 2 ) = # 

((
1 m n 1 −1 m n 2 

)
B (P ) 

{ 1 } 
)

(see Corollary 2 (2)). 

3. F 3 (p, q ) = # { X ∈ B p×q ({ 0 , ±1 } ) | S(X ) = 0 } (see Lemma 7 (1)). 

4. F 4 (p 1 , p 2 , q ) = # 

{
X ∈ B (p 1 + p 2 ) ×q ({ 0 , ±1 } ) ∣∣ X is (p 1 , p 2 ) − balanced 

}
(see Lemma 7 (2)). 

In this situation, one has the next result. 

Corollary 3. 

1. Let 

A = 

⎛ 

⎝ 

ε1 1 p 1 q 1 0 0 

0 

. . . 0 

0 0 εs 1 p s q s 

⎞ 

⎠ ∈ K 

m ×n 

where εk ∈ {−1 , 1 } . The cardinality of A B ({ 0 , ±1 } ) { 1 } is 
s ∏ 

k =1 

F 1 (p k , q k ) 
∏ 

k 1 , k 2 ∈ { 1 , . . . , s } 
k 1 � = k 2 

F 3 (p k 1 , p k 2 ) . 

2. Let V p i q i = 

(
1 p i q i 1 −1 p i q i 2 

)
, where q i 1 + q i 2 = q i , and let 

A = 

⎛ 

⎝ 

ε1 V p 1 q 1 0 0 

0 

. . . 0 

0 0 εs V p s q s 

⎞ 

⎠ ∈ K 

m ×n , 

where εk ∈ {−1 , 1 } . The cardinality of A B ({ 0 , ±1 } ) { 1 } is 
s ∏ 

i =1 

F 2 (p i , q i 1 , q i 2 ) 
∏ 

k 1 , k 2 ∈ { 1 , . . . , s } 
k 1 � = k 2 

F 4 (q k 1 1 , q k 1 2 , p k 2 ) 

3. Let 

A = 

⎛ 

⎝ 

M p 1 q 1 0 0 

0 

. . . 0 

0 0 M p s q s 

⎞ 

⎠ ∈ K 

m ×n 

be a mixed well–settled matrix. Let I, J ⊂ N with I ∪ J = { 1 , . . . , s } , I ∩ J = ∅ , and such that M p i q i = ±1 if i ∈ I and M p i q i =
±
(

1 p i q i 1 −1 p i q i 2 

)
if i ∈ J. Then, the cardinality of A B ({ 0 , ±1 } ) { 1 } is ∏ 

i ∈ I 
F 1 (p i , q i ) 

∏ 

j∈ J 
F 2 (p i , q i 1 , q i 2 ) 

∏ 

k 1 , k 2 ∈ I 
k 1 � = k 2 

F 3 (q k 1 , p k 2 ) 
∏ 

k 1 , k 2 ∈ J 
k 1 � = k 2 

F 4 (q k 1 1 , q k 1 2 , p k 2 ) 

∏ 

k 1 ∈ I,k 2 ∈ J 
F 3 (q k 1 , p k 2 ) 

∏ 

k 1 ∈ J,k 2 ∈ I 
F 4 (q k 1 1 , q k 1 2 , p k 2 ) 

Proof. Statement (1a) follows from Theorem 3 (1) and Corollary 2 . Statement (1b) follows from Theorem 3 (2), Corollary 2 ,

and Lemma 7 (1). Statement (2) follows from Theorem 4, Corollary 2 , and Lemma 7 (2). Statement (3) follows from

Theorem 5 , Corollary and Lemma 7 . �

We finish this section with a table (see Table 3 ) where we see how large the cardinality of the inner Bohemian in-

verses is. The third column corresponds to the number of 2 n × (2 n − 2) Bohemian matrices with population { 0 , ±1 } , namely,

3 4 n (n −1) . Note that the numbers in the second column of the Table 3 come from Corollary 3 (1). 

5. Conclusions 

In this paper we study the problem of describing the set of all inner Bohemian inverses of a given Bohemian matrix. For

this purpose, as a first step in this line of research, we consider certain types of matrices, which we call full matrices (see

Definition 1 ), as well as diagonal block matrices of full matrices (see Definition 2 ). One may distinguish the following main

contributions of our paper: 
11 
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1. For the class of full matrices we give a complete description of the set of all inner Bohemian inverses independently

of the population (see Theorem 2 ). The key for proving this result is Theorem 1 . More precisely, if A ∈ K 

m ×n , A { 1 } can

be seen as a linear affine space of dimension mn − rank (A ) (see e.g. Stanimirovi ́c et al. [37] ). Therefore, if rank (A ) = 1 ,

which is the case of a full matrix, A { 1 } is a hyperplane. In addition, due to the particular form of the full matrices,

Theorem 1 provides a parametric representation, and indeed the implicit representation, of this space. Using this knowl- 

edge, we derive the description of the inner Bohemian set. 

2. For the class of well–settled matrices we give a complete description of the set of all inner Bohemian inverses in-

dependently of the population (see Theorem 2 –5 ). The key idea for this result is the notion of balanced matrix (see

Definition 3 ) in combination with the fact that the inner inverse of the block-diagonal matrix has a good behavior. 

3. For the particular case of the population { 0 , 1 , −1 } , we give exact formulas for the cardinality of the inner Bohemian sets

of full and well–settled matrices (see Corollaries 2 and 3 ). The idea here is the diophantine study of the implicit linear

equation of the hyperplane of the inner matrices and of the balanced matrices. 

In addition, this paper opens a wide area of open problems to be studied. One may mention, among others: 

1. The computation of the cardinality of the inner Bohemian inverses set for other populations different from { 0 , 1 , −1 } ;
this would imply the study of other linear diophantine equations. 

2. The study of inner Bohemian inverses of different type; one may start with rank 1 Bohemian matrices to preserve the

dimension of the linear space. 

3. Extension of these results to other generalized inverses, such as outer inverses, i.e. matrices satisfying the second axiom, 

namely X AX = X ; this would imply to work with affine algebraic varieties instead of linear varieties. 

4. Extension of these results to generalized inverses with prescribed image/range. 
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