

BIBLIOTECA

This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

Document downloaded from the institutional repository of the University of
Alcala: http://ebuah.uah.es/dspace/

This is a postprint version of the following published document:

Stanimirovic, P.S., Sendra, J.R., Behera, R., Sahoo, J.K., Mosic, D., Sendra, J.

& Lastra, A. 2021, “Computing tensor generalized inverses via specialization

and rationalization”, Rev. Real Academia de Ciencias Exactas, Físicas y

Naturales. Serie A. Matemáticas, vol. 115, art. no. 116.

Available at https://doi.org/10.1007/s13398-021-01057-9

© 2021 Springer Nature

(Article begins on next page)

http://ebuah.uah.es/dspace/
https://doi.org/10.1007/s13398-021-01057-9

Computing tensor generalized inverses

via specialization and rationalization

Predrag S. Stanimirović1*, J. Rafael Sendra2,
Ratikanta Behera3, Jajati Keshari Sahoo4,

Dijana Mosić5, Juana Sendra6, Alberto Lastra7

1,5
University of Nǐs, Faculty of Science and Mathematics,

Vǐsegradska 33, 18000 Nǐs, Serbia
2,7

Universidad de Alcalá, Dpto. F́ısica y Matemáticas, Alcalá de Henares, Madrid, Spain
3

University of Central Florida, Orlando, USA
4

Birla Institute of Technology & Science Pilani, Goa, India
6

Dpto. Matemática Aplicada a las TIC. Universidad Politécnica de Madrid, Spain

E-mail: 1
pecko@pmf.ni.ac.rs, 2

rafael.sendra@uah.es

3
ratikanta.behera@ucf.edu, 4

jksahoo@goa.bits-pilani.ac.in,
5
dijana@pmf.ni.ac.rs, 6

juana.sendra@upm.es, 7
alberto.lastra@uah.es

Abstract

In this paper, we introduce the notion of outer generalized inverses, with predefined range and null
space, of tensors with rational function entries equipped with the Einstein product over an arbitrary
field, of characteristic zero, with or without involution. We assume that the involved tensor entries are
rational functions of unassigned variables or rational expressions of functional entries. The research
investigates the replacements in two stages. The lower-stage replacements assume replacements of
unknown variables by constant values from the field. The higher-order stage assumes replacements
of functional entries by unknown variables. This approach enables the calculation on tensors over
meromorphic functions to be simplified by analogous calculations on matrices whose elements are
rational expressions of variables. In general, the derived algorithms permit symbolic computation of
various generalized inverses which belong to the class of outer generalized inverses, with prescribed
range and null space, over an arbitrary field of characteristic zero. More precisely, we focus on a few
algorithms for symbolic computation of outer inverses of matrices whose entries are elements of a field
of characteristic zero or a field of meromorphic functions in one complex variable over a connected open
subset of C. Illustrative numerical results validate the theoretical results.

Keywords: Tensor; Einstein product; Tensors of functions; outer inverse; Meromorphic functions;
Symbolic computation;

Mathematics Subject Classification: 15A09.

1 Basic facts and motivation

Tensors have been used in numerous research areas, for example in signal processing, machine learning
[13, 31], or chemistry [18]. Theoretical investigations have considered many aspects of the tensor theory
as eigenvalues of tensors [5, 25], spectral analysis of hypergraphs [10, 11], or tensor eigenvalues [7, 8].
Also, popular applications of tensors include: solving tensor equations [3] and solving multilinear systems
[38]. The monograph [24] surveyed diverse applications of tensors in scientific computation. Perturbation
bounds of tensor eigenvalues and singular values were investigated in [9]. The tensor Moore-Penrose inverse

*Corresponding author

1

The final journal version of this paper appears in [Predrag S. Stanimirovic, Ratikanta Behera, Jajati
Keshari Sahoo, Dijana Mosic, Juan Rafael Sendra, Juana Sendra, Alberto Lastra. Computing tensor
generalized inverses via specialization and rationalization. Revista de la Real Academia de Ciencias
Exactas, Físicas y Naturales. Serie A. Matemáticas (2021) 115:116 pp.1-16] and it is available at https://
doi.org/10.1007/s13398-021-01057-9

was used in tensor regression analysis [13] as well as in finding least-squares solutions to tensor equations
[17].

The central motivation for our research dates back from the results derived in the matrix case. In [28],
the authors proposed an algorithm to reduce the computation of the Drazin inverse over certain computable
fields, whose entries are rational functions of finitely many transcendental elements over a complex field,
into the computation of the Drazin inverse of matrices with rational elements. As a consequence, a symbolic
algorithm to compute the Drazin inverse of matrices, whose entries are elements of a finite transcendental
field extension of a computable field, was derived. The main idea is replacing the involved functions by new
variables. Then, the generalized inverses computation with rational functional entries is reduced to the
case of matrices with rational expressions. In addition, a Gröbner basis approach for computing the Drazin
inverse has been proposed in [6, 30]. The treatment of generalized inverses with rational function entries
has also been extended to the case of the Moore–Penrose inverse, by introducing a suitable involutory
automorphism (see [29]). This analysis has also been extended to the case of (B,C)-generalized inverses
of matrices with rational functional entries (see [34]). The underlining common main idea of all these
methods is to define, and analyze, a suitable polynomial that controls all denominators appearing in all
steps of the algorithmic treatment of each of the cases commented above. This polynomial is then used to
guarantee the reduction of the problem to the case of matrices with rational functions entries instead of
rational functional entries.

In this paper, we see how the ideas above, mainly those in [29], [30], [34], can be extended to the case
of tensors. For this purpose, in the sequel, we fix (K, ϕ), where K is a field of characteristic zero, and ϕ is
an involutory automorphism of K that will generalize to K the notion of conjugation in C. We recall that
an automorphism ϕ is involutory if ϕ ◦ ϕ is the indentity map; see [29] for further details. When K = C
we take ϕ as the conjugation of complex numbers. The polynomial ring over K will be denoted by K[x],
where x = (x1, . . . , xp) are unknown variables, while K(x) denotes the field of rational functions; note that
ϕ can be naturally extended to an involutory automorphism over K(x), see e.g. [29]. In addition, let Km×n

denote the set of all m × n matrices over K. Throughout the paper, when we refer to K, one must take
into account that K can be replaced by K(x), or by any field (algebraic or transcendental) extension of K.
Nevertheless, in some parts of the paper, when we need to emphasize that we are working with rational
functions we will use the corresponding notation, namely K(x).

An order N > 0 tensor A = (ai1,i2,...,iN)1≤ij≤Ij , (j = 1, . . . , N) is a multidimensional array with
I = I1 · · · IN entries, where I1, . . . , IN are positive integers. Let us denote by KI1×···×IN the set of the
order N -dimensional I1 × · · · × IN tensors over K.

Given A = (ai1,...,iM ,j1,...,jN) ∈ KI1×···×IM×J1×···×JN , we introduce the transpose of A, denoted by
AT, as the tensor B = (bj1,...,jN ,i1,...,iM) ∈ KJ1×···×JN×I1×···×IN , where bj1,...,jN ,i1,...,iM = ai1,...,iM ,j1,...,jN .
Similarly, we denote by ϕ(A) the tensor (ϕ(ai1,...,iM ,j1,...,jN)) ∈ KI1×···×IM×J1×···×JN . Also, ϕ(A)T is the
ϕ-conjugate transpose of A, that we will denote by A∗.

The tensor Einstein product is defined by the associative operation ∗N via

(A ∗N B)i1...iN j1...jM =
∑

k1...kN

ai1...iNk1...kN
bk1...kN j1...,jM , (1.1)

where A ∈ KI1×···×IN×K1×···×KN , B ∈ KK1×···×KN×J1×···×JM , and A ∗N B ∈ KI1×···×IN×J1×···×JM .

The null spaces and the ranges of tensors were introduced in [14]. Here, we recall the notion for arbitrary
fields.

Definition 1.1. [14] For T ∈ KI1×···×IN×K1×···×KN , the range R(T) and the null space N(T) of T are
defined as

R(T) = {Y ∈ KI1×···×IN : Y = T ∗N X , X ∈ KK1×···×KN },

N(T) = {Z ∈ KK1×···×KN : T ∗N Z = O},

where O is a proper zero tensor. For the case of a matrix M we denote by R(M) and N (M) the range
and kernel of M , respectively.

2

The following additional notation will be used to improve and clarify our presentation:

M(k) = M1 × · · · ×Mk, i(k) = i1, . . . , ik,

where Ms,is are positive integers for all 1 ≤ s ≤ k. Using these notations, we can represent the tensor
A ∈ KM1×···×Mm×N1×···×Nn and its elements by AM(m)×N(n), and ai(m),j(n), respectively. This paper is
devoted to the development of computational algorithms for the determination of various types of outer
inverses of the tensor A ∈ KM(m)×N(n).

In the next definition, we restate the notion of the tensor Moore-Penrose inverse.

Definition 1.2. A tensor Z ∈ KN(n)×M(m) which satisfies

(1T) T ∗n Z ∗m T = T , (2T) Z ∗m T ∗n Z = Z,
(3T) (T ∗n Z)

∗
= T ∗n Z, (4T) (Z ∗m T)

∗
= Z ∗m T ,

is called the Moore-Penrose (M-P) inverse of T ∈ KM(m)×N(n), and is denoted by T †.

It is well-know that the Moore-Penrose inverse of a matrix, over the field of complex numbers, always
exists and is unique. For the case of tensors, in [37] the authors prove that this inverse also exists and
is unique when K = C. However, for the general case of arbitrary fields, with an endowed involutory
automorphism, the situation is not so direct. In [29], it is shown that the existence and uniqueness of
the Moore-Penrose inverse depend on the field, and on the involutory automorphism. Moreover, in [29]
conditions for the existence are shown and the notion of Moore-Penrose field is introduced, which is a field
such that all matrices with entries in this field have Moore-Penrose inverse. Using similar reasonings as
those in [29] the existence and uniqueness of Moore-Penrose inverses of tensors over an arbitrary field can
be analyzed. Nevertheless, we do not delve into this topic here.

In Definition 1.3 we recall the notion of Drazin inverse of a tensor. For this purpose, the concept of
Drazin index is introduced by using the notion of rank of a tensor via its unfolding as a matrix (see [20] or
Subsection 2.1).

Definition 1.3. The Drazin inverse T D of a square even-order tensor T ∈ KN(n)×N(n) of index ind(A) = k
is the tensor Z ∈ KN(n)×N(n) which satisfies (2T) in conjunction with

(1Tk) T k+1 ∗n Z = T k, (5T) T ∗n Z = Z ∗n T .

In the case ind(A) = 1, the Drazin inverse T D becomes the group inverse T #.

Tensor inversion, as well as solutions of tensor equations, were investigated in [3, 38, 21]. The definition
of the M-P inverse introduced in [1, 37] was generalized to arbitrary order complex tensors in [20, 32].
Various properties and representations of the tensor M-P inverse were derived in [1, 37], and of the tensor
weighted M-P inverse were investigated in [14]. Further representations of various outer generalized inverses
for complex tensors were given in [32]. In [23], the authors investigated the reverse-order law of arbitrary
tensors. The tensor Drazin inverse of even-order square tensors, with the underlying Einstein product, was
studied in [2, 15], while the Drazin inverse solution of the singular tensor equation A ∗ X = B, such that
A ∈ CI1×···×Ik×I1×···×Ik is singular and B,X ∈ CI1×···×Ik was, studied in [15]. Sun et al. in [38] defined
the {i}-inverse (i = 1, 2, 5) as well as the group inverse of tensors. The core, the core-EP, the DMP, and
the CMP tensor generalized inverses were investigated in [12, 26, 40].

If the equation (iT) of the above equations (1T) − (4T) holds, then Z is called an {i}-inverse of T ,
and it is denoted by T (i). The set of all {i}-inverses of T is denoted by T {i}. Particularly, {2}-inverses
(resp. {1}-inverses) are known as outer (resp. inner) inverses. A tensor Z ∈ T {S}, whose range and

kernel satisfy R(Z) = R(B) (resp. N(Z) = N(C)), is denoted by T (S)
R(B),∗ (resp. T (S)

∗,N(C)). Consequently,

Z ∈ T {S}, satisfying both R(Z) = R(B) and N(Z) = N(C), is termed as T (2)
R(B),N(C).

Recently, Ji and Wei in [16] considered conditions for the existence and various representations of the
outer inverse of even-order tensors under the Einstein tensor product, and studied appropriate folding

3

and unfolding operations. Several representations of outer inverses, as well as an efficient computational
procedure for their determination, were presented in [27]. It is a known fact that outer inverses involve

the Moore-Penrose inverse, the Drazin, and the group inverse: T (2)
R(A∗),N(A∗) = T †, T (2)

R(A),N(A) = T #, and

T (2)

R(Ak),N(Ak)
= T D. This fact is an additional motivation for investigating outer inverses.

The main results of this manuscript can be highlighted as follows.

(i) Continuing the results from [16], in this paper we give additional representations for outer inverses
of tensors with known range and/or null space over fields of characteristic zero. The representations
of outer inverses in [16] are derived on the basis of the group inverse or using the tensor full rank
factorization with the underlying folding and unfolding operations. Our intention in the current
research is to obtain generalizations of known Urquhart representations for constant complex matrices
(see [39]). In this way, it is possible to derive not only outer inverses with given both the range and
null space, but also representations of outer inverses with only prescribed range or only prescribed
null space. Also, representations of {1, 2}-inverses of tensors can be derived.

(ii) A new approach in symbolic computation of outer generalized inverses of tensors over an arbitrary
field, of characteristic zero, is proposed. The entries of the tensors are defined as rational functions
of unknown variables or as rational expressions of functional entries. The research is aimed to two-
stage replacements. In the first stage, it is possible to consider replacements of functional entries by
unknown variables, while the second stage assumes replacements of unknown variables by constant
values from the field.

(iii) Our next topic is the symbolic computation of generalized inverses of tensors with functional entries
over a field of characteristic zero, with or without involution. The computation of outer inverses
over certain computable fields is reduced to the simpler computation of outer inverses with rational
expressions of unknown variables as entries. The main idea can be defined in three global steps:
(a) replace each function by a variable; (b) perform the necessary computations, and (c) replace, in
the result, the unknown variables by their original function pair. These algorithms generalize the
corresponding results from [28, 29, 34].

(iv) Known characterizations, representations, and algorithms for generating the M-P and the Drazin
inverse, as well as the group inverse of tensors, are derived as particular cases.

We would like to emphasize that the importance of the use of symbolic computation techniques lies, not
only on the fact that the exact determination of generalized inverses of tensors is feasible, as mentioned in
(ii), but also on the fact that it allows to translate a purely functional problem into an algebraic problem
that can be treated, afterwards, via either symbolic or numerical techniques (see (iii) above).

The global organization by sections is as follows. The basic facts and motivation are presented in Section
1. Section 2 is aimed to the computational aspects of generalized inverses of tensors. Some preliminary
results are given first, and then the representations, as well as the computation of outer inverses via
specializations, are presented in three subsections. The computation of generalized inverses of tensors with
functional entries is considered in Section 3. Some concluding remarks and directions for further research
are discussed in Section 4.

2 Computing generalized inverses of tensors via specializations

This section is the first attempt to develop algorithms for symbolic computation of outer inverses of
tensors over an arbitrary field.

2.1 Preliminary results

Matricization (also known as unfolding or flattening) is the transformation, denoted by Mat(A), that
transforms a tensor into a matrix. A tensor A can be unfolded into an appropriate matrix A in different

4

ways. In order to propose an effective procedure for the matricization, we apply the reshaping operation,
denoted as rsh, which was originated in [32], and implemented by means of the built-in Matlab function
reshape (see Def. 3.1, and Example 3.1 in [32]). The rsh transformation is defined as the function

rsh : KM(m)×N(n) −→ KM×N,

where the integers M,N are defined by

M = M1 · · ·Mm, N = N1 · · ·Nn. (2.1)

More precisely, we generalize the reshape function over an arbitrary field K as follows.

Definition 2.1. The reshaping operation transforms the tensor A ∈ KM(m)×N(n) into the matrix A ∈
KM×N by means of the built-in Matlab function reshape as in the following expression:

rsh : KM(m)×N(n) −→ KM×N

A 7−→ A := rsh (A) = reshape(A,M,N).
(2.2)

The inverse of the rsh matricization will be termed as tensorization and defined by the mapping

rsh−1 : KM×N −→ KM(m)×N(n)

A 7−→ A := rsh−1(A) = reshape(A,M1, . . . ,Mm, N1, . . . Nn).
(2.3)

The matricization operator

ΦJK : KJ(n)×K(n) → KJ×K, I := J1 · · · Jn,K := K1 · · ·Kn

was defined in [3],[41, Definition 2.3] by ΦJK(A)=A component-wise as

(A)j1,...,jn,k1,...,kn
→ As,t, (2.4)

where A ∈ KJ(n)×K(n), and A ∈ KJ×K. The relationships between the subscripts s, t and j1, . . . , jn,
k1, . . . , kn are given by

s = jn +

n−1∑
p=1

(
(jp − 1)

n∏
q=p+1

Jq

)
, t = kn +

n−1∑
p=1

(
(kp − 1)

n∏
q=p+1

Kq

)
.

Generalizing this definition, it is possible to present the matricization operator rsh

rsh : KJ(m)×K(n) → KJ×K, I := J1 · · · Jm,K := K1 · · ·Kn,

defined in (2.2), for arbitrary order tensors as

s = jm +

m−1∑
p=1

(
(jp − 1)

m∏
q=p+1

Jq

)
, t = kn +

n−1∑
p=1

(
(kp − 1)

n∏
q=p+1

Kq

)
.

It is also important to mention that a bijection φ to unfold (matricize) an arbitrary-order tensor into
a matrix was proposed in [20]. Similar folding and unfolding operations on even-order tensors are defined
and considered in [16].

Lemma 2.1 claims that the folding rsh, and its inverse unfolding posses properties of homomorphisms.

Lemma 2.1. [16, 32] Let T1 ∈ KM(m)×N(n), T2 ∈ KN(n)×L(l), let the integers M,N be as in (2.1), and
L = L1 · · ·Ll. It holds that

rsh (T1 ∗n T2) = rsh (T1) rsh (T2) = T1T2, rsh−1(T1T2) = rsh−1(T1) ∗n rsh−1(T2) = T1 ∗n T2. (2.5)

5

In [16], the notion of rank of a tensor A is introduced as the dimension of R(A). Moreover, using the
homomorphic behavior of rsh (see Lemma 2.1), in [16] the authors prove that dim(R(A)) = rank(rsh(A)).
On the other hand, in [32] the same notion of tensorial rank is introduced by means of a matrix factorization
of rsh(A), and the same result as above is obtained. Since the previous commented reasonings are valid
over any field, Definition 2.2 extends naturally the concept for tensors over arbitrary fields.

Definition 2.2. Let the positive integers m,n, and M1, . . . ,Mm, N1, . . . , Nn, be given, and let M,N
satisfy (2.1). Let T ∈ KM(m)×N(n) and T = rsh(T) ∈ KM×N. Then the reshaping rank of T , denoted by
rshrank(T), is defined as rshrank(T) = rank(T) = rank(rsh(T)).

Algorithm 1 is an extension of the algorithm given in [32] from constant tensors to tensors with entries
over a computable field.

Algorithm 1 Computation of rshrank(A)

Input: Arbitrary integers m,n, M1, . . . ,Mm, N1, . . . , Nn, and A ∈ KM(m)×N(m).
1: Compute M,N as in (2.1).
2: Matricize A into the matrix A by the rsh operator (2.2). This matricization is termed as A = rsh(A) ∈
KM×N, and can be implemented by the Matlab standard function reshape.

3: Compute r := rank(A).
4: Return the output rshrank(A) = r.

Algorithm 2 presents an algorithm for computing A(1), where rref [A| IM] denotes the row reduced
echelon form of [A| IM].

Algorithm 2 Computation of A(1)

Input: Integers m, n, integers M1, . . . ,Mm, N1, . . . , Nn, and A ∈ KM(m)×N(n).
1: Compute M and N satisfying (2.1).
2: Reshape the tensor A ∈ KM(m)×N(n) as rsh(A) = A ∈ KM×N:

A = reshape (A,M,N) = rsh(A).

3: r ← rshrank(A).
4: B ← rref [A|IM].
5: E ← last M columns of B.

6: Find a permutation matrix P satisfying EAP =

[
Ir K
O O

]
.

7: Generate a random matrix L ∈ K(N−r)×(M−r).
8: Perform the reshaping operations

rsh−1(E) = E ∈ KM(m)×M(m), rsh−1(P) = P ∈ KN(n)×N(n), rsh−1
([
Ir O
O L

])
= Q.

9: Compute the output
X := P ∗n Q ∗m E ∈ +KN(n)×M(m).

2.2 Representation of outer generalized inverses of tensors.

This subsection is devoted to the representation of outer generalized inverses of tensors which entries
are elements of K.

The results of Theorem 2.1 generalize the known representations for constant complex matrices in [39].
The following results will be useful in its verification. Lemma 2.2 and Theorem 3.1 in [39] are stated for

6

the field C, however they are easily extendable to the case of an arbitrary field K of characteristic zero as
follows.

Proposition 2.1. [32, Lemma 2.2] Let X ∈ KN(n)×M(m), B ∈ KN(n)×K(k), and C ∈ KL(l)×M(m) be given
tensors. Then

(1) R(X) ⊆ R(B) if and only if X = B ∗k U , for some U ∈ KK(k)×M(m).

(2) N(X) ⊇ N(C) if and only if X = V ∗l C, for some V ∈ KN(n)×L(l).

(3) R(X) ⊆ R(B), and N(X) ⊇ N(C) if and only if X = B ∗k U ∗l C, for some U ∈ KK(k)×L(l).

Proposition 2.2. [32, Theorem 3.1] If X ∈ KM(m)×N(n), and Y ∈ KN(n)×L(l) are two tensors, then

(1) R (X ∗n Y) = R (X)⇐⇒ rshrank(X ∗n Y) = rshrank(X),

(2) N (X ∗n Y) = N (Y)⇐⇒ rshrank(X ∗n Y) = rshrank(Y).

Theorem 2.1. Let A ∈ KM(m)×N(n), B ∈ KN(n)×K(k), C ∈ KL(l)×M(m), and assume that (C ∗mA∗nB)(1)

is a fixed but arbitrary element of (C ∗m A ∗n B){1}. Then

X := B ∗k (C ∗m A ∗n B)(1) ∗l C ∈ KN(n)×M(m) (2.6)

satisfies the following statements.

(1) X = A(2)
R(B),∗ if and only if rshrank(C ∗m A ∗n B) = rshrank(B).

(2) X = A(2)
∗,N(C) if and only if rshrank(C ∗m A ∗n B) = rshrank(C).

(3) X = A(2)
R(B),N(C) if and only if rshrank(C ∗m A ∗n B) = rshrank(B) = rshrank(C).

(4) X = A(1,2)
R(B),N(C) if and only if rshrank(C ∗m A ∗n B) = rshrank(B) = rshrank(C) = rshrank(A).

Proof. (1) (=⇒) Let X be as in (2.6) satisfying that X ∗m A ∗n X = X , and R(X) = R(B). Then there
exists U ∈ KK(k)×L(l) satisfying X = B ∗k U ∗l C. Also, since R(X) ⊇ R(B), applying Proposition 2.1 (1),
one deduces the existence of W ∈ KM(m)×K(k) such that B = X ∗mW. The last two facts further imply
that

B = X ∗mW = X ∗m A ∗n X ∗mW = X ∗m A ∗n B = B ∗k U ∗l C ∗m A ∗n B.

Using N(B) ⊆ N(C ∗m A ∗n B), in conjunction with B ∗k U ∗l C ∗m A ∗n B = B for some U ∈ KK(k)×L(l), it
follows that N(B) ⊆ N(C ∗mA∗nB) ⊆ N(B∗k U ∗l C ∗mA∗nB) = N(B), and hence N(C ∗mA∗nB) = N(B),
which implies, by Proposition 2.2, rshrank(C ∗m A ∗n B) = rshrank(B).

(⇐=) The assumption rshrank(C ∗m A ∗n B) = rshrank(B) implies that B = B∗k(C∗mA∗nB)(1)∗lC∗mA∗nB.

Then X = B ∗k (C ∗mA∗n B)(1) ∗l C = A(2)
R(B),∗. Indeed X ∗mA∗n X = X immediately follows. Now, using

X = B ∗k (C ∗m A ∗n B)(1) ∗l C and B = B ∗k (C ∗m A ∗n B)(1) ∗l C ∗m A ∗n B = X ∗m A ∗n B, it is possible
to verify that R(X) = R(B). Therefore, X ∈ A{2}R(B), where A{2}R(B) denotes a subset of outer inverses
A{2} with range R(B).

The other parts of the proof can be verified similarly.

Lemma 2.2. Let m, n, M1, . . . ,Mm, N1, . . . , Nn be positive integers, and let M, N be as in (2.1). Let
A ∈ KM(m)×N(n), and A := rsh(A) ∈ KM×N. Then it holds that

(1) (rsh(A))
(1)

= A(1) = rsh(A(1)).

(2)
(
rsh−1(A)

)(1)
= A(1) = rsh−1(A(1)).

(3) (rsh(A))
(2)

= A(2) = rsh(A(2)).

7

(4)
(
rsh−1(A)

)(2)
= A(2) = rsh−1(A(2)).

Proof. (1) Let A(1) ∈ A{1} be arbitrary. Then,

rsh(A) = rsh
(
A ∗n A(1) ∗m A

)
.

An application of Lemma 2.1 leads to

rsh(A) = rsh(A) rsh(A(1)) rsh(A).

Thus rsh(A(1)) = (rsh(A))(1) = A(1). The verification of the other statements is analogous.

Theorem 2.2 is a generalization of [16, Theorem 2.4] in three directions: it is valid for tensors over
arbitrary fields, it is valid for outer inverses with only given range or kernel, and also for {1, 2}-inverses.

Theorem 2.2. Let A ∈ KM(m)×N(n), B ∈ KN(n)×K(k), C ∈ KL(l)×M(m). Then X , defined as in (2.6), is
an outer inverse of A with the following properties about the reshaping.

(1) If rshrank(C ∗m A ∗n B) = rshrank(B), then X = A(2)
R(B),∗ = rsh−1

(
rsh(A)

(2)
R(rsh(B)),∗

)
.

(2) If rshrank(C ∗m A ∗n B) = rshrank(C), then X = A(2)
∗,N(C) = rsh−1

(
rsh(A)

(2)
∗,N (rsh(C))

)
.

(3) If rshrank(C ∗m A ∗n B) = rshrank(B) = rshrank(C), then

X = rsh(A)
(2)
R(B),N(C) = rsh−1

(
rsh(A)

(2)
R(rsh(B)),N (rsh(C))

)
.

(4) If rshrank(C ∗m A ∗n B) = rshrank(B) = rshrank(C) = rshrank(A), then

X = A(1,2)
R(B),N(C) = rsh−1

(
rsh(A)

(1,2)
R(rsh(B),N (rsh(C))

)
.

Proof. By Theorem 2.1, we have that X = A(2)
R(B),∗. In order to prove the other equality, we apply Lemma

2.2 to get

rsh(X) = rsh(B) (rsh(C)rsh(A)rsh(B))
(1)

rsh(C). (2.7)

Furthermore, taking into account Definition 2.2 and Lemma 2.2, we have that

rank(rsh(B)) = rshrank(B) = rshrank(C ∗m A ∗n B) = rank(rsh(C ∗m A ∗n B)) = rank(rsh(C)rsh(A)rsh(B)).

Using Urquhart’s formula over fields (see Theorem 3.1 and Theorem 3.5 in [33]), and taking into account
(2.7), one has that

rsh(A)
(2)
R(rsh(B)),∗ = rsh(B)(rsh(C)rsh(A)rsh(B))(1)rsh(C) = rsh(X) = rsh(A(2)

R(B),∗).

Finally, taking the inverse rsh−1 one gets the result.
The other claims follow analogously.

2.3 Specializations on tensors whose entries are rational expressions

In this subsection we focus on generalized tensor inverses which entries are rational functions. Therefore,
throughout this subsection we will work over the rational function field K(x). Thus, the entries of the
tensors are fractions in which the numerator and/or the denominator are polynomials over K. Moreover,
we investigate the behavior of these generalized inverses when the unknown variables xi, included in
x = (x1, . . . , xp), are substituted by some field elements c = (c1, . . . , cp) ∈ Kp. Such replacement, when the

8

denominator of the rational function does not vanish at c, is termed as specialization and will be denoted
by x ! c.

The elements ai(m),j(n) of A ∈ K(x)M(m)×N(n) are rational expressions, and can be represented as

ai(m),j(n) =
num(ai(m),j(n))

den(ai(m),j(n))
,

where the greatest common divisor of the numerator and the denominator is 1. Then, we introduce the
notation den(A) = lcm{den(ai(m),j(n))}, where lcm stands for the least common multiple. The side effects
of each specialization x ! c are the possibility that c becomes a pole of A as well as the possibility that
A|x!c

decreases the reshaping rank of A. Following the definition of a pole from [42], we say that c is

a pole of A if at least one element
num(ai(m),j(n))

den(ai(m),j(n))
has a pole at c, i.e., den(ai(m),j(n))(c) = 0. Similarly,

following the definition of a zero from [42], c ∈ Kp is a zero of A if rshrank(A|x!c
) < rshrank(A). Note

that, taking into account that rshrank(A) = rank(rsh(A)), one can apply Theorem 5.1 in [34] to rsh(A) to
derive a polynomial F ∈ K[x], such that if F (c) 6= 0 then c is not a zero of A.

In the following, we restrict K in order to avoid appearances of poles and zeros. For a specified
A(x) ∈ K(x)M(m)×N(n), let K(x)A denote the restriction of K(x) defined as

K(x)A := {c ∈ Kp : den(A)(c) 6= 0 } ,

and
K(x)A,rshrank(A) :=

{
c ∈ K(x)A : rshrank(A) = rshrank(A|x!c

)
}
⊂ K(x)A.

Under these restrictions, for a given A ∈ K(x)M(m)×N(n), and for any c ∈ K(x)A, we introduce the map
Spec that transforms a tensor with rational function entries into another tensor with rational fractions
entries:

Spec : K(x)M(m)×N(n) −→ KM(m)×N(n)

A = (ai(m),j(n)(x)) 7−→ Spec(A) := A|x!c
= (ai(m),j(n)(c)).

Theorem 2.3 gives characterizations of {2}-inverses of tensors, with known range and null space, under
specializations. It shows that under certain rank restrictions, and restrictions on K(x)A,rshrank(A), the
specialization x ! c of the outer inverse of A with range R(B) and/or null space N(C) is equal to the
outer inverse of A|x!c

with range R(B|x!c
) and/or null space N(C|x!c

). These restrictions are caused by
the fact that rshrank(A|x!c

) ≤ rshrank(A) as well as that c can be a pole.
The following lemma will be necessary.

Lemma 2.3. Let A ∈ K(x)M(m)×N(n), and c ∈ Kp. If an inner inverse A(1) satisfies

den(A)(c) · den(A(1))(c) 6= 0,

then
(A(1))|x!c

=
(
A|x!c

)(1)
.

Proof. The hypothesis den(A)(c) den(A(1))(c) 6= 0 implies that c is not a pole of any entry of A or A(1).
Therefore the specializations Ax!c and (A(1))x!c are well defined. In addition, it holds that

Ax!c = (A ∗n A(1) ∗m A)x!c = Ax!c ∗n (A(1))x!c ∗m Ax!c.

So, (A(1))|x!c =
(
A|x!c

)(1)
, and the proof is completed.

The next theorem generalizes Theorem 5.2 in [34] to the case of tensors.

Theorem 2.3. Let A ∈ K(x)M(m)×N(n), B ∈ K(x)N(n)×K(k), C ∈ K(x)L(l)×M(m), let

X := B ∗k (C ∗m A ∗n B)(1) ∗l C ∈ K(x)N(n)×M(m),

9

and let

c ∈ K(x)C∗mA∗nB,rshrank(C∗mA∗nB)
∩K(x)A,rshrank(A) ∩K(x)B,rshrank(B) ∩K(x)C,rshrank(C) ∩K(x)(C∗mA∗nB)(1) .

(2.8)
Then, the following statements holds

(1) If rshrank(C ∗m A ∗n B) = rshrank(B) it holds that

X|x!c
=
(
A(2)
R(B),∗

)
|x!c

=
(
A|x!c

)(2)
R(B|x!c),∗

.

(2) If rshrank(C ∗m A ∗n B) = rshrank(C) it holds that

X|x!c
=
(
A(2)
∗,N(C)

)
|x!c

=
(
A|x!c

)(2)
∗,N(C|x!c)

.

(3) If rshrank(C ∗m A ∗n B) = rshrank(B) = rshrank(C) it holds that

X|x!c
=
(
A(2)
R(B),N(C)

)
|x!c

=
(
A|x!c

)(2)
R(B|x!c),N(C|x!c)

. (2.9)

(4) If rshrank(C ∗m A ∗n B) = rshrank(B) = rshrank(C) = rshrank(A) it holds that

X|x!c
=
(
A(1,2)
R(B),N(C)

)
|x!c

=
(
A|x!c

)(1,2)
R(B|x!c),N(C|x!c)

.

Proof. We give the details of the proof of statement (1); the reasoning for the other cases is analogous.
First, using the hypothesis and Theorem 2.1 (1) we get that

X = A(2)
R(B),∗.

By (2.8), we have that

c ∈ K(x)B,rshrank(B) ∩K(x)(C∗mA∗nB)(1) ∩K(x)C,rshrank(C).

So c is not a pole of any of the entries of B or (C ∗m A ∗n B)(1) or C. Therefore, the specialization X|x!c

is well defined. Thus,

X|x!c
=
(
A(2)
R(B),∗

)
|x!c

. (2.10)

Now, by Lemma 2.3, it holds that(
(C ∗m A ∗n B)(1)

)
|x!c

=
(
(C ∗m A ∗n B)|x!c

)(1)
=
(
C|x!c

∗m A|x!c
∗n B|x!c

)(1)
. (2.11)

On the other hand, by (2.8), it holds that

rshrank(B) = rshrank(B|x!c
), and rshrank(C ∗m A ∗n B) = rshrank((C ∗m A ∗n B)|x!c

).

Therefore
rshrank(B|x!c

) = rshrank(B) = rshrank(C ∗m A ∗n B)
= rshrank((C ∗m A ∗n B)|x!c

)
= rshrank(C|x!c

∗m A|x!c
∗n B|x!c

).

Now, Theorem 2.1 (1) implies

X|x!c
=
(
A|x!c

)(2)
R(B|x!c),∗

.

Remark 2.1. Symbolic computation applied to matrix algebra provides the exact rank of a tensor, while the
result produced by numeric calculations can be different because of the presence of round-off errors. Also,
the result can be different depending on the various numerical methods used for the rank computation, see
[36]. But such difficulties in the implementation of Theorem 2.3 in subsequent algorithms are unavoidable.

10

2.4 Algorithms and examples

Algorithms 3, 4, and 5 give computational frameworks for various generalized inverses of tensors.

Algorithm 3 is designed to compute A(2)
R(B),∗.

Algorithm 3 Computation of X := A(2)
R(B),∗.

Input: Positive integers m,n, k, l, and tensors A ∈ K(x)M(m)×N(n), B ∈ K(x)N(n)×K(k), C ∈
K(x)L(l)×M(m).

1: Compute rshrank(C ∗m A ∗n B) and rshrank(B) using Algorithm 1.
2: if rshrank(B) = rshrank(C ∗m A ∗n B) then
3: Compute Y := (C ∗m A ∗n B)(1) using Algorithm 2.
4: Compute X := B ∗k Y ∗l C.
5: return A(2)

R(B),∗ = X .
6: end if

Algorithm 3 is tested in Example 2.1.

Example 2.1. Let c = (1, 2, 3, 4, 5, 6, 7), and z = (z1, z2, z3, z4, z5, z6, z7) with zi 6= 0 for 1 ≤ i ≤ 7.
Consider the tensor A ∈ (R(z1, z2, z3, z4))(3×3)×(4×4) with entries

A(:, :, 1, 1) =

0 z2 0
0 0 0
0 0 0

 , A(:, :, 2, 1) =

0 0 0
0 0 0
0 0 0

 , A(:, :, 3, 1) =

0 z3 0
0 0 z3
0 0 0

 ,
A(:, :, 4, 1) = A(:, :, 3, 2) = A(:, :, 1, 3) = A(:, :, 3, 3) =

0 0 0
0 0 0
0 0 0

 ,
A(:, :, 1, 2) =

 0 z3 0
0 0 0
z2 0 0

 , A(:, :, 2, 2) =

 0 0 0
z2 0 0
0 z4 0

 , A(:, :, 4, 2) =

z3/z6 0 0
0 0 0
z1 0 z5/z7

 ,
A(:, :, 2, 3) =

0 0 0
0 0 z5
0 0 0

 , A(:, :, 4, 3) =

 0 z2 0
z7 z3 0
0 z4 0

 , A(:, :, 1, 4) =

0 z6 0
0 0 0
0 0 0

 ,
A(:, :, 2, 4) =

0 0 0
0 0 0
0 z2 0

 , A(:, :, 3, 4) =

0 z5/z3 0
0 0 z1
0 0 0

 , A(:, :, 4, 4) =

z3 0 z2
0 0 z1
0 0 z5

 ,
the tensor B ∈ (R(z1, z2, z3, z4))4×4×3×3 defined as

B(:, :, 1, 1) =


0 z2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , B(:, :, 2, 1) =


0 z4 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

B(:, :, 3, 1) = B(:, :, 1, 2) = B(:, :, 3, 2) = B(:, :, 1, 3) = B(:, :, 2, 3) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

B(:, :, 2, 2) =


0 0 0 0
0 z2 0 0
0 z1 + z3 0 0
0 0 0 0

 , B(:, :, 3, 3) =


0 0 0 0
0 0 0 0
0 0 0 z2
0 0 0 0


11

and C ∈ (R(z1, z2, z3, z4))4×4×3×3 with entries

C(:, :, 1, 1) =


z1/z2 0 0 0

0 0 0 0
0 0 0 0
0 z6 0 0

 ,

C(:, :, 2, 1) = C(:, :, 1, 3) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , C(:, :, 3, 1) =


0 0 0 0
z4 0 0 0
0 0 0 0
z2 0 0 0

 ,

C(:, :, 1, 2) =


0 z3/z5 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , C(:, :, 2, 2) =


z1 + z2 + z3 0 0 0

0 0 0 0
0 0 0 0
0 z4 0 0

 ,

C(:, :, 3, 2) =


0 z2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

C(:, :, 2, 3) =


z3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 z5

 , C(:, :, 3, 3) =


z2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Using Algorithm 2, we compute Y := (C ∗2 A ∗2 B)(1) ∈ (R(z1, z2, z3, z4))(3×3)×(4×4), where

Y(:, :, 1, 1) =

0 0 0
0 −z3/(z1z22z4(z23 + z25)) 0
0 0 z3/(z1z2(z23 + z25))

 ,
Y(:, :, 2, 1) =

 z4/(z
2
2 + z24)2 0 0

z24/(z2 ∗ (z22 + z24)2) −z23/(z32z5(z22 + z24)) 0
0 0 0

 ,
Y(:, :, 3, 1) = Y(:, :, 2, 2) = Y(:, :, 3, 2) = Y(:, :, 4, 2) = Y(:, :, 1, 3) = Y(:, :, 2, 3) =

0 0 0
0 0 0
0 0 0

 ,
Y(:, :, 3, 3) = Y(:, :, 4, 3) = Y(:, :, 1, 4) = Y(:, :, 2, 4) = Y(:, :, 3, 4) =

0 0 0
0 0 0
0 0 0

 ,
Y(:, :, 4, 1) =

z2/(z22 + z24)2 0 0
z4/(z

2
2 + z24)2 −z23/(z22z4z5(z22 + z24)) 0
0 0 0

 , Y(:, :, 1, 2) =

0 0 0
0 1/(z22z4) 0
0 0 0

 ,
Y(:, :, 4, 4) =

, 0 0 0
0 −z5/(z1z22z4(z23 + z25)) 0
0 0 z5/(z1z2(z23 + z25))

 .
Now, one can verify that

� den(B)(c) · den(C ∗m A ∗n B)(c) · den (Y) (c) · den(C)(c) 6= 0,

� rshrank(C ∗2 A ∗2 B) = rshrank(B) = rshrank((C ∗2 A ∗2 B)|z!c
) = rshrank(B|z!c

) = 3, and

� rshrank(C) = rshrank(C|z!c
) = 5.

12

Therefore, taking into account Theorem 2.3 (1) and Algorithm 2, the computed outer inverse of A is equal
to

A(2)
R(B),∗ = B ∗2 (C ∗2 A ∗2 B)

(1) ∗2 C ∈ (R(z1, z2, z3, z4))(4×4)×(3×3),

with elements

(
A(2)
R(B),∗

)
(:, :, 1, 1)=


0 0 0 0
0 −z3/(z22z4(z23 + z25)) 0 0
0 − (z3(z1+z3))/(z32z4(z23 + z25)) 0 − z3/(z2(z23+z25))
0 0 0 0

,
(
A(2)
R(B),∗

)
(:, :, 2, 1) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 =
(
A(2)
R(B),∗

)
(:, :, 1, 3),

(
A(2)
R(B),∗

)
(:, :, 3, 1) =


0 1/z2 0 0
0 −z23/(z22z4z5) 0 0
0 −(z23(z1 + z3))/(z32z4z5) 0 0
0 0 0 0

 ,
(
A(2)
R(B),∗

)
(:, :, 1, 2) =


0 0 0 0
0 z3/(z2z4z5) 0 0
0 (z3(z1 + z3))/(z22z4z5) 0 0
0 0 0 0

 ,
(
A(2)
R(B),∗

)
(:, :, 2, 2)=


0 0 0 0
0 −(z3(z1 + z2 + z3))/(z1z2z4(z23 + z25)) 0 0
0 −(z3(z1 + z3)(z1 + z2 + z3))/(z1z

2
2z4(z23 + z25)) 0 (z3(z1 + z2 + z3))/(z1(z23 + z25))

0 0 0 0

 ,
(
A(2)
R(B),∗

)
(:, :, 3, 2) =


0 0 0 0
0 1/z4 0 0
0 (z1 + z3)/(z2z4) 0 0
0 0 0 0

 ,
(
A(2)
R(B),∗

)
(:, :, 2, 3) =


0 0 0 0
0 −1/(z1z2z4) 0 0
0 −(z1 + z3)/(z1z

2
2z4) 0 1/z1

0 0 0 0

 ,
(
A(2)
R(B),∗

)
(:, :, 3, 3) =


0 0 0 0
0 −z3/(z1z4(z23 + z25)) 0 0
0 −(z3(z1 + z3))/(z1z2z4(z23 + z25)) 0 (z2z3)/(z1(z23 + z25))
0 0 0 0

 .
13

Further, the outer inverse at z = c is
(
A(2)
R(B),∗

)
|x!c

=
(
B ∗2 (C ∗2 A ∗2 B)

(1) ∗2 C
)
|z!c

, where

(
A(2)
R(B),∗

)
|x!c

(:, :, 1, 1) =


0 0 0 0
0 −3/544 0 0
0 −3/272 0 3/68
0 0 0 0

 ,
(
A(2)
R(B),∗

)
|x!c

(:, :, 2, 1) =
(
A(2)
R(B),∗

)
|x!c

(:, :, 1, 3) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,
(
A(2)
R(B),∗

)
|x!c

(:, :, 3, 1) =


0 1/2 0 0
0 −9/80 0 0
0 −9/40 0 0
0 0 0 0

 ,(A(2)
R(B),∗

)
|x!c

(:, :, 1, 2) =


0 0 0 0
0 3/40 0 0
0 3/20 0 0
0 0 0 0

 ,
(
A(2)
R(B),∗

)
|x!c

(:, :, 2, 2) =


0 0 0 0
0 −9/136 0 0
0 −9/68 0 9/17
0 0 0 0

 , (A(2)
R(B),∗

)
|x!c

(:, :, 3, 2) =


0 0 0 0
0 1/4 0 0
0 1/2 0 0
0 0 0 0

 ,
(
A(2)
R(B),∗

)
|x!c

(:, :, 1, 3) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (A(2)
R(B),∗

)
|x!c

(:, :, 2, 3) =


0 0 0 0
0 −1/8 0 0
0 −1/4 0 1
0 0 0 0

 ,
(
A(2)
R(B),∗

)
|x!c

(:, :, 3, 3) =


0 0 0 0
0 −3/136 0 0
0 −3/68 0 3/117
0 0 0 0

 .

By Theorem 2.3 (1), we can verify that
(
A(2)
R(B),∗

)
|x!c

=
(
A|x!c

)(2)
R(B|x!c),∗

.

The following algorithm deals with the computation of A(2)
∗,N(C).

Algorithm 4 Computation of X := A(2)
∗,N(C).

Input: Positive integers m,n, k, l, and tensors A ∈ K(x)M(m)×N(n), B ∈ K(x)N(n)×K(k), C ∈
K(x)L(l)×M(m).

1: Compute rshrank(C ∗m A ∗n B) and rshrank(C) using Algorithm 1.
2: if rshrank(C) = rshrank(C ∗m A ∗n B) then
3: Compute Y := (C ∗m A ∗n B)(1) using Algorithm 2.
4: Compute X := B ∗k Y ∗l C.
5: return A(2)

∗,N(C) = X .
6: end if

The following example illustrates Algorithm 4.

Example 2.2. Let c = (1, 2, 3, 4), and z = (z1, z2, z3, z4) with zi 6= 0 for 1 ≤ i ≤ 4. Consider the tensor
A ∈ (R(z1, z2, z3, z4))(2×2)×(2×2) with entries

14

A(:, :, 1, 1) =

[
z3 z2
z21 1

]
, A(:, :, 2, 1) =

[
0 z2
0 z1 + z2

]
,

A(:, :, 1, 2) =

[
0 3

z1 + z2 z3 + z4

]
, A(:, :, 2, 2) =

[
0 0
z24 z1 + z3 + z4

]
.

The tensor B ∈ (R(z1, z2, z3, z4))(2×2)×(2×2) is determined by

B(:, :, 1, 1) =

[
0 z1 + z3 + z4
z2 0

]
, B(:, :, 2, 1) =

[
z4 0
0 z3

]
, B(:, :, 1, 2) =

[
0 z1
0 z21

]
, B(:, :, 2, 2) =

[
0 0
0 0

]
,

and C ∈ (R(z1, z2, z3, z4))(2×2)×(2×2) is defined as

C(:, :, 1, 1) =

[
z4 z2
0 0

]
, C(:, :, 2, 1) =

[
0 0
0 0

]
, C(:, :, 1, 2) =

[
0 0

z1 + z3 z2

]
, C(:, :, 2, 2) =

[
0 0
0 0

]
.

With the help of Algorithm 2, we compute Y := (C ∗2 A ∗2 B)(1) which entries are

Y(:, :, 1, 1) =

[
0 0
0 1

]
,Y(:, :, 2, 1) =

[
0 2
0 0

]
,

Y(:, :, 1, 2) =

[
−1/(z22z3) 0
1/(z2z3z4) −z4/z2

]
,Y(:, :, 2, 2) =

[
1/z32 −2(z1 + z3)/z2

0 0

]
.

Now, we can easily verify that

� den(B)(c) · den(C ∗m A ∗n B)(c) · den
(
(C ∗m A ∗n B)(1)

)
(c) · den(C)(c) = (z32z3z4)|z!c

= 96 6= 0,

� rshrank(C ∗2 A ∗2 B) = rshrank(C) = rshrank((C ∗2 A ∗2 B)|z!c) = rshrank(C|z!c
) = 2, and

� rshrank(B) = rshrank(B|z!c
) = 3.

Applying Agorithm 4, we evaluate the outer inverse at z = c,
(
A(2)
∗,N(C)

)
|z!c

=
(
B ∗2 (C ∗2 A ∗2 B)

(1) ∗2 C
)
|z!c

,

as follows (
A(2)
∗,N(C)

)
|z!c

(:, :, 1, 1) =

[
−1/6 0
1/12 0

]
,
(
A(2)
∗,N(C)

)
|z!c

(:, :, 2, 1) =

[
0 0
0 0

]
,(

A(2)
∗,N(C)

)
|z!c

(:, :, 1, 2) =

[
1/4 0
0 0

]
,
(
A(2)
∗,N(C)

)
|z!c

(:, :, 2, 2) =

[
0 0
0 0

]
.

This example can also be used to validate Theorem 2.3 (2), that is
(
A(2)
∗,N(C)

)
|z!c

=
(
A|z!c

)(2)
∗,N(C|x!c)

.

The computation of A(2)
R(B),N(C) is explained in Algorithm 5.

Algorithm 5 Computation of X := A(2)
R(B),N(C)

.

Input: Positive integers m,n, k, l, and tensors A ∈ K(x)M(m)×N(n), B ∈ K(x)N(n)×K(k), C ∈
K(x)L(l)×M(m).

1: Compute rshrank(C ∗m A ∗n B), rshrank(B) and rshrank(C) using Algorithm 1.
2: if rshrank(C) = rshrank(C ∗m A ∗n B) = rshrank(B) then
3: Compute Y := (C ∗m A ∗n B)(1) using Algorithm 2.
4: Compute X := B ∗k Y ∗l C.
5: return A(2)

R(B),N(C) = X .
6: end if

Algorithm 5 is used in Example 2.3 to evaluate the specialization in the outer inverse
(
A(2)
R(B),N(C)

)
|z!c

.

15

Example 2.3. Let c = (1, 2, 3, 4), and z = (z1, z2, z3, z4) with zi 6= 0 for 1 ≤ i ≤ 4. Suppose that the
input is A ∈ (R(z1, z2, z3, z4))(2×2)×(2×2) with entries

A(:, :, 1, 1) =

[
z1 z2
0 z3

]
,A(:, :, 2, 1) =

[
0 0
z3 0

]
,A(:, :, 1, 2) =

[
0 z1
0 0

]
,A(:, :, 2, 2) =

[
0 z3
0 z4

]
,

B ∈ (R(z1, z2, z3, z4))(2×2)×(2×2) with entries

B(:, :, 1, 1) =

[
z1 0
0 0

]
,B(:, :, 2, 1) =

[
0 0
0 z4

]
,B(:, :, 1, 2) =

[
z1 0
0 z3

]
,B(:, :, 2, 2) =

[
0 z3
0 0

]
,

and C ∈ (R(z1, z2, z3, z4))(2×2)×(2×2) is defined as

C(:, :, 1, 1) =

[
z4 0
0 0

]
, C(:, :, 2, 1) =

[
z3 0
z1 0

]
, C(:, :, 1, 2) =

[
0 0
z3 0

]
, C(:, :, 2, 2) =

[
z2 0
0 z1

]
.

Then, we can easily verify that rshrank(C ∗2 A ∗2 B) = rshrank(C) = rshrank(B) = 3,
rshrank((C ∗2 A ∗2 B)|z!c

) = rshrank(B|z!c
) = rshrank(C|z!c

) = 3, and

den(B)(c) · den(C ∗m A ∗n B)(c) · den
(

(C ∗m A ∗n B)(1)
)

(c) · den(C)(c) = 45 6= 0.

By Algorithm 5, we evaluate A(2)
R(B),N(C) = B ∗2 (C ∗2 A ∗2 B)

(1) ∗2 C, where

A(2)
R(B),N(C)(:, :, 1, 1) =

[
1
z1

z2
3−z2z4
z2
1z4

0 − z3
z1z4

]
,A(2)

R(B),N(C)(:, :, 2, 1) =

 z3
z1z4

z2
1z

2
4+z4

3−z2z
2
3z4

z2
1z3z

2
4

0 − z2
3

z1z2
4

 ,
A(2)
R(B),N(C)(:, :, 1, 2) =

[
0 1

z1
0 0

]
,A(2)

R(B),N(C)(:, :, 2, 2) =

[
0 − z3

z1z4
0 1

z4

]
.

Further, the outer inverse at z = c is
(
A(2)
R(B),N(C

)
|z!c

=
(
B ∗2 (C ∗2 A ∗2 B)

(1) ∗2 C
)
|z!c

, where

(
A(2)
R(B),N(C)

)
|z!c

(:, :, 1, 1) =

[
1 1/4
0 −3/4

]
,
(
A(2)
R(B),N(C)

)
|z!c

(:, :, 2, 1) =

[
3/4 25/48
0 −9/16

]
,

(
A(2)
R(B),N(C)

)
|z!c

(:, :, 1, 2) =

[
0 1
0 0

]
,
(
A(2)
R(B),N(C)

)
|z!c

(:, :, 2, 2) =

[
0 −3/4
0 1/4

]
.

Using Theorem 2.3 (3), we can verify that
(
A(2)
R(B),N(C)

)
|z!c

=
(
A|z!c

)(2)
R(B|x!c),N(C|x!c)

.

3 Computing tensor generalized inverses with functional entries

This section is devoted to the case of tensors whose entries are rational functional expressions. Let
Ω ⊂ C be a connected open subset of the field of complex numbers, and let Mer(Ω) denote the set of
all meromorphic functions over Ω. Let F = {f1(z), . . . , fp(z)} ⊂ Mer(Ω). We denote by f the p-tuple
f = (f1(z), . . . , fp(z)). We consider the field extension C(F), that is, the field containing all rational
expressions involving the elements in f . More precisely,

C(F) =

{
P (f)

Q(f)

∣∣∣∣ P,Q ∈ C[w1, . . . , wp] and Q(f) 6= 0.

}
In the sequel we fix F , and hence f .

16

Let us consider the set
C(x)m×nF = {A ∈ C(x)m×n |den(A)(f) 6= 0}.

The transformation Rat, that converts a matrix with functional elements into a matrix with entries given
as a fraction of polynomials, was proposed in [29]. It is defined as

Rat : C(F)
m×n −→ C(x)m×nF

A = (ai,j(f)) 7−→ Rat(A) = A|f!x
= (ai,j(x)),

and its inverse map is

Func : C(x)m×nF −→ C(F)m×n

A = (ai,j(x)) 7−→ Func(A) = A|x!f
= (ai,j(f)).

The following result was originated in [29] (see Section 5 in [29] for the definition of the involutory
automorphism used for meromorphic functions and for the notion of adjunction in the Moore-Penrose
inverse; see also Lemma 5.3 in [34]). But first, we recall the notion of algebraic dependence. Let K ⊂ L
be two fields, and {α1, . . . , αn} ⊂ L. {α1, . . . , αn} are called algebraically dependent over K if there
exists a non-zero polynomial P ∈ K[w1, . . . , wn] \ {0} such that P (α1, . . . , αn) = 0; otherwise, we say that
{α1, . . . , αn} are algebraically independent over K. For instance, let us consider the complex functions
F1(z) = sin(z), F2(z) = cos(z) as elements of Mer(C). Then, {F1(z), F2(z)} is algebraically dependent over
C, because taking the polynomial P (w1, w2) := w2

1 +w2
2 − 1 ∈ C[w1, w2] it holds that P (F1(z), F2(z)) = 0.

Proposition 3.1. [29] Let A ∈ C(F)m×n. If

den(Rat(A)†)(f) 6= 0,

then A† exists and
(Rat(A)†)|x!f

= A†.

In this section we extend the concepts and results for the case of tensors with functional entries. Using
the rationalization, as well as the reshape function, we discuss the symbolic computation of generalized
inverses of tensors with entries in C(F) as follows. We consider the analogous function Rati that transforms
a tensor with functional entries into another tensor with fractional elements. For this purpose, first, we
introduce the set

C(x)
M(m)×N(n)
F = {X ∈ C(x)M(m)×N(n) |den(X)(f) 6= 0}.

In general, the functions included in F could be algebraically dependent. In that case C(x)
M(m)×N(n)
F

C(x)M(m)×N(n). In this situation, the map Rati is defined as

Rati : C(F)M(m)×N(n) −→ C(x)
M(m)×N(n)
F

A = (ai(m),j(n)(f)) 7−→ Rati(A) = A|f!x
= (ai(m),j(n)(x)).

Clearly, the transformation Spec (see Subsection 2.3) is not invertible. On the other hand, the rationaliza-
tion transformation Rati is invertible. More precisely, the inverse mapping, termed as functionalization, is
defined as:

Functi : C(x)
M(m)×N(n)
F −→ C(F)M(m)×N(n)

A = (ai(m),j(n)(x)) 7−→ Functi(A) = A|x!f
= (ai(m),j(n)(f)).

Note that
∀A ∈ C(F)

M(m)×N(n)
F ,Rati(Functi(A)) = A.

Summarizing, the maps introduced above provide the commutative diagram

C(F)M×N
Rat−−−−−→←−−−−−
Func

C(x)M×NF

rshF

x
xrshx

C(F)M(m)×N(n)
Rati−−−−−→←−−−−−−
Functi

C(x)
M(m)×N(n)
F .

17

Note that, in (2.2), the map rsh was introduced for an arbitrary field K. Here, since we are dealing with
two different fields, mainly C(F) and C(x), we use, respectively, the notation rshF and rshx to distinguish
between them. The following result follows immediately from the previous diagram.

Proposition 3.2. Let A ∈ C(F)M(m)×N(n), and A ∈ C(x)M×NF . It holds:

(1) rshx(Rati(A)) = Rat(rshF (A)).

(2) rsh−1F (Func(A)) = Functi(rsh−1x (A)).

Using the commutativity of the diagram above, or equivalently, Proposition 3.2, we conclude the fol-
lowing result.

Corollary 3.1. If A ∈ C(F)M(m)×N(n), then A(1) 6= ∅.

Proof. Let M = Func(rshx(Rati(A)))) ∈ C(F)M×N. Since C(F) is a field, by Lemma 2.1 in [33], we know
that M (1) exists. Now, the result follows applying rsh−1F and Lemma 2.1.

Lemma 3.1 improves the results of Proposition 3.1 and Corollary 3.1, and will be applied to prove
Theorem 3.1.

Lemma 3.1. Let A ∈ C(F)M(m)×N(n), with x = (x1, . . . , xp), and let f = (f1(z), . . . , fp(z)). If an inner
inverse A(1) satisfies

den(A)(f) den(A(1))(f) 6= 0,

then

(1) (A(1))|f!x
=
(
A|f!x

)(1)
.

(2)
(
(A(1))|f!x

)
|x!f

= A(1).

Proof. Statement (1) can be verified similarly as in Lemma 2.3. In order to prove (2), we rewrite the

statement as Rati(A(1)) = (Rati(A))
(1)

. So, taking the inverse of Rati, we get

A(1) = Functi(Rat(A(1))) = Functi((Rati(A))(1)) =
(

(A(1))|f!x

)
|x!f

.

Using Theorem 2.1, and the previous results, the following result can be proved.

Theorem 3.1. Let A ∈ C(F)M(m)×N(n), B ∈ C(F)N(n)×K(k), C ∈ C(F)L(l)×M(m) be such that

den(Rati(A))(f) · den(Rati(B))(f) · den(Rati(C ∗m A ∗n B)(1)))(f) · den(Rati(C))(f) 6= 0. (3.1)

Let X = B ∗k (C ∗m A ∗n B)(1) ∗l C. Then, it holds that

(1) If rshrank(C ∗m A ∗n B) = rshrank(B), and rshrank(Rati(C ∗m A ∗n B)) = rshrank(Rati(B)), then

X =

(
(A|f!x

)
(2)

R(B|f!x),∗

)
|x!f

= A(2)
R(B),∗.

(2) If rshrank(C ∗m A ∗n B) = rshrank(C) and rshrank(Rati(C ∗m A ∗n B)) = rshrank(Rati(C)), then

X =

(
(A|f!x

)
(2)

∗,N(C|f!x)

)
|x!f

= A(2)
∗,N(C).

18

(3) If rshrank(C ∗m A ∗n B) = rshrank(B) = rshrank(C) and rshrank(Rati(C ∗m A ∗n B)) = rshrank(Rati(B)) =
rshrank(Rati(C)), then

X =

(
(A|f!x

)
(2)

R(B|f!x),N(C|f!x)

)
|x!f

= A(2)
R(B),N(C).

(4) If rshrank(C ∗m A ∗n B) = rshrank(B) = rshrank(C) = rshrank(A) and rshrank(Rati(C ∗m A ∗n B)) =
rshrank(Rati(B)) = rshrank(Rati(C)) = rshrank(Rati(A)), then

X =

(
(A|f!x

)
(1,2)

R(B|f!x),N(C|f!x)

)
|x!f

= A(1,2)
R(B),N(C).

Proof. We prove statement (3). The other cases follow similarly. Since rshrank(C ∗m A ∗n B) = rshrank(B) =
rshrank(C), by Theorem 2.1, we get that

X = A(2)
R(B),N(C).

On the other hand, since rshrank(Rati(C ∗m A ∗n B)) = rshrank(Rati(B)) = rshrank(Rati(C)), by Theorem
2.1, one has that

Rati(B) ∗k (Rati(C) ∗m Rati(A) ∗n Rati(B))(1) ∗l Rati(C) = (Rati(A))
(2)
R(Rati(B)),N(Rati(C)).

By Lemma 3.1, we have that

Rati(B) ∗k Rati((C ∗m A ∗n B)(1)) ∗l Rati(C) = (Rati(A))
(2)
R(Rati(B)),N(Rati(C)).

Hence
X = Rati(B ∗k (C ∗m A ∗n B)(1) ∗l C) = (Rati(A))

(2)
R(Rati(B)),N(Rati(C)).

Applying the inverse function Functi we get

X = Functi
(

(Rati(A))
(2)
R(Rati(B)),N(Rati(C))

)
=

(
(A|f!x

)
(2)

R(B|f!x),N(C|f!x)

)
|x!f

.

This concludes the proof.

As a consequence of Theorem 3.1, we derive Algorithm 6, that computes outer inverses of tensors with
rational functional entries. The main idea of the algorithm is based on the fact that the specialization and
functionalization are inverse operations. Moreover, symbolic computation on rational entries of unknown
variables is much simpler than the analogous computation with rational entries involving functions. So
Algorithm 6 is based on three main steps:

� replace each new function by a new variable,

� perform necessary computations on matrices with rational expressions, and

� replace unknown variables in the result obtained in the previous step by their original functional pair.

The detailed algorithm is given as follows.

Algorithm 6 Computation of outer inverses of tensors with functional entries.

Input: Subset F = {f1(z), . . . , fp(z)} ⊂ Mer(Ω) of self-adjoint functions, and A ∈ C(F)M(m)×N(n),
B ∈ C(F)N(n)×K(k), C ∈ C(F)L(l)×M(m).

1: Compute A = rsh(A), B = rsh(B), C = rsh(C).
2: Compute Y := Rat(B) (Rat(C)Rat(A)Rat(B))

(1)
Rat(C) using, for instance, Algorithm 5.

3: Set X = Y|x!f
.

4: Compute X = rsh−1(X).

5: Return X = A(2)
R(B),N(C).

19

Example 3.1. Let A = (aijkl) ∈ (C(F))(2×2)×(2×2) with entries

aij11 =

[
0 i sin(z)

cos(z)+i sin(z)

0 0

]
, aij12 =

[
0 0
0 0

]
, aij21 =

[
0 0

cos(z) sin(z)+i sin(z)
cos(z)+i sin(z) 0

]
, aij22 =

[
i sin(z)

cos(z)−i sin(z) 0

0 0

]
,

in conjunction with the tensors B = (bijkl) ∈ (C(F))(2×2)×(2×2) with entries

bij11 =

[
0 i sin(z)

cos(z)+i sin(z)

0 0

]
, bij12 =

[
0 0
0 0

]
= bij22, bij21 =

[
i sin(z)

cos(z)−i sin(z) 0

0 i sin(z)
cos(z)−i sin(z)

]
,

and C = (cijkl) ∈ (C(F))(2×2)×(2×2) with entries

cij11 =

[
i sin(z)

cos(z)+i sin(z) 0
cos(z) sin(z)+i sin(z)

cos(z)−i sin(z) 0

]
, cij12 =

[
0 iez

cos(z)+i sin(z)

0 0

]
, cij21 =

[
0 0
0 0

]
= cij22.

For the computation of the inner inverse in Step 2 of Algorithm 6, we will use the Moore-Penrose
approach. For this purpose, we observe that the functions appearing in the example are self-adjoint (see
Def. 7 in [29]).

After the replacement f ! x, given by {cos(z)→ x1, sin(z)→ x2, e
z → x3} we obtain the tensors

Rati(A), Rati(B), and Rati(C) with rational entries, respectively:

Rati(aij11) =

[
0 ix2

x1+ix2

0 0

]
, Rati(aij12) =

[
0 0
0 0

]
, Rati(aij21) =

[
0 0

x1x2+ix2

x1+ix2
0

]
,Rati(aij22) =

[
ix2

x1−ix2
0

0 0

]
,

Rati(bij11) =

[
0 ix2

x1+ix2

0 0

]
, Rati(bij12) =

[
0 0
0 0

]
= Rati(bij22), Rati(bij21) =

[ix2

x1−ix2
0

0 ix2

x1−ix2

]
,

and

Rati(cij11) =

[ix2

x1+ix2
0

x1x2+ix2

x1−ix2
0

]
, Rati(cij12) =

[
0 ix3

x1+ix2

0 0

]
, Rati(cij21) =

[
0 0
0 0

]
= Rati(cij22).

Now Y := Rati(B) ∗k (Rati(C) ∗m Rati(A) ∗n Rati(B))
† ∗l Rati(C) is defined by the entries

yij11 =

−(x2(x
2
1+2)(x2+ix1))

(x2
1x

2
2+2x2

2+x2
3)

0

0
−(x2(x

2
1+2)(x2+ix1))

(x2
1x

2
2+2x2

2+x2
3)

 , yij21 =

[
0 0
0 0

]
= yij22,

yij12 =

 −(x2
3(ix1−x2))

(x2
1x

3
2+2x3

2+x2x2
3)

0

0
−(x2

3(ix1−x2))

(x2
1x

3
2+2x3

2+x2x2
3)

 .
One can verify that X = Y|x!f

which entries are

xij11 =

[−(sin(z)(sin(z)+i cos(z))(cos(z)2+2))
(e2z+2 sin(z)2+cos(z)2 sin(z)2) 0

0 −(sin(z)(sin(z)+i cos(z))(cos(z)2+2))
(e2z+2 sin(z)2+cos(z)2 sin(z)2)

]
, xij21 =

[
0 0
0 0

]
= xij22,

xij12 =

[−(e2z(i cos(z)−sin(z)))
(2 sin(z)3+e2z sin(z)+cos(z)2 sin(z)3) 0

0 −(e2z(i cos(z)−sin(z)))
(2 sin(z)3+e2z sin(z)+cos(z)2 sin(z)3)

]
.

The condition (3.1) is satisfied, which implies that X = Y|x!f
= B ∗k (C ∗m A ∗n B)† ∗l C.

20

4 Conclusion

We investigate outer generalized inverses, with prescribed range and null space, of tensors with rational
function entries equipped with the Einstein product over an arbitrary field of characteristic zero. The in-
volved tensor entries are defined as either rational entries of unassigned variables or as rational expressions
with functional entries. Properties of generalized inverses with appropriate replacements, termed as spe-
cialization, rationalization, and functionalization are considered. The research investigates replacements
in two stages. The lower-stage replacements assume replacements of unknown variables by constant values
from the field. The higher-order stage assumes replacements of functional entries by unknown variables.
This replacement is invertible, and enables the simplification of the computation of tensor generalized in-
verses, over meromorphic functions, by the analogous calculations on matrices whose elements are rational
functions. Derived algorithms are designed for computing the tensor generalized inverses over an arbitrary
field, of characteristic zero, symbolically. Several numerical examples worked out to validate the results in
the matrix, and in the tensor case.

Possible further research includes mainly the following topics.

1. Solve tensor equations required to find the inner inverses (C ∗m A ∗n B)(1).

(a) One possibility is to use the Recurrent Neural Network (RNN) approach to solve the tensor
equations by generalizing the algorithms developed in [35], from the matrix to the tensor case.
Such possibility is supported by the recent application of neural network techniques to solving
the Sylvester tensor equation in [22].

(b) Another approach is to use the possibility of symbolic software packages in order to solve the
required tensor equations symbolically.

(c) A third possibility is the application of iterative algorithms for solving some tensor equations
proposed in [41].

2. Develop an effective algorithm for computing outer tensor inverses using the (tensor and matrix) QR
decomposition.

3. Our goal is to consider symbolic entries as time-varying functions, which enables the development
of the corresponding applicable algorithms on time-varying tensors. Then, it would be possible to
compute tensor generalized inverses using dynamical systems and RNN methods.

4. It is interesting to study weighted generalized inverses of tensors [4, 14, 19].

Acknowledgement: Predrag Stanimirović and Dijana Mosić are supported from the Ministry of Educa-
tion and Science of Republic of Serbia, Grants No. 174013/451-03-68/2020-14/200124 and 174007/451-03-
68/2020-14/200124.
Ratikanta Behera is supported from the Mohapatra Family Foundation and the College of Graduate Stud-
ies, University of Central Florida, Orlando.
J.R. Sendra and J. Sendra are partially supported by the Spanish Ministerio de Economı́a y Competitivi-
dad, and by the European Regional Development Fund (ERDF), under the Project MTM2017-88796-P. A.
Lastra and J.R. Sendra are members of the Research Group ASYNACS (Ref.CT-CE2019/683).
Alberto Lastra is partially supported by the project PID2019-105621GB-I00 of Ministerio de Ciencia e In-
novación. A. Lastra and J. R. Sendra also partially supported by Comunidad de Madrid and Universidad
de Alcalá under grant CM/JIN/2019-010.

References

[1] R. Behera, D. Mishra, Further results on generalized inverses of tensors via the Einstein product,
Linear and Multilinear Algebra 65 (2017), 1662–1682.

21

[2] R. Behera, A.K. Nandi, J.K. Sahoo, Further results on the Drazin inverse of even-order tensors,
Numerical Linear Algebra with Applications (2020), 27:e2317. https://doi.org/10.1002/nla.2317.

[3] M. Brazell, N. Li, C. Navasca, and C. Tamon, Solving multilinear systems via tensor inversion, SIAM
Journal of Matrix Analysis and Applications 34 (2013), 542–570.

[4] R. Behera, S. Maji, and R. N. Mohapatra, Weighted Moore–Penrose inverses of arbitrary-order tensors.
Computational and Applied Mathematics 39.4 (2020): 1–34

[5] C. Bu, Y.P. Wei, L. Sun, J. Zhou, Brualdi-type eigenvalue inclusion sets of tensors, Linear Algebra
and its Applications 480 (2015), 168–175.

[6] J. Caravantes, J.R. Sendra, J. Sendra, A Maple package for the symbolic computation of Drazin inverse
matrices with multivariate transcendental functions entries, In: Gerhard J., Kotsireas I. (eds) Maple
in Mathematics Education and Research. Communications in Computer and Information Science,
Springer Nature Switzerland AG 2020 vol 1125 pp. 1–15, 2020. https://doi.org/10.1007/978-3-030-
41258-6 12.

[7] K.C. Chang, K. Pearson, T. Zhang, Primitivity, the convergence of the NQZ method, and the largest
eigenvalue for nonnegative tensors SIAM Journal on Matrix Analysis and Applications 32(3) (2011),
806–819.

[8] M. Che, C. Bu, L. Qi, Y. Wei, Nonnegative tensors revisited: plane stochastic tensors, Linear and
Multilinear Algebra, https://doi.org/10.1080/03081087.2018.1453469.

[9] M. Che, L. Qi, Y. Wei, Perturbation bounds of tensor eigenvalue and singular value problems with
even order, Linear and Multilinear Algebra 64 (2016), 622–652.

[10] Y. Chen, L., Qi, X. Zhang, The fielder vector of a Laplacian tensor for hypergraph partitioning, SIAM
Journal on Scientific Computing 39(6) (2017), A2508–A2537.

[11] J. Cooper, A. Dutle, Spectra of uniform hypergraphs, Linear Algebra and its Applications 436 (2012),
3268–3292.

[12] H. Du, B. Wang, H. Ma, Perturbation theory for core and core-EP Inverses of tensor via Einstein
product, Filomat 33 (2019), 5207–5217.

[13] S. Huang, G. Zhao, M. Chen, Tensor extreme learning design via generalized Moore-Penrose inverse
and triangular type-2 fuzzy sets, Neural Computing and Applications 31 (2019), 5641—-5651.

[14] J. Ji, Y. Wei, Weighted Moore-Penrose inverses and the fundamental theorem of even-order tensors
with Einstein product, Frontiers of Mathematics in China 12 (2017), 1317–1337.

[15] J. Ji, Y. Wei, The Drazin inverse of an even-order tensor and its application to singular tensor
equations, Computers & Mathematics with Applications 75(9) (2018), 3402–3413.

[16] J. Ji, Y. Wei, The outer generalized inverse of an even-order tensor with the Einstein product through
the matrix unfolding and tensor folding, Electronic Journal of Linear Algebra 36 (2020), 599–615.

[17] H. Jin, M. Bai, J. Beńıtez, X. Liu, The generalized inverses of tensors and an application to linear
models, Computers & Mathematics with Applications 74 (2017), 385–397.

[18] P.M. Kroonenberg, Applied Multiway Data Analysis, New York: Wiley-Interscience, 2008.

[19] D. Mosić, .S. Stanimirović, J.K. Sahoo, R. Behera, V. N. Katsikis, One-sided weighted outer
inverses of tensors, Journal of Computational and Applied Mathematics 388 (2021) 113293,
https://doi.org/10.1016/j.cam.2020.113293.

[20] M. Liang, B. Zheng, Further results on Moore-Penrose inverses of tensors with application to tensor
nearness problems, Computers & Mathematics with Applications 77 (2019), 1282–1293.

[21] M. Liang, B. Zheng, R. Zhao, Tensor inversion and its application to the tensor equations with Einstein
product Linear and Multilinear Algebra 67 (2019), 843–870.

[22] S. Min, L. Jing, Noise-tolerant continuous-time Zhang neural networks for time-varying Sylvester
tensor equations, Advances in Difference Equations (2019), 2019:465.

22

[23] K. Panigrahy, D. Mishra, On reverse-order law of tensors and its application to additive results on
Moore-Penrose inverse, Computers & Mathematics with Applications 77 (2019), 1282–1293.

[24] L. Qi, H. Chen, Y. Chen, Tensor eigenvalues and their applications, Advances in Mechanics and
Mathematics 39. Singapore: Springer, 2018.

[25] L. Qi, L. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Philadelphia: SIAM, 2017.

[26] J. Sahoo, R. Behera, P. Stanimirović, V. Katsikis, H. Ma, Core and core-EP inverses of tensors,
Computational and Applied Mathematics 39 (2020), Article 9.

[27] J.K. Sahoo, R. Behera, P.S. Stanimirović, V.N. Katsikis, Computation of outer inverses of ten-
sors using the QR decomposition, Computational and Applied Mathematics 39(199) (2020), DOI:
10.1007/s40314-020-01225-4.

[28] J.R. Sendra, J. Sendra, Symbolic computation of Drazin inverses by specializations, Journal of Com-
putational and Applied Mathematics 301 (2016), 201–212.

[29] J.R. Sendra, J. Sendra, Computation of Moore-Penrose generalized inverses of matrices with mero-
morphic function entries, Applied Mathematics and Computation 313 (2017), 355–366.

[30] J.R. Sendra, J. Sendra, Gröbner basis computation of Drazin inverses with multivariate rational func-
tion entries, Journal of Computational and Applied Mathematics 259 (2015), 450–459.

[31] N.D. Sidiropoulos, L.D. Lathauwer, X. Fu, K. Huang, E.E. Papalexakis, C. Faloutsos, Tensor decom-
position for signal processing and machine learning, IEEE Transactions on Signal Processing 65(13)
(2017), 3551–3582.

[32] P.S. Stanimirović, M, Ćirić, V.N. Katsikis, C. Li, H. Ma, Outer and (b, c) inverses of tensors, Linear
and Multilinear Algebra 68 (2020), 940–971.

[33] P. S. Stanimirović, M. Ćirić, A. Lastra, J.R. Sendra, J. Sendra. Representations and geometrical
properties of generalized inverses over fields. Linear and Multilinear Algebra (in press).

[34] P. S. Stanimirović, M. Ćirić, A. Lastra, J.R. Sendra, J. Sendra. Representations and symbolic compu-
tation of generalized inverses over fields. Applied Mathematics and Computation (in press).

[35] P.S. Stanimirović, M. Ćirić, I. Stojanović, D. Gerontitis, Conditions for existence, representations and
computation of matrix generalized inverses, Complexity, Volume 2017, Article ID 6429725, 27 pages,
https://doi.org/10.1155/2017/6429725.

[36] P.S. Stanimirović, V.N. Katsikis, D. Pappas, Computing {2, 4} and {2, 3}-inverses by using the
Sherman-Morrison formula, Applied Mathematics and Computation 273 (2016), 584–603.

[37] L. Sun, B. Zheng, C. Bu, Y. Wei, Moore-Penrose inverse of tensors via Einstein product, Linear and
Multilinear Algebra 64 (2016), 686–698.

[38] L. Sun, B. Zheng, Y. Wei, C. Bu, Generalized inverses of tensors via a general product of tensors,
Frontiers of Mathematics in China 13 (2018), 893–911.

[39] N.S. Urquhart, Computation of generalized inverse matrices which satisfy specified conditions, SIAM
Review 10 (1968), 216–218.

[40] B. Wang, H. Du, H. Ma, Perturbation bounds for DMP and CMP inverses of tensors via Einstein
product, Computational and Applied Mathematics 39 (2020), Article 28.

[41] Q.-W. Wang, X. Xu, Iterative algorithms for solving some tensor equations, Linear and Multilinear
Algebra 67 (2019), 1325–1349.

[42] B.F. Wyman, M.K. Sain, G. Conte, A.M. Perdon, Poles and zeros of matrices of rational functions,
Linear Algebra and its Applications 157 (1991), 113–139.

23

