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«Los locos abren los caminos
que mds tarde recorren los sabios. »
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Resumen

Esta tesis doctoral se centra en el desarrollo de nuevos algoritmos de cartografiado de dreas
quemadas empleando sensores activos y pasivos de resolucion espacial media. Asi, la
finalidad de la presente tesis es que los nuevos métodos desarrollados permitan reducir las
incertidumbres actuales acerca de cudnta superficie es quemada anualmente en la Tierra.
Actualmente, esta es estimada empleando imégenes Opticas de baja resolucién espacial,
que tienen limitaciones en zonas con una alta nubosidad, asi como al cartografiar incendios
pequeiios, menores a 100 hectareas. Dichas limitaciones se solventan en la presente tesis al
incluir imdgenes radar y al combinar estas con Opticas, todas ellas de resolucion espacial
media, tomadas desde los satélites de la Agencia Espacial Europea (ESA) Sentinel-1 y
Sentinel-2. La tesis se estructura en ocho capitulos.

En el primer capitulo se hace referencia a la importancia del fuego, tanto a escala
global como regional, resaltando la necesidad de poder disponer de productos de drea
quemada exactos para gestionar ecosistemas, monitorizar emisiones de gases de efecto in-
vernadero (GEI) o modelar la vegetacion. Desde sus inicios, la teledeteccion ha sido una
fuente de informacion de gran valor para generar dichos productos, asi, se explican los
principios fisicos que permiten cartografiar el drea quemada empleando datos de telede-
teccion. De forma complementaria, se incluye el estado del arte en cartografiado de dreas
quemadas a través de imagenes Opticas, radar y la combinacién de ambas. Finalmente se
presenta la hipdtesis, la motivacion y los objetivos de la tesis.

En el segundo capitulo se aborda la generacion de un algoritmo de cartografiado de
area quemada basado en imagenes Sentinel-1 del coeficiente de retro-dispersion de banda
C. Este aplica el detector Reed-Xiaoli (RXD) para distinguir cambios andmalos en el co-
eficiente de retro-dispersion, que se vinculan a incendios mediante el uso de anomalias
térmicas adquiridas durante el periodo de deteccioén por sensores térmicos. Cuando las
anomalias térmicas no estuvieron disponibles, se utilizé un clasificador de aprendizaje
automatico (random forests) para detectar areas quemadas. Los perimetros de drea que-
mada derivados de imagenes Opticas (Landsat-8 y Sentinel-2) se utilizaron para validar
los resultados del algoritmo en 21 millones de hectareas distribuidas en 18 ubicaciones
globalmente repartidas, que representan los principales biomas afectados por incendios.
Se calcul6 un coeficiente de Dice (DC) medio sobre todas las ubicaciones estudiadas de
0.59+0.06 (& intervalo de confianza, 95%), mientras que los errores de omisién (OE)
y comision (CE) medios fueron de 0.43+0.08 y 0.37£0.06, respectivamente. Al com-
parar la exactitud lograda con la del producto global de drea quemada mas empleado, el
MCD64A1, el algoritmo propuesto mejord el DC en 0.13 mediante una reduccién de los
errores de omision y comisioén de 0.12 y 0.06, respectivamente. En el tercer capitulo se
analiza la relacion entre la exactitud del cartografiado y el tiempo de computacién nece-
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sario para el algoritmo basado en RXD, descrito en el capitulo dos, en diferentes tamafios
de pixeles (20, 30, 40 y 50 m). El andlisis se realiz6 en seis dreas de estudio distribuidas
globalmente. Los resultados sugieren diferencias marginales en la exactitud al variar el
tamano de pixeles, detectindose mapas ligeramente més exactos al emplear espaciados
mayores al de la resolucién nominal de Sentinel-1 (20 m). No obstante, el tiempo de
computacion fue considerablemente mayor conforme el espaciado entre pixeles era mas
detallado. Asi, las imdgenes con un espaciado entre pixeles de 30 a 50 m proporcionan la
relacion tiempo-exactitud mas idonea.

En el cuarto capitulo se analizan los factores que pueden influir en la exactitud del
cartografiado del drea quemada. El enfoque principal de andlisis, fue el proceso de decor-
relacion temporal observado durante el desarrollo del algoritmo. La decorrelacién tem-
poral se refiere a que las diferencias temporales entre los valores del coeficiente de retro-
dispersion previo y posterior al incendio pueden no ocurrir inmediatamente trascurrida
la combustion de la vegetacion. Diferentes variables ambientales que pueden influir en
la retro-dispersion, incluida la severidad del incendio, la recuperacion de la vegetacion
posterior al incendio, el contenido de agua del suelo y la vegetacion, la pendiente y la
orientacion topogréfica fueron analizadas. Se utiliz6 un clasificador de random forests
para estimar la importancia de estas variables en el proceso de decorrelacion temporal. El
andlisis mostré que mas del 32% de los pixeles quemados ubicados en el drea estudiada
se vieron afectados por la decorrelacion temporal, siendo la severidad del fuego, el con-
tenido de agua de la vegetacion y la humedad del suelo, sus principales impulsores. Sin
embargo, cuando se detectaron dreas quemadas mucho después del incendio, el contenido
de agua tanto del suelo como de la vegetacion fue el principal causante de los cambios en
el coeficiente de retro-dispersion.

En el quinto capitulo se aborda una comparativa entre algoritmos de cartografiado
de dreas quemadas, dos basados en imagenes radar (Sentinel-1) y uno basado en 6pticas
(Sentinel-2). El andlisis se llevo a cabo en diez dreas de estudio (10 millones de ha) en
Africa. Los algoritmos se basaron en diversas estrategias de cartografiado y datos (reflec-
tividad de superficie, coherencia interferométrica y coeficiente de retro-dispersion, siendo
este ultimo el presentado en el segundo capitulo). Para validar los mapas, se utilizaron
perimetros de referencia derivados independientemente de imdgenes Opticas (Landsat 8 y
Sentinel-2). Al considerar todas las dreas de estudio, el algoritmo basado en datos opticos
proporcioné un aumento significativo de la exactitud en comparacion con los basados en
el radar, aunque este podria haber sido impulsado por el uso de los mismos datos 6pticos
al generar los perimetros de referencia que al cartografiar el area quemada. No obstante,
el andlisis sugiri6 que los algoritmos basados en imagenes Opticas proporcionan un incre-
mento significativo en la exactitud sobre los algoritmos basados en radar. Sin embargo,
en las regiones donde la nubosidad es més persistente, los algoritmos basados en radar
ofrecen una valiosa fuente de datos, siendo los mapas basados en el coeficiente de retro-
dispersion de mayor exactitud.

En el sexto capitulo se presenta un andlisis exhaustivo sobre el uso de redes neuronales
convolucionales (CNN) para la deteccion y cartografiado de dreas quemadas. Las CNN
son un método de aprendizaje profundo (Deep learning) ampliamente aplicado en estudios
recientes basados en teledeteccion. Las CNN se han utilizado en este capitulo para car-
tografiar dreas quemadas empleando imédgenes radar (Sentinel-1), 6pticas (Sentinel-2) y la
combinacion de ambas. Para ello, fueron consideradas diez areas de estudio distribuidas
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globalmente, de las cuales, cinco se emplearon para hallar la combinacién 6ptima de los
modelos ajustando la dimensiéon més apropiada para la extraccion de atributos de clasifi-
cacion de la imagen, la normalizacion de los datos y el niimero de capas ocultas incluidas
en la red. Por otro lado, las cinco dreas restantes se emplearon para llevar a cabo una
validacién independiente de los modelos 6ptimos. Tanto la dimensién como la normal-
izacién de datos 6ptima fueron condicionadas por la clase de cobertura del suelo y el tipo
de sensor (6ptico o radar), mientras que el nimero de capas ocultas s6lo condicioné el
tiempo de computacion sin mejorar la exactitud del cartografiado. Con la combinacién
de imagenes radar y Opticas se permiti6 cartografiar las dreas quemadas con una exactitud
similar e incluso ligeramente superior a la observada en enfoques anteriores realizados en
el programa Fire_cci basados tanto en Sentinel-1 (DC 0.57) como en Sentinel-2 (DC 0.7)
y eliminar vacios de informacién debido a la presencia de nubes que afecta a los mapas
basados Unicamente en sensores pasivos.

En el séptimo capitulo, dada la diferencia de exactitud entre los datos radar y Opti-
cos al cartografiar dreas quemadas, proporcionando los segundos tipos de datos unos ma-
pas mds exactos. Se evaluaron diferentes indices temporales basados en el coeficiente de
retro-dispersion, para asi comprender su idoneidad al cartografiar 4reas quemadas y poder
mejorar los algoritmos de cartografiado basados en imdgenes radar en trabajos futuros.
El anélisis se llevo a cabo utilizando el clasificador anteriormente citado, random forests,
para estimar la importancia de cada indice al cartografiar areas quemadas. Dependiendo
del tipo de cobertura del suelo, la humedad y las condiciones topogréficas, se observaron
diferencias notables entre los indices temporales del coeficiente de retro-dispersion.

En el octavo y ultimo capitulo, se incluyen las conclusiones finales derivadas de toda
la investigacidn que se ha desarrollado en esta tesis doctoral. Se describen los principales
hallazgos de la misma, asi como las limitaciones encontradas. Asimismo, se incluyen las
futuras lineas de investigacion que pueden ayudar a mejorar el cartografiado global de
areas quemadas empleando, tanto imdgenes radar como la combinacién de estas con las
opticas.
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Abstract

This doctoral thesis focuses on the development of new algorithms for burned area map-
ping using active and passive sensors of medium spatial resolution. Such algorithms shall
allow reducing current uncertainties on areas affected by fire every year at global level.
Currently, global burned area is estimated from low spatial resolution optical images,
which have limitations in areas with high cloud cover, as well as when mapping small
fires (i.e., less than 100 hectares). The developed algorithms reduce such limitations by
using radar images and by combining radar and optical datasets acquired at medium spa-
tial resolution by the European Space Agency (ESA) satellites Sentinel-1 and Sentinel-2.
The thesis is structured in eight chapters.

The first chapter describes the importance of fire at global and regional level, and
highlighting the need for accurate burned area products for a range of application including
ecosystem management, GHGs emissions monitoring and vegetation modelling. Since its
inception, remote sensing has been a highly valuable source of information for burned
area detection and monitoring. Therefore, the physical principles on which burned area
mapping is achieved through using remote sensing data are also explained and related to
the state-of-the-art when mapping burned areas through optical images, radar images, and
their combination. Finally, the hypothesis, motivation, and objectives of the thesis are
presented.

In the second chapter, a burned area mapping algorithm based on C-band Sentinel-1
imagery is discussed. The algorithm applies the Reed-Xiaoli detector (RXD) to distin-
guish anomalous changes of the backscatter coefficient. Such changes are linked to fires
events through spatially and temporally coincident thermal anomalies acquired by ancil-
lary sensors. For periods with no thermal anomalies, a machine learning classifier, random
forests, was used to detect the burned areas. Burned area perimeters derived from optical
images (Landsat-8 and Sentinel-2) were used to validate the algorithm over 21 million
hectares distributed worldwide in 18 locations that represent the main biomes affected by
fires. The mean Dice coefficient (DC) was calculated over all the 18 locations revealed a
burned area mapping accuracy of 0.59+0.06 ( confidence interval, 95%), with the mean
errors of omission (OE) and commission (CE) reaching 0.434+0.08 and 0.3740.06, re-
spectively. The results were compared with those provided by the most widely used global
burned area product, the MCD64A1. The proposed algorithm improved, on average, the
DC by 0.13 by reducing OE (0.12) and CE (0.06).

In the third chapter, and the relationship between mapping accuracy and computing
time needed for the RXD-based algorithm, described in chapter two, was analysed for
different pixel spacings (i.e., 20, 30, 40 and 50 m). The analysis was carried out in six
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globally distributed study areas. The results suggest marginal differences in accuracy when
varying the pixel spacing, with slightly more accurate maps being obtained using higher
spacings when compared to the nominal of Sentinel-1 spatial resolution (20 m). However,
the computing time was considerably higher at low pixel spacing with images between
30-50 m providing the optimum trade-off between accuracy and computing time.

In the fourth chapter, factors that may influence the burned area mapping accuracy
were analysed. The main focus of the analysis was the temporal decorrelation process,
observed during algorithm development. The temporal decorrelation refers to the tempo-
ral difference between the observed post-fire backscatter coefficient change in regard to
the time of change which may occur long after the vegetation combustion. In this chap-
ter, different environmental variables that may influence radar scattering were analysed
including, fire severity, post-fire vegetation recovery, soil, and vegetation water content,
slope and topographic aspect. A random forests classifier was used to estimate the impor-
tance of these variables for the temporal decorrelation process. The analysis showed that
over than 32% of the burned pixels located in the studied area were affected by temporal
decorrelation, with fire severity, vegetation water content and soil moisture being its main
drivers. However, when burned areas were detected long after fire, soil and the vegetation
water content of both were the most important drivers behind the observed changes of the
backscatter coefficient.

The fifth chapter addresses the comparison between two burned area mapping al-
gorithms based on radar images (Sentinel-1) and one based on optical (Sentinel-2). The
analysis was carried out over ten study areas (10 million ha) in Africa. The algorithms
were based on different mapping strategies and datasets (surface reflectivity, interferomet-
ric coherence and backscatter coefficient, the latter being presented in the second chap-
ter). The maps were validated through reference perimeters derived independently from
optical images (Landsat 8 and Sentinel-2). When considering all study areas, the optical
data-based algorithm provided a significant increase in accuracy compared to radar-based
ones. However, this may have been driven by the use of the same optical datasets when
generating the reference fire perimeters (i.e., Sentinel-2). Nevertheless, the analysis sug-
gested that optical image-based algorithms provide a significant increase in accuracy over
radar-based algorithms. However, in regions with persistent cloud cover, the radar-based
algorithms offered a valuable source of information, with radar-based detections being
more accurate.

In the sixth chapter, a comprehensive analysis of the use of convolutional neural
networks (CNN) for burned areas detection and mapping is presented. CNN is a Deep
Learning method widely applied in recent remote sensing studies. CNN were used to de-
velop a seamless burned area mapping algorithm that includes radar (Sentinel-1), optical
(Sentinel-2) and radar-optical datasets. Ten globally distributed study areas were consid-
ered. Five areas were used to establish the optimum dimensionality for feature extraction
(i.e., 1D or 2D, data normalisation and the number of hidden layers). The remaining five
areas were used to carry out an independent validation of the optimal models. Both the
dimension and the optimal data normalisation were conditioned by land cover class and
the senor type (optical or radar). The number of hidden layers only influenced the com-
putation time without any improvements in the mapping accuracy being observed. The
combination of radar and optical images allowed mapping burned areas with similar, or
slightly higher accuracies when compared to those achieved in previous approaches devel-
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oped within the Fire_cci program and based on both Sentinel-1 (DC 0.57) or Sentinel-2
(DC 0.7) datasets. Furthermore, the combined radar-optic approach eliminated informa-
tion gaps due to the presence of clouds which affect detections based on passive sensors
alone.

In the seventh chapter, given the difference in accuracies between radar and optical
data when mapping burned areas, various backscatter coeflicient based temporal indices
were evaluated to understand their suitability for burned areas mapping. The analysis
was carried out to understand how radar-based burned area mapping algorithms may be
improved in future work. The analysis is carried out using the random forests classifier,
and the importance of each radar-based index is assessed when mapping burned areas.
Depending on the land cover type, soil moisture, and topographic conditions, notable dif-
ferences were observed between the temporal backscatter-based indices.

In the eighth and last chapter, the conclusions derived from all research carried out
within this doctoral thesis are resumed. The main findings, as well as the limitations found,
are described as well as future lines of research that may help improving global mapping
of burned areas from radar datasets and the combination of radar and optical datasets.
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Chapter

Introduction

his chapter introduces the research topic, fires, and describes its effects from regional

to global levels highlighting, at the same time, the need for accurate burned area map-

ping products for a range of application from ecosystem management, to GHGs emissions

monitoring and vegetation modelling. The chapter focuses on remote sensing technolo-

gies as a tool for obtaining highly valuable information for burned area detection, map-

ping and monitoring. The physical principles underpinning burned area mapping from

remote sensing data are briefly explained and related to the state-of-the-art satellite-based

fire monitoring from optical and radar sensors as well as their joint use. The hypothesis,
motivation, and objectives of this thesis are presented.
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1.1 Fire impacts on the Earth system

Fire has been present since the Silurian period, around 420 million years ago (Scott &
Glasspool, 2006), shaping terrestrial ecosystems as a natural selection agent (Pyne, 1982;
Pausas & Paula, 2012). This presence resulted in species developing fire-adaptation strate-
gies. For instance, in the Mediterranean climates, Pinus halepensis have serotinous cones
that open after fire events to release the stored seeds (Goubitz et al., 2002; Lotan, 1976).
In contrast, in dry and cold climates such as the Boreal, fire has a determinant ecological
role by recycling organic matter and consequently, increasing soil nutrient concentration
(DeBano et al., 1998; Harden et al., 2004).

Fire regimes, defined by frequency, size, intensity, seasonality, type and severity
(Flannigan et al., 2000), have suffered oscillations mainly due to climate variations (Mar-
lon et al., 2013). However, as humanity developed and began to manage territories, fire
regimes changes were driven by social and economic needs (Chuvieco et al., 2019). Nowa-
days, main fire-affected areas are those where a marked dry season can be found such as
African and Australian savannas, Mediterranean ecosystems, grasslands of Central Asia
and boreal forests or America and Asia (Lizundia-Loiola et al., 2020; Chuvieco et al.,
2016). However, there is uncertainty about the area which is burned each year globally,
estimated at 4 to 4.5 million km? (Giglio et al., 2018; Lizundia-Loiola et al., 2020). Hu-
man activity is behind most of these fires. For instance, in Mediterranean environments,
estimations relate up to 90% of fires to human activities (Vilar et al., 2016).

Human-induced processes have unbalanced the natural fire regimes. On the one hand,
the population density increment and the expansion of the agricultural fields in savannas
and grasslands have generated a global reduction of burned area over the past two decades
(Arora & Melton, 2018; Andela et al., 2017). On the other hand, the occurrence of mega-
fires (> 10000 ha) has increased, mainly as a result of a high occurrence of severe droughts
(Stephens et al., 2014), a common consequence of climate change in many territories. A
recent example is the unprecedented burned area in Australia during the summer of 2019-
2020, where up to 21% of Temperate forested areas were burned, far from the historical
average of 5% (Boer et al., 2020). These kinds of events have catastrophic consequences
over society since may cause human fatalities, casualties and evacuations, especially when
it occurs under heat waves and drought conditions, in which fire propagation is faster
(Bowman et al., 2017; Tedim et al., 2020). Ecosystem services also suffer the fire effects
through a loss of natural resources (e.g., wood), reducing tourism and recreation activities
appealing, destroying properties as well as local agriculture production (Chuvieco et al.,
2010; Diaz, 2012). Furthermore, fire impact on air quality may cause an increment of
people mortality, particularly among those with previous respiratory pathologies (Reid
etal., 2016; Kochi et al., 2016). Besides, such an unbalancing may incur regional to global
environmental effects such as changes in soil fertility and water supply, loss of biodiversity,
or the increment of atmospheric greenhouse gases (GHGs) as the vegetation sequestrated
carbon is burned (Hansen et al., 2013; Van der Werf et al., 2010; Aponte et al., 2016;
Bond et al., 2005; Lavorel et al., 2007; Pausas & Paula, 2012; Hoffmann et al., 2002). In
consequence, global biochemical GHGs cycles, aerosols released into the atmosphere (Van
Der Werf et al., 2017; Andreae & Merlet, 2001; Bowman et al., 2009) and the radiative
energy balance (Jin & Roy, 2005; Bowman et al., 2009; Van Der Werf et al., 2017) may be
modified. For instance, an increment of fire activity in Boreal latitudes has been evidenced
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as the cause of changes in albedo and snow in Greenland (Evangeliou et al., 2019). While
different temperature-response to fires has been found depending on the latitudes, having
net cooling and warming effects in Boreal and Tropical areas, respectively (Liu et al.,
2019). Fires may result in an Earth cooling due to a negative radiative forcing induced by
the emitted aerosols into the atmosphere (Ward et al., 2012). In contrast, carbon emissions
from fires may accelerate current global warming (Westerling et al., 2006), which in turn
may progressively reinforce the role of fires on climate change (Flannigan et al., 2006;
Langenfelds et al., 2002). Such opposite effects suggest a limited understanding of fire-
induced impacts on the global climate (Liu et al., 2019; Krawchuk et al., 2009).

Given the relevance of fire effects on climate and environments, the Global Climate
Observing System (GCOS) considers fire disturbance as an Essential Climatic Variable
(ECV). According to Bojinski et al. (2014), “an ECV is a physical, biological, chemical
or a group of connected variables capable of modifying the climate system”. Through
the Climate Change Initiative (CCI) programme of the European Space Agency (ESA),
Earth observation datasets are being used to provide climate modellers with as products of
many ECV’s (Hollmann et al., 2013). Fire has been present in the CCI programme since its
beginning in 2010 providing valuable knowledge as long-term time series of global burned
area and new methods about burned area mapping (Chuvieco et al., 2018). The necessity
of more accurate products of burned area capable of reducing current uncertainties when
monitoring the fire-induced climate impacts was a main driving factor behind the project
(Mouillot et al., 2014; Poulter et al., 2015).

1.2 Applications of burned area maps

There is an undeniable necessity of providing governments, users and scientists with
burned area products. According to Mouillot et al. (2014), the main applications of such
information include:

» Ecosystem management, since fire is considered a natural hazard, and consequently,
the authorities of most of the countries make considerable efforts to extinguish it.
Analysing the ignition, propagation and origin (i.e., climatic or human) of past fire
events is needed to expand the fire-behaviour knowledge and build fire-propagation
models. Such models need burned area products for development and calibration
purposes (Filippi et al., 2014). Long time-series of burned area products are also
valuable when analysing and defining fire regimes and their changes (Chang et al.,
2008).

* Atmospheric fire-emissions, which are commonly estimated considering the burned
area, fuel load, burning efficiency and emission factors using the approach proposed
by Seiler & Crutzen (1980). Such an approach is the basis of the Global Fire Emis-
sions Database (GFED) (Van der Werf et al., 2010), which has been widely used
since its release when modelling the climate (Van Der Werf et al., 2017).

* Vegetation modelling, which takes into account the fluxes of energy, water and car-
bon between biosphere and atmosphere to estimate the patterns which vegetation
will follow (Sitch et al., 2003; Mouillot et al., 2014). Given the dynamic charac-
teristic of these models, fire size, shape and orientation are essential inputs and
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are included through burned area products (Abatzoglou et al., 2018; Laurent et al.,
2018).

1.3 Earth observation role in burned area mapping

Measurements provided from field campaigns have high value when studying environ-
mental issues as fires. However, repeat field-based assessments over large areas is limited
by high costs and scaling issues. Few are the countries in which it is possible to find re-
liable statistics about fires (Chuvieco et al., 2020). Besides, field measurements may also
be limited by the reduced access of some fire scars, particularly in steep terrain or high
latitudes (Chuvieco, 2020). Additional access limitations may arise due to wars, political
instability, restricted mobility. For instance, while these lines are written, the world is un-
der the pandemic effects of the COVID-19. In order to reduce virus spread, most countries
have limited people mobility, including research field campaigns.

Fortunately, since its beginning in the 1970s with the Landsat programme, Earth ob-
servation from spaceborne sensors provide a reliable source of information for burned
area mapping and fire monitoring (Chuvieco et al., 2019, 2020). Currently, several Earth
observation satellites belonging to different agencies such as NASA (National Aeronautics
and Space Administration), ESA (European Space Agency), JAXA (Japanese Aerospace
Exploration Agency), CNES (Centre National D’Etudes Spatiales), INTA (Instituto Na-
cional de Técnica Aeroespacial), as well as private companies like Deimos, Planet or Dig-
italGlobe, are orbiting the Earth providing valuable information in the form of remotely
sensed imagery. Furthermore, some agencies (e.g., NASA and ESA) provide the satellite
data in near-real-time and under a free-data access policy.

The specific objective to achieve conditions the suitability of each Earth observation
dataset. There are substantial differences among sensors aboard satellites which can be
grouped into four resolutions:

* Radiometric, which defines the potential range in which the measurements (i.e.,
pixel values) are recorded. A clearer distinction between the captured elements is
possible by increasing the radiometric resolution.

» Temporal, which depends on the revisit period of the satellite, i.e., the frequency in
which a given sensor aboard a satellite can record data in a specific location.

* Spatial, which refers to the minimum separation between the recorded surface ele-
ments (pixels) on Earth’s surface.

» Spectral, related to the separation and the number of electromagnetic spectrum
bands in which the sensors acquired the datasets (Figure 1.1).

Generally, the higher the resolution considered, the higher the quality obtained. How-
ever, an increase in any resolution may limit one or more of the remaining resolution
parameters of the sensor. Therefore, the most appropriate sensor, for a specific goal, is
related to the application requirements. For instance, mapping burned area using 20 m spa-
tial resolution imagery provides more accurate results than when using 500 m imagery.
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However, the latter data required less computing and storage capacity, essential to consider
when dealing with global approaches. Nevertheless, ever-improving processing hardware
and new cloud-based processing services such as Google Earth Engine (GEE) or Amazon
Web Services (AWS) facilitate massive processing amounts of data reducing such limita-
tions. These improvements are essential to take advantage of the current medium spatial
resolution sensors such as the C-band synthetic aperture radar (SAR) and the MultiSpectral
Instrument (MSI) aboard on the ESA’s Sentinel-1 and Sentinel-2 satellites respectively,
used in this PhD thesis (see section 1.6 and section 1.7).

1.4 Principles of remote sensing-based fire monitoring

Earth observation from remote sensing uses the electromagnetic radiation recorded by
sensors onboard satellites in different spectral regions (Figure 1.1). Such sensors provide
valuable information about the Earth’s surface as the electromagnetic radiation interacts
differently with materials and environmental phenomena (e.g., fires) depending on the
wavelength observed.
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Figure 1.1: Electromagnetic spectrum (apadpted from Chuvieco (2020)).

Most Earth observation satellites have near-polar orbits around 700 km above the
Earth surface. The radiation recorded by such sensors cross once the atmosphere when it
is recorded the Earth’s emitted energy, and twice when the energy is emitted outside the
Earth, by the Sun or the sensor itself (i.e., active sensor). Since the presence of GHSs such
as HoO, CO29, CHy, and O3 limits the atmospheric energy transmission, Earth observation
is limited to spectral ranges where the absorption is low (Figure 1.2).

In the following sections, the main domains of the electromagnetic spectrum where
Earth observation remote sensing operates (i.e., optical domain, middle and thermal in-
frared and microwaves) along with the physics principles on which burned area mapping
is based, are explained for each spectrum domain considered in this PhD thesis.
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Figure 1.2: Atmospheric transmission and main gas absorption per wavelengths (adapted from
NASA’s Earth observatory).

1.4.1 Optical domain

Most remote sensing-based fire monitoring approaches have been based on the optical
spectral domain which includes radiation from (i) the visible (i.e., blue: 0.4-0.5 pm, green:
0.5-0.6 um and red: 0.6-0.7 um), (ii) the near-infrared (NIR: 0.7-1.2 pm), and (iii) short-
wave infrared (SWIR: 1.2-2.5 um) regions of the electromagnetic spectrum (Figure 1.1).
Sensors which record these wavelengths are passive, which means they measure the radi-
ation emitted from external sources. In the optical domain, sensors record the radiation
emitted by the Sun and reflected on Earth’s surface towards sensors onboard satellites with
the reflected energy being only a fraction of the incoming radiation (Equation 1.1).

Li=L,+ Lo+ Ly (1.1)

where L; is the incoming radiance (W m~2 sr— 1) while r, a and ¢ refers to the reflected,
absorbed and transmitted energy, respectively. In remote sensing such measurements are
used in relative terms (Equation 1.2).

Li Lr La Lt

L 12
L L L L (1.2

which frequently are represented as (Equation 1.3):
l=p+a+rT (1.3)

where p, o and 7 refers to the reflected, absorbed and transmitted energy, which depends
on the observed surface and wavelength (A) as (Equation 1.4):

I=prxtax+7 (1.4)

The optical region, and particularly NIR and SWIR wavelengths, are the most suit-
able for burned area mapping due to the sensitivity to fire-induced changes on vegetation,
i.e., reduction of leaves chlorophyll content and vegetation water content which result in
decreasing NIR values and increasing SWIR values (Pereira, 1999; Garcia & Caselles,
1991; Stroppiana et al., 2003; Gao, 1996). In contrast, visible wavelengths were found
less sensitive when mapping burned area (Pereira et al., 1997).

As the optical radiation passes through the atmosphere, it is being scattered and at-
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tenuated before reaching the spaceborne sensors. Hence, the recorded radiance (L?) is
influenced by the Earth’s atmosphere (Equation 1.5).

LS = L%y [pd y [ps (1.5)

where su surface reflectance and unscattered by the atmosphere, pd atmospherically scat-
tered and reflected to back to Earth (and vice versa), and ps reflectance uniquely scattered
in the atmosphere.

A further factor affecting surface reflectance values in the optical domain is the to-
pography, particularly in steep areas as the local incidence angle of solar radiation as well
as the slope orientation modulates reflectance values. Indeed, burned area mapping accu-
racy from optical data has been improved when atmospheric and topographic corrections
were considered (Said et al., 2015; Gitas & Devereux, 2006).

1.4.2 Middle and thermal infrared regions

The middle (MIR: 1.2-8 um) and thermal (TIR: 8-14 pum) regions of the electromagnetic
spectrum lay between the solar domain and the energy emitted by the Earth itself. From
the MIR region onward the recorded signal is dependent on the temperature of the Earth
surface, hence the name thermal, according to Planck’s law, which refers to blackbodies
(perfect radiators). However, the terrestrial Earth surface is formed by different materials
(i.e., not blackbodies). Therefore, emissivity plays a crucial role in thermal remote sensing
approaches and needs to be estimated (Valor & Caselles, 1996).

In burned area mapping, the MIR bands have shown potential due to sensitivity to
the scattering effects of aerosols, whose presence is associated with biomass combustion.
However, the mixture of Sun reflected radiation and Earth emitted radiation has limited
the use of MIR bands (Libonati et al., 2010, 2015; Pereira, 1999). The TIR bands have
also been used for recent mapping fires. However, several factors have restricted the use
of thermal wavelengths for burned areas mapping including: (i) the cooling process of
burned areas after fire extinction; and (ii) the coarse spatial resolution of the thermal sen-
sors restricted the (Hawbaker et al., 2017, 2008). Despite such limitations, both TIR and
MIR spectral regions are widely employed to generate valuable ancillary datasets, such
as thermal anomalies (hotspots) that are associated with active fires, and thus frequently
used in burned area mapping from a range of sensors (Schroeder et al., 2014; Giglio et al.,
2003). In particular, the MIR region has been useful when detecting active fires due to
the higher emittance of fires in such spectral-domain when compared to the non-fire back-
ground (Chuvieco, 2020). As for the optical wavelengths, the radiation emitted by Earth’s
surface is also affected by the atmosphere and particularly by GHGs gasses. However,
such atmospheric modulation is weak at these wavelengths and thus have marginal effects
on active fires monitoring (Barducci et al., 2002).

1.4.3 Microwaves

The microwave domain is formed by radiation with longer wavelengths, ranging from 1
mm to 1 m. The main advantage of microwave sensors in remote sensing is the indepen-
dence of atmospheric conditions, including clouds. Earth emits energy in the microwave
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wavelengths per se. Such energy is recorded by satellite sensors, known as passives mi-
crowave sensors, and widely used to estimate soil moisture or ocean salinity (Colliander
et al., 2017; Saleh et al., 2004). However, such sensors are not suited for fire monitoring
due to Earth’s low emittance, which translates into very low spatial resolutions (tens of
km). However, microwaves from active sensors, such as synthetic aperture radars (SAR)
which emit and record the reflected radiation, have been used when mapping burned areas
mainly due to microwaves independence of cloud cover and solar illumination (Bourgeau-
Chavez et al., 2002; French et al., 1999).

SAR sensors can emit energy in the microwave domain. The energy is absorbed,
transmitted, and reflected by the Earth surface. The amount of radiation which returns to
the sensor is known as backscatter and has two components, phase and amplitude. The
phase, which measures the difference of cycles between the emitted and returned waves
from O to 27. The phase is associated with the distance between the surface and sensor.
The application of the phase information is based on combining two near-simultaneous
measurements from slightly different observation geometries. The recorded phase differ-
ences are related to the three-dimensional position of the scattering elements and thus used
to derive topographic and displacement information. A by-product of the phase combina-
tion is the interferometric coherence which provides information on the degree of correla-
tion between the two radar images combined. Previous remote sensing-based approaches
for fire monitoring have considered the interferometric coherence due to its ability to pro-
vide information on the biophysical properties of land classes (Liew et al., 1999; Tanase
et al., 2010b). The coherence is given by the correlation of the two images in a range 0
(low) to 1 (high). The amplitude, which measures the energy scattered back to the sensor
(Ps) from the incident (Pi) as shown in Equation 1.6 (Small, 2011).

p = Ps/P; (1.6)

The absence of defined target edges when monitoring Earth’s surface involves comput-
ing the backscatter coefficient, which represents the backscatter () per reference area
(Equation 1.7) (Emery & Camps, 2017).

BY=B/Az (1.7)

where Ag is the reference area without considering any Earth model (Raney et al., 1994).
In contrast to 50, there are 0¥ and 70 which both consider an ellipsoidal Earth model when
estimating A. Nevertheless, ¥ (Equation 1.8) does not take into account the topography
effects assuming a flat Earth while the opposite is true for 7* (Equation 1.9).

o = 8% x sin6; (1.8)
7" = B x tanb; (1.9)

where 0; is the incidence angle (Figure 1.3).

As in most radar-based remote sensing approaches focused on fire monitoring, in this
PhD thesis, the backscatter coefficient has been considered since it requires fewer compu-
tational resources than interferometric coherence. From the radar backscatter conventions,
the 7¥ nought was chosen due to its benefits in steep and flat areas (Small et al., 2009).
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a)

Figure 1.3: Incidence angles (6;) when assuming a flat Earth (a) and considering topography (b).

Fire events may result in variations of the backscatter coeflicient variation as veg-
etation scattering elements (e.g., leaves, branches) are consumed by fire, thus reducing
the scattering potential of vegetated areas (Van Zyl, 1993; Antikidis et al., 1998). Such
variations may increase or decrease the backscatter coefficient values when compared to
pre-fire records. SAR sensitivity to fire effects depends on several factors related to sensor
characteristics, including:

* Frequency, which influences the waves-penetration capability into vegetated areas.
Microwaves frequencies are grouped in bands. For SAR sensors aboard satellites
the most common frequencies, from less to higher penetration potential, are X (2.5-
3.75 cm; 12-8 GHz), C (3.75-7.5 cm; 8-4 GHz), S (7.5-15 cm; 4-2 GHz), and L
(15-30 cm; 2-1 GHz).

* Polarisation, which determines the microwaves propagation orientation in the elec-
tromagnetic field. Co-polarised waves are transmitted and received in the same ori-
entation, i.e., horizontal-horizontal (HH) or vertical-vertical (VV), while for cross-
polarised waves, the energy return at the antenna is measured for the opposite ori-
entation, i.e., vertical-horizontal (VH) or horizontal-vertical (HV). Cross-polarised
waves are more suitable when monitoring vegetation changes as scattering from
vegetation is mostly volumetric (Freeman & Durden, 1998; Yamaguchi et al., 2005;
Van Zyl et al., 2011).

Other factors may affect the backscattered values, including:

* Soil moisture content, which modifies the dielectric constant and consequently the
radar scattering

* Soil roughness, which may modify the waves reflection direction and consequently
the backscatter coefficient. Generally, increases in soil roughness reduce specular
reflection, thus increased the amount of energy returned to the sensor. In burned
areas, the reduction of vegetated scattering elements increases scattering from the
ground, thus enhancing then effects related to soil moisture and roughness when
compared to fire-unaffected areas (Imperatore et al., 2017; Gimeno & San-Miguel-
Ayanz, 2004; Ruecker & Siegert, 2000; Tanase et al., 2010a).

* Topography, which also influences the scattering process by modulating the energy
returned to the sensor depending on the orientation and slope. Smaller local in-
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cidence angles (LIA) tend to provide a better distinction of burned areas, particu-
larly for co-polarised waves (Gimeno & San-Miguel-Ayanz, 2004; Huang & Siegert,
2006; Tanase et al., 2010a). Moreover, over steep areas, the radar’s slant-range ob-
servation geometry may generate additional effects including (a) foreshortening,
i.e., spatial compression between targets, (b) layover where the relief appears as in-
verted due to radar beams reflected from mountain peaks reaching the sensor faster
when compared to the mountain base, and (c) shadowed regions were, due to the
steep relief between, radar beams are not able to reach.

Hence, over burned areas, a vast range of backscatter behaviour may occur due to
the mentioned factors, which makes more difficult differentiating burned areas from fire-
unrelated changes when using radar datasets (Huang & Siegert, 2006). In addition, the
radar imagery is affected by the mutual interference of the coherent wavefronts, which
results in “salt and pepper” aspect (speckle) of the SAR images (Ryerson et al., 1998).
A common technique to reduce the presence of speckle is generating a multi-look image
where, through a convolution process, the values of each pixel are averaged, thus im-
proving image radiometric properties at the expense of the spatial resolution (Bruniquel
& Lopes, 1997). When using temporal-series, speckle reduction can also be achieved
through multi-temporal filtering, which allow preserving the original spatial resolution
(Quegan et al., 2000).

1.5 Remote sensing-based burned area products

Remote sensing for burned area mapping is an active research field where many new algo-
rithms and techniques are developed as a consequence of the general necessity for accurate
burned area products (see section 1.2) and as a consequence of the ever-increasing Earth
observation imagery available (Humber et al., 2018; Chuvieco et al., 2019). Since 1972,
when the first studies on burned area mapping from space sensors became available, over
4800 studies relating fire and remote sensing were released with an increasing and pro-
gressive trend being observed in the last years (Chuvieco et al., 2020). In the following
section, the most relevant satellite remote sensing for burned area mapping are reviewed.
The review is divided into three main sections according to the type of sensors used.

1.5.1 Optical

Optical imagery is from far the most common datasets used when mapping burned areas
both at global and regional scales. Globally, datasets derived from the NASA’s Moder-
ate Resolution Imaging Spectrometer (MODIS) sensor onboard satellites Terra and Aqua
are the most used, in part due to their twenty years of uninterrupted service (Terra since
1999 and Aqua since 2002). Among MODIS based products, the MCD45 (Roy et al.,
2008), the MCD64 (Giglio et al., 2009, 2018) the Fire_cci v5.0 (Chuvieco et al., 2018)
and v5.1 (Lizundia-Loiola et al., 2020) are the most known. The first two products are
based on the 500 m spatial resolution bands with the latter two being based on the 250 m
bands. Despite its lower spatial resolution, the MCD64 is the global product most used
and the unique generated operatively currently (Chuvieco et al., 2020). Nevertheless, to
date, the Fire_cci v5.1 covers years 2001 to 2019, more than its previous version, the
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Fire_cci v5.0 (2001 - 2017) and the MCD45 (2000 - 2017). The VEGETATION sen-
sor onboard SPOT-4 and -5 (Satellite Pour Observation de la Terre), developed by the
CNES, was also used for burned area mapping within global products such as the Global
Burnt Area (GBA) 2000 (Tansey et al., 2004), the Globcarbon, which also included im-
agery ATSR (Plummer et al., 2006), the L3JRC (Tansey et al., 2008) and the Copernicus
GIO_GL1_BA (Tansey et al., 2008). The latter product switched to PROBA V imagery
in 2014 land.copernicus.eu/global/products/ba), and is the only one which is currently up-
dated. In addition, recent efforts were made to generate long-time series (1982 to 2017)
of burned area information using the advanced very high-resolution radiometer (AVHRR)
sensor, despite its coarse spatial resolution of 5 km (Otén et al., 2019). As for the use
of European sensors, the Globscar (Simon et al., 2004) and the Fire_cci v4.1 products
were based on the European Remote Sensing Satellite - Advanced Along Track Scanning
Radiometer (ERS2-ATSR?2) and the Envisat MEdium Resolution Imaging Spectrometer
(MERIS), respectively.

The main limiting factor of all the sensors considered on global approaches has been
their coarse spatial resolution (>=250 m), which limits small size (< 100 ha) fires detection
and mapping (Roteta et al., 2019; Randerson et al., 2012; Stroppiana et al., 2015). Regional
products based on optical medium spatial resolution sensors are increasingly developed to
cope with such limitations. For instance, in the US, the Landsat Burned Area Essential Cli-
mate Variable project mapped fire patches over four hectares from Landsat imagery from
1984 to now (Hawbaker et al., 2017) (https://www.mtbs.gov/). Similar projects focused
on burned area mapping at national levels were carried out for Portugal (Oliveira et al.,
2012) or Greece (Tompoulidou et al., 2016). At continental scales, burned area products
from medium resolution satellite imagery are currently being developed. In this context,
a new burned area product, based on Sentinel-2 imagery at 20 m pixel spacing, was re-
cently released for Africa in the framework of the ESA’s fire_cci project (FireCCISFD11)
(Roteta et al., 2019).

Apart from products generated and released under operational frameworks, compre-
hensive research and activity are focused on developing new methods based on optical
imagery of medium as well as coarse spatial resolution sensors to provide more accurate
burned area maps. Such methods aim to combine datasets from different optical sensors
(Roy et al., 2019), applying genetic programming (Cabral et al., 2018) and using machine
learning algorithms such as random forests (Jakimow et al., 2018; Ramo & Chuvieco,
2017) and support vector machines (SVM) (Santos et al., 2019). More recently, the ap-
plication of deep learning methods like convolutional neural networks (CNN) is becom-
ing more frequent when mapping burned areas (Pinto et al., 2020, 2019; Knopp, 2019;
Gargiulo et al., 2019) as a consequence of its massive implementation in others remote
sensing-based applications in the recent years (Zhu et al., 2017). Despite these improve-
ments, optical-based approaches are limited over areas frequently affected by clouds like
the inter-tropical and boreal latitudes.

1.5.2 Radar

SAR images have been progressively used for mapping burned area as new sensors have
become available due to their high-medium spatial resolution as well as potential to cope
the main limitation of optical datasets, the null energy transmission through clouds within
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the optical domain.

The SAR sensors onboard the European Remote Sensing (ERS) satellites ERS-1 and
ERS-2 were used for burned areas mapping in boreal (Bourgeau-Chavez et al., 1997; Ka-
sischke et al., 1994; Jenkins et al., 2014) and tropical ecosystems (Siegert & Hoffmann,
2000; Siegert & Ruecker, 2000; Ruecker & Siegert, 2000) with some studies also available
for the Mediterranean ecosystems (Gimeno et al., 2004, 2002). The launch of RADARSAT
and ALOS - PALSAR (Advanced Land Observation Satellite Phased Array type L-band
Synthetic Aperture Radar) by the Canadian Space Agency and JAXA, respectively, in-
creased the interest in burned areas mapping (Gimeno & San-Miguel-Ayanz, 2004; French
et al., 1999; Polychronaki et al., 2013; Plank et al., 2019) from SAR sensors. However,
these datasets had considerable shortcomings related to their low temporal resolution, co-
polarised imagery, reduced incidence angles, data access restrictions, high temporal revisit
times or not systematic acquisition plans.

Since 2014 with the launch of Sentinel-1 A (and B in 2015) such limitations were
reduced. Sentinel-1 sensors have more precise orbital information and provide dual-
polarised images (VV and VH) through more appropriate incidence angles for vegetation
monitoring. In addition, the Sentinel-1 revisit period is down to three days when com-
bining ascending and descending satellite passes from both satellites while access to data
is provided free of cost. Taking advantage of such sensors, novel burned area mapping
approaches have been developed at regional scales (Engelbrecht et al., 2017; Lohberger
et al., 2018; Ban et al., 2020) with global the development of continental to global scale
products being hindered by the different effect of fires on the backscattered energy with
the ecosystem type (Huang & Siegert, 2006).

1.5.3 Optical and radar integration

Mapping burned areas from combined optical and radar datasets, although in its early
stage, is rapidly emerging as a new research field in remote sensing. Few examples could
be found in the literature before the launch of Sentinel-1 and Sentinel-2 sensors with
older approaches being based on Landsat-5 TM and the C-band ENVISAT ASAR sen-
sors (Stroppiana et al., 2015). Such studies were carried out over a few ecosystem types,
1.e., the Mediterranean, where the radar contribution to the detection and mapping process
is reduced as cloud-presence is low.

Once Sentinel-1 and Sentinel-2 datasets became available, more studies on SAR-
optical data integration emerged. To date, such studies are still scarce. Moreover, their
findings were inconsistent as some researchers suggest no gains from such approaches
(Brown et al., 2018) while others concluded that SAR-optical integration might reduce
limitations related to each sensor type (Verhegghen et al., 2016). In addition, the few
studies carried out were developed and tested over reduced study areas which limit their
findings and conclusions.
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1.6 Hypothesis

Given (i) the high atmospheric transmission in the microwave region and the C-band SAR
sensitivity to vegetation change, (ii) the suitability of the optical domain of the electromag-
netic spectrum to fire monitoring, and (iii) the current context, in which the entire Earth is
regularly imaged with both radar and optical sensors at medium spatial resolution and with
a high frequency by the latest generation sensors onboard the ESA’s satellite Sentinel-1
and Sentinel-2, this PhD thesis presents the following hypothesis:

The use of SAR data, as well as the SAR-optical integration, may improve the ac-
curacy of mapping burned areas when compared to previous approaches based on most
older SAR sensors or that of current global products based on low spatial resolution images
(>250 m), especially in areas with frequent cloud cover.

1.7 Motivation and objectives

Despite efforts to provide accurate burned area maps from Earth observation datasets, the
uncertainty of global burns is still high (Chuvieco et al., 2019). Medium spatial resolu-
tion optical-based datasets have already been demonstrated as an essential data-source to
provide more accurate burned area maps (Roteta et al., 2019). However, atmospheric con-
ditions limit their potential. Radar imagery may solve optical limitation, and radar-optical
synergies may provide better results when compared to single sensor-based approaches.
To date, few attempts have taken advantage of radar and radar-optical data integration. The
current context, in which the European Copernicus programme is offering vast amounts
of high-quality datasets imaged with both radar and optical remote sensing sensors (i.e.,
Sentinel-1 and Sentinel-2, respectively) brings an unprecedented opportunity to develop
new algorithms for burned area mapping at medium spatial resolution and high temporal
frequency.

These reasons have motivated this PhD thesis, whose aim was developing algorithms
for burned areas mapping, applicable over all fire-prone biomes, based on radar time series
as well as joint radar-optical datasets. In order to achieve this aim, the following specific
objectives were pursued:

1. Algorithm theoretical framework development: analysis of C-band radar imagery
strengths and limitations for burned areas mapping, including hybrid approaches
based on radar and optical datasets.

2. Appraise the factors influencing mapping accuracy from radar images: environmen-
tal factors may alter the accuracy of burned area mapping products by modifying
backscatter or optical reflectivity. Their effect needs to be assessed to reduce map-
ping uncertainties.

3. Radar and optical synergy analysis: explored the optimum combination strategy
between optical and radar dataset when mapping burned. This combination can be
before detection or later.
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4. Validation: mapping algorithms need independent validation over a range of condi-
tions related to ecosystem types and fire regime to analyse strengths and limitations
related to the input datasets.

5. The relevance of the proposed algorithms: comparisons of the mapping accuracy
with regard to existing operational products are essential to understand the signifi-
cance of the work carried out.
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Chapter 2

Burned area detection using backscatter
coeflicient

his chapter describes a proposed burned area mapping algorithm based on change de-
tection of Sentinel-1 C-band backscatter coefficient. The algorithm applies the Reed-
Xiaoli detector (RXD) to distinguish anomalous changes of the backscatter coefficient.
Such changes are linked to fire events derived from thermal anomalies (hotspots) available
as ancillary data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and
the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. The algorithm automat-
ically adapts to the local radar scattering conditions, and it is robust to variations of the
input datasets. Land cover maps are used to account for changing backscatter behaviour
as the RXD-based algorithm is land cover class dependent. A machine learning classifier
(random forests) is used to detect burned areas where hotspot data are not available.

Burned area perimeters derived from optical images (Landsat-8 and Sentinel-2) are
used to validate the algorithm with the validation dataset covering over 21 million hectares
distributed between 18 locations representing the main biomes affected by fires, from bo-
real forests to tropical and sub-tropical forests and savannas.

Algorithm validation results suggest improved mapping accuracy when compared to
the MODIS based MCD64A1 Version 6 global products with a mean Dice coefficient (DC)
of 0.59+0.06 (+ confidence interval, 95%), mean omission (OE) of 0.43+0.08 and mean
commission errors (CE) of 0.37£0.06. The improvements over the MCD64A1 product
are promising as the DC increased on average by 0.13 by reducing the OE and CE by 0.12
and 0.06, respectively.

This chapter is based on the article:

Belenguer-Plomer, M.A., Tanase, M.A., Fernandez-Carrillo, A., and Chuvieco, E. (2019).
Burned area detection and mapping using Sentinel-1 backscatter coefficient and thermal
anomalies. Remote Sensing of Environment, 233, 111345.
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2.1 Introduction

Fire is one of the natural agents that most alter terrestrial ecosystems and has a key eco-
logical role in large part of the Earth’s surface. Fires may have local to global effects as
they reduce soil fertility, change water supply, increase biodiversity loss and negatively
influence carbon sequestration (Hoffmann et al., 2002; Van der Werf et al., 2010; Hansen
et al., 2013; Bond et al., 2005; Aponte et al., 2016; Pausas & Paula, 2012; Lavorel et al.,
2007). Fires may also alter global biochemical cycles by modifying the emitted green-
house gases (GHGs) and aerosols presence in the atmosphere (Van Der Werf et al., 2017;
Andreae & Merlet, 2001; Bowman et al., 2009). Annual global estimates of carbon emis-
sions from forest fires are quite variable. Van der Werf et al. (2010) place them between
1.6 and 2.8 PgC per year, which is equivalent to 20 to 30% of the global carbon emissions
generated by burning fossil fuels (Kloster et al., 2012; Flannigan et al., 2009). However,
other authors estimate fire-related emissions at 2 to 4 PgC per year, the equivalent of up
to 50% of fossil fuel emissions (Bowman et al., 2009). Regardless of the actual value,
changes in global burned area (BA) remains an important source of interannual variability
of atmospheric carbon concentration. Direct relationships between global warming and
the frequency of fires at the global level imply a positive feedback process with sufficient
potential to be a key factor in climate change (Flannigan et al., 2009; Hoffmann et al.,
2002; Knorr et al., 2016). Although the current understanding of all these interactions is
limited (Krawchuk et al., 2009), increased carbon concentration in the atmosphere may
reinforce the effect of climate on fire frequency and intensity (Langenfelds et al., 2002;
Flannigan et al., 2006). Such increases are spatially variable. Furthermore, some areas
may not experience changes with respect to current fire regimes, while others may even
experience reduced fire occurrence (Flannigan et al., 2009; Kloster et al., 2012; Andela
et al., 2017).

Given the relationship between the fire regime and climate, the Global Climate Ob-
serving System (GCOS) considers fire as an Essential Climatic Variable (ECV). An ECV
is a physical, chemical, biological or a group of linked variables that contributes in a crit-
ical way to the characterisation of the climate system, being key to study and predict its
evolution (Bojinski et al., 2014). The origin of ECVss dates back to the 1990s, when gaps
in climate knowledge and the reduction of observation networks in many countries led
GCOS to develop the ECV concept to simplify the study of climate through systematic
observations of a limited set of variables with great climatic importance using satellite
remote sensing data (Hollmann et al., 2013; Bradley et al., 2012). In 2010, the European
Space Agency (ESA) started the Climate Change Initiative (CCI) programme as the main
contribution of the Agency to the GCOS agenda. The CCI programme aims to obtain
information on different ECVs using remote sensing data to help improving climate mod-
elling (Plummer et al., 2017; Hollmann et al., 2013). Fire Disturbance is one of the ECV
included in the first phase of the CCI programme initiated in 2010. The goals of this project
were to produce long-term and consistent time series of global BA information (Chuvieco
et al., 2016). The interest of global BA products for climate modelling has been reviewed
by several authors (Mouillot et al., 2014; Poulter et al., 2015). Moreover, many global
BA products have been released over the last years (Humber et al., 2018). Three such
products were based on data from the NASA’s Moderate Resolution Imaging Spectrom-
eter (MODIS) sensor, the MCD45 (Roy et al., 2008), the MCD64 (Giglio et al., 2009,
2018) and the MODIS Fire_CCI v5.0 (Chuvieco et al., 2018). Images acquired by the
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VEGETATION sensor onboard the SPOT-4 (Satellite Pour Observation de la Terre) satel-
lite have also been used to generate global BA products, namely the Global Burnt Area
(GBA) 2000 (Tansey et al., 2004), Globcarbon (Plummer et al., 2006), L3JRC (Tansey
et al., 2008) and the Copernicus Global Land Service Burnt Area (based on Proba-V since
2014: land.copernicus.eu/global/products/ba). Furthermore, the European Remote Sens-
ing Satellite - Advanced Along Track Scanning Radiometer (ERS2-ATSR2) was used to
generate the Globscar product (Simon et al., 2004) while the MEdium Resolution Imaging
Spectrometer (MERIS) data were used to generate the Fire_CCI v4.1 product (Alonso-
Canas & Chuvieco, 2015; Chuvieco et al., 2016). All these products were obtained using
passive remote sensing datasets (optical and thermal wavelengths) which have significant
limitations in areas with persistent cloud cover. Another limitation comes from the rela-
tively coarse (> 250 m) spatial resolutions of these sensors, which makes the detection of
small fires difficult (Stroppiana et al., 2015a; Randerson et al., 2012).

Several factors limit burned area mapping from remote sensing data. These factors
are related to both the sensor characteristics and the observed scene. The type of sensor
(passive or active) and the region of the electromagnetic spectrum in which the images
are acquired are decisive in the success of the burned area detection. Among the scene
characteristics influencing detection accuracy, the size and shape of fire patches, land cover
type, fire unrelated changes (e.g., phenology, floods, harvest, insects) and the presence of
clouds (optical and thermal part of the spectrum) are the most relevant. Since sensor and
scene related factors interact, the degree to which each of the mentioned factors affects BA
detection success varies (Eva & Lambin, 1998; Boschetti et al., 2004; Belenguer-Plomer
et al., 2018a; Padilla et al., 2015). The spatial and temporal resolution of the sensor has
a significant impact on BA mapping accuracy, determining the minimum size of the fires
that can be detected (Boschetti et al., 2004) and the time interval between fire and detection
(Eva & Lambin, 1998). However, previous studies suggest that temporal resolution is less
important than the spatial resolution when it comes to the accuracy of the BA detection
(Boschetti et al., 2010).

In a survey based on a questionnaire of 47 researchers who used BA products and an
extended literature review, Mouillot et al. (2014) suggested that BA products should have
commission errors (CE) in the range of 4% (ideal) to 17 % (maximum) while omission
errors (OE) above 19% were deemed less useful for the climate modelling efforts. A
first global comparison analysis found that NASA’s MCD64 was the most accurate BA
product (Padilla et al., 2015), but was far from achieving these goals with CE and OE
reaching 42% and respectively 68%. These errors were in part due to the low spatial
resolution, which results in small fires being overlooked (Randerson et al., 2012). A recent
study has demonstrated that the contribution of small fires may be in fact even greater,
as comparing Sentinel-2 and MODIS products for Africa showed an underestimation of
almost 45% of BA (Roteta et al., 2019). Therefore, the development of new BA detection
algorithms is a relevant research topic in the current context where climate change is a key
issue. To achieve this improvement, the use of images from new satellites, such as those of
the Copernicus missions of ESA, is necessary. Furthermore, alternative mapping options
(e.g., radar-based) are needed over areas where optical images are limited by persistent
cloud cover (e.g., tropical areas).

During the last decade, synthetic aperture radar (SAR) data have been increasingly
used for BA mapping as data from multiple sensors became available. Such studies have
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taken advantage of radar independence of cloud cover and solar illumination, their in-
creased spatial resolution and the availability of multiple polarisations and incidence an-
gles (Bourgeau-Chavez et al., 2002; French et al., 1999). The European Remote Sens-
ing (ERS) SAR satellites (ERS-1 and ERS-2) were widely used in boreal (Bourgeau-
Chavez et al., 1997; Kasischke et al., 1994), tropical (Siegert & Hoffmann, 2000; Siegert &
Ruecker, 2000; Ruecker & Siegert, 2000) and Mediterranean (Gimeno et al., 2004, 2002)
ecosystems to detect and map BA. More recently, RADARSAT (Gimeno & San-Miguel-
Ayanz, 2004; French et al., 1999) and ALOS - PALSAR (Advanced Land Observation
Satellite Phased Array type L-band Synthetic Aperture Radar) (Polychronaki et al., 2013)
were employed for the same purpose. However, past SAR missions only provided data
with low temporal resolution, which hindered the development of efficient radar-based
BA detection and mapping algorithms over large areas. In addition, the utility of past sen-
sors was limited by the available polarisations (mostly single co-polarised sensors), steep
viewing geometries (far from ideal when monitoring changes in vegetation) and data ac-
cess restrictions.

With the launch of ESA’s Sentinel-1 satellite constellation (A and B platforms, op-
erational since October 2014 and December of 2015, respectively) such limitations have
been largely reduced. The Sentinel-1 constellation could theoretically provide images ev-
ery three days by combining datasets acquired during ascending and descending trajecto-
ries. The independence from cloud cover and solar illumination added to improvements in
sensors characteristics (e.g., dual polarisation, increased spatial resolution and incidence
angle, precise orbital information), provides untapped opportunities for BA detection. A
few studies have already explored the potentials of Sentinel-1 SAR images for BA detec-
tion, but these studies are focused on specific regions (Engelbrecht et al., 2017; Lohberger
et al., 2018). To date, few studies tried integrating active and passive datasets for BA de-
tection. Such a study detected BA independently from Sentinel-1 and Sentinel-2 datasets
on a relatively small area in the Congo basin suggesting that a combined sensor approach
compensates for the strengths and limitations of each individual sensor (Verhegghen et al.,
2016). However, SAR based BA detection has limitations, as discussed in more detail in
subsection 2.3.2. Lastly, fusion approaches combining optical and radar data have been
considered for BA detection. In Stroppiana et al. (2015b,a) Landsat-5 TM and C-band EN-
VISAT ASAR data were integrated into a fuzzy algorithm aimed at burned area detection
in a Mediterranean environment.

This chapter presents a novel radar-based BA mapping algorithm based on tempo-
ral series of C-band backscatter coefficient, that self-adapts to local scattering conditions
and it is able to detect small fires (down to 1 ha) in a fairly automatic way. The specific
objectives of this study were to (i) present the proposed algorithm and explain its func-
tionalities, (i1) validate the BA detections over major biomes, (iii) compare the detection
accuracy with that of existing products based on passive datasets, and (iv) analyse the
factors influencing the algorithm accuracy.

2.2 Study area and dataset

The algorithm was developed using data from four sites, three located in the Amazon basin
and one located in the Iberian Peninsula. Subsequently, the algorithm was validated over
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18 sites around the world (Figure 2.1). The validation areas were located within biomes
where fire events frequently occur, from boreal forests to tropical and sub-tropical forests,
savannas and grasslands.
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Figure 2.1: Location of the Military Grid Reference System tiles used for algorithm development
and validation.

The algorithm relies on temporal series of Ground Range Detected (GRD) dual-
polarised (vertical-vertical VV, and vertical-horizontal VH polarisations) SAR images
acquired by the Sentinel-1 A/B satellites in interferometric wide (IW) swath mode. The
GRD data were processed on a tile base structure using as grid the 100x 100 km Military
Grid Reference System (MGRS). For each tile, Sentinel-1 images from ascending and
descending passes (when available) and from all intersecting relative orbits were used.
Land cover (LC) classification and hotspots derived from thermal anomalies were used as
ancillary data.

The land cover classification was produced in the framework of the ESA’s Land Cover
CClI project. This project delivers time series of consistent global LC maps at 300 m spac-
ing on an annual basis from 1992 to 2015. The most recent map (i.e., 2015) was used.
CCI land cover maps were generated using a combination of sensors, including MERIS
and Proba-V time series of surface reflectance (Kirches et al., 2014). Since the SAR im-
ages were processed at a significantly higher pixel spacing (40 m, see subsection 2.3.1)
than the LC map, the later was resized using a nearest-neighbour interpolation to coincide
with the SAR spacing. In addition, the Land Cover Classification System (LCC) (Di Gre-
gorio, 2005) was simplified by joining similar cover types into six groups: shrublands,
grasslands, forests, crops, non-burnable, and others. One should notice that BA detec-
tion takes place over 100x 100 km tiles. Therefore, for any given tile, the simplified LCC
classification groups very similar classes.

Hotspots were available from NASA’s Fire Information for Resource Management
System (FIRMS). The hotspots were recorded by two sensors, the VIIRS (Visible Infrared
Imaging Radiometer Suite) sensor at 375 m spatial resolution (Schroeder et al., 2014) and
the MODIS sensor at 1 km spatial resolution (Giglio et al., 2003). The VIIRS and MODIS
database was last accessed in January 2018.
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To derive the validation fire perimeters (see subsection 2.3.4), Landsat-8 optical im-
ages were retrieved from the United States Geological Survey repository (USGS) as atmo-
spherically corrected surface reflectance products (Vermote et al., 2016). The validation
period was adjusted for each tile considering the fire season length and the availability of
Landsat images with a cloud cover under 30%. Sentinel-2 Level-1C images retrieved from
the Copernicus Open Access Hub were considered to reduce temporal gaps in the valida-
tion dataset and thus large discrepancies between the validation period and the Sentinel-1
detection period.

The effect of soil moisture, an important factor affecting radar backscatter, on BA
detection accuracy was analysed using the global Soil Moisture Active Passive (SMAP)
product. Specifically, the Enhanced Level 3 Passive Soil Moisture Product based on L-
Band Radiometer (9 km pixel spacing and three days revisit period) was used. The relia-
bility of this product was demonstrated by a correlation coefficient above 0.8 between the
estimated soil moisture and in sitfu measurements (Chan et al., 2018; Chen et al., 2018).
From this product, the descending pass images (6 AM Equator crossing), more accurate
than ascending, according to Chan et al. (2018), were used so that all measurements rep-
resented the same acquisition time (Chan, 2016). As for the LC map, the product was
resized to 40 m using the nearest-neighbour interpolation.

2.3 Methods

2.3.1 SAR data pre-processing

The Sentinel-1 data were processed using open-source libraries available in the Orfeo
ToolBox (OTB), an image processing software developed by the National Centre for Space
Studies (CNES), France (Inglada & Christophe, 2009). The OTB-based processing chain
uses Ground Range Detected (GRD) Sentinel-1 images with the SAR data being tiled to
100 km using the MGRS system. The chain is highly scalable and autonomous once few
parameters are set, and includes the data download from Sentinel-1 repositories. The SAR
data processing may be grouped in several steps including, pre-processing, geocoding and
temporal filtering (Figure 2.2).

Pre-processing P Geocoding MGRS grid Temporal filtering
ri : -
. g SRIMIDEN ,/ Temporal N

‘ ' | ;L N filtering /
i Tiles .GRD J/ Normalizetﬁ\ o ,VGthorectificatio}\
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I _ filtered images

Figure 2.2: SAR data processing with the Orfeo Toolbox.

The pre-processing step includes data download of the specified MGRS tiles and
radiometric normalisation to gamma nought (7") using the gamma nought lookup table
provided in the product metadata. Only SAR images acquired in the interferometric wide
swath mode, the Sentinel-1 default acquisition mode over land, were used. The calibrated
images were orthorectified to ground geometry using elevation information from the Shut-
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tle Radar Topography Mission (SRTM) one arc-second DEM and the bicubic interpolator.
The orthorectified images were clipped to the processing tile, and the data acquired from
the same orbital path but provided within different slices were mosaicked (i.e., slice as-
sembly). It should be noted that the BA algorithm uses temporal backscatter differences
of the same relative orbit; hence, terrain-flattening (Small, 2011; Frey et al., 2013) was
not necessary as the DEM-derived normalisation (illumination) area for a given pixel is
constant in time thus not affecting the pre- to post-fire backscatter coefficient variations
(Tanase et al., 2010c, 2015, 2018). The last step was a multi-temporal filtering of the
products for each satellite pass (Quegan et al., 2000). The GRD data were processed to
the nominal Sentinel-1 resolution (20 m) through the OTB based chain.

The BA detection algorithm deployment over large areas is conditioned by its per-
formance (speed) and accuracy. Both parameters are influenced by the pixel spacing to
which products are processed as omission and commission errors are highly depended on
speckle while the processing speed increases with decreasing pixel size. Analysing the
effect of pixel spacing on image radiometric properties, processing time and BA detection
accuracy was essential for selecting the optimum pixel spacing for deployment. Tanase
& Belenguer-Plomer (2018) carried out an analysis for four pixel spacing (i.e., 20, 30, 40
and 50 m) over two test tiles. A 40 m spacing provided the optimum trade-off between
speckle reduction, storage and computing requirements and the accuracy of the detected
BA. Therefore, the temporally filtered images were aggregated to 40 m.

Radio Frequency Interference (RFI) may contaminate SAR data. Since RFI are prin-
cipally observed over highly populated urban areas (Li et al., 2004; Njoku et al., 2005;
Lacava et al., 2013) and considering that burned areas are usually located away from large
cities, such effects were not observed and consequently were not considered.

2.3.2 Backscatter behaviour in burned areas

To better understand the proposed algorithm, its development, and the decision-making
process that shaped it, this subsection describes the behaviour of C-band backscatter co-
efficient after fire events.

Fire on vegetated areas results in variations of the backscatter coefficient, which may
increase or decrease depending on the polarisation, the remaining vegetation and the en-
vironmental conditions (i.e., rainfall) during SAR data acquisition. Fire consumption re-
duces the number of vegetation scattering elements, potentially reducing the backscat-
ter coeflicient (Van Zyl, 1993; Antikidis et al., 1998). However, biomass consumption
may increase scattering from the ground due to reduced signal attenuation (less vege-
tation) and the increased effect of soil surface properties, such as moisture and rough-
ness (Tanase et al., 2010b). Hence, microwaves backscatter behaviour in areas affected
by fires may be more heavily influenced by soil moisture properties when compared to
unburned areas, particularly when rainfall occurs after the fire (Imperatore et al., 2017;
Gimeno & San-Miguel-Ayanz, 2004; Ruecker & Siegert, 2000). Rain and melting snow
are the main causes of increased soil moisture (Huang & Siegert, 2006), influencing the
radar signal and consequently reducing C-band sensitivity to fire-induced changes (Tanase
et al., 2010b). SAR-based BA mapping may be further hindered by spatial changes in soil
moisture due to unrelated fire factors (e.g., temperature, insolation, wind, slope and ori-
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entation, soil roughness) which are difficult to embed into detection algorithms. The local
incidence angle (LIA) is yet another factor influencing C-band sensitivity to fire-induced
changes, with smaller LIA values providing increased burned to non-burned differentia-
tion for co-polarised waves (Gimeno & San-Miguel-Ayanz, 2004; Huang & Siegert, 2006;
Tanase et al., 2010b). Finally, wave polarisation is also a fundamental variable, with cross-
polarised waves being more sensitive to changes in vegetation (volumetric scattering) and
less to surface properties (e.g., soil moisture and roughness) when compared to the co-
polarised waves (Freeman & Durden, 1998; Yamaguchi et al., 2005; Van Zyl et al., 2011).
Such contrasting effects may generate a wide range of possible backscatter variations over
burned areas that depend on the interplay between the SAR sensor characteristics (e.g.,
wavelength, polarisation, incidence angle) and environmental conditions at SAR acquisi-
tion (e.g., fire impact, soil surface properties, meteorological conditions).

The impact of fire on the backscattering coefficient was actually found to cause am-
biguous effects. A strong backscatter decrease was found for burned tropical forests at C-
band VV polarisation under dry weather conditions due to the decreased volume scattering
and increased heat flux, which led to a dryer ground (Ruecker & Siegert, 2000; Lohberger
et al., 2018). After rainfall, discrimination from the unburned surrounding forests was
difficult as the backscatter coefficient over BA increased (Siegert & Ruecker, 2000). In
the temperate region and the Mediterranean basin, lower backscatter values were found in
fire-affected areas for cross-polarised C-band when compared to adjacent unburned forest
(Rignot et al., 1999; Imperatore et al., 2017). In boreal forests, higher backscatter values,
when compared to the adjacent unburned areas, were observed at C-band VV polarisa-
tion when soil moisture was high, whereas lower backscatter was observed for sites with
better drainage (Bourgeau-Chavez et al., 2002; Huang & Siegert, 2006; Kasischke et al.,
1994). In Australian woodlands and open forests, the post-fire backscatter increased for
co-polarised waves and decreased for cross-polarised waves (Menges et al., 2004) while
for African open forests the backscatter decreased for both co- and cross-polarised C-
band channels, although only the co-polarised channel was deemed useful for BA detection
(Verhegghen et al., 2016). Changes in the post-fire backscatter levels appear to be strongly
related to changes in soil moisture, with data acquired after rainfall being less suitable for
classification or biophysical parameters retrieval. However, some fire-related studies re-
ported increased differentiation potential for BA after rainfall in the Mediterranean basin
(Gimeno & San-Miguel-Ayanz, 2004).

2.3.3 Burned area detection and mapping algorithm

The main requirements of the BA detection algorithm were (i) the use of cloud insensitive
satellite data (i.e., SAR), (ii) sensitivity to local burn conditions, and (iii) a high degree
of automation. The algorithm was designed to make use of existing datasets for training
purposes by using sets of susceptible burned and unburned pixels for locally dominant
land cover types. The algorithm has six stages with its simplified structure being provided
in Figure 2.3. The following paragraphs explain in detail each stage.

2.3.3.1 Stage 1: Anomaly change detection

An anomalous change implies variations outside the typical behaviour expected for a given
area and time. Burned areas were considered anomalies since fires are inconsistent spatial
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Figure 2.3: Flowchart of the SAR based algorithm for burned area detection.

and temporal events. The Reed-Xiaoli detector (RXD), proposed by Reed & Yu (1990),
extracts signatures that are distinct from the surroundings without the need for a priori
information. Anomalies have two characteristics that make them outliers: (i) spectral sig-
natures different from the surrounding pixels; and (i1) low occurrence probability (Stein
et al., 2002; Banerjee et al., 2006; Kwon & Nasrabadi, 2005). Hence, RXD allows dis-
tinguishing anomalous changes, such as burned areas, from pervasive changes (e.g., sea-
sonal effects) that occur periodically and extend over large swathes of the image (Theiler
& Perkins, 2006). The RXD uses the covariance matrix to calculate the Mahalanobis dis-
tance from a given pixel to the mean of the surrounding (background) pixels (Dabbiru
et al., 2012). Thus, for any given pixel, the anomalous change (AC) score is computed by
the RXD (Equation 2.1).

AC(z) = (x/—pn) C 1 (x/—p) 2.1)

where x is any given pixel, x/ is a vector formed by the image bands values of the pixel
x, p is a vector composed by the mean value of the background pixels (e.g., stable areas)
in each image band and C is the covariance matrix of the image bands (computed from
the background pixels). The background value may be computed as the mean sample of a
subset image where only pixels of the same land cover class of x are included to differenti-
ate anomalous changes from pervasive, since seasonal effects and soil moisture variations
may affect the backscatter coefficient in a divergent way as a function of land cover class.
When a priori information is available, the background value may be computed from areas
where anomalies are not expected. For BA detection, a priori information was provided
by MODIS and VIIRS active fire databases. MODIS and VIIRS hotspots corresponding to
the current detection period (CDP) were used to mask areas likely affected by fires while
the remaining pixels were used to calculate the background values. The BA masks were
derived by taking a buffer of 0.75 km around each hotspot. This buffer was considered the
influence area of each individual hotspot (IAhs), and it roughly corresponds to the pixel
size for VIIRS and MODIS thermal channels while also considering location uncertainty.

The RXD was applied to a set of temporal ratios of the backscatter coefficient (Equa-
tion 2.2 and 2.3). Such temporal indices were previously used for estimating the impact
of different disturbance agents (e.g., fire, insects, wind) on vegetation (Tanase et al., 2015,
2018). The selected temporal radar indices mainly use the VH backscatter, which is more
responsive to volumetric scattering from vegetation and less affected by changes in surface
properties (e.g., soil moisture, surface roughness) when compared to the co-polarised (VV
polarisation) channel (Freeman & Durden, 1998; Yamaguchi et al., 2005; Van Zyl et al.,
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2011).

RI; =7°VH; 17"V Hy (2.2)
RIy= ('VHe1/1°VVier) / (FV He1/50V Vi) (2.3)

where ~? is the backscatter coefficient (linear scale) of VV or VH polarisations, and ¢ — 1
and ¢ 41 are respectively pre- and post-fire detection dates that define the CDP.

To reduce commission errors related to signal variation due to changes associated to
post-fire events (e.g., vegetation regrowth), the AC values for CDP were modulated by the
AC values recorded for the previous detection period (PDP) (Equation 2.4). Practically,
AC scores of the PDP were subtracted from the AC of the CDP. The result was a Modulated
Anomalous Changes (MAC) score used in all subsequent algorithm stages.

MAC (z) = AC (x)[tfl..z%l] —AC <x>[t72..t71] 2.4)

2.3.3.2 Stage 2: Burned and unburned regions of interest

In this stage, burned and unburned Regions of Interest (ROIs) were automatically extracted
using the MAC scores and ancillary information from hotspots and land cover data. Since
information on hotspots was acquired daily from two independent sensors (VIIRS and
MODIS) most burned pixels in the selected study areas (94.3%) were in fire patches with
at least one hotspot within 0.75 km, the selected buffer considered as hotspot area of in-
fluence (IAhs) even for the tropical regions, where cloud cover is frequent. The presence
of hotspots greatly facilitated the attribution of the detected MAC values to burned ar-
eas. This allowed distinguishing BA from other changes, such as logging, crop harvesting,
flooding, or vegetation disturbance due to insects or diseases. When hotspots were not
available, due to the cloud cover or small fire size, a different attribution method was used
as explained in Stage 4. Burned ROIs (bROIs) were extracted in two steps: seeding and
growing. This is an approach previously used for BA mapping algorithms (Bastarrika
et al., 2011; Alonso-Canas & Chuvieco, 2015; Roteta et al., 2019). To obtain the seeds,
spatially connected [Ahs pixels were first grouped in uniquely identified objects: ¢; : n,
where n is the number of the unique objects. A pixel x inside an object ¢, was considered
burned seed (bSeed) if Equation 2.5 was met.

z =DbSeed (¢) - (MAC (x) > min(s,v) > 0)V

(MAC (z) > max (s,v) > 0Amin(s,v) <0) (25)

where s = p (MACQ/), being  the mean and ¢’ a region around ¢ bounded by dist, and
disty+y/dist,, with dist, being the maximum span of object ¢. Thus, ¢’ delineates likely

unburned areas in the vicinity of ¢; and v = p (MAC NG)’ with N being the neighbour
pixels of GG, where G is a pool of pixels inside ¢ with MAC values below 1 (MAC,).
Essentially, for a pixel to be considered seed it had to fulfil two conditions, one related to
vicinity to a hotspot (within IAhs) and the second related to the magnitude of backscatter
change (MAC score).

The bSeed pixels were extracted considering the major land cover type for each ¢
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object. Therefore, pixels in ¢’ region were stratified by land cover type with only pixels of
the same land cover type as predominant of ¢ being used for computations. In addition,
the selected ¢’ pixels needed to be outside the IAhs of any other hotspot. Figure 2.4 shows
graphically the concepts of ¢, ¢’ and dist,. Once bSeed pixels for g were extracted, an open
morphological operator (3x3 window) was used to eliminate isolated bSeed pixels. With
increasing window size, BA omission errors increased while commission errors decreased.
To determine the optimum size, an error analysis was carried out using different window
sizes (3x3, 5x5 and 7x7) over the four algorithm development tiles (analysis not shown).
The 3 x3 window was selected since it least affected the detection of small size fires while
still managing to reduce commission errors. The same window size was used in previous
works to reduce speckle effects (Menges et al., 2004).
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Figure 2.4: Graphical representation of concepts needed to extract bROIs, being HS - hotspot.

Given an object ¢ and its predominant land cover class k, the growing phase started
by masking out all the pixels of the image which MAC values were below the mean MAC
value of all image pixels of land cover class k. The remaining pixels were used to compute
a new mean of the MAC values, which was used as the minimum threshold to label Likely
Burned Pixels (LBP) of ¢ (Equation 2.6).

x =LBP(¢q) - MAC (x) > u(MAC > ;1 (MACy)) (2.6)

Connected LBP(q) pixels were grouped and subsequently overlapped with the extracted
bSeed pixels of q. LBP(q) groups overlapping bSeed pixels of g were assigned to the bROIs
and constituted the first component of the detected burned areas. The second component
was detected using no parametric classification (i.e., random forests) as explained in Stage
4.

The unburned ROIs (uROlIs) were derived iteratively by land cover type. The his-
togram of bROIs pixels identified in the previous step was used to calculate the MAC
values for the 25 and 75 percentiles (P»5 and Pr5, respectively). These values constituted
thresholds used to classify the MAC image in burned and unburned. Pixels with MAC
values below P»5 or above Pr5 were considered possible unburned seeds since (i) MAC
values below P5 indicate small changes, likely unrelated to fires (e.g., vegetation growth,
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changes in vegetation water content), and (ii) MAC values above P75 are usually asso-
ciated with significant changes, such as logging, crop harvesting, or floods. One should
note that high severity fires may also result in MAC values above Pr5. However, such
areas are regularly associated with hotspots and therefore were not labelled as uROIs. An
open morphological operator 3x3 window) was applied to the classified binary image to
remove noise. The effect of the open morphological operator was an increased number
of unburned pixels. Pixels from the not burnable LC map classes (i.e., bare soils, wa-
ter, snow and ice, urban areas) were labelled as uROlIs, while pixels overlapping IAhs or
bROIs were filtered out. Additionally, for the cropland cover class, groups of pixels over
56 ha (0.75x0.75 km, being 0.75 km the double of VIIRS spatial resolution), not overlap-
ping hotspots were included as uROlIs to account for fire-unrelated changes, such as crop
harvesting or changes in surface properties (roughness) due to agricultural works (e.g.,
ploughing).

2.3.3.3 Stage 3: Adjustment for temporal decorrelation

During algorithm development, a temporal decorrelation between fire events (i.e., hotspots
date) and backscatter coefficient change was observed (Belenguer-Plomer et al., 2018b).
Such decorrelation events may be the result of delayed backscatter decrease after fire due to
multiple factors including (i) pre-fire conditions, e.g., drier than usual weather may result
in low values for the pre-fire backscatter coeflicient, (ii) post-fire weather, e.g., precipita-
tions may temporally increase the backscatter coefficient, and (iii) vegetation-dependent
backscatter response to fire events. For example, over forests, VH backscatter decrease
may be delayed as there are still sufficient scattering elements (tree trunks and branches)
present after fire. As time passes, trunks and branches dry up, which results in decreased
backscatter from vegetation.

To account for temporal decorrelation, the BA was detected iteratively for each pe-
riod. Delayed changes in backscatter were accounted for computing the bROIs detected in
periods formed by the current pre-fire image (¢ — 1) and images acquired during following
90 days past the CDP (i.e., t + 2, t 4+ 3). This temporal threshold was based on empirical
observations (Belenguer-Plomer et al., 2018b). Such bROIs were labelled as burned in the
CDP (¢ — 1 to t 4 1) when overlapping hotspots from the CDP. Additionally, these bROIs
must not overlap hotspot recorded past the CDP.

2.3.3.4 Stage 4: Random forests burned / unburned classification

Only a fraction of the anomalous pixels were labelled as burned based on information from
hotspots due to the rather restrictive criteria (i.e., MAC score) used in Stage 2 and 3. Pixels
not meeting the imposed criteria also needed labelling. To avoid subjectivity, such pixels
were labelled using a non-parametric classifier (i.e., random forests) trained with data
extracted from bROIs and uROlIs by each land cover classes and CDP. The random forests
(RF) classifier was used as it is robust to data noise (Gislason et al., 2006; Rodriguez-
Galiano et al., 2012; Du et al., 2015; Waske & Braun, 2009) and less sensitive, when
compared to other machine learning techniques, to the quality of training samples and
overfitting (Belgiu & Dragut, 2016). Moreover, RF was already used to classify SAR data
(Waske & Braun, 2009) and solve similar fire mapping problems (Collins et al., 2018;
Fernandez-Carrillo et al., 2018; Ramo & Chuvieco, 2017; Meddens et al., 2016).
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RF is an ensemble classifier that consists of a group of decision trees {h(x/,0.),
=1,...}, where x/ is the input vector of any given pixel (z), and ©, are an independently
bootstrap sampled vectors with replacement in each decision tree (2). Each tree provides a
unique class for x, being the class of x assigned as the most popular voted class (Breiman,
2001). In this study, TreeBagger from MATLAB © software package was used to construct
the RF classifiers.

RF classifiers are customisable through different parameters, such as (i) number of
trees, (i1) number of training samples, (iii) proportion of training samples by class, and
(iv) number of independent variables employed in each tree. The number of trees is a key
adjustment in RF classification since for more trees the generalisation error converges and
models are not over-fit (Breiman, 2001; Pal, 2005; Rodriguez-Galiano et al., 2012). On
the other hand, using more trees demands more computational resources. An empirical
analysis (not shown) concluded that 250 trees provided the best trade-off between speed
and accuracy for BA classification in this study. Since the number of pixels in bROIs and
uROIs is high, computational costs may be reduced by using just a fraction for training
purposes. This fraction was determined, by land cover classes, as 1% of all bROIs and
uROIs pixels divided by the number of trees (250). Unbalanced training samples may re-
sult in infra-classification of the minority classes. According to Chen et al. (2004), several
approaches may be used to address such problems: (i) reducing the overall learning cost,
with high costs being assigned to the miss-classification of the minority classes (Pazzani
et al., 1994); (i1) under-sampling the majority and over-sampling the minority classes; or
(ii1) a combination of both techniques (Chawla et al., 2002). The latter approach was used
in this study. Depending on the misclassification cost, the TreeBagger function generated
in-bag samples by oversampling the burned class and under sampling the unburned class.
The proportion of training data were empirically adjusted to 40% and 60% for burned and
unburned classes, respectively.

The number of variables considered for trees growing in each split was computed as
the square root of the total number of variables (Gislason et al., 2006), as it reduces the
correlation of trees and thus improves global accuracy (Rodriguez-Galiano et al., 2012;
Gislason et al., 2006). In addition to the SAR based metrics used for RXD (Equation 2.2
and 2.3), up to 30 SAR metrics were used for RF classification. These metrics were com-
puted as in Equation 2.7 to 2.12. The non-parametric classification was carried out con-
sidering the land cover type with specific models being built for each land cover class. The
BA detected by RF was added to bROIs detected in Stage 2 and 3, and formed the total BA
for the CDP.

(VX Vi oqy) = "X Vg 2.7)
i (VX Vi o) 12X Vi (2.8)
VXY~ XYy (2.9)
VXY 1/ XY (2.10)
(VOVH-1/7VVier) [ (°V Hei 10V Vi) (2.11)
i (7°V Hypooy/7 'V Vig o) / (1 Hei )12V Vi) (2.12)

where 7/ XY is the backscatter intensity (linear scale) of VV and VH polarisations, ¢’ is
t — 1 minus the double of days distance between ¢ —1 and ¢t 41, and ¢ is 1 or 2, being 30
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the maximum number of indices computed.

2.3.3.5 Stage 5: Post-processing

Post-processing was needed to account for temporal decorrelation and improve detection
results over problematic land covers such as cropping areas. To adjust for temporal decor-
relation, the BA detected by the non-parametric classifier for the CDP was compared to
the [Ahs of previous detection periods, up to 90 days before the pre-fire image (t — 1)
(Belenguer-Plomer et al., 2018b). If burned areas detected in the current CDP (i.e., ob-
jects formed by contiguous pixels) overlapped previous IAhs (objects) by more than 75%
(set from empirical observations), they were masked out and considered previous burns.
Three additional post-processing steps were then carried out to improve the results fur-
ther: (i) on cropping lands, groups of burned pixels (objects) with areas above 56 ha (see
Stage 2) that did not overlap IAhs (i.e., no local hotspot) were removed. The rationale was
that lack of hotspots over a large changing cropping area is an indication of harvesting
rather than fire; (ii) burned objects below one hectare were removed to reduce noise in
BA detections due to residual speckle; and (iii) a modal filter with a convolution kernel
of 3x3 pixels was applied to smooth the salt and pepper effects typical for SAR based
classifications.

Post-processing also deals with joining the BA detected in the different relative or-
bits intersecting a specific tile. The BA was detected separately for each relative orbit, to
avoid misinterpreting backscatter changes due to changing azimuth angles or illumination
geometry as fire-related changes. To reduce topographic related effects such as layover,
foreshortening and shadowing, burned areas detected in different relative orbits (i.e., from
ascending and descending passes) were joined to obtain the final BA maps.

2.3.3.6 Stage 6: Burned area detection without hotspots

As clouds may prevent the propagation of radiation from active fires to the thermal sensors
onboard satellites, the algorithm was built with a backup mechanism to cope with the
absence of hotspots for a specific land cover type and detection period. However, for the
algorithm to work, hotspots need to be available for each land cover class at some point
during the analysed fire season.

The algorithm first detected the BA for all land cover types during detection periods
for which hotspots were available. For detection periods without hotspots, the data were
temporally stored for later processing. During detection, the algorithm saved a database
containing the Po5 and Pr5 of MAC values for bROIs (Stage 2) and the trained RF models
(Stage 4) for each land cover class. This database is hereafter referred to as the Classifier
Model and Criteria (CMC). Once detections for land cover classes and detection periods
with hotspots ended, the CMC database was used to classify the temporally stored data
(i.e., land cover types without hotspots during detection periods) if two conditions were
met: (1) the CDP was within the fire season. The length of the fire season was computed
using the daily hotspots frequency as the interval between the dates corresponding to the
P5 and Pys; and (ii) the difference between the CDP and the date for the nearest CMC
was less than one month, thus avoiding possible confusions due to changes in vegetation
phenology. When CMC entries from different detection periods met the conditions, the
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one closest to the CDP was used. The MAC image for the CDP was segmented into possi-
bly burned and unburned based on the CMC F»5 and Pr5, with the possible burned pixels
being subsequently classified using the stored RF models by land cover class. When CMC
entries were spaced equally in time when compared to the CDP (i.e., one entry is from a
previous period and one from a posterior period), each entry was used separately and only
the commonly detected BA was kept. The post-processing operations from Stage 5 were
carried out on the detected BA from this stage.

An additional operation was carried out to reduce possible commission errors dur-
ing this stage. The operation was carried out over BA detected on different relative orbits.
Note that detections were always carried out using time-series of images from the same rel-
ative orbit. If several relative orbits intersected a given tile, the algorithm worked through
the data from each relative orbit separately. BA products composites were subsequently
formed using detections from different relative orbits and the same detection period. For
each detection period, BA pixels detected in different relative orbits were grouped in ob-
jects. If all pixels of an object were classified as unburned in one orbit, the object was
removed from the detected BA for the CDP. Since dual-pass (ascending and descending)
acquisition were not available for all tiles and spatially overlapping relative orbits only par-
tially covered any given tile, this additional operation reduced commission errors where
BA detections intersected.

2.3.4 Reference images and validation metrics

The reference burned perimeters extraction for validation purposes was based on a well-
established framework (Padilla et al., 2014, 2015, 2017). The reference data were ob-
tained from Landsat-8 images using an RF classifier and training polygons selected by an
independent operator. The validation perimeters were generated from 120 multi-temporal
pairs of images with a maximum separation of 32 days. The temporal separation of the
pairs was short to ensure that fire scars were clearly visible in the post-fire image. Before
running the classification, clouds were removed using the pixel quality band of the Landsat
product, and each pair of images was clipped to the extent of its corresponding MGRS tile.
Training areas were selected using a false colour composite (RGB: SWIR, NIR, R) that
allowed for clear discrimination of burned areas. Three training classes were considered:
burned, unburned, and no data.

The variables selected as input for the RF classifier were (i) Landsat-8 bands 5 and 7,
(i1) the Normalised Burn Ratio (NBR), and (iii) the temporal difference between the pre-
and post-fire NBR values (INBR). The NBR (Equation 2.13) is defined as the normalised
difference between the reflectance of NIR and SWIR wavelengths (Garcia & Caselles,
1991; Key & Benson, 2004).

NBR = (Band 5 - Band 7) / (Band 5 + Band 7) (2.13)

where Band 5 is the surface reflectance in the near infrared (NIR) wavelength (0.85 -
0.88tm) and Band 7 is the surface reflectance in the shortwave infrared (SWIR) wave-
length (2.11 - 2.29 tm).

After the RF classification, fire perimeters were visually revised to correct possi-
ble errors. New training fields were iteratively added, and the RF was re-run until the
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classification result was deemed accurate. Reference BA perimeters were resized using a
nearest-neighbour interpolation to the selected pixel spacing of the Sentinel-1 product (40
m). Temporal gaps between the Landsat-8 reference period and the Sentinel-1 detection
period were filled in through photo-interpretation of Sentinel-2 images.

The Sentinel-1 BA detections were validated using confusion matrices (Table 2.1).
Three accuracy metrics were computed for the burned area class using the confusion ma-
trices, the omission error (Equation 2.14), the commission error (Equation 2.15) and the
Dice coefficient (Equation 2.16) (Padilla et al., 2015).

Table 2.1: Confusion matrix example.

Refererence data

Detection Burned Unburned Row total

Burned Py Pio Py

Unburned P21 P22 P2_|_

Col. total Py P N
OE = Py /Py (2.14)
CE= P12/P1+ (2.15)
DC =2P;1/(P1++ Py1) (2.16)

2.4 Results

2.4.1 Algorithm accuracy

The OFE and CE over the validation tiles varied, with the highest errors (0.54 to 0.81) being
observed over Australian grasslands and the lowest (0.19 to 0.2) over the Mediterranean
forests and shrublands (Table 2.2). The highest BA detection accuracy (DC 0.82) was
observed over the tile 22LQP located in the Amazon basin (Figure 2.5). By land cover type,
the algorithm produces more accurate results over forested areas (DC 0.64), followed by
shrublands (DC 0.56). The lowest detection accuracy was observed over grasslands (DC
0.28) (Figure 2.6). Note that error metrics by land cover type were computed by pooling
pixels with the same land cover type from all tiles.

2.4.2 Comparison with existing global products

The accuracy metrics of the Sentinel-1 BA detections obtained from the presented algo-
rithm were compared to those derived from the current most widely used BA global prod-
uct, the MCD64A 1 Version 6 (Giglio et al., 2018). The magnitude of the error metrics may
be influenced by the temporal match between the images used to generate the reference
perimeters and those used to generate the BA products. To account for detection errors
caused by slightly different validation and detection periods, the MCD64A1 product was
temporally subset to match the Sentinel-1 detection periods.
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Table 2.2: Error metrics for Sentinel-1 burned area detections for each MGRS tile analysed.

MGRS Ref. period Det. period P Dd nIM LC C DC OE CE
10SEH 8‘;1%8}; ggfﬁggg B 12 16 G NA 061 034 043
10UEC ggjg;ggi; ggfggggg B 12 32 F NA 076 031 0.16
18NXG g%gﬁgig 8%;@8}2 A 24 6 F SA 064 035 036
20LQP ;gjggggig gg;g;gg}g D 8 4 F SA 082 0.14 022
20LQQ ggjggggig gg;g;gg}g D 36 5 F SA 055042 048
20LQR ggjggggig gg;gggg}g D 36 8 F SA 064 026 043
29TNE 82;}?@81; 81;1?@85 B 6 24 S Eu 07 03802
29TNG 82;1?@83 8‘5‘;1%8}; B 6 24 S Eu 067 036 03
30SVG i’gﬁggggg ggjggggg B 12 9 S Eu 065019 046
30TYK ;3;8%85 ;gfggggg B 12 2 S Eu 069 031 03
33NTG ?2%%8}2 ﬂ%;gg}g A 12 14 F Af 063 047 021
33NUF gg%ggg ;iﬁ%gg A 12 3 F Af 052 052 043
33NUG ﬁ%iggig ;%iggig A 12 8 F Af 052 052 044
36NXP ?g%gg}g géjgiggg D 6 6 S Af 046 0.62 041
ASVWL %gggg}; ;ﬁggﬁgg D 12 3 F As 058 057 0.15
A9MHT 83;8;@85 32;88@8}2 D 24 5 0O As 067 035 032
SOIML %ﬁggggg ?;‘;gzggg D 12 13 G Au 021 081 076
52LCH gf;gjggi; gjﬁgiggg D 12 7 S Au 031 078 051

Reference period - period for which the reference burn perimeters were derived; Detection period
- first and last Sentinel-1 images of the data series; P - satellite pass (A-ascending, D-descending,
and B-both); Dd - day difference between images (mode); nIM - number of SAR images within the
detection period; LC - predominant land cover (G-grassland, S-shrub, F-forest, and O-others); C
- continent for each tile (NA-North America, SA-South America, Eu-Europe, Af-Africa, As-Asia,
and Au-Australia); DC - Dice coeflicient; OE - omission error; and CE - commission error.
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Figure 2.5: Maps of burned area detected using Sentinel-1 data per MGRS tiles. Errors of omis-

sion and commission are also shown.
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Figure 2.6: Assessment metrics of Sentinel-1 and MCD64A1 Version 6 burned area detections
per MGRS tiles and land cover classes. The metrics by land cover were computed using confusion
matrices formed by pixels of the same land cover class from all tiles. DC - Dice coefficient, OE -

omission error and CE - commission error.
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The accuracy metrics were analysed by tile as well as by land cover classes. The
tile-based analysis showed particularly poor results for the MCD64A1 product over the
tiles 18NXG, 20LQQ, 20LQR, 30TYK, 33NTG, 33NUF and 33NUG (Figure 2.6). For
the remaining tiles, the accuracy of the two BA detection algorithms was closely matched,
with some tiles being more accurately estimated by the Sentinel-1 algorithm while oth-
ers by the MCD64A1. By land cover class, the MCD64A1 achieved higher accuracies
over grasslands while the Sentinel-1 detections were considerably more accurate over
forests. For the remaining land cover classes, both products showed similar accuracies
over burned areas. Overall, the BA was more accurately detected using the SAR based
algorithm. On average Sentinel-1 detections improved the DC of the MCD64A1 prod-
uct from 0.46+£0.11 to 0.5940.06 (+ confidence interval, 95%) and reduced the OE from
0.5540.14 to 0.43+0.08 and CE from 0.43+0.08 to 0.37£0.06 (Figure 2.7).

DC OE CE
1 1 - 1
! +
|
—_ |
08 T + 08 } 0.8 T +
|
‘ +
06 i 06 x 0.6 } i
|
|
0.4 | 0.4 Q 0.4 E
L
| | |
+ | | | 1
0.2 | 02 + | 0.2 i
| 1 +
0 = 0 0
s1 MCD64A1 st MCD64A1 st MCD64A1

Figure 2.7: Dispersion of Dice coefficient (DC), omission and commission errors (OE and CE)
of burned area detected for all tiles for Sentinel-1 (S1) and MCD64A1 Version 6. The red line
indicates median value, and top and bottom box edges indicate the 75th and 25th percentiles, re-
spectively, while red dots indicate outliers.

2.4.3 Factors influencing the algorithm accuracy

The MAC values (Equation 2.4), and the temporal variation (pre- minus post-fire date)
of backscatter coefficient and soil moisture were analysed by land cover class for each
Sentinel-1 temporal pair after the BA classification. Four categories were studied: burned,
unburned, commission and omission errors. Data from all tiles were pooled (Figure 2.8).
The analysis confirmed that, over burned and commission error pixels, VH backscat-
ter mean variation was higher (1.72+0.002 dB) when compared to the VV polarisation
(0.34+0.0023 dB) for all land cover classes. As expected, MAC values were on average
considerably higher over burned pixels and commission errors (13.5+0.15) when com-
pared to unburned and omission errors pixels (0.1740.03), following the trends observed
for VH backscatter coefficient mean variation. Soil moisture variations from the SMAP
product were very similar between burned and unburned pixels with no particular trend
being apparent. For crops and shrubs soil moisture variations were slightly higher over
burned areas while for the other land cover classes, the opposite was true (Figure 2.8).

Since the algorithm uses hotspots derived from thermal sensors to map BA, the ac-
curacies metrics (by land cover class) of the pixels located within and outside the IAhs
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Figure 2.8: Temporal variations (A = datay,. — dataps) of the backscatter coefficient (dB) and
soil moisture (from SMAP) between pre- and post-dates for BA detection periods. MAC values
from RXD are also presented. Values are displayed by land cover classes for four categories of
pixels: unburned (Un), burned (Bu) and commission (Ce) and omission errors (Oe). Red line
indicates median value. Top and bottom box edges indicate the 75th and respectively the 25th
percentiles. Outliers not shown to improved graphs discernibility.
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were also compared (Table 2.3). The highest BA accuracy (DC) and lowest omission
and commission errors were observed for the pixels located within the IAhs over all land
cover classes as expected. Likewise, VH and VV pre- to post-fire backscatter coefficient
temporal differences were also compared for both cases. Similar trends, as observed in
Figure 2.8, where burned and commission error pixels had a significant higher variation
when compared to unburned and omission errors pixels were found over both polarisations
independently of the location with respect to the [Ahs.

Table 2.3: Assessment metrics for Sentinel-1 BA detections and pre- to post-fire backscatter vari-

ations assessed as a function of proximity with respect to the hotspots influence area (IAhs).

Crops Grasslands Shrubs Forests Others
DC 0.55 0.34 0.63 0.71 0.61
CE 0.38 0.64 0.27 0.27 0.36
» OE 0.5 0.68 0.45 0.32 0.43
j A VH (bp) 2.524+0.02 1.06+0.01 2.2440.005 1.48+0.003 2.33+0.03
_E A VH (cp) 1.2740.03 0.64+0.01 1.544+0.01 0.91+0.01 1.26+0.03
@ A VH (op) 0.15£0.01 -0.33£0.01 0.98+0.003 0.314+0.002 0.43+0.01
= AVV(bp) 1.4240.02 -0.7340.02 0.66+0.01 0.26+0.003 0.84-+0.04
AVV (cp) 0.03£0.03 -0.914+0.01 0.21£0.01 -0.134+0.01 0.42+0.04
AVV (op) -0.29£0.01 -0.7840.01 0.61£0.004 0.064+0.002 -0.1+0.01
DC 0.11 0.17 0.39 0.27 0.45
CE 0.84 0.79 0.44 0.56 0.54
2z OE 0.92 0.86 0.7 0.81 0.57
< AVH((bp) 2.6+0.09 1.24+0.03 3.63+0.01 2.254+0.01 0.9+0.05
LY AVH(p) 3.31+£0.04 0.33+£0.02 3.3940.01 2.18+0.02 3.33+0.08
% A VH (op) -0.01£0.02 0.08+0.01 0.81£0.01 0.224+0.004 0.52+0.02
© AVV(®bp) 046+0.11 -0.53+0.03 1.73+£0.01 0.27+0.02 -1.44+0.07
A VV (cp) 240.05 -1.344+0.02 2.03+0.01 1.214+0.02 2.784+0.09
A VV (op) -0.73£0.02 -0.554+0.01 0.12+0.01 -0.394£0.01 -0.03+0.02

A - pre- to post-fire temporal differences of VV and VH backscatter data by pixels classes of:
burned (bp) and commission (cp) and omission (oe) errors.

For six of the validation sites, images from ascending and descending Sentinel-1
passes were available. Therefore, a more detailed analysis was carried out to understand
the difference in BA accuracy between ascending and descending passes (Figure 2.9).
Overall, BA omission errors were minimum when both passes were used while BA com-
mission errors increased. However, DC values showed that BA detection generally im-
proved when data from both passes were available.

The effect of topography and the environmental conditions (soil moisture) were anal-
ysed for each acquisition pass over the six tiles. The LIA was often used to analyse the
effect of topography on the backscatter coeflicient in areas affected by fires (Tanase et al.,
2009, 2010a; Kalogirou et al., 2014; Gimeno & San-Miguel-Ayanz, 2004; Kurum, 2015).
However, the wide swath of the Sentinel-1 IW mode results in a variation of the incidence
angle of about 17° from near (29°) to far (46°) range. Since LIA is a function of incidence
angle and local slope (U), DC scores were analysed (by satellite pass) as a function of both
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Figure 2.9: Assessment metrics of Sentinel-1 burned area detections per ascending (A), descend-
ing (D) and both satellite passes (B). DC - Dice coefficient, OE - omission error and CE - commis-
sion error.

angles after grouping in five degrees classes (Tanase et al., 2010a). Similar trends were
observed for both passes (Figure 2.10) with better accuracies being observed for low LIAs
and Us groups (<40°).

Nevertheless, analysing BA accuracy by LIA and U angles has limitations as LIA
groups may include areas of different slopes while U groups may include slopes oriented
towards and away from the sensor with completely different scattering properties. There-
fore, the sloped areas (U>5°) were further analysed by their orientation (V) with respect
to the satellite viewing geometry (Figure 2.10). Notice that positive V values are observed
for slopes oriented towards the sensor while negative values are observed for slopes ori-
ented away from the sensor. The BA accuracy improved over pixels oriented toward the
sensor with omission error being lower for such pixels while commission errors slightly
higher. Notice that a paired t-test showed no significant difference (p-value > 0.05) be-
tween the percentage of pixels (by ten degrees V groups) from ascending and descending
satellite passes.

Since Sentinel-1 ascending and descending images were acquired at different dates,
variations in soil moisture (from the global SMAP product) between the pre- and post-
dates delineating the CDPs were analysed to ascertain the influence of this important en-
vironmental parameter on BA detection errors. Over five of the six tiles, the difference in
soil moisture between ascending and descending passes were reduced. However, for tile
30SVG soil moisture increased considerably over some areas for descending pass acqui-
sitions which translated in much larger commission errors (0.46) when compared to those
observed for the ascending pass (0.16), where soil moisture was stable (Figure 2.11). The
increased commission errors were the result of a large and compact area located south of
the fire perimeter that was misclassified as burned (Figure 2.12). The temporal variations
of the backscatter coefficient between ascending and descending passes (tile 30SVG) were
correlated with the accuracy metrics. An important variation of the backscatter coefficient
during the descending pass was observed over the misclassified burned area (CE) for both
VV (2.840.029) and VH (1.040.027) polarisations (Figure 2.12).
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Figure 2.10: Dice coeflicient (DC) by local incidence angle (LIA) and local slope (U) groups. For
sloped areas (U>5°) the DC, commission (CE) and omission errors (OE) are shown as a function
of slope orientation (V) with respect to the Sentinel-1 viewing geometry. Negative V values show
slopes oriented away from the sensor while positive V values show slopes oriented toward the sen-
sor. The BA metrics are shown for six tiles where both ascending (ASC) and descending (DESC)
passes were available (i.e., I0SEH, 10UEC, 29TNE, 29TNG, 30SVG and 30TYK).
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Figure 2.11: Temporal variations of soil moisture (SM) from Soil Moisture Active Passive (SMAP)
mission for pre- and post-fire dates (Agyr = SMpre — S Mpost), in tile 30SVG. Ascending (A) and
descending (D) passes are analyzed separately. Pixels are grouped by classes of unburned (Un)
and burned (Bu). Pixels from areas affected by commission (Ce) and omission errors (Oe) are also
shown. The red line indicates median value, and top and bottom box edges indicate the 75th and
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30SVG: red - burned (Bu), white - unburned (Un), black - omission errors (Oe) and blue - com-
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also shown for each pass.

2.5 Discussion

2.5.1 Algorithm development

The Reed-Xiaoli anomaly detector (Reed & Yu, 1990), not widely used with SAR images
except for levee slide detection (Dabbiru et al., 2012, 2016, 2018), seemed to work coher-
ently when detecting burned areas as errors of omission appeared when low backscatter
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changes were observed over burned areas while the commission error appeared due to fire
unrelated backscatter variations over unburned areas. These trends were reflected by the
MAC values for OE and CE classes which were close to those observed for unburned and
respectively burned areas suggesting a correct estimation of the covariance matrices by
taking advantage of the a priori information from stable areas (i.e., likely unburned pix-
els). Comparing backscatter variability over burned and unburned classes, one may notice
notably smaller MAC values over the later, which also suggests a properly functioning of
the anomaly detector according to the input data. To test the correct delineation of stable
areas (i.e., background), a t-test was used to analyse the statistical difference between the
inverted covariance matrices (used by RXD) obtained using hotspots and those obtained
using the BA validation perimeters from optical data (section 3.4). The analysis showed
no statistical difference (p-values > 0.05) between the two methods demonstrating that
hotspots may be reliably used to identify likely burned and unburned pixels as a prelimi-
nary source of burned area.

The use of ancillary information from thermal anomalies (hotspots) allowed for at-
tributing anomalous changes of SAR backscatter data as BA though a locally derived
knowledge extraction. Hence, burned pixels were extracted without the need for rely-
ing on fixed thresholds on the SAR signal, which may depend not only on the land cover
type but also on backscatter variations due to spatially variable influencing factors (e.g.,
soil and vegetation moisture) that are difficult to model. Temporal decorrelation between
hotspots (i.e., fire date) and the date at which radar backscatter changes were detected
(Belenguer-Plomer et al., 2018b) was observed over most tiles. One should notice that
temporal decorrelation is not specific to burned area nor the C-band frequency as simi-
lar effects were observed for L-band HV polarisation over areas affected by deforestation
(Watanabe et al., 2018). Therefore, temporal studies using SAR-based change detection
techniques must devise methods to reduce or account for such effects (see the proposed
approach in the Stage 3).

The use of a non-parametric classifier was essential to cope with the temporal lack
of hotspots due to persistent cloud cover or small fire size (i.e., not detected by thermal
sensors). Parametrising random forests classifier (RF) for BA classification may prove
complex as almost an infinite combinations of parameter settings are possible. Ramo &
Chuvieco (2017) proposed using 600 trees and a stratified training, where 10% of training
data were burned pixels and the rest not burned, for the classification of MODIS images
in burned and unburned classes. Such a setting was tested during algorithm development,
but the results were not as accurate as expected. Therefore, the RF set-up was customised
based on empirical observations. The substantial differences in RF parametrisation set-
tings were mainly caused by the algorithm design since it is building specific RF models
for each land cover type and detection period. Hence, it does not have to cope with widely
varying land cover and burn conditions as the work of Ramo & Chuvieco (2017), which
used one uniquely trained model worldwide.

2.5.2 Comparison with global products

Over most validation areas, the accuracy of the proposed algorithm was higher when com-
pared to the MCD64A1 Version 6 product (Giglio et al., 2018). The mean DC value over
all studied locations was 0.13 higher for the Sentinel-1 BA detections (i.e., 28% higher).
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The DC values of Sentinel-1 detections per tiles were statistically higher than those of
MCDG64A1 (paired t-test p-value of 0.024). In addition, the variability of Sentinel-1 BA
detection accuracy was considerably lower when compared to the MCD64A 1 product. The
mean values for OE and CE over all tiles were also lower for the Sentinel-1 detections.

The analysis showed that for 13 tiles (72% of the studied areas), the Sentinel-1 BA
detections had higher DC scores than the MCD64A1 product. For one tile, 33NUF, the
difference in accuracy (DC) of the two products is 0.5. The very low accuracy (DC 0.02)
observed over this tile for the MCD64A1 product is difficult to explain with the data
at hand; hence the tile was considered an outlier. For five tiles (i.e., 18NXG, 30TYK,
33NTG, 33NUG, and 499MHT) the improvement of the Sentinel-1 product was substan-
tial with DC increasing on average by 144% when compared to the MCD64A1 product.
The large difference in DC scores was mainly caused by the high OE (0.72 to 0.94) in
the MCD64A1 product. Detection of small burned areas (< 120 ha) is problematic us-
ing MODIS data due to the coarse sensor resolution (Giglio et al., 2009). To evaluate if
reduced spatial resolution of MODIS was the reason behind MCD64A 1 product poor per-
formance, the percentage of BA from fire scars below 120 ha was computed based on the
reference datasets. In tiles 33NUG, 33NTG, and 49MHT fires below 120 ha constituted
85%, 53% and respectively 48% of the total BA suggesting that the lower performance may
be related to the coarser MODIS spatial resolution. Therefore, these results suggest that
improvements in BA detection accuracy may be possible not only in areas with frequent
cloud cover. However, for tiles 18NXG and 30TYK small fires (< 120 ha) constituted
only 34% and respectively 25% of the total BA indicating that fire size may not be the
only factor influencing detection accuracy when using coarse-resolution sensors.

For five tiles (i.e., 29TNE, 30SVG, 36NXP, 48VWL and 50JML) the MCD64A1
product showed higher DC scores when compared to the Sentinel-1 based detections. The
mean difference between the four first tiles was only 0.13. However, for tile S0JML, this
difference was higher, with the MCD64A1 product being markedly more accurate (DC
0.41 vs 0.21). It seems such large differences were related to the conditions encountered
over the Australian grasslands, where backscatter variations recorded from pre- to post-
fire periods were low, hindering the detection algorithm. By land cover class, the results
indicate that a radar-based BA mapping algorithm may provide BA products with bet-
ter or similar accuracies when compared to available global products, except for grass-
lands. The most significant difference in accuracy was observed over grasslands, where
the MCD64A1 was more accurate than the Sentinel-1 based BA (DC 0.45 vs 0.28). Con-
versely, over forests, Sentinel-1 derived BA was more accurate (DC 0.64 vs 0.49).

2.5.3 Factors influencing BA accuracy

Temporal variation of pre- and post-fire VH and VV backscatter coefficient over pixels af-
fected by CE and OE were similar to those observed over burned and respectively unburned
pixels. Following, the main factors affecting burned area classification were discussed.

2.5.3.1 Environmental conditions

CE may only be related to factors that modify the scattering proprieties in a similar man-
ner to fires (e.g., soil moisture variations) when backscatter changes are concentrated in
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a reduced part of the image (anomalous changes), since the RXD may identify such vari-
ations as spatial anomalies and consequently the algorithm may misclassify them as BA.
For instance, unrelated fire backscatter variations which did not affect the entire image
occurred over tile 30SVG, where the highest difference between commission errors for
ascending (0.16) and descending (0.46) passes was observed. For this tile, soil mois-
ture variations over CE pixels varied notably between ascending and descending passes.
For the descending pass, post-fire soil moisture was on average 0.014+1.18e-04 m3/m?
higher when compared to pre-fire soil moisture, while for the ascending pass the increment
was marginal (6.2e-04 m3/m?). Consequently, over pixels affected by CE, an average in-
crease of 2.84+0.029 dB for VV polarisation and 1.0£0.027 dB for the VH polarisation
was recorded from pre- to post-fire date for the descending acquisitions. The differenti-
ated increase by polarisation confirmed the larger influence of the soil surface properties
on the VV polarisation when compared to the VH polarisation as noted previously by
other authors (Freeman & Durden, 1998; Yamaguchi et al., 2005; Van Zyl et al., 2011).
The backscatter coeflicient change generated by variations in soil moisture was incorrectly
mapped as burned since (i) the algorithm does not account for the sign of the backscat-
ter change, and (ii) the image part affected by rainfall was located close to hotspots (areas
bordering the fire perimeter). This suggests that algorithm improvements may further mit-
igate commission errors related to soil moisture variations by considering the backscatter
change direction. Notice that, tile 30SVG was an exception as, at this location, a major part
(67.6%) of the CE were concentrated in a large enough area (3420 ha) to extract useful in-
formation from the coarse pixel spacing SMAP product. The influence of soil moisture on
BA accuracy was inconclusive for the rest of the tiles, most probably due to the coarse pixel
spacing of the SMAP product (9 km). The use of higher spatial resolution soil moisture
products such as the Copernicus Surface Soil Moisture (SSM), a Sentinel-1 based product
with 1 km of pixel spacing (Bauer-Marschallinger et al., 2018), shall be investigated once
they become available at global level. Further, as global products of harvest, defoliation,
floods or logging at enough detailed pixel spacing, when compared to Sentinel-1 spatial
resolution, are not available and precipitation products based on extrapolation of data from
rain gauges have a much coarser pixel spacing (0.5°) and own errors (Hu et al., 2018), it
was not possible to identify all the commission errors sources and filter them out.

2.5.3.2 Fire impact

Conversely, pixels affected by OE may have been the result of the effects of different vari-
ables which attenuated the vegetation combustion effects on the C-band backscatter co-
efficient. Fire severity, the degree of organic matter loss due to fire combustion (Keeley,
2009), constrains the temporal backscatter variation between pre- and post-fire (Tanase
et al., 2010b, 2014). The dNBR mean values over the pixels affected by omission errors
(0.068+6.65e-05) was 22.73% lower when compared to the dNBR values observed for
correctly detected burned pixels (0.0884-7.5e-05). Notice that the NBR index is widely
used to detect BA and estimate fire severity over a range of biomes (Escuin et al., 2008;
Loboda et al., 2007; Van Wagtendonk et al., 2004; Tanase et al., 2011) and that high fire
severity implies a more significant reduction of vegetated scattering elements due to com-
bustion.
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2.5.3.3 Topography

Topography also affected the BA accuracy, with a tendency of increased burned areas
omission being observed for the pixels oriented away from the sensor most likely due to
the existence of shadowed regions (Tanase et al., 2010a, 2009). Conversely, for the pixels
oriented towards the sensor, the commission errors increased since soil proprieties had a
higher influence on radar scattering. Since the OE due to topographic effects were higher
when compared to the CE, BA accuracy was improved by joining detections from different
relative orbits when available (see subsubsection 2.5.3.5).

2.5.3.4 Land cover type

The variables mentioned above affect the scattering processes over burned and unburned
areas differently depending on the land cover class observed and translated into variable
map accuracies. Lower BA accuracies were found over grasslands as the scattering el-
ements characteristic for this vegetation type interact to a lesser extent with the C-band
waves when compared to the scattering elements encountered in shrubs and forests (stems,
branches). However, the most important factor affecting the algorithm sensitivity to fire
in grasslands seemed to be related to fire timing. In areas characterised by long inter-
vals (months) between grass curing and fire events the algorithm encountered difficulties
as the cured (i.e., dry) grass has low scattering properties being mostly transparent to
the radar waves (Menges et al., 2004). Therefore, grass consumption by fire results in
small or nil VV and VH backscatter changes from vegetation consumption which hinders
BA detection. This observation seemed supported by the lower temporal variation of the
backscatter coefficient over burned when compared unburned grasslands. Conversely,
forest and shrubs, besides containing scattering elements more susceptible to interact to
C-band radar waves, are not affected by curing to the same extent (i.e., some water needs
to be retained to ensure plant survival). Thus, vegetation consumption by fire results in
a noticeable scattering decrease which is detected by the algorithm, although sometimes
a temporal gap between fire and detection was observed (temporal decorrelation) as dis-
cussed in Belenguer-Plomer et al. (2018b).

2.5.3.5 Ancillary information and SAR data availability

The use of hotspots was essential, given that only two backscatter channels were available
(VV and VH polarisations). Without hotspots, differentiation of burned areas from other
land changes (e.g., floods, logging, harvest, vegetation disturbance due to pests, drought)
that modulate the backscatter coefficient in a similar fashion was difficult as also noted
by Huang & Siegert (2006). Lower BA detection accuracies were found in pixels located
far (outside IAhs) when compared to pixels located in close proximity (within 750 m) of
hotpots events. According to the reference data, only a 15.3% of burned pixels were not
located within IAhs, allowing for BA detection rates comparable or better than those of
currently available global products.

Joining detections from different relative orbits (from ascending and descending pa-
sses) increased the detected burned area. Inherently, the availability of several orbits
covering the same area resulted in reduced OE, which is particularly true when differ-
ent viewing geometries were used over areas with steep topography. Conversely, the CE
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increased as wrongly detected areas are also joined in post-processing (Stage 5 of the al-
gorithm). Despite the increased CEs, the use of both Sentinel-1 passes generally improved
the BA accuracy. It should be noted that consistent dual pass (ascending and descending)
acquisitions are currently available only over Europe and North America. The analysis
suggested that differences in BA accuracy between ascending and descending passes were
mainly caused by the interaction between the viewing geometry and the local topography
as explained in subsection 2.4.3, with the highest accuracies being achieved over areas ori-
ented towards the sensor. Using images acquired in a single pass may result in increased
omission errors, particularly in regions with accentuated topography. These results con-
firm previous findings that highlight the effect of topography on burned area detection
and fire impact estimation (Gimeno & San-Miguel-Ayanz, 2004; Huang & Siegert, 2006;
Tanase et al., 2010b). Further investigations of topographic effects reduction are needed
as, under the current observation scenario, for most of the Earth surface Sentinel-1 data
are consistently acquired in only one pass (i.e., ascending or descending).

The accuracy of the Sentinel-1 product was also assessed as a function of the number
of SAR images available during the detection period as well as the number of days between
consecutive acquisitions. The BA was detected regardless of the image number or their
temporal distance, thus coping with the variable acquisition strategy (temporal frequency)
of the Sentinel-1 mission over different regions. The main temporal factor which limited
the algorithm accuracy was the post-fire vegetation regrowth cycle. Where image acqui-
sitions were more frequent, when compared to vegetation regrowth cycles, the algorithm
detected the changes in backscatter coefficient generated by fires and labelled them as BA.
However, the relationship between BA detection accuracy (DC) and the number of images
used and their acquisition frequency (day difference of consecutive images) per tiles was
weak (0.32 and respectively 0.38 Pearson’s correlation coefficient) since additional fac-
tors affected the algorithm accuracy (i.e., topography and fire unrelated changes). Thus, it
was concluded that current Sentinel-1 temporal frequencies might be sufficient for global
retrieval. Nevertheless, the relatively small number of test samples may have obscured
some effects. In addition, the relationship between Sentinel-1 acquisition frequency and
the detection accuracy may vary with the land cover type (different post-fire regrowth
cycle).

2.5.4 Comparison with previous Sentinel-1 based approaches

Previous studies based on Sentinel-1 data for BA detection were carried out only at local to
regional scales. However, C-band backscatter from fire-affected areas varies with the local
conditions. Therefore, locally trained algorithms are difficult to transfer to other regions.
Engelbrecht et al. (2017) used empirical thresholds to detect BA in South Africa, achieving
OE and CE of 0.29 and 0.48, respectively. Depending on the area, the proposed algorithm
may achieve similar or better accuracies. Lohberger et al. (2018) used an object-based
image analysis approach to detect BA in Indonesia. However, since only information on
the overall accuracy was provided, comparisons were difficult. Finally, Verhegghen et al.
(2016) tested the most suitable thresholds when separating burned from unburned pixels in
the Congo Basin, but did not provide accuracy metrics of their detected BA. Nevertheless,
since such studies relied on algorithms heavily optimised over local to regional scales,
comparisons with the proposed algorithm are of little relevance.
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2.6 Conclusions

This chapter introduced an automated and cloud cover insensitive algorithm for BA de-
tection using Sentinel-1 dual-polarised backscatter images. Hotspots from active fires and
land cover data were used as ancillary information when attributing anomalous backscat-
ter changes to burned and unburned classes. The algorithm was validated at 18 locations
(100x 100 km tiles) covering over 21 million hectares worldwide. Algorithm accuracy
was assessed using reference burn perimeters derived from optical sensors (Landsat-8 and
Sentinel-2). The agreement between the Sentinel-1 algorithm and the reference perime-
ters was compared with that of the most widely used global BA product, the MCD64A1
Version 6. Over all tiles, the mean OE and CE for BA were 0.43 and 0.37, respectively.
The mean DC was 0.59. When compared with the MCD64A1, the proposed algorithm
improved burned area detection (DC) by 28% (from 0.46 to 0.59) over the analysed tiles.
Such improvements in accuracy were mainly related to reduced OE, a useful trait demon-
strating that Sentinel-1 data may be a key source of information when optical data-based
products have information gaps due to persistent cloud cover.

According to our analysis, strong topography conditioned the BA accuracy with slopes
oriented away from the sensor being subject to higher errors. Such effects were reduced
by combining detections from different relative orbits. Likewise, it was observed that
reduced fire severity translated into increased omission errors. On the other hand, com-
mission errors seemed to correlate with fire unrelated changes affecting the scattering pro-
cesses. Furthermore, scattering from burned areas was directly influenced by vegetation
type with higher accuracies being observed over forested areas (DC 0.64) and lower over
grasslands (DC 0.28) which were attributed to the difficulty in tracking changes of cured
vegetation using the C-band data. The main advantages of the proposed algorithm were
related to: (i) self-adapting to local scattering conditions without the need for a priori in-
formation of the observed area or the use of fixed thresholds; and (ii) ability to detect BA
during periods with no thermal anomalies. On the other hand, the main limitations were
related to: (i) misclassification of fire unrelated changes; (ii) positive relationship between
accuracy and hotspots availability; and (iii) accuracy dependence on variables affecting
radar scattering processes (e.g., ecosystem type, topography). To reduce such limitations,
further improvements shall be investigated.
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Chapter

Optimum Sentinel-1 pixel spacing for
burned area mapping

T his chapter evaluates the relationship between mapping accuracy and computing time

when detecting burned areas from Sentinel-1 C-band backscatter coefficient images
processed at different pixel spacings (i.e., 20, 30, 40 and 50 m). The analysis was carried
out in six study areas distributed worldwide. The algorithm described in Chapter 2, based
on Sentinel-1 C-band post- to pre-fire backscatter coeflicient differences and the Reed-
Xiaoli anomaly detector, was used to detect and map the burned areas.

Marginal differences in accuracy were observed when varying the spatial spacing
with slightly more accurate products being obtained at higher spacing as speckle was re-
duced. However, the computing time was considerably higher when processing at the
lowest spacing (20 m). The results suggest that detecting burned areas at 30 to 50 m pixel
spacing from C-band backscatter provides significant advantages over large areas (i.e.,
continental to global scales) while also improving the detection accuracy.

This chapter is based on the article:

Belenguer-Plomer, M.A., Chuvieco, E., and Tanase, M.A. (2020). Optimum Sentinel-1
pixel spacing for burned area mapping. Accepted in IEEE Inter. Geos. and Rem. Sens.
Symp. (IGARSS).
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3.1 Introduction

Fire disturbance is considered an essential climatic variable since it has a leading part in
the climatic system by altering the concentration of greenhouse gases and aerosols in the
atmosphere (Van Der Werf et al., 2017).

Current estimations place global burned area from 4 to 4.5 million km? per year
(Giglio et al., 2018; Lizundia-Loiola et al., 2020), although it exists a considerable uncer-
tainty (Chuvieco et al., 2019). Two leading sources are behind such uncertainty, (i) the
predominant use of passive remote sensing sensors which are of limited use in areas with
persistent cloud cover, and (ii) the coarse spatial resolution (i.e., > 250 m) of the sen-
sors used to derive the global burned areas, which prevents the detection of small burned
patches that may account for a significant portion of the burned area (Roteta et al., 2019).

The use of the synthetic aperture radar (SAR) provides a remarkable opportunity to
reduce the mentioned uncertainty by allowing acquisitions independently from clouds and
solar illumination conditions. The launch of ESA’s Sentinel-1 satellites has increased the
interest in SAR datasets for burned area detection due to its relatively high revisit peri-
ods (down to three days when ascending and descending passes are used). In addition,
the Sentinel-1 mission provides dual-polarised information (vertical-vertical, VV; and
vertical-horizontal, VH polarisations), increased incidence angles and a free data access
policy. These improvements have allowed the development of burned area mapping algo-
rithms based on Sentinel-1 C-band backscatter coefficient time-series (Lohberger et al.,
2018; Belenguer-Plomer et al., 2019). The latter algorithm (Belenguer-Plomer et al.,
2019), used to produce regional scale burned area maps over the Amazon basin in the
framework of the ESA’s Fire_cci project (FireCCIS1SA10) was used in this research.

The nominal resolution of Sentinel-1 SAR sensor is 20 m. However, reducing the
spatial resolution of SAR datasets is often needed to improve image radiometry (i.e., re-
duce speckle). Therefore, the trade-off between increased pixel spacing and mapping ac-
curacy needed to be evaluated. The objectives of this study were to (i) evaluate burned
area detection accuracy at decreasing levels of radar speckle, (ii) evaluate the efficiency
(i.e., computing time) of the classification process and its relationship with the product ac-
curacy, and (ii1) evaluate the ability to detect small fires, and thus reducing the uncertainty
of global burned area estimation.

3.2 Study areas and datasets

Six study areas frequently affected by fires and distributed worldwide were considered in
this work (Figure 3.1). The study areas corresponded to 100 x 100 km tiles according to
the Military Grid Reference System (MGRS).

Ground Range Detected (GRD) C-band dual-polarised SAR images (VV and VH)
acquired by the satellites Sentinel-1 A/B in interferometric wide (IW) swath mode were
utilised to detect and map the burned area. Land cover information and thermal anomalies
(i.e., hotspots) provided ancillary information during detection, as explained in Methods
(see section 3.3). Land cover information was extracted from the most recent global prod-
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Figure 3.1: Location of the study areas.

uct generated in the framework of the ESA’s Land_Cover_cci project. Hotspots recorded
by the Visible Infrared Imaging Radiometer Suite (VIIRS) at 375 m and the Moderate
Resolution Imaging Spectroradiometer (MODIS) at 1 km of spatial resolution, respec-
tively, were downloaded from NASA'’s Fire Information for Resource Management System
(FIRMS).

Landsat-8 images were used to generate the reference burned area perimeters needed
to validate the mapping accuracy (Fernandez-Carrillo et al., 2018). The reference maps
were derived in each study area for the periods shown in Table 3.1.

Table 3.1: Periods for which the reference fire perimeters were generated.

MGRS area Reference period

10UEC 20170705 - 20170822
20LQQ 20160704 - 20160922
29TNE 20171005 - 20171106
33NTG 20161230 - 20170115
49MHT 20170307 - 20170510
50JML 20170307 - 20170510

3.3 Methods

3.3.1 Sentinel-1 data processing

The fully automatic processing chain S1Tiling, based on Orfeo ToolBox libraries (Inglada
& Christophe, 2009) developed at National Centre for Space Studies (CNES) and the
Centre d’Etudes Spatiales de la BIOsphere (CESBIO) was used to process the Sentinel-
1 images. The processing chain was organised into three main tasks such as (i) data-
preparation, where the images were calibrated to gamma nought using the information
provided in the GRD metadata, (ii) geocoding, where the images were orthorectified, and
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(ii1) multi-temporal filtering, where the speckle was filtered considering multi-temporal
values of each pixel (Quegan et al., 2000). The processing was carried out at 20 m, the
native Sentinel-1 ground spatial resolution. For the proposed analysis, the 20 m images
were aggregated to 30, 40 and 50 m.

3.3.2 Burned area detection algorithm

The detection of burned area using Sentinel-1 images was carried out employing an ad-
vanced algorithm based on Sentinel-1 C-band backscatter coefficient (Belenguer-Plomer
et al., 2019). The algorithm used the Reed-Xiaoli detector (RXD) (Reed & Yu, 1990)
over temporal ratios of backscatter coefficient to detect anomalous changes in each land
cover class and detection period as defined by consecutive Sentinel-1 acquisitions. De-
pending on the study site and Sentinel-1 observation scenario, the revisit period was 6 or
12 days. Temporally and spatially coincident anomalous changes, as detected by RXD,
and hotspots were used to derive burned and unburned regions of interest (ROIs). A
random forests classification model was subsequently applied over areas not assigned as
burned/unburned ROIs using the coincident anomalous changes and hotspots. Such areas
arose as dense cloud cover may have obscured thermal radiation from the Earth surface
(lack of hotspots) or due to insufficient radiative power of small fires which often are not
recorded by the space-borne thermal sensors. The random forests models, trained (for
each land cover class) using samples drawn from burned/unburned ROIs, were used to
detect the burned area without hotspots information.

3.3.3 Validation metrics

The detected burned area was validated using confusion matrices computed through cross-
tabulation of the Sentinel-1 detected burned area, and the Landsat-8 based reference fire
perimeters (Table 3.2). Three accuracy metrics were computed for the burned area class,
the omission error (Equation 3.1), the commission error (Equation 3.2) and the Dice co-
efficient (Equation 3.3) (Padilla et al., 2015). Besides, the computing time when detecting
the burned area at each pixel spacing considered (i.e., 20, 30, 40 and 50 m) was stored to
assess the trade-off between mapping accuracy and computing needs.

Table 3.2: Confusion matrix example.

Refererence data

Detection Burned Unburned Row total

Burned P11 P12 P1+

Unburned P21 P22 P2+

Col. total Py Pis N
OE = Py /Py (3.1
CE= Pja/P1+ (3.2)

DC = 2P11/ (P1+ + P+1) (3.3)
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3.4 Results

3.4.1 Accuracy and computing time pixel spacing effects

Mapping accuracy (DC) and errors (OE and CE) were largely similar when detecting
burned area using Sentinel-1 images regardless of the pixel spacing used (i.e., 20 30, 40
and 50 m) (Figure 3.2). According to the ANOVA analysis, no statistically significant
differences (p-value > 0.05) were observed between the DC, OE and CE at the four pixel
spacing analysed. However, for pixel spacings above 20 m, the CE decreased, and the OE
increased marginally. Since the burned area detection algorithm is land cover dependent
(Belenguer-Plomer et al., 2019), the ANOVA analysis was also carried out by land cover
classes (Table 3.3). As for the overall values, the ANOVA showed no significant difference
in accuracy by land cover classes (p-value > 0.05). It should be noticed that the coarser
resolution of the global land cover product used (300 m) may have obscured the effects of
the Sentinel-1 resolution over different landscapes.

Statistically significant differences were observed when analysing the computing time
needed to detect the burned area at each pixel spacing and detection period as defined by
the interval between consecutive Sentinel-1 acquisitions (Figure 3.2). At 20 m spacing, the
average time needed for detection was 121 minutes, a 265%, 491% and 795% of increasing
when compared to 30, 40 and 50 m, respectively.
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Figure 3.2: Dice coefficient, omission and commission errors and minuted needed to carry out the
burned area mapping per detection period by Sentinel-1 sizes of pixel spacing.
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Table 3.3: Dice coefficient, omission and commission errors by land cover class and pixel spacing

(% confidence interval, 95%).

LC

DC

OE

CE

Crops

20
30

50

0.441+0.23
0.381£0.27
0.452+0.25
0.473+0.28

0.507+0.3

0.548+0.36
0.478+0.43
0.499+0.39

0.576+0.22
0.581+0.21
0.521+£0.22
0.478+0.24

Grasslands

20
30

50

0.396£0.17
0.424+0.2
0.417+0.2
0.439+0.22

0.679+£0.12
0.657+0.13
0.677£0.13
0.663+0.15

0.441+0.36
0.418+0.36
0.392+0.35
0.352+0.38

Shrubs

20
30

50

0.537+0.19
0.567+0.21
0.57+0.23

0.576+0.23

0.501+0.13
0.458+0.15
0.463+0.19
0.455+0.19

0.402£0.25
0.388+0.26
0.381+0.27
0.37£0.28

Forests

20
30

50

0.638+0.16
0.661£0.17
0.674£0.17
0.684+0.16

0.32+0.16

0.267+£0.15
0.277£0.16
0.273£0.15

0.379+0.2
0.38240.2
0.357+£0.19
0.344+0.19

3.4.2 Pixel spacing effects over small burned patches

To respond to current burned area mapping necessities, the error analysis was also carried
out over small burned patches (< 120 ha), where coarser spatial resolution sensors, such
as MODIS, are more prone to have omission errors (Roteta et al., 2019; Belenguer-Plomer
et al., 2019). The analysis showed little variation in accuracy and errors (ANOVA p-value
> (.05) among the four spatial resolutions tested (Table 3.4), with burned area mapping
accuracy being low.

Table 3.4: Dice coefficient, omission and commission errors in small burned areas (< 120 ha) by
Sentinel-1 sizes of pixel spacing (+ confidence interval, 95%).

DC

0.187£0.16
0.19+0.16
0.192£0.16
0.19+£0.16

OE

0.635+0.2
0.612+0.2
0.637+£0.2
0.647+0.2

CE

0.852+0.17
0.856+0.16
0.84940.17
0.848+0.18

m

20
30
40
50

3.5 Discussion

According to our results, the sole variable which needs to be considered when choosing
the spacing of the final burned area product, and therefore the spatial resolution to process
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the Sentinel-1 images, is the computing time. Computing requirements, coupled with
the null improvement in mapping accuracy, suggest avoiding the nominal resolution of
Sentinel-1 when mapping burned areas over a range of environments. Moreover, marginal
improvements in the mapping accuracy were observed at higher pixel spacings. A low
pixel spacing was linked to high CE due to speckle effects, while a coarser spacing implied
a noise smoothing of the spatial data, reducing the CE and increasing the OE as some
information was lost. The results presented here may have been limited by the resolution
of the Landsat-8 images (30 m) used to derive the reference fire perimeters. The smallest
burned areas detected at the nominal spatial resolution of Sentinel-1 (20 m) may offer a
more accurate record than the reference fire perimeters derived from the coarser Landsat
imagery. Such effects have not been considered in this study. Assuming such limitations,
it seems that the best strategy when monitoring burned areas using Sentinel-1 is taking
into account the time computing requirements when considering pixel spacings equal and
lower than 50 m. Computing time is considerably higher at detailed spatial resolutions
and apparently without providing more accurate maps even for the small fires.

3.6 Conclusions

This work has analysed and quantified the relationship between burned area mapping ac-
curacy and the processing time at 20, 30, 40 and 50 m of pixel spacing. The study was
carried out over six areas distributed worldwide. The results showed statistically non-
significant differences of burned area accuracy detected at different spatial resolutions
independently of the land cover type and the size of the burned patch. The most relevant
effect when working at different spatial resolutions was the increasing computing time
needed to detect and map the burned areas.
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Chapter

Backscatter coeflicient temporal
decorrelation in burned areas

urned area algorithms from radar images are often based on temporal differences be-
tween pre- and post-fire backscatter values. However, such differences may occur
long past the fire event, an effect known as temporal decorrelation. Improvements in radar-
based burned areas monitoring depend on a better understanding of the temporal decorre-
lation effects as well as its sources. This chapter analyses the temporal decorrelation of the
Sentinel-1 C-band backscatter coefficient over burned areas in Mediterranean ecosystems.
Several environmental variables influencing radar scattering were analysed, including fire
severity, post-fire vegetation recovery, vegetation water content, soil moisture, and local
slope and aspect. The ensemble learning method random forests was employed to es-
timate the importance of these variables for the temporal decorrelation process by land
cover classes.

The temporal decorrelation was observed for 32% of the burned pixels. Fire severity,
vegetation water content, and soil moisture were the main drivers behind temporal decorre-
lation processes and are of the utmost importance for areas detected as burned immediately
after the fire event. When burned areas were detected long after fire (decorrelated areas),
due to reduced backscatter coefficient variations between pre- to post-fire acquisitions,
the water content (soil and vegetation) was the main driver behind the backscatter coef-
ficient changes. Therefore, for efficient synthetic aperture radar (SAR)-based monitoring
of burned areas, the detection and mapping algorithms need to account for the interaction
between fire impact and soil and vegetation water content.

This chapter is based on the article:

Belenguer-Plomer, M.A., Chuvieco, E., and Tanase, M.A. (2019). Temporal decorrelation
of C-band backscatter coefficient in Mediterranean burned areas. Remote Sensing, 11(22),
2661.

75



76 Chapter 4. Backscatter coefficient temporal decorrelation in burned areas

4.1 Introduction

Fire has a key role in the global climatic balance modifying the greenhouse gases (GHGs)
emission fluxes and the presence of aerosols in the atmosphere (Van Der Werf et al., 2017,
Andreae & Merlet, 2001; Bowman et al., 2009). The Global Climate Observing System
(GCOS) considers fire disturbance as an essential climatic variable (ECV) due to the close
relationship between fire regime and climate. According to Bojinski et al. (2014), an ECV
is a physical, chemical, biological, or a group of linked variables that have a major in-
fluence on the climate system and are key to predicting climate evolution. In 2010, the
European Space Agency (ESA) started the Climate Change Initiative (CCI), a program fo-
cused on deriving remote sensing-based information on different ECVs to improve climate
modelling efforts (Plummer et al., 2017; Hollmann et al., 2013). Given its importance for
climate modelling (Mouillot et al., 2014; Poulter et al., 2015), fire disturbance was in-
cluded in the CCI program (Fire CCI) since the beginning. The aim was to produce a
long-term consistent time series of global burned area maps (Chuvieco et al., 2016). The
most recent global burned area products estimate that around 4 million km? are burned
every year (Chuvieco et al., 2018; Giglio et al., 2018). However, there is still a remark-
able uncertainty about the worldwide burned area extent (Chuvieco et al., 2019), since the
currently available global products are limited by (i) the use of passive remoted sensing
datasets, which is associated with limitations in areas of persistent cloud cover (i.e., inter-
equatorial latitudes), and (ii) relatively coarse spatial resolutions (250 m), which makes
the detection of small fires difficult (Stroppiana et al., 2015; Randerson et al., 2012). A re-
cent comparison between burned area products from Sentinel-2 and Moderate Resolution
Imaging Spectrometer (MODIS) for Africa indicated that the latter missed almost half of
the total burned area, mostly due to small fires omission (<100 ha) (Roteta et al., 2019).

Synthetic aperture radar (SAR) data have been increasingly used for land cover map-
ping, given their independence from cloud cover and solar illumination conditions (French
et al., 1999; Bourgeau-Chavez et al., 2002). Burned area mapping algorithms have been
developed from diverse SAR images, such as those acquired by the European Remote
Sensing (ERS) satellites (ERS-1 and ERS-2) (Bourgeau-Chavez et al., 1997; Kasischke
et al., 1994; Siegert & Hoffmann, 2000; Siegert & Ruecker, 2000; Ruecker & Siegert,
2000; Gimeno et al., 2004, 2002), RADARSAT (Gimeno & San-Miguel-Ayanz, 2004;
French et al., 1999), and the Advanced Land Observation Satellite (ALOS) Phased Ar-
ray type L-band Synthetic Aperture Radar (PALSAR) (Polychronaki et al., 2013). These
SAR-based approaches were, however, limited by (i) the low temporal resolution of the
satellites, (i1) the reduced number of polarisations available, (iii) the steep viewing ge-
ometries, which were less suitable for vegetation monitoring, and (iv) data access restric-
tions. With the launch of ESA’s Sentinel-1 satellites these shortcomings were largely
eliminated due to the significant improvement of the revisit period (i.e., theoretical revisit
period of three days for ascending and descending passes combined), availability of dual-
polarisation datasets (vertical-vertical, VV, and vertical-horizontal, VH polarisations),
shallower incidence angle, and an open data access policy. Such advancements have gen-
erated interest in developing regional (Engelbrecht et al., 2017; Lohberger et al., 2018)
to global (Belenguer-Plomer et al., 2019b) burned area mapping algorithms and products
(i.e., FireCCIS1SA10 for the Amazon basin) based on Sentinel-1 SAR data. Most al-
gorithms use the amount of signal returned to the sensor (backscatter coefficient) without
considering the phase information (interferometry) as SAR data processing becomes more


https://public.wmo.int/en/programmes/global-climate-observing-system
https://www.esa.int/ESA
http://cci.esa.int/
https://www.esa-fire-cci.org/
https://edatos.consorciomadrono.es/dataset.xhtml?persistentId=doi:10.21950/VTDZ1L
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complex and the accuracy of the burned area product is not improved when compared to
algorithms based on backscatter coefficient alone (Tanase et al., 2018).

Burned area mapping approaches often use temporal differences between pre- and
post-fire datasets (Belenguer-Plomer et al., 2019b; Lohberger et al., 2018; Engelbrecht
etal., 2017; Verhegghen et al., 2016; Belenguer-Plomer et al., 2018a). Generally, over veg-
etated areas, the post-fire backscatter coefficient decreases when compared to unburned
areas due to the reduction of the scattering elements (i.e., leaves and branches) through
combustion (Van Zyl, 1993; Antikidis et al., 1998). However, opposite trends may be
observed, particularly when rainfall occurs after a fire event, since the removal of vege-
tation allows for increased soil surface scattering particularly for the co-polarised waves
(Imperatore et al., 2017; Gimeno & San-Miguel-Ayanz, 2004; Ruecker & Siegert, 2000).
Furthermore, changes of the backscatter coefficient in areas affected by fire may take place
long past the fire event (up to several months), an effect known as temporal decorrelation
(Belenguer-Plomer et al., 2018b, 2019b). One should notice that temporal decorrelation
was observed not only over fire-disturbed areas and C-band data. Similar effects were ob-
served for L-band data over areas affected by logging (Watanabe et al., 2018). Therefore,
a better understanding of the temporal decorrelation effects and its sources is needed to
improve SAR-based burned area mapping algorithms. Thus, the specific objective of this
study was to evaluate the influence of different environmental variables that may obscure
fire combustion effect on the backscatter coeflicient immediately after a fire.

4.2 Study area and datasets

The study was carried out in Portugal over fire-affected areas located in tile 29TNE of
the Military Grid Reference System (MGRS). The area was affected by large fires in 2017
(Figure 4.1).

Besides the large areas affected by fires, tile 29TNE was also selected due to (1)
Sentinel-1 A/B acquisitions from ascending and descending passes were available at the
nominal temporal frequency of six days (Potin et al., 2018), (ii) ancillary data on environ-
mental variables at a detailed spatial resolution were available from the Copernicus Land
Monitoring Service program, and (iii) cloud cover was low (annual mean cloud cover of
27.2% as computed from MODIS images) when compared to the mean cloud cover over
all Europe (Wilson & Jetz, 2016), which allowed using optical sensors indices as a proxy
for a range of environmental variables that informed the analysis.

The SAR dataset was formed by temporal series of dual-polarised (VV and VH po-
larisations) C-band backscatter coefficient acquired by the Sentinel-1 A/B sensors. The
ground range detected (GRD) product acquired using the interferometric wide (IW) swath
mode was downloaded from online repositories. As ancillary datasets, optical images
acquired by Sentinel-2 MultiSpectral Instrument (MSI) were retrieved. The Sentinel-2
images were used to derive proxy spectral indices for a range of environmental variables
(e.g., vegetation water content, fire impact) that may affect C-band scattering processes.
Sentinel-1 and -2 images were retrieved from Copernicus Open Access Hub. In addition,
information on land cover and surface soil moisture (SSM) were extracted from opera-
tional products available through the Copernicus Land Monitoring Service. The Corine
Land Cover (CLC) 2018 Version 20b2 at 100 m pixel spacing was used to obtain informa-


https://scihub.copernicus.eu/
https://land.copernicus.eu/
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Figure 4.1: Location of the study area and fire scars.

tion on land cover types. The Copernicus Global SSM product, derived from Sentinel-1
data, was used to obtain information on soil moisture in the top few centimetres at 1 km
spacing (Bauer-Marschallinger et al., 2018). Lastly, topographic information was derived
using the global digital elevation model (DEM) available from the Shuttle Radar Topog-
raphy Mission (SRTM) at 30 m pixel spacing.

Reference fire perimeters were obtained from atmospherically corrected Landsat-8
optical images retrieved from the United States Geological Survey repository (USGS). The
fire perimeters were used to differentiate between burned and unburned pixels during the
analysis. Landsat-8 images were used to maintain independence from the environmental
variables estimated from Sentinel-2 (Tanase et al., 2018).

4.3 Methods

4.3.1 Earth observation data

The Orfeo ToolBox (OTB), an image processing software developed by the National Cen-
tre for Space Studies (CNES) (Inglada & Christophe, 2009), was used to pre-process the
Sentinel-1 GRD images. The pre-processing step includes SAR data clipping according
to the specified MGRS tiles and radiometric normalisation to gamma nought (7°) through
the gamma nought lookup table provided with the product metadata. The calibrated im-
ages were orthorectified to ground geometry using the topographic information derived
from the SRTM. Subsequently, the orthorectified images acquired from the same orbital
path, but provided within different slices, were mosaicked. Finally, a multi-temporal fil-
tering was carried out using images from the same orbital path (Quegan et al., 2000). The
GRD data were processed to 20 m (Sentinel-1 nominal spatial resolution) and aggregated
in post-processing to 40 m spacing, deemed more suitable for burned area detection and
mapping from the Sentinel-1 C-band backscatter coefficient due to the reduced speckle
(Tanase & Belenguer-Plomer, 2018). The equivalent number of looks for the temporally


https://www2.jpl.nasa.gov/srtm/
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filtered, spatially aggregated images was on average 75.

Bottom of atmosphere (BOA) surface reflectance images were derived using the sen-
2cor (v.2.4.0) atmospheric correction algorithm from Level-1C (L1C) Sentinel-2 MSI
images. Besides atmospheric corrections, sen2cor also allowed the ability to carry out
topographic corrections based on the SRTM DEM. The resolution selected during the ex-
ecution of sen2cor was 20 m, with the processed images being resampled (using a bi-cubic
interpolation) to 40 m to match the spatial resolution of the processed Sentinel-1 SAR im-
ages. The soil moisture product was also resampled to 40 m using the same resampling
method.

4.3.2 Ancillary data

Variables that may affect the C-band scattering process from vegetated areas were evalu-
ated to ascertain their relationship with the observed temporal decorrelation. Fire severity,
vegetation growth, and vegetation water content were studied through proxies (i.e., veg-
etation indices) estimated from Sentinel-2 optical images. Soil surface moisture was re-
trieved from the Copernicus Global Land Service while the SRTM digital elevation model
was used to derive the topography-related variables (i.e., local incidence angle and slope
orientation).

4.3.2.1 Fire severity

Fire severity is the degree of organic matter loss due to fire combustion and is strongly
related to fire intensity (Keeley, 2009). The SAR backscatter coefficient from burned areas
is conditioned by fire severity given the sensitivity to the amount of vegetation scattering
elements (Tanase et al., 2010b, 2014). To estimate fire impact on vegetation, the relativized
burn ratio (RBR) proposed by Parks et al. (2014) (Equation 4.1) was computed. RBR was
shown to accurately represent fire severity levels (Marino et al., 2016; Quintano et al.,
2018; Babu et al., 2018) and has a closer relationship with the composite burn index (Key &
Benson, 2004), in situ measurement of fire impacts on vegetation when compared to other
spectral indices. The RBR was derived using the normalized burn ratio (NBR) (Garcia &
Caselles, 1991) (Equation 4.2) and its temporal difference between the pre- and post-fire
images, the dNBR (Equation 4.3).

RBR = dNBR/ (NBR,, + 1.001) 4.1)
NBR = (NIR — SWIR3) / (NIR 4 SWIR) (4.2)
dNBR = NBR ¢ fire — NBRyosi_ fire (4.3)

where NIR and SWIR» were derived from surface reflectivity of Sentinel-2 Bands 8 A and
12, respectively.

4.3.2.2 Water content
The water content of vegetation and soil may alter dielectric proprieties and hence mi-

crowaves scattering (Steele-Dunne et al., 2012; Dubois et al., 1995). In this study, both
vegetation and soil water content were included as variables that may induce temporal
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decorrelation. The normalised difference water index (NDWI, Equation 4.4) was shown
to be related to the liquid water molecules in canopies (Gao, 1996) and was therefore used
as a proxy to evaluate general vegetation wetness. The Copernicus Global Surface Soil
Moisture product, generated at 1 km pixel spacing from Sentinel-1 data, was used as a
source of soil water content information (Bauer-Marschallinger et al., 2018).

NDWI = (NIR — SWIR; ) / (NIR + SWIR; ) (4.4)

where SWIR] is the surface reflectivity of Sentinel-2 band 11.
4.3.2.3 Vegetation growth

The normalized difference vegetation index (NDVI, Equation 4.5) (Rouse Jr et al., 1974;
Tucker, 1979) 1s the most extensively used remote sensing index for vegetation monitor-
ing (Xue & Su, 2017). This index offers information about general vegetation greenness,
which depends on chlorophyll content and is related to canopy structure (Gamon et al.,
1995). NDVI was used as a proxy to evaluate short-term post-fire vegetation recovery since
the saturation of the index in Mediterranean ecosystems appears between 5—10 years after
the fire event, depending on the vegetation type (Meng et al., 2015; Tanase et al., 2011).

NDVI = (NIR — RED) / (NIR + RED) (4.5)

where RED is the surface reflectivity of Sentinel-2 band 4.
4.3.2.4 Topography

Topography has a considerable influence on the C-band backscatter coefficient from burned
areas through both terrain slope and its orientation with respect to the sensor looking ge-
ometry (Belenguer-Plomer et al., 2019b,a). The local incidence angle (LIA) has been
frequently used to analyse topography effects on the backscatter coefficient (Tanase et al.,
2009, 2010a; Kalogirou et al., 2014; Gimeno & San-Miguel-Ayanz, 2004; Kurum, 2015).
However, the wide swath (250 km) of the Sentinel-1 satellites (IW mode) results in an
incidence angle variation of approximately 17° from near (29°) to far (46°) range. Thus,
the resulting LAI values, which are conditioned by the local slope and the satellite inci-
dence angle, may not necessarily represent the same topographic conditions from near to
far range. Therefore, in this study, the local slope and the orientation angle were used to
evaluate the effect of topography. Both slope and orientation (aspect) were measured in
degrees and derived from the SAR looking geometry and SRTM DEM. The slope values
were between 0° to 90°; meanwhile, the aspect values were between -180° and 180°. Neg-
ative values indicate slopes oriented away from the sensor, while positive values indicate
slopes oriented toward the sensor.

4.3.2.5 Land cover

Information on land cover type was obtained from the Corine Land Cover (CLC) 2018
classification (Kosztra et al., 2017). To reduce the number of land cover classes, the CLC
2018 classification was reduced to: (i) not burnable, which included artificial surfaces,
water bodies, wetlands, sands, bare rocks, previous burned areas, and permanent snow
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and ice surfaces; (ii) crops, which included all agricultural CLC classes; (iii) herbaceous,
which included the natural grasslands, sparsely vegetated areas, moors, and heathlands;
(iv) shrubs, which included sclerophyllous vegetation and transitional woodland-shrub;
and (v) forests, which included broad-leaved, coniferous and mixed forest CLC classes.
The re-classified CLC map was resized to 40 m, through nearest-neighbour interpolation,
to match the pixel spacing of the SAR images.

4.3.3 Reference fire perimeters

The reference burned perimeters were obtained following a well-established framework
(Padilla et al., 2014, 2015, 2017; Fernandez-Carrillo et al., 2018). Landsat-8 BOA re-
flectance images were classified in burned, unburned, and no data (i.e., clouds, cloud
shadows) using a random forests classifier trained with manually selected polygons. The
polygons were digitised over a false colour composite (RGB: SWIR, NIR, R) that allowed
for a clear differentiation between burned and unburned patches. Polygon selection fol-
lowed an iterative process (selection/training/classification), which was repeated until the
classification was deemed accurate according to a visual inspection. Finally, the reference
perimeters were visually revised again to correct possible misclassifications (Belenguer-
Plomer et al., 2019b). A nearest-neighbour interpolation was utilised to resize the refer-
ence burned area perimeters to 40 m.

4.3.4 Estimating temporal decorrelation

In this study, only VH data were used to estimate the temporal decorrelation since the
cross-polarised waves are more responsive to volumetric scattering from vegetation over
Mediterranean ecosystems and less affected by changes in soil surface properties (e.g., soil
moisture, surface roughness) when compared to the co-polarised (VV polarisation) chan-
nel (Freeman & Durden, 1998; Yamaguchi et al., 2005; Van Zyl et al., 2011; Belenguer-
Plomer et al., 2018b). The different sensitivity between co- and cross-polarised waves
when deriving burned area maps were previously noted by Belenguer-Plomer et al. (2019b).

To separate burned pixels affected by temporal decorrelation, a potential burned area
detection framework was developed to determine if the temporal (pre- and post-fire) and
contextual (burned and unburned) variations of VH backscatter were significant to label
a pixel as burned. The potential detection framework was based on the analysis of the
statistical properties of the VH backscatter coefficient (dB) within and outside the reference
fire perimeters at different dates before and after the fire event date (Figure 4.2). The
detection framework was established to ascertain the post-fire date at which a pixel may
be labelled as burned using the SAR time series. The backscatter analysis was carried
out for all burned pixels (determined from Landsat imagery) as well as unburned pixels
located within 500 m of the fire scars. The data was first stratified by land cover class,
local incidence angle (Tanase et al., 2010a) and slope orientation with respect to the sensor
looking geometry (i.e., forward and backwards-looking slopes, respectively). A pixel was
labelled as burned when (i) post-fire VH backscatter was greater than the maximum or
lower than the minimum backscatter values recorded for the month before the fire date
(to), and (ii) the difference between the backscatter coefficient of the pixel and the mean
of the unburned reference pixels (within the corresponding land cover class) was greater
than the maximum recorded during the month preceding the fire. When pre- to post-
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fire backscatter variations were small immediately after fire event (i.e., first post-fire SAR
image, t.1) but sufficiently high to label a pixel as burnt sometime after the fire and 7 1,
the pixel was considered temporally decorrelated. The lack of temporal decorrelation is
exemplified in Figure 4.2a, as the pixel may be labelled as burned immediately after the
fire (t+1). On the contrary, the presence of temporal decorrelation is shown in Figure 4.2b,
since the pixel may be labelled as burned (according to the two criteria above) some time
after the fire date and ¢4, in £, being 7 > 1.
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Figure 4.2: Graphical representation of potential burned area detection at pixel level for (a) ab-
sence of temporal decorrelation and (b) presence of temporal decorrelation. Th; and Thy are
the maximum and the minimum backscatter coefficient, respectively, recorded within one month
before the fire time (to) of a given burned pixel (b), Md(b, ). is the maximum difference of
backscatter coefficient between b and the mean of the unburned reference pixels (u) one month
before ¢, and d(b,u)¢+1 and d(b,u)¢4; represent the difference of backscatter coefficient between
b and u for different post-fire images.

4.3.5 Variables analysis

The importance of the variables which affect the C-band backscattering process in burned
areas (see subsection 4.3.2) and thus on the perceived temporal decorrelation was analysed
by using an ensemble learning algorithm, the random forests (Breiman, 2001). Random
forests is frequently used in classification problems and consists in a group of decision trees
{h(x1,0;),z =1,...}, where x/ is the input vector of a pixel (z), and O, are a sampled
vectors independently bootstrapped with replacement in each decision tree (z). A unique
class for x is provided from each tree, with class most often voted being finally assigned to
x (Breiman, 2001). During the classification process, random forests compute importance
measures for each independent variable (Rodriguez-Galiano et al., 2012; Breiman, 2001).
One may use the random forest importance, whose physical meaning is based on the degree
with which each variable influences the classification process (Archer & Kimes, 2008), as
information to assess the variable significance over a specific study area. Indeed, in recent
years an increasing number of studies used random forests to such ends (Belgiu & Dragut,
2016; Belenguer-Plomer et al., 2019a; Nguyen et al., 2018; Hislop et al., 2019; Zhang
et al., 2019).

Here, the importance of the selected environmental variables was estimated by build-
ing random forest models. Such models were customised through the number of trees and
training samples used. The number of trees is a key part of the random forests adjustment
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as it is known that the use of more trees generates a convergence of the generalisation
error and reduce over-fitting (Breiman, 2001; Pal, 2005; Rodriguez-Galiano et al., 2012).
However, the use of more trees requires more computational resources. A preliminary
empirical analysis concluded that 200 trees provided the best balance between speed and
accuracy as statistically significant differences (¢-test, 95% confidence interval) between
variable importance scores obtained from models of 100 and 200 trees, respectively, were
not observed (p-value of 0.91). The number of variables taken into account for trees grow-
ing in each split was computed as the square root of the total number of variables since
this reduces the correlation of trees (Rodriguez-Galiano et al., 2012; Gislason et al., 2006).
Finally, for inter-comparability purposes, the variable importance values were converted
to percentages (Equation 4.6) to evaluate differences between land cover classes as in pre-
vious studies (Belenguer-Plomer et al., 2019a).

VI x 100

%V L. =
’ i VI

(4.6)

where V'] is the variable importance of a given variable 7 and a land cover class k, and n
is the total number of variables considered in k.

4.4 Results

4.4.1 Temporal decorrelated pixels over burned areas

Over the entire study area, the frequency of pixels not affected by the temporal decorre-
lation (not-decorrelated pixels) was higher when compared to pixels mapped as burned at
some point after the fire (Figure 4.3). Also, it was evident that pixels affected by temporal
decorrelation were concentrated over specific areas.

Not-decorrelated pixels represented the majority (68%) of all burned pixels over all
land cover classes, with decorrelated pixels representing the remaining 32% of the burned
area. Over all land cover classes, most of the decorrelated pixels (86.88%) were detected
within the first post-fire month (Table 4.1). Similar trends were observed for each land
cover class. An ANOVA analysis showed no significant difference (p-value > 0.05) be-
tween the percentage of decorrelated pixels over different detection periods in each land
cover class.

4.4.2 Decorrelation analysis

For the first post-fire SAR acquisition, the backscatter coefficient (V;?ost— fire — 727@_ fire)
for not-decorrelated burned pixels decreased for all land cover classes (Figure 4.4, class
Ndj). Conversely, for pixels affected by temporal decorrelation, the backscatter coef-
ficient was largely stable for the first post-fire SAR acquisition (Figure 4.4, class De 4).
For temporally decorrelated burned pixels, the backscatter variations were considerable
(Figure 4.4, class Dep), when considering later SAR acquisitions (ygec_ date — VSre— Fires
where dec-date was the post-fire SAR acquisition when burned area detection criteria were
met, see subsection 4.3.4). However, the backscatter coefficient showed variable trends
(i.e., decrease and increase) when compared to the pre-fire backscatter values.
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Figure 4.3: Not-decorrelated and decorrelated burned pixels.

Table 4.1: Burned area distribution (km?) as a function of temporal decorrelation (TD) by land
cover classes. PD stands for potential detection month, after post-fire date.

TD Crops Herbaceous Shrubs Forests All classes

ND 68.26 68.71 380.9 466.77 984.64

PD 1st 37.30 21.76 148.36  187.03 394.45

PD 2nd 6.06 3.01 15.07 17.86 42

PD3rd 1.34 0.65 2.64 3.15 7.78

PD4th 0.88 0.44 1.8 1.82 4.94

PD 5th  0.38 0.57 1.63 1.01 3.59

PD 6th 0.13 0.27 0.56 0.29 1.25

Total 114.35 9541 550.96 677.93 1438.65
0F T 7 T T
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Figure 4.4: Temporal backscatter coefficient variations (A" dB) for vertical-horizontal (VH)
polarisation for not-decorrelated (Nd) and decorrelated pixels (De). Boxplots show post-fire minus
pre-fire values (A) as well as detection date (dec-date) minus pre-fire (B) values as a function of
land cover class.
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4.4.3 Variable importance on post-fire backscatter coefficient

Fire severity (RBR) was evidenced as the most important variable when separating (i.e.,
classifying) decorrelated from not-decorrelated pixels over all land cover classes except for
the Herbaceous class (Figure 4.5). Over Crops and Forests classes, the fire severity impor-
tance was considerably higher (around 30%) when compared to the remaining variables.
For the Shrubs class, fire severity was the most important although it was closely followed
by slope and variations in the vegetation water content between post- and pre-fire images
as estimated through the ANDWI. Variable importance by land cover classes was related
to the mean topographic slope (Table 4.2). Aspect and slope showed high importance over
Herbaceous and Shrubs classes which covered higher topographic slopes when compared
to the Crops and Forests classes (Table 4.2). The reduced importance of aspectand slope
on the decorrelation process for the Crops class was explained by its location on low lying
terrain when compared to the remaining land cover classes (Figure 4.6).

40 T T T T
I RBR
N INDVI
30 F [ 1dNDWI |
I issM
- [ Slope
s 20 T Aspect | |
—_
>

10

Crops Herbaceous Shrubs Forests

Figure 4.5: Relativized variable importance (VI) over temporal decorrelation process of burned
areas by land cover classes. The temporal differences of the normalized difference vegetation index
(NDVI), normalized difference water index (NDWI), and soil moisture (SSM) were computed as
post-fire minus pre-fire (d).

Table 4.2: Mean topographic slope (°) and confidence interval (95%) as derived from the Shuttle
Radar Topography Mission (SRTM) by land cover classes.

Crops Herbaceous Shrubs Forests
6.3£1.06 1592+1.01 11.51+£1.09 94£1.02

Histograms for post- to pre-fire backscatter coefficient change by land cover class
and variable (Figure 4.7) show that increased fire severity translates in a high frequency of
not-decorrelated pixels, except in the Herbaceous class, where no significant differences
were found. The frequency of decorrelated and not-decorrelated pixels was marginally
affected by changes in vegetation growth (i.e., ANDVI) and vegetation water content (i.e.,
dNDWI), with largely similar frequencies observed along the post-to pre-fire variables
change gradient. The influence of slope was analysed as a function of aspect (positive-
slope oriented towards the sensor and negative-slopes oriented away from the sensor)
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Figure 4.6: VH polarisation backscatter coefficient (+° dB) by aspect (°) and land cover classes at
post-fire date. Positive and negative aspect angles correspond to slopes oriented towards and away
from the sensor, respectively. Data density is shown as a percentage.

since both variables affect the distance between canopy top and ground surface (Castel
et al., 2001). Lower distances are observed for steep slopes oriented towards the sensor
when compared to flat areas and slopes oriented away from the sensor (Figure 4.8). Over
flat areas (slope below 5°) the proportion of decorrelated and not-decorrelated pixels was
similar over all land cover classes. However, over sloped areas (slopes > 5°), decorrelated
and not-decorrelated pixels proportions differed. For decorrelated burned pixels, post-fire
soil moisture was higher when compared to not-decorrelated areas, especially when only
pixels from patch size greater or equal than 1 km? were considered (the spatial resolution
of the soil moisture product used is 1 km).

4.4.4 Variables analysis over decorrelated pixels

As temporally decorrelated pixels are not detected immediately after the fire, it implies that
some of the variables affecting the scattering process suffered variations between the post-
fire date and the detection date (dec-date). The importance of each variable, except for
slope and aspectwhich are not affected by temporal variations, for burned pixels detection,
was computed through random forests after differentiating between decorrelated pixels
where the backscatter coefficient decreased (Figure 4.9a) and pixels where the backscatter
coeflicient increased (Figure 4.9b) with respect to the pre-fire values.

When the backscatter coefficient decreases at some point after the fire, the most im-
portant variables for burned area detection were temporal changes in soil moisture fol-
lowed by vegetation growth (dASSM’ and ANDVT', respectively, in Figure 4.9a) over all
land cover classes except Herbaceous for which all variables were equally important. Fire
severity (RBR) importance was higher when the backscatter coefficient decreased at dec-
date when compared to areas where the backscatter coefficient increased (Figure 4.9).
Conversely, when the backscatter coeflicient increased, the most important variable for
burned area detection was, by a large margin, the soil moisture (dSSM’ in Figure 4.9b),
although for the Herbaceous class the importance of the time differences of the soil mois-
ture was lower when compared to the remaining land cover classes.

A backscatter coeflicient reduction or increment at the dec-date, when compared to
pre-fire values, for decorrelated burned pixels was mainly related to a reduction or respec-
tively increment in soil moisture (Figure 4.10a). The importance of the ANDVT', particu-
larly over Forests, when the backscatter coefficient decreased was explained by a reduction
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Figure 4.7: Relativized frequency (% of pixels) for decorrelated (De) and not-decorrelated (Nd)
pixels by land cover classes (C—crops, H—herbaceous, S—shrubs, and F—forests) for each vari-
able of interest. The temporal differences (d) were computed as post-fire minus pre-fire values.
Blue and red lines represent not-decorrelated and decorrelated pixels, respectively, from patches
greater or equal than 1 km?.
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Figure 4.8: Illustration for the distance travelled by radar microwaves through the forest canopy
for (a) slopes oriented towards the sensor, (b) flat areas, and (c) slopes oriented away from the
Sensor.
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Figure 4.9: Relativized importance of the variables (VI) which changed between dec-date and
post-fire and made possible meeting the burned area potential detection criteria after post-fire.
Decorrelated burned pixels where the backscatter coefficient decreased (a) and increased (b) be-
tween dec-date and pre-fire were analyzed separately. Land cover classes were considered. The
temporal differences of the variables (d...") were computed as dec-date minus post-fire.
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in vegetation greenness (Figure 4.10b,c). Decorrelated areas with backscatter decreasing
between pre-fire and dec-date were affected by slightly higher fire severity when com-
pared to areas where the backscatter increased between the two dates, particularly over
the Forests class (Figure 4.10d).
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Figure 4.10: Temporal differences of soil moisture (SSM) (a), NDVI (b), and NDWI (¢) be-
tween the dec-date and the post-fire date (d..."), and relativized burn ratio (RBR) (d) computed
between pre- and post-fire date. The analysis was carried out by land cover classes (C—crops,
H—herbaceous, S—shrubs, and F—forests) for temporally decorrelated burned pixels that showed
backscatter coeflicient reduction (r) and increments (i) at dec-date when compared to the pre-fire
datasets.
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4.5 Discussions

The existence of spatial patterns for decorrelated and not-decorrelated burned pixels sug-
gested relationships between the temporal decorrelation and the environmental variables,
removing the possibility that SAR speckle or detection uncertainty may induce this pro-
cess randomly. Further, the radiometric uncertainty of the Sentinel-1 sensor, 0.36—0.38
dB (Schwerdt et al., 2017), did not influence the results as most (99.7%) not-decorrelated
pixels showed post- to pre-fire temporal differences above this radiometric uncertainty.

Over most land cover classes, the utmost important factor controlling the temporal
decorrelation process was fire severity for which higher values were observed over not-
decorrelated areas when compared to the decorrelated ones. Such a trend was explained by
the higher loss of scattering elements in areas affected by high fire severity (Tanase et al.,
2010b, 2014), which translates into a greater backscatter change with respect to unburned
vegetation and increased the potential for detecting the affected area immediately after
the fire (no temporal decorrelation). As expected, over densely vegetated areas (Forests),
fire severity was the most important factor affecting the temporal decorrelation process,
which aligns with previous findings related to the sensitivity of the C-band backscatter
coefficient to fire impacts in the Mediterranean forests (Tanase et al., 2010b). For the
Herbaceous class, fire severity was the second most important factor affecting temporal
decorrelation after terrain orientation with respect to the sensor looking geometry (i.e.,
aspect). This may be related to the mean topographic slope of the Herbaceous class, which
was higher when compared to remaining land cover classes. Besides, the divergent results
of the Herbaceous may be partly explained by the reduced C-band sensitivity to fire effects
over burned herbaceous or grassland areas (Menges et al., 2004) as radar waves interact
more with the soil surface. For this class, aspect had higher importance when compared
to slope as the low vegetation height, and the lack of woody stems result in low C-band
scattering, which is further reduced after the dry season (Menges et al., 2004). Thus, in
areas covered by Herbaceous vegetation, the C-band microwaves mostly interact directly
with the ground, with scattering being highly conditioned by orientation with respect to
the SAR sensor (i.e., aspect).

Water content variations had considerable importance for the decorrelation process
over most land cover classes. Higher post-fire soil moisture was observed for decorre-
lated burned pixels when compared to not-decorrelated ones. This resulted in a higher
dielectric constant, and consequently, a higher backscatter coefficient, which may mask
out scattering decreases due to the combustion of the vegetated scattering elements since
soil influence on the scattering process increases as vegetation is removed through com-
bustion (Tanase et al., 2010a). However, the perceived importance of soil moisture on
the temporal decorrelation process was reduced when compared to temporal variations of
vegetation water content (ANDWTI) since (i) the random forests models were constructed
considering all burned pixels, regardless of burned patch size. Thus, approximately half
of the pixels used for training the random forests models (44.15% of decorrelated and
62.5% of not-decorrelated classes) were extracted from patches below 1 km?, the spacing
of the soil moisture product. This may have affected the soil moisture estimation accu-
racy since when only pixels from patches above 1 km? were analysed, a clearer effect of
soil moisture over the decorrelation process was observed, (ii) for 40% of the decorrelated
pixels and 38% of the not-decorrelated ones the pre- to post-fire temporal variations in
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soil moisture were lower than 0.088 m3/m3, the error of the soil moisture product (Bauer-
Marschallinger et al., 2018), and (ii1) the AINDWI was derived from atmospherically cor-
rected Sentinel-2 data at the same pixel spacing as the radar images (40 m), which thus
having less uncertainty when compared to the SAR based soil moisture product (Sola
et al., 2018). Sentinel-1 based soil moisture estimation may be affected by the ground-
water content, intercepted rain, and SAR radiometric uncertainty (Benninga et al., 2019).
These reasons may explain the difference in the observed importance of the decorrelation
process between ANDWI and dSSM. However, this importance contrasts with the low dif-
ferences of ANDWI between decorrelated and not-decorrelated pixels. It should be noted
that random forests models allow for non-linearities and interactions between all variables
considered (Gromping, 2009). Thus, it was evidenced that temporal decorrelation over
burned areas is a complex process with several variables having a concurrent influence.

Decorrelated pixels tended to have a higher concentration over steep slopes oriented
towards the sensor, especially for Herbaceous and Shrubs classes. Conversely, not-deco-
rrelated pixels had a higher presence over shallower slopes and both positive and negative
aspects. This result supports previous findings suggesting increased C-band sensitivity to
fire over sloped terrain oriented towards the radar sensor (Tanase et al., 2010a; Belenguer-
Plomer et al., 2019b). According to the soil moisture product, over sloped areas (>10°)
soil moisture increased on average for the post-fire images in both Shrubs and Herbaceous
classes. As explained above, soil moisture increment may have masked backscatter coef-
ficient changes due to vegetation removal and consequently influenced the decorrelation
process. Furthermore, the vegetation effect on the backscatter coefficient over steep slopes
oriented towards the sensor (i.e., where the presence of decorrelated pixels was high) is
reduced while the ground effects increased since the distance between canopy top and the
ground surface is lower when compared to flat areas and slopes oriented away from the sen-
sor (Castel et al., 2001). Such topographic effects are reduced over Forests due to denser
canopy, which reduces ground interaction of C-band microwaves and over Crops due to its
predominant location over flat areas. The larger scattering elements found in Forest and
Shrubs vegetation coupled with the reduced slope allowed for increased C-band scattering
from vegetation. Conversely, scattering from ground was reduced, which in turn reduced
the importance of the aspectin Forest and Shrubs classes. The root mean square error of
the STRM product over Portugal was estimated as 4 to 6 meters depending on land cover
and terrain slope (Goncalves & Fernandes, 2005). However, SRTM errors may not have
affected the results of this study as most elevation errors were found over (i) abrupt slopes,
covered by unburnable land cover classes, and (i1) forested areas, mainly located over flat
areas and smooth slopes, with low topography related effects on radar scattering.

Over the not-decorrelated burned pixels the backscatter coeflicient decreased after
the fire in all land cover classes due to the reduction of vegetation scattering elements
through fire-combustion, an effect particularly important for the cross-polarised waves
(Freeman & Durden, 1998; Yamaguchi et al., 2005; Van Zyl et al., 2011). However, over
the decorrelated burned pixels both reductions and increments of the backscatter coeffi-
cient were observed, which indicates that at dec-date, a much wider range of environmental
changes generated the backscatter coeflicient variations needed to detect the burned area.

Backscatter coefficient reduction at dec-date, when compared to previous records,
was mainly attributed to reduced soil moisture since burned areas have reduced albedo as
well as increased sun exposure as a result of biomass loss. These effects may generate
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a higher temperature regime after the fire event, which may increase soil moisture loss
(Certini, 2005) and result in reduced dielectric constant and consequently reduced radar
scattering from the ground. Also, the vegetation combustion, which is related to the fire
severity, results in a reduced number of scattering elements, which enhances the impor-
tance of soil surface scattering (and thus soil moisture) when compared to unburned areas
(Tanase et al., 2010a; Kurum, 2015). Alternatively, decreasing water content and vegeta-
tion greenness after the fire may occur when trees are damaged by fire but not completely
burned. Such trees maintain some scattering elements (e.g., leaves) immediately after the
fire, thus sustaining higher levels of radar scattering. However, as a consequence of fire
damage, such trees may not recover and die shortly after the fire, which results in reduced
backscatter coefficient as dry vegetation has a lower dielectric constant when compared
to healthy vegetation (Tanase et al., 2015).

On the other hand, the backscatter coefficient increment at dec-date was mainly re-
lated to increased soil moisture. Post-fire vegetation recovery (ANDVI’) and canopy water
content variations (AINDWTI') resulted in an increased backscatter coefficient at dec-date
over burned areas. However, ANDVI' and ANDWI' values per se have a low influence
when distinguishing burned from unburned pixels since unburned areas showed similar
or greater changes. Hence, the increase of the NDVI and NDWI values at dec-date when
compared to post-fire date was most likely related to vegetation phenology which was
an underlying change that incremented the backscatter coefficient over both burned and
unburned areas. Short-term post-fire vegetation recovery in the Mediterranean basin is
dominated by (i) regeneration of fire-damaged stems, stumps, and roots (depending on
the species), (ii) seeding from serotinous and semi-serotinous cones, and (iii) growth of
understory species (Bartels et al., 2016). Since this study considered data acquired less
than one year after the fire event, the NDVI increment due to such recovery processes
has little influence on the backscatter coeflicient increment, as few months are insufficient
to substantially change scattering processes in slow-growing Mediterranean vegetation.
Therefore, it seems most of backscatter increases at dec-date were related to increased soil
and vegetation water content.

4.6 Conclusions

This study analysed C-band temporal decorrelation processes over burned areas in a Medi-
terranean environment. The main factors influencing post-fire radar scattering were anal-
ysed as a function of four land cover classes: Crops, Herbaceous, Shrubs, and Forests.
Over the studied area, a third of the burned pixels were affected by temporal decorrela-
tion. For most of these pixels (86.9%) the detection was possible during the first month
after the fire, although not on the first post-fire SAR acquisition. Fire severity and water
availability (in soil or vegetation) were the most important factors affecting the temporal
decorrelation over all land cover classes except Herbaceous. The differences observed
for the Herbaceous class were most likely related to the reduced sensitivity of C-band to
monitor such vegetation types as well as the location in areas of higher topographic slopes.

Generally, the backscatter coeflicient decreased in burned areas not affected by tem-
poral decorrelation. The decrease was attributed to the reduction of vegetation scattering
elements (i.e., leaves and branches) through fire combustion. Over burned areas affected
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by temporal decorrelation, the backscatter coeflicient showed diverging trends, e.g., an
increase or decrease. Decreasing backscatter coefficient some time after the fire was at-
tributed to (i) reduced soil moisture, and (ii) delayed vegetation death, which reduced
post-fire scattering. For decorrelated pixels where the backscatter coeflicient increased
after the fire, the main factor affecting burned area detection was rainfall and the subse-
quent increase in soil moisture. In such areas, the backscatter coefficient increased more
when compared to unburned areas as reduced vegetation cover increased the proportion
of scattering from the wet soil surface.

The main limiting factor of the analysis was the reduced spatial resolution of the
Copernicus soil moisture product (1 km) and its availability (Europe alone). Future work
shall focus on analysing the decorrelation process in more ecosystems to confirm these
findings once ancillary products of sufficient spatial resolution become available world-
wide.
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Chapter

Intercomparison of Sentinel-1 and
Sentinel-2 burned area mapping based
algorithms

his chapter provides a comparative analysis of two Sentinel-1 and one Sentinel-2
burned area (BA) detection and mapping algorithms over 10 test sites (100x 100
km) in tropical and sub-tropical Africa. The algorithms relied on diverse burned area
(BA) mapping strategies regarding the data used (i.e., surface reflectance, backscatter co-
efficient, interferometric coherence) and the detection method. Algorithm performance
was compared by evaluating the agreement between the detected BA with reference fire
perimeters independently derived from medium resolution optical imagery (i.e., Landsat
8, Sentinel-2). The commission (CE) and omission errors (OE), as well as the Dice coef-
ficient (DC) for burned pixels, were compared.

The mean OE and CE were 0.33 and 0.31 for the optical-based Sentinel-2 time-
series algorithm and increased to 0.66 and 0.36, respectively, for the radar backscatter
coefficient-based algorithm. For the coherence based radar algorithm, OE and CE reached
0.72 and 0.57, respectively. When considering all tiles, the optical-based algorithm pro-
vided a significant increase in agreement over the Synthetic Aperture Radar (SAR) based
algorithms that might have been boosted by the use of optical datasets when generating
the reference fire perimeters. However, in regions with persistent cloud cover, the radar
sensors may provide a complementary data source for wall-to-wall BA detection and map-

ping.

This chapter is based on the article:

Tanase, M.A., Belenguer-Plomer, M.A., Roteta, E., Bastarrika, A., Wheeler, J., Fernandez-
Carrillo, A., Tansey, K., Wiedemann, W., Navratil, P., Lohberger, S., Siegert, F., and Chu-
vieco, E. (2020). Burned area detection and mapping: Intercomparison of Sentinel-1 and
Sentinel-2 based algorithms over Tropical Africa. Remote Sensing, 12(2), 334.
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102 Chapter 5. Intercomparison of Sentinel-1 and Sentinel-2

5.1 Introduction

Fire has a key ecological role in large part of the Earth’s surface since it affects global bio-
chemical cycles, carbon sequestration, soil properties, water supply, and biodiversity. Due
to its contribution to the global climate system, fire disturbance is considered an Essential
Climatic Variable (ECV) (Bojinski et al., 2014) with global burned area (BA) products
being routinely derived from coarse resolution sensors (>250 m) such as the Medium
Resolution Imaging Spectrometer (MERIS), the Moderate Resolution Imaging Spectrora-
diometer (MODIS), or SPOT Vegetation (Tansey et al., 2004; Plummer et al., 2006; Roy
et al., 2008; Tansey et al., 2008; Giglio et al., 2009; Alonso-Canas & Chuvieco, 2015;
Chuvieco et al., 2016, 2018; Giglio et al., 2018). A comparison analysis done with ref-
erence data from 2008 found that NASA’s MCD64A1 was the most accurate global BA
product of the existing global BA products (Padilla et al., 2015) with commission (CE)
and omission errors (OE) reaching 0.42 and 0.68, respectively. More recent analyses, car-
ried out with reference data from 2003 to 2014 (Chuvieco et al., 2018) and 2014 to 2015
(Boschetti et al., 2019), found average commission errors of 0.35 and 0.40, respectively,
while omission errors reached 0.62 and 0.73, respectively. With these values, global BA
products are far from achieving the accuracy requirements needed for climate modelling,
i.e., omission and commission errors below 0.20, (Mouillot et al., 2014), in part due to
the low spatial resolution, which results in small fires being overlooked (Randerson et al.,
2012). In fact, the likelihood of detecting small burns (i.e., <100 ha) in coarse resolution
products is low due to the frequent omission errors (Giglio et al., 2009; Padilla et al., 2015;
Randerson et al., 2012).

A recent study suggested that contribution of small fires may be significant as BA
products based on MODIS imagery (500 m) estimated 80% less burned area than those
based on Sentinel-2 (20 m) in sub-Saharan Africa when compared to products based on
medium resolution imagery (Roteta et al., 2019). Small fires have a large impact on emis-
sions in most ecosystems (Van Der Werf et al., 2017). Apart from small fire size, BA
uncertainties were also related to satellite instrument calibration and viewing geometry,
the temporal sampling related to the persistence of the burn signal, and the detection al-
gorithm design (Brennan et al., 2019). In addition, for atmospheric modelling, ancillary
information becomes important, including the detection date, type of burned land (gener-
ally relying on external land cover products with their own uncertainties), and combustion
completeness and fraction burned area, 1.e., critical parameters for atmospheric emission
estimations (Chuvieco et al., 2019). To overcome some of these limitations (e.g., small fire
size, burned fraction), medium resolution optical sensors have been used for BA detection
and mapping with early algorithms being mostly based on Landsat imagery (Stroppiana
et al., 2012; Goodwin & Collett, 2014; Stroppiana et al., 2015; Hawbaker et al., 2017;
Long et al., 2019). However, detection from Landsat imagery is challenging because of
the low temporal resolution of this data (16 days), particularly over areas with persistent
cloud cover and short post-fire signal persistence (e.g., savannah fires).

The launches of Sentinel-1 (radar) and Sentinel-2 (optical) sensors have incentivised
the development of novel BA detection and mapping algorithms as the availability of rel-
atively dense time-series (3—5 days when different sensors or Synthetic Aperture Radar
(SAR) viewing geometries are combined) may significantly reduce omission errors for
regions where small fires account for a large proportion of total BA or where the earth
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surface is obscured by persistent cloud cover. However, most such algorithms have been
developed and tested for rather small areas (Lasaponara & Tucci, 2019; Engelbrecht et al.,
2017) or few fire events (Verhegghen et al., 2016; Mathieu et al., 2018; Roy et al., 2019;
Stavrakoudis et al., 2019; Filipponi, 2019) except for the global BA prototype product
with Landsat data for a single year (Long et al., 2019), and the wall-to-wall mapping of
Sub-Saharan Africa performed with Sentinel-2 images for 2016 (Roteta et al., 2019).

Locally developed algorithms are difficult to transfer to other regions as changes in
surface reflectance or backscatter coefficient are dependent on a range of factors, includ-
ing vegetation type and structure, fire regimes, and climatic variables. To improve the
characterisation of small fires over large areas, the European Space Agency (ESA) Cli-
mate Change Initiative (CCI) programme developed BA algorithms and products from
medium resolution sensors for the generation of a small fire database (SFD) at regional
to continental scales. The CCI programme aims to obtain information on different ECVs
using remote sensing data to help improving climate modelling (Hollmann et al., 2013;
Plummer et al., 2017). The SFD was initially focused on sub-Saharan Africa, the most
burned continent worldwide (Chuvieco et al., 2018; Giglio et al., 2013), and was largely
based on optical sensors (O) and time series (ts) analysis (Ots) (Roteta et al., 2019). Over
areas with persistent cloud cover (daily mean cloud cover above 50%), the SFD was com-
plemented by burned perimeters detected from time series of Sentinel-1 C-band radar (R)
interferometric coherence (RtsC).

The SFD was complemented by regional BA products in tropical South-East Asia
(1.5 million km?) and South America (7 million km?). To cope with the persistent cloud
cover in these regions, the BA detection and mapping algorithms were based on synthetic
aperture radar (SAR) backscatter coefficient acquired by the Sentinel-1 C-band sensor
(Lohberger et al., 2018; Belenguer-Plomer et al., 2019). The BA product for tropical South
America was based on temporal radar series of the backscatter (B) coefficient (RtsB) while
the product for South-East Asia used a multi-temporal approach based on radar backscatter
analysis at the beginning and the end of the fire season. The different components of the
SFED are available for download from the Fire CCI website (https://www.esa-fire-cci.org).

While the algorithms were individually validated (Roteta et al., 2019; Belenguer-
Plomer et al., 2019; Fernandez-Carrillo et al., 2018), such validation was carried out for
different areas and time periods. Since the algorithms used to generate the SFD compo-
nents were based on different input datasets (e.g., optical, SAR) and detection strategies,
the objective of this study was to intercompare the algorithms, assessing them over the
same areas and with the same reference datasets. However, as the algorithm developed
for South-East Asia (Lohberger et al., 2018) was designed specifically for fires in low
laying (<15° slope) peat swamp forests, its evaluation outside such conditions was not
feasible. Therefore, this study only compared the three time-series algorithms (Ots, RtsB,
and RtsC) designed to work over a variety of fire regimes and vegetation types.


http://cci.esa.int/
https://www.esa-fire-cci.org
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5.2 Materials and Methods

5.2.1 Reference datasets

Ten Military Reference Grid System (MGRS) tiles (100x 100 km) were used to analyse
burned area agreement with reference fire perimeters derived from optical images within
the 2015 and 2016 fire seasons (Figure 5.1 and Table 5.1). The tiles were selected along an
east-west transect in areas with high fire activity and daily mean cloud cover below 75%
to allow for the deployment of the optical-based algorithm (Figure 5.1). Four tiles were
dominated (>75% cover) by forests. In the remaining tiles, the land cover was a mix of
cropping areas, savannas, grasslands, shrublands, and forests (Table 5.1). The reference
datasets were formed by (i) fire perimeters derived from Landsat 8 imagery (four tiles),
and (ii) fire perimeters derived from Sentinel-2 imagery (six tiles). Tiles with reference
fire perimeters derived from Landsat imagery were selected to assess the effect of temporal
discrepancy between BA detection and validation dates.

The Landsat based reference fire perimeters were generated from consecutive image
pairs. The time length between consecutive observations was limited (e.g., ideally one
satellite cycle) to avoid confusion due to fire-unrelated land cover changes or misinterpre-
tation of the fire signal over areas with rapid vegetation growth. However, in areas with
frequent cloud cover, the interval was increased (e.g., up to 32 days) to allow the forma-
tion of additional sampling pairs. The use of a larger interval was reasonable as vegetation
usually needs longer time to recuperate after fire. Indeed, the global median persistence
time of fire scars visible on an optical dataset was estimated as 29 days (Melchiorre &
Boschetti, 2018). For efficiency, the surface reflectance of each individual image pair was
reformatted into a raster file containing six bands, the shortwave infrared (SWIR2), near in-
frared (NIR), and RED bands of each image forming the pair. An independent interpreter
digitised training polygons for burned and unburned areas and clouds. The polygons were
subsequently used to train a Random Forest classifier (Breiman, 2001; Pedregosa et al.,
2011), taking as input variables the pre- and post-reflectance and the multitemporal dif-
ferenced Normalised Burn Ratio (ANBR) index (Key & Benson, 2004). The burned area
classification was based on an iterative process of visual inspection, delineation of addi-
tional training polygons, and classification. When classification errors were spotted, the
classification was improved by digitising missed areas or removing incorrectly labelled
areas. Within post-processing, fire perimeters below 0.1 ha were removed.

The Sentinel-2 based reference fire perimeters were selected from an available pool of
validation tiles and provided for more diverse land cover types. In each validation tile, two
Sentinel-2 cloud-free images with a temporal difference as short as possible were selected
in a period where fires were visually observed. The minimum temporal difference was
the revisit period of 10 days, which was extended in some cases up to 1 or 2 months (30
or 60 days) due to high cloud coverage or low image availability, particularly in February
2016. The Sentinel-2 L1C products were processed to surface reflectance (Main-Knorn
et al., 2017). Reference burned perimeters were generated from the pre- and post-fire
reflectance images using the Burned Area Mapping Software (BAMS) (Bastarrika et al.,
2014). BAMS also uses training polygons to classify burned areas. The classification
results were subsequently analysed by a trained operator. The training polygons were
modified until acceptable classification results were obtained. Polygons not correspond-
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ing to burned areas were removed manually, with most being caused by cloud shadows
and crop harvest.
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Figure 5.1: Tiles used for inter-comparison together with the mean daily cloud cover (2015) and
the total burned (2016), according to the FireCCI5.1 global product. The source of the optical
imagery used to generate the reference fire perimeters for each of the analysed tiles is also shown.

5.2.2 SFD algorithms description in brief

5.2.2.1 Optical time series

The optical-based detection algorithm (Ots) uses time-series of atmospherically corrected
Sentinel-2 Multi Spectral Instrument (MS]) reflectance measurements from the L2A prod-
uct (Roteta et al., 2019). The algorithm detects the burned areas using spectral changes
in three bands, near-infrared (NIR) and short and long-short shortwave infrared bands
(SWIR{, SWIR>) at the original spatial resolution of 20m. These bands are used to cal-
culate two spectral indices the Mid-Infrared Burned Index (MIRBI) and the Normalised
Burned Ratio 2 (NBR2) as in Equation 5.1 and Equation 5.2. The algorithm compares two
consecutive Sentinel-2 images using the multitemporal difference and the post-fire values
of the MIRBI, NBR2 spectral indices, and the NIR reflectance. The algorithm applies
fixed thresholds to obtain an Initial Burned/Not Burned area which is cross-checked against
the existence of MODIS active fire hotspots. When hotspots exist, the Initial Burned/Not
Burned is confirmed (IBC). IBC areas are used to select burned seeds, which are subse-
quently used to derive a burned membership function, where the minimum and maximum
values are extracted from the unburned background and burned areas. The algorithm
is locally adapted as IBC existence is tested, and subsequent membership functions are
derived for each MGRS tile and Sentinel-2 image pair analysed. As the membership func-
tions are derived at tile level, the algorithm assumes a certain spectral homogeneity for
different burned land cover classes. The algorithm uses consecutive Sentinel-2 acquisi-
tions to derive BA maps at 20 m spacing. Unobserved areas (affected by clouds and cloud
shadows) are gap-filled by using up to four pre-fire images to reduce omission errors. In
areas where Sentinel-2A data were recorded at the nominal frequency and in the absence
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Table 5.1: Military Grid Reference System (MGRS) tiles used for inter-comparison. The main
land cover type (from CCI Land Cover product, 2015) and the total burned area. The sensor used
to generate the reference fire perimeters was labelled S for Sentinel-2 and  for Landsat-8.

MGRS Main LC (%) Fire period BA No. of patches

. 2
tile C  G&S F (km%)  grall Large

28PET® 18 14 54 11/01/2016-11/03/2016 1205.6 2717 525
20NNJS 57 24 18  02/01/2016-02/03/2016 1139.4 9736 278
30NWPS 58 13 28  27/12/2015-16/01/2016 543.0 2469 182
3INEJ® 61 26 10 18/12/2015-07/01/2016 909.4 24957 544
32NNPS 50 32 16  22/12/2015-10/02/2016 3609.1 37868 1144

33NTGY 0 10 89  15/01/2016-16/02/2016 456.0 4104 274
33NUGE 0 28 72 22/10/2016-25/12/2016 271.4 4255 193
33NWES 2 10 87  02/01/2016-22/01/2016 859.5 7212 674
35NQGt 0 0 99  01/11/2016-19/12/2016  3529.1 4538 658
36NXP- 5 53 42 09/09/2016-12/11/2016 11.6 41 12
All 25.1 21 515 12534.1 97897 4484

LC - land cover (C-crops, G-grassland, S-shrub, F-forest); BA - burned area; Small <25 ha and
Large >25 ha.

of heavy cloud cover (>95% cloud-free), the BA maps temporal frequency is ten days. A
detailed description of the algorithm is found in Roteta et al. (2019).

MIRBI = 10 x SWIRg — 9.8 x SWIR; -2 (5.1)
NBR2 = (SWIR; - SWIR>) / (SWIR; + SWIR») (5.2)

where SWIR, and SWIR; are, respectively, short wave infrared long reflectance and short
wave infrared short reflectance.

5.2.2.2 SAR coherence time series

To complement the optical-based burned area in regions affected by persistent cloud cover,
a BA detection and mapping algorithm was developed based on time-series of Sentinel-1
interferometric coherence (RtsC). The algorithm needs four consecutive Sentinel-1 acqui-
sitions (12 days apart) to identify the burned areas over the period of interest. For each
period of interest, the algorithm generates three interferometric products corresponding to
pre-, fire, and post-fire epochs. The post-fire epoch is used to cross-check that burns have
indeed taken place. The burned area detection and mapping algorithm uses pre-trained
machine learning algorithms such as Random Forests (RF). The training is based on man-
ually selected polygons over four land cover classes (no data, burned, unburned, and wa-
ter). The training polygons were selected and digitised for each biome in independent
tiles distributed over Sub-Saharan Africa using pre- and post-fire Sentinel-2 observations
of burn events. Biome specific pre-trained models are used to map burned area at 30 m
spacing every 12 days.
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5.2.2.3 SAR backscatter coefficient time series

An algorithm based on temporal time-series of Sentinel-1 backscatter coefficient (RtsB)
was also developed to identify anomalous changes in the radar signal and associate them
with biomass burning (Belenguer-Plomer et al., 2019). The algorithm considers multi-
temporal changes of incoherent SAR-based metrics (e.g., backscatter intensities) together
with ancillary information on land cover and active fires (hotspots). The Reed-Xiaoli de-
tector (Reed & Yu, 1990) is used to distinguish areas affected by anomalous changes (AC)
with respect to a reference state provided by Sentinel-1 dataset acquired before the period
of interest. When hotspots coincide in space and time with ACs, these areas are labelled
as burned. The remaining ACs are labelled as burned/unburned using machine learning
(i.e., RF). The RFs are trained locally (within 100 x 100 tiles) by main land cover types
(e.g., crops, forests). RF training samples are obtained from ACs overlapping hotspots af-
ter applying a series of filtering mechanisms to ensure high burned/unburned probabilities
of the selected samples. As for the Ots algorithm, the RtsB algorithm is self-calibrating
over each MGRS tile and detection period. The algorithm uses consecutive Sentinel-1 ac-
quisitions to derive BA maps at 40 m spacing. The temporal resolution may vary between
six days to one month depending on Sentinel-1 actual acquisition frequency. A detailed
description of the algorithm is found in Belenguer-Plomer et al. (2019) while its further
validation was detailed in Fernandez-Carrillo et al. (2018).

5.2.3 Burned area detection accuracy assessment

The three algorithms were deployed to detect, and map burned area over the time periods
with available reference fire perimeters. As inference processes (models) are affected by
errors, there is an element of uncertainty regarding the results produced using remote sens-
ing data. Therefore, the quality of remote sensing data and the derived products need to be
characterised quantitatively to facilitate critical information on product reliability to end-
users. The accuracy of the results is usually characterised through cross-tabulation against
reference datasets by accounting for the spatio-temporal coincidences and disagreements.
The approach is widely used in BA mapping projects (Giglio et al., 2009; Padilla et al.,
2015; Boschetti et al., 2004, 2009; Roy & Boschetti, 2009; Boschetti et al., 2016; Chu-
vieco et al., 2008; Padilla et al., 2014, 2017). However, one should also bear in mind that
cross-tabulation based on ancillary reference datasets derived from remote sensing data
acquired by other sensors, largely indicates the agreement between different BA products
as the accuracy of the reference dataset is often not known.

For each tile, the agreement between the reference and the detected burned areas was
computed through cross-tabulation (Congalton et al., 1991; Latifovic & Olthof, 2004). The
result of the cross-tabulation can be represented by the error matrix (Table 5.2), which ex-
press the amount of agreement between a product and a reference classification. From the
confusion matrix, omission errors (OE, Equation 5.3), commission (CE, Equation 5.4)
and the Dice coeflicient (DC, Equation 5.5) were computed. DC summarises both com-
mission and omission errors showing the global accuracy for the target category (Padilla
et al., 2014).

The detected BA products were matched to the reference BA perimeters dates as
closely as possible. However, due to the different satellite orbital cycles, the detection



108 Chapter 5. Intercomparison of Sentinel-1 and Sentinel-2

and validation periods often differed except for the Ots algorithm when deployed over
tiles where reference burn perimeters were derived from Sentinel-2 images (i.e., the same
sensor was used when generating both reference fire perimeter and the BA product). The
validation metrics were computed over each tile, over all tiles, and by main land cover
classes (e.g., crops, grasslands, shrubs, and forests). The CCI Land Cover product v2.0.7
for the year 2015 (Kirches et al., 2014) was used to segment the area by main land cover
types. Cloud affected areas, no data areas, and Sentinel-1 and -2 pre-processing errors
were masked out and were not used when computing the accuracy metrics. The pixel-wise
spatial agreement between the optical (Ots) and radar (RtsB) based algorithms was also
computed. The RtsB algorithm was used as it showed higher accuracies when compared
to the RtsC algorithm.

Table 5.2: Sampled error matrix on a sampling unit. e;; express the agreements (diagonal cells)
or disagreements (off diagonal) between the BA product (map) and the reference data.

Product Refererence
Burned Unburned Total

Burned el €12 e1+

Unburned e9 €99 €2t

Total €41 €49 N
OE =e91/e41 (5.3)
CE = 612/€1+ (5.4)
DC = 2e11/ (€14 +e41) (5.5

5.3 Results

Although reference validation periods were common, the detection periods varied slightly
depending on the algorithm input data (e.g., Sentinel-1, Sentinel-2), thus limiting a like
for like comparison. However, general trends could be distinguished (Table 5.3). The
Ots Sentinel-2 algorithm provided superior agreement with the reference fire perimeters
when compared to the Sentinel-1 algorithms for all tiles except 33NUG, 33NQG, and
36NXP. Considering all tiles, the Ots algorithm showed OE and CE around 0.3 while for
the radar backscatter coeflicient-based algorithm (RtsB), the OE and CE were 0.66 and
0.36, respectively. For the coherence-based algorithm (RtsC), slightly higher OE (0.67)
and CE (0.55) errors were observed. Over all tiles, the largest difference between the
three algorithms was observed for the omission errors, which were twice as much for the
radar-based algorithms (0.66 vs 0.33). One should notice that much higher accuracies
were obtained for the Ots algorithm over tiles where the validation data were generated
from Sentinel-2 images (Table 5.3) when compared to tiles where the validation data was
generated from Landsat-8 images. For the later tiles, the Ots algorithm showed OE and
CE estimates in the same range as those observed for the RtsB algorithm.
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Table 5.3: Agreement between reference and detected BA by algorithm and tile. L- validation data
from Landsat-8 images; S-validation data from Sentinel-2 images. All tiles shows values computed
for a confusion matrix formed by all pixels from the 10 tiles analysed.

E BA detected (rounded) with respect to Accuracy metrics

‘g MGRS reference (in parenthesis) by LC (km?) (tile level)

g e Total  C G S F DC OE CE
28PETS 219 250 6) 43 (64) 3(4) 53 (84) (617 329) 0.76 037 0.03
29NNJS (11753?)9) ?62936) 65 (13) (226364) ?18974) 0.77 0.09 0.33

2 30NWPS ?5723) (113 13 6) 0 (0) 80 (87) (33620) 0.89 0.16 0.04

© 3INEJS ?9639) ?5574) 5(5) (22650) (116658) 0.85 0.17 0.12
s 30 S oson I8 T8 o4 014 009
33NTG ?:52 6) 0 (0) 0 (0) 74 (83) (33676 %) 053 05 043
33NUGH (12971) 0(2) 0 (0) 3 (66) (12602) 0.04 098 0.51
33NWES ?83;0) 19 (22) 12(13) (112 32 0) (66891 4) 0.86 0.22 0.03
35NQGH ?3950219) 0 (0) 0 (0) 17 (13) 3558104) 0.37 0.61 0.64
36NXP- (21126) 4 (1) 0 (0) 92 (10) 118(0) 0.12 0.57 0.93
All tiles (112285331 Y (22970;9) (1?39) (22235365) (775;(? y 068 033 031
28PET® 426 16 (64) 1(4) 17 (84) 379 0.44 0.71 0.16

(1206) (1029)
20NNJS ?131539) ?67;6) 0(13) (129354) (115964) 0.72 035 0.19

s 30NWPS (l;?; 212136) 0 (0) (2574) (754(1)0) 049 05 0.52

= 3INEJS ?9639) (15534) 1(5) f2280) ?1768) 0.16 0.89 0.63
32NNPS (1303(())9) ?{)534) 8 (27) ?113247) (275911) 031 08 032
33NTG ?:53 6) 0 (0) 0 (0) 63 (83) (23779 2) 046 0.61 043
33NUGH ?23751) 3(2) 0 (0) 75 (66) (22532) 0.53 052 041
33NWES Zé32660) 13(22) 8(13) (110;10) (6é)924) 0.61 047 0.28
35NQGF (232 53259) 1 (0) 0 (0) 8 (13) (232 52 15 4) 0.46 0.63 041

Table continued on next page
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Table 5.3 — continued from previous page

E BA detected (rounded) with respect to Accuracy metrics
'g MGRS reference (in parenthesis) by LC (km?) (tile level)
til
z Total  C G S F DC OE CE
36NXPL (1{)21) 3(1) 0 (0) 56 (10) 420) 039 0.18 0.74
) 8161 1864 1215 5026
All tiles (12534) (2789) 29 (63) 2335)  (7304) 045 0.66 0.36
310 242
S
28PET (1206) 12(64) 14 34 (84) (1029) 02 0.87 047
143 78 29 32
S
29NNJ (1139)  (696) 3(13) (234) (194) 0.15 091 0.26
344 27 279
S
S 30NWP (543) (116) 0(0) 37 (87) (340) 033 0.76 048
& s 244 127 74 41
31INEJ (909) (454) 1(5) (280) (168) 0.04 098 0091
3933 2230 1202 466
S
32NNP (3609)  (1434) 31 (27) 1347) (791 041 0.58 0.61
537 437
L
33NTG (456) 0(0) 0(0) 99 (83) (372) 0.19 0.72 0.85
19 14
L
33NUG 271) 0(Q) 0 (0) 5 (66) (202) 0.08 0.96 0.19
172 24 144
S
33NWE (860) 322 2(13) (130) (694) 0.11 0.93 0.54
2321 2308
L
35NQG (3529) 0 (0) 0 (0) 12 (13) (3514) 0.72 0.14 0.38
36NXP-X 17 (12) 0(1) 1(0) 9(10) 7(0) 0.12 0.93 0.62
All tiles SO il 38 (63) 152 S 0.38 0.67 0.55

(12534) (2789) (2335) (7304)

By land cover type, the Ots algorithm showed small (<0.20) OE and CE over cropping
areas, and shrublands, which increased for savanna (0.17-0.50) and forest (0.42-0.44)
vegetation. For the RtsB algorithm, the errors were largely similar over most classes with
OE around 0.70 and CE between 0.30 and 0.40 (Table 5.4). For the coherence-based
algorithm (RtsC), the OE and CE varied within higher intervals 0.60 to 0.80 and 0.45 to
0.70, respectively. The smallest difference between the optical and the SAR BA mapping
accuracy was observed for the forest class (DC 0.57 vs 0.46) and the RtsB algorithm.

The pixel-wise spatial agreement for the total burned area detected by the optical-
based Ots and the radar-based RtsB algorithm ranged between 7% and 65% (Table 5.5)
except for tile 33NUG where the Ots algorithm performed poorly (Table 5.3). For un-
burned areas, the spatial agreement between the two algorithms was above 91% (Table 5.5)
except for tile 35NQG where both algorithms had large (>60%) omission errors (Table 5.3
and Figure 5.2). Commission errors usually occurred over different areas for the two algo-
rithms as the spatial agreement was below 1% for six tiles. For tiles 35SNQG and 36NXP,
CE agreement was much higher (around 20%), which may be related with the low mean
daily cloud cover (<30%) or different landscapes in eastern Africa. For the omission er-
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Table 5.4: Agreement between reference and detected burned areas by land cover type using a
common confusion matrix formed by all pixels from the 10 tiles analysed.

Algorithm  Ots RtsB RtsC

Land cover DC OE CE DC OE CE DC OE CE
Crops 08 0.15 0.16 043 069 030 029 072 0.69
Grasslands 062 0.17 050 039 072 036 029 077 0.61
Shrubs 0.84 0.19 0.13 041 0.71 033 034 072 0.56
Forests 057 044 042 046 0.63 038 045 0.61 0.46

rors, the agreement between the algorithms reached over 30% in four tiles and over 10%
in nine tiles (Table 5.5). Over tiles dominated by low vegetation and high small fires ac-
tivity (31NEJ, 32NNP), the agreement between the two algorithms was low (<10%) due
to the high omission errors observed for the Sentinel-1 algorithm (Figure 5.2). The max-
imum agreement of the detected burned area (nearly 65%) was observed over tile 29NNJ
(Table 5.5 and Figure 5.2). Notice that for unburned areas, the percentage spatial agree-
ment in Table 5.5 was computed using the unburned reference area as the reference. For
burned areas, OE and CE, the spatial agreement was computed using as reference the
burned area. BA detection accuracy (i.e., DC), as well as the size of the detected burned
area, was positively related to the number of large size fire patches (Figure 5.3).

Table 5.5: Spatial agreement (%) between detections from Sentinel-1 (RtsB) and Sentinel-2 (Ots)
based algorithms (NB—not burned, BA—burned area, CE-commission errors, OE—omission errors).

MGRS tile NBS-1&S-2 BASI-1&S-2 CES-1&S-2 OES-1&8S-2

28PET 98.6 23.3 0.2 30.9
29NNJ 91.4 64.7 22 3.6

30NWP 95.7 37.3 0.9 12.4
3INEJ 98.0 6.7 0.4 16.3
32NNP 93.7 7.1 0.7 12.9
33NTG 96.7 21.5 5.7 32.9
33NUG 98.0 1.0 0.3 53.7
33NWE 96.0 41.8 0.4 10.6
35NQG 66.6 18.4 18.6 41.8
36NXP 98.1 36.0 23.1 10.7

The classification rate (classified vs not classified) was also analysed. Not classified
pixels corresponded to areas of clouds/shadows in optical images (Ots) or pre-processing
errors (e.g., difficulties in deriving coherence estimates) in the radar-based algorithms.
The average classification rates for the Ots, RtsB, and RtsC algorithms were 83%, 100%,
and 85%, respectively.
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Figure 5.2: Pixel-wise agreement between reference and burned areas detected by the Sentinel-2
(i.e., Ots) and Sentinel-1 (i.e., RtsB) algorithms.
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Figure 5.3: The relationship between detection accuracy (left) and detected area (right) for the
optical-based (Ots) and interferometric coherence based (RtsC) algorithms for the 10 tiles analysed.
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5.4 Discussion

The algorithms compared here were developed using diverse input datasets (optical, radar
backscatter, and interferometric coherence) and change detection strategies. Considering
all tiles, the use of an optical-based algorithm (Ots) increased the accuracy of burned area
detection by about 23% when compared to the most accurate radar-based (RtsB) algorithm
(DC 0.68 vs 0.45). When compared to reference fire perimeters derived from independent
sensors (i.e., Landsat-8), the RtsB algorithm provided more accurate detection for three of
the four tiles analysed (33NUG 35NQG, 36NXP). However, the particularly high errors
observed over the 33NUG tile for the Ots algorithm seemed to be related to the few cloud-
free observations of the Sentinel-2 sensor. Over tiles where Sentinel-2 images were used
to derive the validation perimeters, the BA detection accuracy improved noticeably (OE
0.19 and CE 0.11, average values) for the Ots algorithm (also based on Sentinel-2 images)
when compared to tiles where reference perimeters were derived from Landsat images.
The increased agreement with the reference data was attributed to (i) exact matching of
validation and detection periods thus avoiding errors due to missing or extra days, (ii) the
same spatial resolution (20 m) at which validation and detection were carried out and thus
lower errors along fire borders, (iii) the use of the same spectral information (Sentinel-2
bands), and (iv) similarities between the BAMS algorithm (used for validation perimeters)
and the Ots algorithm as both use a two-step mapping strategy. However, accuracy metrics
for the Ots algorithm over Sub-Saharan Africa were higher (DC 0.77, OE 0.27, CE 0.19)
when using a fully statistical validation approach (Roteta et al., 2019), which included
unmatched validation periods (from Landsat-7 and -8) and temporally long sample units.
This suggests that the tiles selected for algorithms inter-comparison may not represent
average burn conditions over all of Africa and that temporally short sample units may
underestimate BA detection accuracy. Such an assumption is also supported by the higher
accuracy observed for the RtsC coherence algorithm, (DC 0.48, OE 0.53, CE 0.57) when
assessed over a significantly larger area in the same region (Sub-Saharan Africa) (Padilla
et al., 2018). Over the studied tiles, the time series coherence-based algorithm (RtsC)
showed larger errors when compared to the time-series backscatter-based algorithm (RtsB)
over all areas as well as lower detection rates (85% vs 100%). This suggests that the
coherent scattering properties of the vegetation before and after the fire event may not be
changing sufficiently in the post-fire image to indicate a fire event may have been present.
It was also noticed that the interferometric coherence was very dynamic in Sub-Saharan
Africa, possibly as a result of fire-unrelated vegetation structure and moisture changes as
a result of the on-going dry season that coincides with the fire season.

Of the three algorithms, only the RtsB algorithm was previously validated over other
study areas including 44 sites (20x30 km each) in the Amazon basin (Fernandez-Carrillo
et al., 2018) and 18 MGRS tiles globally distributed (Belenguer-Plomer et al., 2019). In
the Amazon basin, the RtsB algorithm provided more accurate (DC 0.63 vs 0.45) overall
results (Fernandez-Carrillo et al., 2018). The increased accuracy may be related to the
different fire regime for the Amazon grasslands (few repeat burns, large fire patches), the
large number of sites dominated by forests (25 out of 44), and the use of temporally long
sampling units over the Amazon sites (Padilla et al., 2017). When compared to globally
distributed MGRS tiles, the accuracy observed in Africa for the RtsB algorithm was gen-
erally lower except for the Australian grasslands and shrublands (Belenguer-Plomer et al.,
2019). Such spatial differences suggest that the radar-based algorithm may need further
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refinement to better adapt to the local conditions (fire regime, vegetation type, environ-
mental factors).

The optical-based Ots algorithm showed a higher variation of the DC by land cover
type with values ranging from 0.57 to 0.85. In particular, OE and CE for forests were
more than double when compared to other land covers. Such large errors were attributed
to the poor performance of the Ots algorithm over the heavily burned 35NQG tile (dom-
inated by forest cover). The large OE (0.61) and CE (0.64) errors in tile 35NQG seemed
unrelated to the daily mean cloud cover (15%-30%) or the number of small fire patches
as for tile 33NWE (also dominated by forest cover) the OE and CE were much lower (0.22
and 0.03) despite increased mean daily cloud cover (50%—75%), and a similar number of
small fire patches. Instead, higher errors in tiles dominated by forest vegetation (33NTG,
35NUG, 35NQG) seemed to be related to mismatches between detection and validation
periods due to the use of Landsat imagery when generating the reference fire perimeters.
Indeed, for forest dominated tiles (28PET, 33NWE) where reference fire perimeters were
generated from Sentinel-2 imagery (i.e., exact matching of detection and validation dates),
the observed OE and CE where much lower.

The accuracy of the radar-based algorithms was more stable with DC differences
below 0.07 and 0.16 for the RtsB and RtsC, respectively. The Ots and RtsB algorithms
showed a consistent pattern in regard to the location of commission errors. Such errors
largely occurred over different areas (spatial agreement <6% for most tiles), suggesting
potential synergies with a combined radar-optical detection method. The spatial agree-
ment of the burned area detected by the Ots and RtsB algorithms did not depend on the
total burned area but was negatively correlated with the number of large fire patches par-
ticularly when tile 33NUG was discarded from the analysis (Pearson’s r = 0.55). Notice
that the Ots algorithm showed poor results (DC = 0.04) over tile 33NUG as explained
above. Correlation of DC values with the number of large fire patches reached 0.52, —0.30
and 0.43 for Ots, RtsB, and RtsC respectively suggesting more accurate results with an in-
creasing number of large fire patches for the Ots and RtsC algorithms and the opposite for
the RtsB algorithm although the relationship for the latter was weak. In addition, strong
correlations (>0.7) were observed between the total burned area detected by the Ots and
RtsC algorithms and the number of large fire patches.

The validation of medium resolution (10-30 m) BA products is a known issue due to
the difficulty in obtaining reference datasets from high spatial resolution optical sensors
(e.g., WorldView, GeoEye, Planet) over large areas and temporal spans. This study was
limited by the lack of reference fire perimeters from such high spatial resolution sensors.
However, the rather small difference between the spatial resolution at which the burned
area was detected 20—40 m and the imagery used to derive the reference fire perimeters
(20-30 m) should not impede obtaining at least some preliminary conclusions as shown
in this study.

5.5 Conclusions

The analysis suggested that optical-based algorithms may provide for a significant in-
crease in accuracy over SAR based algorithms, particularly over regions where persistent
cloud cover is not an issue as detection rates may otherwise drop considerably. However,
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BA detection from SAR time series is in its infancy when compared to the decades-long
research based on optical sensors. Therefore, more mature SAR-based BA detection al-
gorithms may provide accuracy metrics like those obtained from high-resolution optical
data (e.g., Sentinel-2) by taking advantage of combined backscatter-coherence informa-
tion. Further work is needed to better understand the relationship between interferometric
SAR coherence from C-band and the process of vegetation burning in terms of the in-
fluence of scatters and their post-fire stability. Furthermore, locally adaptive SAR-based
algorithms that use information from different polarisations depending on the land cover
type, topography, and post-fire backscatter change direction (increase vs decrease) may
improve burned area detection particularly over grass and shrub-dominated areas. Never-
theless, the added complexity of SAR data interpretation and the massive amount of data
generated by interferometric SAR processing may only be justified over areas of persistent
cloud cover where optical-based algorithms struggle.

Future work should also assess the consequences of the high BA, OE, and CE for
greenhouse gases emissions, mitigation actions, restoration work, non-carbon ecosystem
services, etc., as such analysis was beyond the scope of this study.
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Chapter

CNN-based burned area mapping using
radar and optical data

In this chapter, we present an in-depth analysis of the use of convolutional neural net-
works (CNN), a deep learning method widely applied in remote sensing-based studies
in recent years, for burned area (BA) mapping from combined radar and optical datasets
acquired by Sentinel-1 and respectively Sentinel-2 sensors. Five areas, distributed world-
wide, are used to establish the optimum (i) CNN dimensionality for feature extraction
(i.e., 1D or 2D), (ii) data normalization (i.e., z-score or [0, 1] interval), and (iii) number
of hidden layers. Five independent areas are used to validate the optimum CNN model.

The optimum CNN dimension and data normalisation parameters were conditioned
by the observed land cover class and the type of sensor (optical or radar) while increas-
ing the network complexity (i.e., number of hidden layers) affected the computing time
without improving the BA mapping accuracy. The use of optimum CNN settings when
considering combining SAR and optical data allowed for (i) mapping the burned areas
with similar or slightly better accuracy to those achieved in previous approaches carried
based on Sentinel-1 (Dice coefficient 0.57) and Sentinel-2 (DC 0.7) sensors, respectively,
and (ii) wall-to-wall mapping by eliminating information gaps due to cloud cover when
using optical-based algorithms.

This chapter is based on the article:

Belenguer-Plomer, M.A., Tanase, M.A., Chuvieco, E., and Bovolo, F. (submitted on May
2020). CNN-based burned area mapping using radar and optical data. Remote Sensing of
Environment (in review).
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6.1 Introduction

Fire is one of the natural disturbance processes that apart from generating significant social
and economic consequences (Chuvieco et al., 2010), most modifies the terrestrial ecosys-
tems by reducing biodiversity, changing water supply and liberating vegetated-sequestered
carbon (Hansen et al., 2013; Aponte et al., 2016; Pausas & Paula, 2012; Lavorel et al.,
2007). At global scale, emissions of aerosols and greenhouse gases (GHGs) from fires may
modify the Earth’s biochemical cycles and the radiative energy balance (Van Der Werf
et al., 2017; Bowman et al., 2009; Jin & Roy, 2005). Fire-induced carbon emissions have
been estimated to be 2.2 PgC per year over the period 1997-2016 (Van Der Wertf et al.,
2017), which translates to 20-30% of global emissions from burning fossils fuels, trigger-
ing the current global warming (Kloster et al., 2012; Flannigan et al., 2009). Besides, it is
observed a direct relationship between the rising of Earth’s temperature and the frequency
of fires (Hoffmann et al., 2002; Knorr et al., 2016). Hence, given the global warming cur-
rent context, such a relationship may reinforce the fire role progressively on climate change
(Flannigan et al., 2006; Langenfelds et al., 2002). However, fires may also result in op-
posite effects by enabling global cooling processes as a result of increased aerosols in the
atmosphere, which induce negative radiative forcing (Ward et al., 2012). Such opposite
effects suggest a limited understanding of fire effects on global climate (Krawchuk et al.,
2009; Liu et al., 2019).

Due to its undeniable climatic and environmental importance, fire is considered by
the Global Climate Observing System (GCOS) as an Essential Climatic Variable (ECV).
An ECV is a physical, biological, chemical, or a group of connected variables capable of
altering the climate system (Bojinski et al., 2014). The European Space Agency (ESA),
through the Climate Change Initiative (CCI) programme, is generating remote sensing-
based ECVs to improve climate modelling (Plummer et al., 2017; Hollmann et al., 2013).
Fire has been included in the CCI programme since 2010 (Fire_cci project). Improving
current BA products by developing new algorithms based on state-of-the-art Earth obser-
vation datasets as well as generating a long-term time series of global BA have been the
main goals of the Fire_cci project (Chuvieco et al., 2018). One driving factor behind the
project was the need for more accurate BA products that reduce current uncertainties when
studying the fire-induced climate impacts (Mouillot et al., 2014; Poulter et al., 2015). In
particular, emissions from small size fires were of particular concern (Van Der Werf et al.,
2017).

Many BA global products have been released over the past decade, predominantly
based on optical imagery acquired by the Moderate Resolution Imaging Spectroradiome-
ter (MODIS), such as the MCD45 (Roy et al., 2008), MCD64 (Giglio et al., 2009, 2018),
Fire_cci v5.0 (Chuvieco et al., 2018) and Fire_cci v5.1 (Lizundia-Loiola et al., 2020).
However, such products have limitations as small-sized fires are difficult to detect due to
the coarse pixel spacing (>250 m). Such limitations generate uncertainty about the extent
of the global burned area (Chuvieco et al., 2019). In order to reduce BA mapping uncer-
tainty, imagery acquired by medium spatial resolution optical sensors such as Landsat-8
and Sentinel-2 are increasingly used to map BA at regional and global scales. Indeed, a
recent study over sub-Sahara Africa based on Sentinel-2 images for 2016 quantified an
increase of 80% over existing global BA products (MCD64A1 product Version 6) for the
same region and year (Roteta et al., 2019). In addition to problems observed to detect
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small fire patches, global BA products are also affected by cloud cover, which difficulties
detection of burn pixels, particularly in Tropical regions where fire signal lasts short. In
particular, the continuous cloud cover at inter-tropical and boreal latitudes prevents BA
mapping from optical sensors. In order to circumvent such limitations, active sensors
(e.g., synthetic aperture radar — SAR) have been used as an alternative to optical imagery
for mapping BA (Bourgeau-Chavez et al., 2002; French et al., 1999). The launch of ESA’s
Sentinel-1 A and B in October 2014 and December 2015, respectively, have greatly im-
proved the availability of SAR images, by operationally acquiring (i) dual-polarisation
C-band imagery (i.e., vertical—vertical, VV, and vertical-horizontal, VH polarisations),
while (ii) providing precise orbital information, (iii) allowing for viewing geometries more
suitable for vegetation monitoring through increased incidence angle, and (iv) improving
spatial and temporal resolution, as revisit period of Sentinel-1 mission is three days when
combining ascending and descending passes from Sentinel- A and B. Such advances, cou-
pled to a free data access policy, have allowed for the development of SAR-based BA
mapping algorithms (Belenguer-Plomer et al., 2019c). Indeed, a first large scale BA prod-
uct based on Sentinel-1 datasets was released recently for the Amazon basin for the year
2017 (https://www.esa-fire-cci.org/, last accessed March 15th, 2020).

Availability of near-concurrent active (Sentinel-1) and passive (Sentinel-2) datasets
allows taking advantage of similar spatial and temporal resolutions of radar and optical
information. Nevertheless, few studies have considered combining such sensors when
mapping BA. In addition, there is little consensus regarding the benefits of such data com-
bination. Some studies noted that active-passive data might reduce limitations associated
with each data-source (Verhegghen et al., 2016). On the contrary, other studies suggest
limited to nil benefits (Brown et al., 2018). The potential of radar-optical based approaches
depends on several limiting factors depending on the sensor type. Optical sensors are
severely restricted by cloud cover or strong variations in solar illumination (Bourgeau-
Chavez et al., 2002; French et al., 1999). SAR data limitations are related to sensitivity to
fire unrelated changes such as soil moisture variations and steep topography (Belenguer-
Plomer et al., 2019a, 2018). Besides, BA detection and mapping accuracy from both types
of sensors are affected by the land cover class (Tanase et al., 2020). Previous studies in-
vestigating the SAR-optical (SAR-O) combination potential for BA mapping have been
carried out over relatively small study areas or single biomes, which reduces results va-
lidity of global BA detection and mapping algorithms (Verhegghen et al., 2016; Brown
et al., 2018; Stroppiana et al., 2015). Furthermore, the strengths and weaknesses of com-
bining active and passive datasets within a single BA classification algorithm as opposed
to by sensor BA detection and subsequent results combination have only been superficially
analysed.

In recent years, deep learning methods have been widely applied in many remote
sensing-based studies (Zhu et al., 2017). Among deep learning methods, the convolu-
tional neural networks (CNN) are extensively used for classifying satellite images (Ma
et al., 2019) with few studies addressing BA detection and mapping (Ban et al., 2020;
Pinto et al., 2020). The limited literature on CNN applied to BA mapping, and the need
for a more profound understanding of its strengths and limitations over the previous clas-
sification approaches, particularly the impact of different configurations on BA detection
accuracy, and the relevance of land cover and fire severity impacts on detection perfor-
mance. This chapter analyses the potential of CNN for BA mapping when SAR and optical
data are combined, considering a wide range of burning conditions. Data from Sentinel-1,
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Sentinel-2 and the combination of the two satellite sensors have been used to test differ-
ent CNN configurations for classifying burned pixels. The analysis was carried out over
different ecosystems and biomes with significant fire activity. The specific objectives of
the study were to (i) determine the optimum CNN parameters (i.e., image dimensionality
for feature extraction, data normalisation, and the number of hidden layers) for each input
dataset (i.e., radar, optical and SAR-O) and land cover class, and (ii) to find the optimal
active-passive approach for BA mapping. This optimal configuration was validated over
independent study areas located in fire-prone biomes worldwide.

6.2 Study areas and datasets

Ten Military Grid Reference System (MGRS) tiles distributed over biomes frequently af-
fected by fires were used as study areas. Five tiles were used to find the optimum map-
ping configuration through CNN parameters and sensor combination (i.e., training tiles)
whereas the remaining five were reserved for validating results with independent sites, as
well as to check the algorithm generalisation capability (i.e., test tiles) (Figure 6.1).
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Figure 6.1: Location of the Military Grid Reference System tiles used for training and test.

Ground range detected (GRD) C-band backscatter coeflicient temporal series ac-
quired by the Sentinel-1 A and B satellites using the interferometric wide (IW) swath mode
were the source of radar information. Images acquired by the MultiSpectral Instrument
(MSI) aboard the Sentinel-2 A and B satellites were the source of optical information.
As ancillary data, the enhanced Shuttle Radar Topography Mission (STRM) DEM at 30
m pixel spacing was used when pre-processing the SAR and optical datasets (see sub-
section 6.3.1). Sentinel-1 and Sentinel-2 data were downloaded from Copernicus Open
Access Hub. Additional ancillary datasets including land cover information as well as
thermal anomalies (i.e., hotspots) of active fires were used within the BA mapping algo-
rithm. The land cover information was extracted from the ESA’s landcover CCI product for
the year 2015 Land_Cover_cci, which uses the Land Cover Classification System (LCC)
(Di Gregorio, 2005). In order to simplify the BA mapping procedure, the LCC legend
was simplified to six landscapes (i.e., shrublands, grasslands, forests, crops, non-burnable
and others, which includes transitional woodland-shrub as well as sclerophyllous vegeta-
tion) as in our previous research study (Belenguer-Plomer et al., 2019c). Hotspots from
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VIIRS (Visible Infrared Imaging Radiometer Suite) (Schroeder et al., 2014) and MODIS
(Giglio et al., 2016) sensors at 375 m and 1 km of spatial resolution, respectively, were
downloaded from NASA’s Fire Information for Resource Management System (FIRMS).

Reference fire perimeters were used to validate the BA products. The reference
perimeters were derived from independent sensors (i.e., Landsat imagery) to avoid auto-
correlation (Tanase et al., 2020). Landsat-8 BOA (Bottom Of Atmosphere) reflectance
images with cloud cover below 70% were downloaded from the United States Geological
Survey repository (USGS) for each tile. The extraction of the reference fire perimeters is
explained in detail in section subsection 6.3.4.

6.3 Methods

6.3.1 Sentinel-1 pre-processing

Sentinel-1 GRD images were processed using the Orfeo ToolBox (OTB), an open-source
software developed by the Centre National D’Etudes Spatiales (CNES), France (Inglada &
Christophe, 2009). The processing chain has been utilised in previous studies (Belenguer-
Plomer et al., 2019c¢,b; Ottinger et al., 2017; Bouvet et al., 2018) and when generating the
FireCCIS1SA10 product, the first large scale BA product from Sentinel-1 data for the Ama-
zon basin. Sentinel-1 data processing may be divided into three steps: data-preparation,
geocoding, and multi-temporal filtering (Figure 6.2). Sentinel-1 data was calibrated ra-
diometrically to gamma nought (7") via a lookup table obtained from the product meta-
data. The calibrated imagery was orthorectified using topographical information from the
SRTM DEM. Since ESA often provides Sentinel-1 images of the same relative orbit within
distinct slices, images from the same orbit were mosaicked and then spatially trimmed to
the coordinates of the MGRS tile. Lastly, the processed images of each orbit were fil-
tered using a multi-temporal filter (Quegan et al., 2000). All images were processed to
the Sentinel-1 nominal resolution (20 m) and subsequently aggregated to 40 m to reduce
speckle (Tanase & Belenguer-Plomer, 2018).

BA mapping is an iterative process with the fire-detection period being defined by the
temporal gap between two consecutive acquisitions. For each fire-detection period (tg),
determined by two Sentinel-1 consecutive acquisition dates (f_; and 1), the two most
recent images acquired before ¢ (i.e., pre-fire) and all images acquired up to 180 days after
to (post-fire) were used as input for the CNN BA mapping algorithm. Information from
both polarisations (VV and VH), as well as their ratio (VH/VV), was extracted and used
for each SAR image. The 180 days post-fire interval accounted for fire-induced temporal
variation of the backscattering process that may occur at some point after a fire event due
to temporal decorrelation (Belenguer-Plomer et al., 2019b).

6.3.2 Sentinel-2 pre-processing

The ESA’s atmospheric correction algorithm sen2cor (v.2.4.0) was used to derive bot-
tom of atmosphere (BOA) Sentinel-2 images and correct for topographic effects on sur-
face reflectance. The bi-cubic interpolation was subsequently used to resample the 20
m Sentinel-2 images to the pre-processed Sentinel-1 output resolution of 40 m. Tempo-
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Figure 6.2: Data chain pre-processing of SAR images with Orfeo ToolBox (Belenguer-Plomer
et al., 2019c).
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ral composites were generated to reduce the number of cloud-affected pixels using both
Sentinel-2 A and B images for the selected bands (i.e., BO2, B03, B04, B0S, B06, BO7,
B8a, B11 and B12). Given a fire-detection period (Zp), as determined by two consecutive
acquisition dates of Sentinel-2 A and B (f_; and ¢, 1), the sen2cor-based Scene Classifi-
cation (SCL) was considered when generating the temporal composites for 1 and ¢, 1.
Pixels affected by clouds or shadows were gap-filled using data from Sentinel-2 imagery
acquired at the closest date before ¢_1 and past ¢ 1, up to 30 days (Melchiorre & Boschetti,
2018) (Figure 6.3).
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Figure 6.3: Graphical representation of temporal composite formation.

Along with the surface reflectance for each of the two temporal composites (pre- and
post-fire), the following indices were computed and fed into the CNN: (i) the Normalized
Burn Ratio (Garcia & Caselles, 1991) (NBR, Equation 6.1); (ii) the Normalized Difference
Water Index (Gao, 1996) (NDWI, Equation 6.3); (iii) the Normalized Difference Vegeta-
tion Index (Rouse Jr et al., 1974; Tucker, 1979) (NDVI, Equation 6.2); and (iv) the Mid
InfraRed Burn Index (Trigg & Flasse, 2001) (MIRBI, Equation 6.4). These indices are
frequently used for BA mapping from optical datasets (Roteta et al., 2019; Loboda et al.,
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2007; Fraser et al., 2000).

NBR = (NIR - SWIR5) / (NIR + SWIR») 6.1)
NDVI = (NIR - Red) / (NIR + Red) (6.2)
NDWI = (NIR - SWIR;) / (NIR + SWIR;) (6.3)
MIRBI = 10 x SWIR5 — 9.8 x SWIR; + 2 (6.4)

where Red, NIR, SWIR1 and SWIR2 are the surface reflectances of bands 4 (650-680
nm), 8a (785-899 nm), 11 (1565-1655 nm) and 12 (2100-2280 nm), respectively, of MSI
aboard Sentinel-2 satellites.

6.3.3 SAR-optical data integration

As Sentinel-1 and Sentinel-2 acquisition dates may not coincide when capturing images
over the same geographical area, the acquisition dates of Sentinel-1 defined each fire-
detection period (Zp), when jointly using SAR and optical data, due to their complete spatial
coverage (e.g., no missing pixels due to cloud cover). Sentinel-2 images are then matched
to the Sentinel-1 dates for each detection period as follows: (i) for the pre-fire date, the clos-
est Sentinel-2 image acquired before (if no coincident image is available) is selected as ¢
date; and (ii) for the post-fire date, the closest image acquired after (if no coincident image
is available coincident) is selected as ¢4 date. Once the Sentinel-2 interval is matched
with the Sentinel-1detection interval, cloud-related gaps are filled through the temporal
composite process (see subsection 6.3.2). Subsequently, the Sentinel-1 radar-derived im-
ages (i.e., VV, VH and VH/VYV ratio) acquired on t_; and ¢ as well as the Sentinel-2
temporal composites (i.e., spectral bands and spectral-indices) were stacked and fed into
the classification algorithm. Similar to Sentinel-1 and Sentinel-2 fusion approaches have
been previously used for vegetation monitoring (Sharma et al., 2018; Tavares et al., 2019),
also employing CNN (Scarpa et al., 2018).

6.3.4 Reference burned perimeters and validation

The reference fire perimeters were extracted from Landsat-8 surface reflectance. The ex-
traction was based on the validation framework previously established for BA products
(Padilla et al., 2014, 2015, 2017; Fernandez-Carrillo et al., 2018). A random forests clas-
sifier was trained using burned and unburned samples as well as no data (i.e., clouds).
Sample selection was carried out via manual digitisation of polygons over a false colour
composite (RGB: SWIR»,, NIR, R) which provided an experienced user with a clear vi-
sual distinction between burned and unburned pixels. Input data for the random forests
classifier were (i) the band 5 (NIR; 0.85-0.88 tm) and band 7 (SWIRg9; 2.11-2.29 tm) of
post-fire date, (ii) the NBR of post-fire (Equation 6.1), and (iii) the temporal difference be-
tween pre- and post-fire of NBR values (INBR) from Landsat-8 images. Model-training
and scene classification was carried out iteratively until the reference fire perimeters were
considered accurate through visual inspection.

Confusion matrices were used to validate the CNN-based BA maps (Table 6.1). The
Dice coeflicient (Equation 6.7) and the omission (Equation 6.5) and commission errors
(Equation 6.6), which are widely used metrics when validating BA products, were com-
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puted from the matrix to assess the quality of the maps (Padilla et al., 2015).

Table 6.1: Confusion matrix example.

Refererence data

Detection Burned Unburned Row total

Burned P11 P12 P1_|_

Unburned P21 P22 P2_|_

Col. total Py Pio N
OE = Py /Py (6.5)
CE= Pi2/P1+ (6.6)
DC = 2P11/ (PH- + P—f—l) (6.7)

6.3.5 Burned area mapping experimental setup

The burned area mapping algorithm identifies changes in C-band backscatter and surface
reflectance associated with burning events. BA mapping was carried out using (i) Sentinel-
1 derived incoherent SAR-based metrics (see subsection 6.3.1), (ii) Sentinel-2 surface
optical reflectance (see subsection 6.3.2), and (ii1) combining SAR and optical selected
datasets (see subsection 6.3.3). Thus, up to three BA maps derived from different input
datasets were generated for each detection period. Hotspots and land cover information
were used for algorithm training purposes (see subsubsection 6.3.5.2).

6.3.5.1 Convolutional Neural Networks (CNN) background

Deep learning methods are increasingly applied to remote sensing problems (Zhu et al.,
2017) with CNN being widely used in land cover classification, the retrieval of bio-geophy-
sical variables (Ma et al., 2019) or BA detection and classification (Ban et al., 2020; Pinto
et al., 2020). CNNs are structured by stages of convolution, non-linearity and pooling,
followed by at least one fully connected layer (LeCun et al., 2015; Zhu et al., 2017). Each
convolutional layer carries out a spatial-spectral feature extraction (Zhong et al., 2019),
generating a set of filtered data where patterns such as edges are emphasised (Strigl et al.,
2010). From the convoluted filtered data, each neuron takes a vector and applies an acti-
vation function of a weighted linear summation (Equation 6.8) (Maggiori et al., 2016).

a=f(wx+b) (6.8)

where a is the neuron output, w is the weight given to the vector x, b is the bias value, and
f is the activation function which introduces non-linearity into the network and permits
learning complex features from data (Agostinelli et al., 2014; Saha et al., 2019). The
most common activation function in remote sensing applications is the rectified linear
unit (ReLU) (Nair & Hinton, 2010), which activates values greater than or equal to zero,
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while it converts the remaining to zero (Equation 6.9).

B z, x>0 6.9
1@ =14 2o (©9)

A loss function is used to quantify the errors when classifying a training vector data, com-
paring the CNN-based prediction with the label of such vector (Maggiori et al., 2016). The
weights and biases of each neuron are adjusted using the backpropagation criterion during
the network training, carrying out multiple iterations forward and backwards to minimise
the errors via gradient descent (Anantrasirichai et al., 2019; Schmidhuber, 2015). The ac-
tivated data is sub-sampled to reduce the tensor size, which increases the receptor field to
the next convolutional layer of the network (Kellenberger et al., 2018; Strigl et al., 2010).
The last layer of the network oversees the classification instead of the feature extraction.
Thus, a fully connected neural network layer is used. Usually, such a fully connected net-
work is followed by a softmax layer, which models the input data to the probability of
belonging to each considered class (Hu et al., 2015; Anantrasirichai et al., 2019; Zhang
et al., 2018).

6.3.5.2 Selection of training data

CNN is a supervised learning method, and thus it needs sample data (i.e., burned and un-
burned pixels) for training purposes. In this study, the extraction of the training dataset
took advantage of hotspots and land cover information. The use of hotspots, well estab-
lished for BA mapping (Belenguer-Plomer et al., 2019c; Roteta et al., 2019), is essen-
tial, particularly when using the radar-derived metrics to differentiate changes due to fires
(Huang & Siegert, 2006). On the other hand, processing pixels according to their land
cover class allows for improved characterisation of patterns which results in more accu-
rate separation of burned and unburned areas when considering both, SAR and optical
datasets (Belenguer-Plomer et al., 2018; Tanase et al., 2020). Therefore, CNNs training
and the subsequent mapping process were carried out class-by-class, with the number of
CNN models built depending on the land cover classes present in each study area. For a
land cover class k, training pixels of the burned category were selected within a spatial
buffer determined as the double of the thermal sensor spatial resolution (Langner et al.,
2007; Sitanggang et al., 2013). The unburned training pixels were those outside the hotspot
buffer areas as well as from not burnable (e.g., water) land cover classes according to CCI
land cover map reference.

6.3.5.3 Assessment of optimum CNN configuration for BA mapping

The architecture of the CNNs was based on AlexNet (Krizhevsky et al., 2012), and in-
tegrate hidden convolutional layers, the ReLU activation function, max-pooling, fully-
connected layers, dropout and softmax classification. According to Bashiri & Geranmayeh
(2011), the parameters that define a CNN model such as the number of layers, neurons and
filters need to be adjusted for each dataset. Thus, to determine the optimal network for BA

detection and mapping up to eight combinations by each input dataset were analysed (Ta-
ble 6.2).

Four architectures were analysed after combining two CNN-groups that differed in
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terms of (i) the number of hidden layers and filters, and (ii) the image domain (i.e., spa-
tial or spectral) where the convolutional feature extraction was executed. The first group
included two CNN models with a different number of hidden layers and filters. The first
model used two hidden layers with 32 and 64 filters, respectively, whereas the second
model had a third additional hidden layer where 128 filters were applied. Hereafter the
models with two and three hidden layers are referred to as the simple (S) and the complex
(C), respectively. The second group involved two convolution-based filters for feature ex-
traction. Given any pixel located at row ¢ and column j of the input image X, the first
filter implied a pixel-wise convolution over the spectral domain (1D). It was considered
three-pixels size kernel to extract features from the spectral information of the previously
stacked optical images and radar channels (see subsection 6.3.1 to subsection 6.3.3). The
second filter considered a 3x3 kernel around the centre pixel (spatial domain, 2D) to ex-
tract the features used for BA detection (Kussul et al., 2017; Xu et al., 2017; Zhang et al.,
2019) (Figure 6.4).
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Figure 6.4: Feature extraction carried out in a convolution (Conv) though (a) the spectral-domain
(1D) and (b) the spatial-domain (2D) of the input image. Relevant parts of CNN such as ReLU,
max-pooling, fully-connected network and softmax layers are also shown.

Two normalization methods were tested separately with each image band being nor-
malized (i) in the interval [0, 1] (Benedetti et al., 2018b), and (ii) applying the z-score
normalization (Zhong et al., 2017) (Equation 6.10).

x —pu(b)

z-score () = - (0)

(6.10)
where x is a given pixel of a band b of the image, and ;. and o are the mean and standard
deviation, respectively. In Table 6.2, there are the eight configurations considered whose

performance when mapping BA is going to be assessed in this study for each dataset (i.e.,
SAR, optical and SAR-O combination).

6.4 Results

6.4.1 Optimum CNN configuration

Depending on the MGRS tile, the optimum CNN configuration varied (Figure 6.5). When
Sentinel-1 (S-1) data was fed into the CNN, accuracy metrics dispersion (i.e., between
tiles) at any CNN configuration was larger when compared to feeding Sentinel-2 (S-2)
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Table 6.2: The eight configurations assessed for each input dataset (S — simple, C — complex)

CNN model Convolution dimension Data normalization

S 1D Z-score
S 1D [0, 1]
S 2D Z-score
S 2D [0, 1]
C 1D Z-score
C 1D [0, 1]
C 2D Z-score
C 2D [0, 1]

data or both Sentinel-1 and Sentinel-2 data (S-1+S-2). For the radar-fed CNN inter-tiles
accuracy dispersion was reduced when the convolution and feature extraction was carried
out through the spatial domain of the image (2D) by decreasing omission errors (36NXP,
20LQQ and 50JML) despite a slight increase in commission errors for some tiles (10UEC
and 29TNE). Similar results were achieved when feeding only Sentinel-2 data. When
feeding both types of data (i.e., S-14S-2) into the CNN, the convolution dimension (i.e.,
1D, 2D) did not influence the accuracy. In addition, the time required when training 2D
models were lower compared to 1D, particularly when considering complex (C) networks
and regardless of data normalisation type. The use of more complex (C) CNN models, as
opposed in using the simplest ones (S), did not result in increased accuracy regardless of
the type of data fed into the network. Similarly, time computing differences as a result of a
different data normalisation method (z-score vs [0, 1]) were marginal for any of the input
data. However, marginal accuracy increments of mapping accuracy were observed when
using the z-score normalisation for the Sentinel-1 fed CNN, particularly in tile SOJML (i.e.,
Australian grasslands), where OE was reduced significantly (for 2D CNN). Conversely,
when feeding Sentinel-2 or Sentinel-1 and Sentinel-2 data, the [0, 1] normalisation pro-
vided slightly more accurate BA detection and mapping.

By land cover classes, the lowest BA mapping accuracy was observed over Grass-
lands, particularly when using Sentinel-1 data due to high OE (Figure 6.6). However,
combining 2D convolution with z-score normalisation resulted in improved DC (by 59%)
from 1D convolution-based approaches with z-score (DC 0.351+0.24 vs 0.22+0.2, mean
=+ the standard deviation). The same configuration (2D and z-score) also improved the
accuracy over Crops, especially when compared to 1D with [0, 1] data normalisation (DC
0.3740.14 vs 0.30£0.25), although to a lesser extent, while over Forests the improvement
was marginal. Accuracy metrics were stable for Shrubs over all configurations tested, al-
though the 2D and z-score configuration provided less overall dispersion among the anal-
ysed tiles. In Others class, the highest mapping accuracy based on Sentinel-1 data was
achieved using the convolution in the spectral domain (1D).

Although Sentinel-2 fed CNN achieved better accuracy when compared to Sentinel-1
fed CNN, such improvements were conditioned by land cover classes and configurations.
When using optical data, the spectral-based feature extraction (1D) was the most accurate
except for Crops where the spatial-based (2D) improved the results. Marginal differences
in BA accuracy were found between the two data normalisation types with the z-score
normalisation providing higher DC values over all land cover classes except for Forests.
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Figure 6.5: Dice coefficient (DC), commission and omission errors (CE and OE) and seconds
needed when training the models by training tiles considering different CNN configuration and
input data (Sentinel-1 - S-1, Sentinel-2 - S-2 and both datasets - S-1+S-2).
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Figure 6.6: Mean and standard error of Dice coefficient (DC), commission and omission errors
(CE and OE) and seconds per pixel needed when training the models by land cover classes (O-
others, F-forests, S-shrubs, G-grasslands and C-crops) of training tiles considering different CNN
configuration and input data (Sentinel-1 - S-1, Sentinel-2 - S-2 and both datasets - S-1+S-2).
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When both, Sentinel-1 and Sentinel-2 data were fed to the CNN, the BA classifi-
cation did not improve (except for Crops) when compared to only using Sentinel-2 data
despite requiring more computation time in all configurations tested. Over cropping ar-
eas, SAR or optical data alone provided a low mapping accuracy (highest DCs achieved
0.3740.14 and 0.42+0.05, respectively). However, the SAR-O combination improved the
accuracy (DC 0.4440.09) by reducing the OE. Such an improvement was maximum for
the 2D convolution and z-score normalisation. For the remaining land cover classes, the
SAR and optical combination did not improve the results when cloud cover was not an
issue. Notice that, despite Sentinel-2 temporal compositing, gaps remained over areas fre-
quently affected by clouds. As for the CNN optimum configuration, 1D convolution and
[0, 1] normalisation improved the mapping accuracy (as for the Sentinel-1 based network).
The highest mapping accuracy was observed over Forests regardless of data normalisation
method, convolution dimension and input remote sensing data (i.e., S-1, S-2, S-1+S-2).
The optimum CNN configuration for each land cover class is presented in Table 6.3 as a
function of the input remote sensing data.

Table 6.3: Optimum CNN configuration and Dice coefficient mean (+ standard deviation) by land
cover classes (O-others, F-forests, S-shrubs, G-grasslands and C-crops) of the training tiles and
input data (Sentinel-1 - S-1, Sentinel-2 - S-2 and both datasets - S-1+S-2).

LC S-1 DC(S-1) S-2 DC(S-2) S-1+S-2 DC (S-1+S-2)
O ID|z 0461031 1ID|z 0.50+0.31 1D |[0,1] 0.42+0.38
F 2D |z 0.60+0.23 1D|[0,1] 0.64+0.21 1D |[0,1] 0.58+0.24
S 2D |z 0.50+0.23 1D|z 0.56+0.22 1D |[0,1] 0.53+0.20
G
C

2D |z 0.35+024 1D|z 0.38+£0.20 all 0.31+£0.23
2D |z 0.37+0.15 2D |z 0.43+0.19 2D |z 0.44+0.11

The last layer of the CNN utilised, the softmax layer, predicted the probability of
each pixel to belong to burned and unburned classes. All previous analyses assigned a
pixel as burned when the softmax probability was equal or above 50%. However, such
a fixed threshold may have not always provided the optimum results, depending on the
input datasets and land cover class (Figure 6.7). The effect of using a variable threshold
probability was studied to improve BA mapping accuracy and balance CE and OE. Such
variation depended on land cover class and the input data fed to the CNN (Table 6.4). Over
Grasslands, Crops and Shrubs, the classes with the highest OE (Figure 6.6), improved ac-
curacies were observed when the softmax burned threshold probability was reduced (40
to 50%), depending on the input dataset. Conversely, for Forests class, a more restrictive
threshold improved BA mapping accuracy. The optimum threshold differed with the input
data, from 65% when using Sentinel-2 data alone to 75% when using Sentinel-1 or inte-
grating SAR and optical data. BA accuracy improved marginally for Others class when
varying the threshold until a probability of 80% for Sentinel-1 and 70% for Sentinel-2.
However, when integrating SAR and optical, the improvement was considerable for the
55-75% interval with the highest accuracy being achieved for a softmax of 70%. Such
improvement allowed that maps based on SAR-O integration achieved higher accuracy
when compared to maps derived from individual Sentinel-1 or Sentinel-2 datasets. Past
the optimum threshold, mapping accuracy reduces considerably, particularly when using
Sentinel-2 data. This effect was observed for all land cover classes except Grasslands,
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where the opposite was true.
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Figure 6.7: Variation of mapping accuracy measured through the mean and standard error of Dice
coefficient (DC) as a function of changes in softmax probability by land cover classes of training
tiles and input data (Sentinel-1 - S-1, Sentinel-2 - S-2 and both datasets - S-1+S-2).

Table 6.4: Most suitable burned thresholds (Bt) of softmax classification probability layer when
mapping burned area (BA) and the mean Dice coefficient (£ standard deviation) by land cover
classes (O-others, F-forests, S-shrubs, G-grasslands and C-crops) of training tiles and input data
(Sentinel-1 - S-1, Sentinel-2 - S-2 and both datasets - S-1+S-2).

LC Bt(S-1) DC(S-1) Bt(S-2) DC(S-2) Bt(S-1+S-2) DC (S-1+S-2)

O 075 0.47£0.32 0.70 0.52+0.35 0.70 0.55+0.36
F 075 0.65+0.17 0.65 0.68+0.20 0.75 0.65+0.15
S 0.55 0.50+£0.24 0.50 0.56£0.22 0.45 0.53+0.19
G 050 0.35+£0.24 0.45 0.41£0.20 0.40 0.31+£0.25
C 045 0.37£0.13  0.50 0.43+0.19 0.50 0.44+0.11

6.4.2 SAR-optical mapping strategy

Three different BA mapping strategies from combined SAR and optical datasets were
analysed: (i) stacking radar, and optical metrics (e.g., backscatter coefficient, surface re-
flectance and indices) and feeding them to the CNN (Figure 6.8, a); (ii) using BA detected
from the optical data and filling the gaps (e.g., due to cloud cover) with pixels mapped from
radar data (Figure 6.8, b); and (ii1) joining the BA detected independently from radar and
optical datasets (Figure 6.8, c). For Forests class, the three mapping strategies provided
similar results (i.e., DC values). However, joining individual Sentinel-1 and Sentinel-2
maps may provide an advantage by reducing missed burned areas due to those clouds or
shadows, not possible when using optical temporal composites alone. For Shrubs, the ob-
served DC values were similar for all mapping strategies with radar-filled optical-based
BA maps showing slightly higher DC values when compared to the remaining two strate-
gies. Over Grasslands, the radar-filled optical-based BA maps provided the most accurate
results. Over the two remaining land cover classes (i.e., Others and Crops), the use of
radar-optical stacks into the CNN allowed improving the accuracy when compared to us-
ing radar or optical data separately and combining the results. In particular, over class
Others, the radar-optical stacks allowed reducing the CE by 20%.
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Figure 6.8: Mean and standard error of Dice coefficient (DC) and commission and omission errors
(CE and OE) by land cover classes (O-others, F-forests, S-shrubs, G-grasslands and C-crops) of
training tiles when combining Sentinel-1 and Sentinel-2 data applying three different approaches:
(a) data stacking of SAR and optical images to feed the CNN; (b) filling Sentinel-2 based maps
pixels with information-gaps using those derived from Sentinel-1; and (c) joining all burned pixels
detected using both SAR and optical images separately.

6.4.3 Burned area mapping validation

The optimum CNN configuration and mapping strategy, according to the observed trends
over the training tiles, were assessed over the test tiles (Table 6.5) with the mapping ac-
curacy varying depending on the input data (i.e., S-1, S-2 and S-1+S-2). Higher mapping
errors (DC<0.6) were observed over grasslands dominated tiles in Africa and Australia
(33NTG and 52LCH, respectively), regardless of the input data. Over the remaining tiles,
DC values were above 0.7. Over two tiles (20LQP and 33NTGQG), the radar-based maps were
more accurate when compared to the optical-based (DC of 0.81 vs 0.71 and 0.50 vs 0.47,
respectively) with the opposite being valid for the remaining three tiles. However, the use
of Sentinel-1 data (i.e., cloud cover independent) allowed for wall-to-wall mapping. In tile
52L.CH the optical-based maps did not provide information for 17.6% (Figure 6.9).

By land cover type, the highest accuracy was observed over forested areas when map-
ping BA through the SAR-O combination (DC 0.72) as opposed to only using SAR (DC
0.63) or optical (DC 0.66) information (Figure 6.10). The most relevant improvement
when combining Sentinel-1 and Sentinel-2 was found over the Others class, where the
synergy of both sensors reduced OE and CE considerably when compared to the single
sensor approaches. The lowest accuracy was achieved over Crops class, mainly due to high
CE (near 0.8) observed for both sensor types. In addition, for the radar-based maps, BA
accuracy over cropping areas was also negatively influenced by high OE, which did not
occur when using optical datasets. The combination of Sentinel-1 and Sentinel-2 data gen-
erally improved or maintained the accuracy achieved from SAR or optical only mapping
except for tile 20LQP, where the SAR-based maps were the most accurate. Improvements
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Table 6.5: Error metrics for burned area (BA) maps based on Sentinel-1 (S-1), Sentinel-2 (S-2)

and the optimum combination of both datasets (S-1+S-2) for each test tile.

MGRS R. period Sat Detection period DC OE CE %N
04/10/2017 S-2 07/10/2017-01/11/2017 0.70 0.12 0.41 2.26

10SEH 05/11/2017 S-14S-2  28/09/2017-03/11/2017 0.70 0.10 0.43 0.00
S-1 28/09/2017-03/11/2017 0.46 0.69 0.13 0.00

20/07/2016 S-2 17/07/2016-25/09/2016 0.71 0.20 0.37 0.00

20LQP 221092016 S-14S-2  03/07/2016-25/09/2016  0.73 0.04 0.41 0.00
S-1 03/07/2016-25/09/2016  0.81 0.08 0.27 0.00

05/10/2017 S-2 05/10/2017-09/11/2017 0.75 0.27 0.22 0.06

29TNG 06/11/2017 S-14S-2  28/09/2017-09/11/2017 0.77 0.23 0.22 0.00
S-1 28/09/2017-09/11/2017 0.64 0.44 0.25 0.00

15/01/2016 S-1 15/01/2016-20/02/2016  0.50 0.53 0.47 0.00

33NTG 16/02/2016 S-2 18/01/2016-/17/02/2016 0.47 0.65 0.31 0.39
S-14S-2  15/01/2016-20/02/2016  0.56 0.47 0.42 0.00

05/04/2017 S-2 19/03/2017-08/04/2017 0.55 0.59 0.15 17.6

52L.CH 21/04/2017 S-1+S-2  26/03/2017-19/04/2017 0.56 0.55 0.24 0.00
S-1 26/03/2017-19/04/2017 0.36 0.75 0.34 0.00

C - continent for each tile (Af-Africa, Au-Australia, Eu-Europe, NA-North America and SA-South
America); R. period - period for which it was derived the reference burn perimeters using Landsat-
8; Sat - input dataset considered; Detection period - first and last Sentinel-1 or Sentinel-2 images
of the temporal series; DC - Dice coefficient; OE - omission error; CE - commission error; and
%N - the percentage of no data pixels over all the MGRS tile.
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Figure 6.9: Burned area (BA) maps based on Sentinel-1 (S-1), Sentinel-2 (S-2) and the optimum
combination of both datasets (S-1+S-2) for test tiles. Errors of omission and commission, as well

as no data pixels due to reference or input datasets, are also shown.
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when combining the two sensor types were related to a considerable reduction in OE which
coupled with a marginal increase in CE. The average OE reduction and CE increase over
the five test tiles was 0.22+0.22 and 0.05£0.17 when compared to radar-based maps and
0.0940.08 and 0.05+0.05 when compared to optical-based maps. Apart from accuracy
improvements, SAR-O data integration reduced gaps due to cloud cover to nil, a significant
advantage of combining active and passive sensors. Although computationally intensive,
a combined SAR-O approach took advantage of the optical sensor improving BA mapping
accuracy and of the radar atmospheric independence, providing consistently wall-to-wall
products.
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Figure 6.10: Mean and standard error of Dice coefficient (DC), commission and omission errors
(CE and OE) by land cover classes of test tiles as a function of the input datasets used (Sentinel-1
- S-1, Sentinel-2 - S-2 and the optimum combination of both datasets - S-1+S-2).

6.5 Discussion

6.5.1 Optimum CNN parameters

In terms of data normalisation, our results show that the optimum was based on the z-
score regardless of the input data (radar or optical) except for forested lands mapped
from Sentinel-2 imagery, which aligns with findings from previous research (Zhong et al.,
2017). Conversely, for combined SAR-O approaches the [0, 1] normalisation was bet-
ter suited to BA mapping applications as also observed in previous studies that combined
imagery from different sensors (Benedetti et al., 2018a). The [0, 1] normalisation pro-
vided more accurate BA detections when stacking SAR and optical datasets except for
Grasslands (no difference with z-score normalisation) and Crops. The insensitivity to the
normalisation method used may be related to the low accuracies observed for BA mapping
over Grasslands as previously shown by other authors (Menges et al., 2004). For Crops,
the intrinsic class vegetation differences given by the variability of different agricultural
fields as well as the vegetation season may explain the need for a different normalisation
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type.

The optimum feature extraction was achieved via the spectral domain (1D) when op-
tical or the SAR-O combination was used. Conversely, the spatial domain (2D) provided
more accurate results when using SAR data alone. Such a difference may be due to optical
reflectance allows for improved BA detection when compared to the radar backscatter coef-
ficient (Belenguer-Plomer et al., 2019¢). Hence, considering the spectral reflectance (i.e.,
of wavelengths highly sensitive to fire effects (i.e., 1D) results in accurate classification
of burned areas. When optical information is absent (i.e., only the backscatter coefficient
is available), considering the surrounding pixels improves differentiation between burned
and unburned pixels explaining the improved performance of the spatial feature extraction
(2D).

The optimum Softmax threshold, when classifying burned and unburned pixels, dif-
fered as a function of land cover classes. The most considerable improvement, when chain-
ing the threshold from 50% probability, was observed for class Others which was mapped
more accurately when considering SAR-O using a 60% probability. The optimum thresh-
olds also varied as a function of the input dataset (SAR, optical or SAR-O combination)
over each land cover class. For Crops, Grasslands and Shrubs the optimum thresholds
were less restrictive (i.e., close to 50%) while for Forests and Others the optimum thresh-
olds were more restrictive (i.e., around 70%). Except for Shrubs, a higher threshold (for
burned area) seemed appropriate for the land cover classes mapped with higher accuracy
(1.e., Forests and Others). The higher mapping accuracy may be related to the biomass
level of each land cover class as it influences the level of pre- to post-fire changes for both,
the backscatter coefficient and optical reflectance. In addition, the Fire Radiative Power
(FRP) is dependent on fuels availability (i.e., biomass) which implies that in land cover
classes with a reduced amount of biomass the capability to detect hotspots from ther-
mal sensors is lower when compared to biomass rich land cover classes (Wooster et al.,
2005). CNN models are land cover dependent and trained using information derived from
hotspots. A reduced number of hotspots for a specific land cover class (due to low FRP,
related to low biomass levels), resulted in poorer training and thus increased uncertainty
when compared to land cover classes with increased fuel availability (and thus hotspots)
explaining of different optimum thresholds for each land cover class.

Lastly, in terms of computing time, mapping the BA over vegetation with consider-
able intrinsic heterogeneity (i.e., Others class) increased the computing time. However,
the most significant time increment was found when using additional hidden layers which
did not translate in improvements of the mapping accuracy. Although including more
hidden layers does not deteriorate the mapping accuracy, the considerable increase of
computing time may hinder algorithm deployment from continental to global scales, the
final objective of this research (Chuvieco et al., 2019).

6.5.2 SAR and optical data integration for BA mapping

The input dataset (SAR, optical, joint use) providing the highest accuracy differed with
the land cover class. For Others and Crops classes, the joint use of active and passive data
provided the most accurate results. As these land cover classes are more heterogeneous,
the mapping process takes advantage of the differentiated sensitivity of the two types of
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sensors through the CNN training thus allowing for a more precise separation between
burned and unburned areas overall. Notice that over the test tiles, the joint use of both
sensor types did not improve results for the Crops class suggesting that research is needed
ascertain the optimum combination of active and passive datasets. A possible explanation
is a reduced variability among the types of crops within the test tiles. Such reduced vari-
ability was suggested by the reduced VH backscatter coefficient variability (i.e., standard
deviation), related to the vegetation volumetric scattering process (Freeman & Durden,
1998), over the Crops in the test tiles when compared to the training tiles (0.10 vs 0.15).
Increased homogeneity over the agricultural fields, induced by different crop types and/or
growing season, may reduce the need for SAR-derived information for monitoring pur-
poses (Van Tricht et al., 2018). Nevertheless, comparing SAR-O and optical-based results
over the test tiles suggest only marginal DC differences over cropping areas and demon-
strate the reliability of the CNN-based predictions even when some of the input data are
redundant.

For Forests and Shrubs classes, the combination of BA mapping products from indi-
vidual SAR and optical data sources allowed for more accurate detections although such
improvements were marginal (especially for Shrubs) when compared to the remaining
data-integration strategies. The improvement resulted from a considerable OE reduction
when joining the independently generated maps. In particular, OE was reduced for pix-
els located at the border of fire patches which are more susceptible to be misclassified
due to residual pixel co-registration errors between maps and validation datasets (Man-
danici & Bitelli, 2016). Hence, combining maps obtained from sensors with different
viewing geometries (i.e., SAR and optical) reduced the effect of geolocation errors with-
out meaningfully increasing the CE. Lastly, over Grasslands, the use of Sentinel-2 data
for BA mapping and Sentinel-1 for gap filling (due to cloud cover) provided the most ac-
curate results. Such findings align with previous research which suggested reduced utility
of C-band backscatter coefficient when monitoring fire effects in fire-affected grasslands
(Menges et al., 2004).

6.5.3 Algorithm independent validation

The joint use of Sentinel-1 and Sentinel-2 data improved slightly (or maintained) the BA
accuracy achieved using a sole input data (i.e., SAR or optical) in most test tiles while pro-
viding wall-to-wall mapping capabilities (all pixels were mapped), a feature particularly
crucial in tile 52LCH were cloud gaps amounted for 17.6% of the area. Further, the joint
use of active and passive datasets allowed combining the strengths of SAR (i.e., a cloud
cover independence) and optical data (i.e., better sensitivity to fire-induced changes in veg-
etation) as also suggested in previous studies (Verhegghen et al., 2016). As an exception,
for tile 20LQP, the highest accuracy was obtained using the SAR data (DC 0.81). The OE
increased by 0.2 when using Sentinel-2 data as an input and by 0.04 when jointly using
the active and passive datasets. However, for the latter, the CE significantly increased
when joining all burned pixel detected separately from SAR and optical datasets due to
the large commission errors of the Sentinel-2 based maps. The discrepant results in tile
20LQP were explained by fire location, as 83% of the fire patches burned forested areas
and did not reflect the general trends as discussed in subsection 6.5.4. Overall, using SAR
and optical data for BA mapping requires more computing power or increased processing
time. However, such effort may be worth as end-users are provided with the most accurate
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BA products without information gaps, particularly beneficial at inter-tropical and boreal
latitudes.

By land cover classes, the higher mapping accuracies were observed for Forests,
Shrubs and Grasslands classes with DC values of 0.72, 0.65 and 0.57, respectively. Lower
DC values (0.46) were observed for the class Others. A rather low mapping accuracy was
observed for Crops (DC 0.27) regardless of the input datasets. However, one should no-
tice that most accuracy metrics analysed here were based on reference fire perimeters over
short periods (i.e., one month or less) which may significantly affect accuracy assessment.
According to previous research, evaluating BA maps over short periods tends to underesti-
mate mapping accuracy regardless of the input datasets (Padilla et al., 2018). Such effects
were also found when assessing Sentinel-2 based BA maps with DC values increasing
from 0.34 to 0.77 from short to long temporal periods (Roteta et al., 2019).

In this study, most of the evaluated periods were short. However, two clearly defined
groups of tiles were observed when analysing the BA mapping accuracy from Sentinel-2
data. For the first group, formed by tiles 10SEH, 20LQP and 29TNG, the fire activity
was concentrated around dates timely covered by both the reference (as set by Landsat 8
acquisition dates) and the detection period (set by the Sentinel-2 acquisition dates). Over
these tiles, the DC values were similar (DC >0.7) and in line with those observed in pre-
vious studies (Roteta et al., 2019). For the second group, tiles 33NTG and 52LCH, many
fires were active during dates not simultaneously covered by Landsat-8 and Sentinel-2 ac-
quisitions. In fact, 8.8% (33NTG) and 39.4% (52L.CH) hotspots were recorded within the
interval covered by the Lansat-8 imagery but outside the interval covered by the Sentinel-2
imagery. Such a mismatching resulted in increased OE (0.65 and 0.59, respectively) and
thus lower accuracy as the average DC was 0.21 lower when compared to the remaining
tiles (DC 0.51 vs 0.72).

The accuracy observed for the Sentinel-1 based BA maps was similar to that observed
in previous studies based on the same sensor (Belenguer-Plomer et al., 2019c). For the
test tiles, the CNN-based maps achieved an average DC of 0.55£0.17 compared an aver-
age DC of 0.57£0.18 observed for a Reed-Xiaoli detector proposed by Belenguer-Plomer
et al. (2019c¢). Although only marginal differences, in terms of accuracy, were found be-
tween the two approaches, the CNN-based algorithm was considerable faster (Belenguer-
Plomer et al., 2019c¢). The reduced number of studies taking advantage of a combined ac-
tive/passive sensor approach for BA mapping precluded meaningful comparisons as such
studies were carried out over homogeneous areas with little variations in vegetation types
and fire regimes (Verhegghen et al., 2016; Brown et al., 2018; Stroppiana et al., 2015).

6.5.4 Main sources of error

Commission and omission burned area mapping errors depended, to a large degree, on the
input data source. SAR and optical datasets were affected differently by factors including
variations in soil moisture, slope orientation and post-fire vegetation response (Kurum,
2015; Belenguer-Plomer et al., 2019a). For tile 10SEH (North America), the main limiting
factor when using SAR data was the steep topography since fire patches were located on
steeper (13.46°+7.7) when compared to the remaining test tiles (7.15°+6). The steeper
topography may reduce the backscatter suitability when monitoring fires which translate in
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increased OE (0.69) (Belenguer-Plomer et al., 2019¢). Conversely, considerable CE (0.41)
was observed for the optical-based maps as during the automatic training low-fire severity
pixels (i.e., reduced pre- to post-fire variations) were considered due to their proximity to
hotspots. However, the reference data only included visible burned pixels as it was based
on manually supervised classification. The mean dNBR, a reliable indicator of fire severity
(Key & Benson, 2004), in pixels affected by CE was 0.15+0.16, a value considerably
higher when compared to that of unburned pixels (0.0140.7) and, at the same time, far
from the values observed for the burned pixels (0.46£0.26), suggesting that reference
perimeters include partially burned pixels as the observed CE should have been lower.

Fire severity was also the main limiting factor in tiles 33NTG (Africa) and 52LCH
(Australia). According to the MIRBI spectral index (Equation 6.4), found as the most suit-
able index when assessing fire severity over grasslands (Lu et al., 2016), low fire severity
was observed for pixels affected by OE (1.674-0.38 and 1.624-0.21, respectively). In con-
trast, moderate severities were observed for accurately detected burned pixels (1.8+0.32
and 1.76£0.12, respectively). Although marginal differences were found when compar-
ing accuracies from SAR-O and optical-based maps (DC 0.56 vs 0.55), when evaluating
the accuracy of latter, pixels covered by clouds (17.6%) were not included despite some of
them being affected by fires. When assessing the SAR-O map in tile 52LCH, ignoring the
influence of optical-affected cloud pixels, the accuracy improved up to 12.5% (DC 0.63).
Furthermore, as indicated in subsection 6.5.3, mismatched reference and detection periods
may have increased the observed errors (particularly OFE) in tiles 33NTG and 52L.CH.

Hotspots availability may have also affected the observed mapping accuracy. For
example, in tile 29TNG (Portugal), most areas affected by omission errors were located
within a unique fire scar with only one hotspot detected by the thermal MODIS and VIIRS
sensors. Reduced number of hotspots hindered CNN training for both, SAR and optical
datasets. However, the absence of hotspots was an exception as within the remaining fire
patches (same tile) or the remaining tiles such limitations were not observed.

Finally, the high CE observed in tile 20LQP (South America), particularly for the
optical-based map (0.37), was related to similar post-fire increment in SWIR reflectance
over both burned (+0.046) and unburned (+0.05) areas. The SWIR increment over un-
burned areas may be related to drying unburned vegetation during the post-fire period
(Gao, 1996). Most pixels (77%) affected by CE were concentrated along the largest fire
perimeter, a fire that accounted for 93.3% of all burned pixels in this tile. According to
the MODIS-based hotpots product (Giglio et al., 2016), FRP values up to 339.9 MW were
observed for this fire, a 15th fold increase when compared to value registered over the re-
maining fire-patches (20.3 MW), which suggests that heat radiating from the very intense
fire-affected vegetation on the neighbouring areas. As CNN training is based on larger
areas around hotspots, unburned fire-dried pixels were mixed within the training samples
resulting in an incorrect learning process. Such errors may be easily rectified by relating
the sampling areas around hotspots with the FRP, i.e., training pixels from intense fires
are sampled within a lower radius.
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6.6 Conclusions

This study provides insights for the optimum configuration of CNN fed by Sentinel-1
and/or Sentinel-2 datasets for BA mapping by land cover classes. The analysis was car-
ried out over 10 study areas (1M ha each) distributed within fire-prone biomes. CNN
models with two hidden layers allowed reducing the computing time with virtually no loss
in maintaining mapping accuracy (when compared to deeper networks) regardless of the
input data set (Sentinel-1, Sentinel-2, both) or the observed land cover class. Three factors
were relevant when defining an optimum CNN configuration: (i) the dimension where the
convolution-based feature extraction was executed (1D or 2D); (ii) the data normalisation
method applied (z-score or interval [0, 1]); and (iii) the optimum threshold of the soft-
max output layer. The land cover class was also relevant when defining the most accurate
SAR-O data integration strategy.

The optimum CNN parameters were used to map BA over the five independent test
areas, finding similar accuracies to those achieved over the training tiles. Error analysis
over the test tiles suggested a strong relationship between mapping accuracy and the land
cover classes, as expected. The highest and lowest accuracies were found over Forests and
Grasslands, respectively. When individual sensors were fed into the CNN (i.e., Sentinel-
1, Sentinel-2), the observed mapping accuracies were similar to those found in previous
studies. However, the proposed CNN approach was considerably more versatile when
compared to the existing BA mapping algorithms. Besides, this study also provided in-
sights into the optimum SAR-O data integration, which allows (i) improving BA mapping
accuracy when compared to using a single sensor type, and (i1) wall-to-wall mapping since
cloud-related gaps of optical datasets were eliminated. Despite these strengths, CNN-
based BA mapping accuracy was limited by different sources of errors including steep
topography, low FRP, absence of hotspots, and presence of fire unrelated land changes.
Further research should focus on confirming our results over additional areas and further
reducing mapping uncertainty by incorporating additional data streams into the CNN, in-
cluding high temporal but low spatial resolution imagery.

Acknowledgements

This research has been financed by the (i) Spanish Ministry of Universities through a For-
macion Profesorado Universitario (FPU) doctoral fellowship (FPU16/01645) and its mo-
bility grant associated (EST18/00497), as well as (i1) by the European Space Agency (ESA)
through the Fire_cci (Climate Change Initiative) project (Contract 4000126706/19/I-NB).

6.7 References

Agostinelli, F., Hoffman, M., Sadowski, P., & Baldi, P. (2014). Learning activation
functions to improve deep neural networks. arXiv preprint arXiv:1412.6830, .

Anantrasirichai, N., Biggs, J., Albino, F., & Bull, D. (2019). A deep learning approach
to detecting volcano deformation from satellite imagery using synthetic datasets. Remote
Sensing of Environment, 230, 111179.



144 Chapter 6. CNN-based burned area mapping using radar and optical data

Aponte, C., de Groot, W. J., & Wotton, B. M. (2016). Forest fires and climate change:
causes, consequences and management options. International Journal of Wildland Fire,
25, 1-ii.

Ban, Y., Zhang, P., Nascetti, A., Bevington, A. R., & Wulder, M. A. (2020). Near
Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep
Learning. Scientific Reports, 10, 1-15.

Bashiri, M., & Geranmayeh, A. F. (2011). Tuning the parameters of an artificial neural
network using central composite design and genetic algorithm. Scientia Iranica, 18, 1600—
1608.

Belenguer-Plomer, M. A., Chuvieco, E., & Tanase, M. A. (2019a). Evaluation of
backscatter coeflicient temporal indices for burned area mapping. In Active and Passive
Microwave Remote Sensing for Environmental Monitoring III (p. 111540D). International
Society for Optics and Photonics volume 11154.

Belenguer-Plomer, M. A., Chuvieco, E., & Tanase, M. A. (2019b). Temporal Decorre-
lation of C-Band Backscatter Coefficient in Mediterranean Burned Areas. Remote Sensing,
11,2661.

Belenguer-Plomer, M. A., Tanase, M. A., Fernandez-Carrillo, A., & Chuvieco, E.
(2018). Insights into burned areas detection from Sentinel-1 data and locally adaptive
algorithms. In Active and Passive Microwave Remote Sensing for Environmental Monitor-
ing II (p. 107880G). International Society for Optics and Photonics volume 10788.

Belenguer-Plomer, M. A., Tanase, M. A., Fernandez-Carrillo, A., & Chuvieco, E.
(2019c). Burned area detection and mapping using Sentinel-1 backscatter coefficient and
thermal anomalies. Remote Sensing of Environment, 233, 111345.

Benedetti, A., Picchiani, M., & Del Frate, F. (2018a). Sentinel-1 and sentinel-2 data
fusion for urban change detection. In IGARSS 2018-2018 IEEE International Geoscience
and Remote Sensing Symposium (pp. 1962-1965). IEEE.

Benedetti, P., Ienco, D., Gaetano, R., Ose, K., Pensa, R. G., & Dupuy, S. (2018b). M 3
Fusion: A Deep Learning Architecture for Multiscale Multimodal Multitemporal Satellite
Data Fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 11, 4939-4949.

Bojinski, S., Verstraete, M., Peterson, T. C., Richter, C., Simmons, A., & Zemp, M.
(2014). The concept of essential climate variables in support of climate research, applica-
tions, and policy. Bulletin of the American Meteorological Society, 95, 1431-1443.

Bourgeau-Chavez, L., Kasischke, E., Brunzell, S., Mudd, J., & Tukman, M. (2002).
Mapping fire scars in global boreal forests using imaging radar data. International Journal
of Remote Sensing, 23, 4211-4234.

Bouvet, A., Mermoz, S., Ballere, M., Koleck, T., & Le Toan, T. (2018). Use of the SAR
shadowing effect for deforestation detection with Sentinel-1 time series. Remote Sensing,
10, 1250.



6.7. References 145

Bowman, D. M., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A.,
D’Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P. et al. (2009). Fire in the
Earth system. Science, 324, 481-484.

Brown, A. R., Petropoulos, G. P., & Ferentinos, K. P. (2018). Appraisal of the Sentinel-
1 & 2 use in a large-scale wildfire assessment: A case study from Portugal’s fires of 2017.
Applied geography, 100, 78-89.

Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martin, M. P., Vilar, L.,
Martinez, J., Martin, S., Ibarra, P. et al. (2010). Development of a framework for fire
risk assessment using remote sensing and geographic information system technologies.
Ecological Modelling, 221, 46-58.

Chuvieco, E., Lizundia-Loiola, J., Pettinari, M. L., Ramo, R., Padilla, M., Mouillot,
F., Laurent, P., Storm, T., Heil, A., & Plummer, S. (2018). Generation and analysis of
a new global burned area product based on MODIS 250m reflectance bands and thermal
anomalies. Earth Syst. Sci. Data Discuss, 512, 1-24.

Chuvieco, E., Mouillot, F., van der Werf, G. R., San Miguel, J., Tanasse, M., Koutsias,
N., Garcia, M., Yebra, M., Padilla, M., Gitas, 1. et al. (2019). Historical background and
current developments for mapping burned area from satellite Earth observation. Remote
Sensing of Environment, 225, 45-64.

Di Gregorio, A. (2005). Land Cover Classification System: Classification Concepts
and User manual. United Nations Food and Agriculture Organization.

Fernandez-Carrillo, A., Belenguer-Plomer, M., Chuvieco, E., & Tanase, M. (2018).
Effects of sample size on burned areas accuracy estimates in the Amazon Basin. In Earth
Resources and Environmental Remote Sensing/GIS Applications IX (p. 107901S). Inter-
national Society for Optics and Photonics volume 10790.

Flannigan, M. D., Amiro, B. D., Logan, K. A., Stocks, B., & Wotton, B. (2006). Forest
fires and climate change in the 21 st century. Mitigation and Adaptation Strategies for
Global Change, 11, 847-859.

Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M., & Gowman, L. M.
(2009). Implications of changing climate for global wildland fire. International Journal
of Wildland Fire, 18, 483-507.

Fraser, R., Li, Z., & Cihlar, J. (2000). Hotspot and NDVI differencing synergy
(HANDS): A new technique for burned area mapping over boreal forest. Remote Sensing
of Environment, 74, 362-376.

Freeman, A., & Durden, S. L. (1998). A three-component scattering model for polari-
metric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 36, 963-973.

French, N. H., Bourgeau-Chavez, L. L., Wang, Y., & Kasischke, E. S. (1999). Initial
observations of Radarsat imagery at fire-disturbed sites in interior Alaska. Remote Sensing
of Environment, 68, 89-94.

Gao, B.-C. (1996). NDWI—A normalized difference water index for remote sensing
of vegetation liquid water from space. Remote sensing of environment, 58, 257-266.



146 Chapter 6. CNN-based burned area mapping using radar and optical data

Garcia, M. L., & Caselles, V. (1991). Mapping burns and natural reforestation using
Thematic Mapper data. Geocarto International, 6, 31-37.

Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., & Justice, C. O. (2018). The
Collection 6 MODIS burned area mapping algorithm and product. Remote sensing of
environment, 217, 72-85.

Giglio, L., Loboda, T., Roy, D. P., Quayle, B., & Justice, C. O. (2009). An active-
fire based burned area mapping algorithm for the MODIS sensor. Remote Sensing of
Environment, 113, 408—420.

Giglio, L., Schroeder, W., & Justice, C. O. (2016). The collection 6 MODIS active fire
detection algorithm and fire products. Remote Sensing of Environment, 178, 31-41.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S., Tyukavina,
A., Thau, D., Stehman, S., Goetz, S., Loveland, T. et al. (2013). High-resolution global
maps of 21st-century forest cover change. Science, 342, 850-853.

Hoffmann, W. A., Schroeder, W., & Jackson, R. B. (2002). Positive feedbacks of fire,
climate, and vegetation and the conversion of tropical savanna. Geophysical Research
Letters, 29, 9-1.

Hollmann, R., Merchant, C. J., Saunders, R., Downy, C., Buchwitz, M., Cazenave, A.,
Chuvieco, E., Defourny, P., de Leeuw, G., Forsberg, R. et al. (2013). The ESA climate
change initiative: Satellite data records for essential climate variables. Bulletin of the
American Meteorological Society, 94, 1541-1552.

Hu, F,, Xia, G.-S., Hu, J., & Zhang, L. (2015). Transferring deep convolutional neural
networks for the scene classification of high-resolution remote sensing imagery. Remote
Sensing, 7, 14680-14707.

Huang, S., & Siegert, F. (2006). Backscatter change on fire scars in Siberian boreal
forests in ENVISAT ASAR wide-swath images. IEEE Geoscience and Remote Sensing
Letters, 3, 154—158.

Inglada, J., & Christophe, E. (2009). The Orfeo Toolbox remote sensing image pro-
cessing software. In Geoscience and Remote Sensing Symposium, 2009 IEEE Interna-
tional, IGARSS 2009 (pp. IV-733). IEEE volume 4.

Jin, Y., & Roy, D. P. (2005). Fire-induced albedo change and its radiative forcing at
the surface in northern Australia. Geophysical Research Letters, 32.

Kellenberger, B., Marcos, D., & Tuia, D. (2018). Detecting mammals in UAV images:
Best practices to address a substantially imbalanced dataset with deep learning. Remote
sensing of environment, 216, 139-153.

Key, C., & Benson, N. (2004). Ground measure of severity, the Composite Burn Index;
and Remote sensing of severity, the Normalized Burn Ratio. In G. T. R. RMRS-GTR-164
(Ed.), FIREMON: Fire Effects Monitoring and Inventory System chapter Landscape as-
sessment (LA): Sampling and analysis methods. (pp. 1-51). Ogden: USDA Forest Ser-
vice, Rocky Mountain Research Station.



6.7. References 147

Kloster, S., Mahowald, N., Randerson, J., & Lawrence, P. (2012). The impacts of
climate, land use, and demography on fires during the 21st century simulated by CLM-
CN. Biogeosciences, 9, 509-525.

Knorr, W., Jiang, L., & Arneth, A. (2016). Climate, CO 2 and human population
impacts on global wildfire emissions. Biogeosciences, 13, 267-282.

Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J., & Hayhoe, K. (2009).
Global pyrogeography: the current and future distribution of wildfire. PloS one, 4, €5102.

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing systems
(pp. 1097-1105).

Kurum, M. (2015). C-band SAR backscatter evaluation of 2008 Gallipoli forest fire.
IEEE Geoscience and Remote Sensing Letters, 12, 1091-1095.

Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning clas-
sification of land cover and crop types using remote sensing data. IEEE Geoscience and
Remote Sensing Letters, 14, T78-782.

Langenfelds, R., Francey, R., Pak, B., Steele, L., Lloyd, J., Trudinger, C., & Allison, C.
(2002). Interannual growth rate variations of atmospheric CO2 and its 613C, H2, CH4, and
CO between 1992 and 1999 linked to biomass burning. Global Biogeochemical Cycles,
16,21-1.

Langner, A., Miettinen, J., & Siegert, F. (2007). Land cover change 2002-2005 in
Borneo and the role of fire derived from MODIS imagery. Global Change Biology, 13,
2329-2340.

Lavorel, S., Flannigan, M. D., Lambin, E. F., & Scholes, M. C. (2007). Vulnerability of
land systems to fire: Interactions among humans, climate, the atmosphere, and ecosystems.
Mitigation and Adaptation Strategies for Global Change, 12, 33-53.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521, 436.

Liu, Z., Ballantyne, A. P., & Cooper, L. A. (2019). Biophysical feedback of global
forest fires on surface temperature. Nature communications, 10, 1-9.

Lizundia-Loiola, J., Otén, G., Ramo, R., & Chuvieco, E. (2020). A spatio-temporal
active-fire clustering approach for global burned area mapping at 250 m from MODIS
data. Remote Sensing of Environment, 236, 111493.

Loboda, T., O’neal, K., & Csiszar, I. (2007). Regionally adaptable dNBR-based algo-
rithm for burned area mapping from MODIS data. Remote Sensing of Environment, 109,
429-442.

Lu, B., He, Y., & Tong, A. (2016). Evaluation of spectral indices for estimating burn
severity in semiarid grasslands. International journal of wildland fire, 25, 147-157.

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in
remote sensing applications: A meta-analysis and review. ISPRS journal of photogram-
metry and remote sensing, 152, 166—177.



148 Chapter 6. CNN-based burned area mapping using radar and optical data

Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2016). Convolutional neu-
ral networks for large-scale remote-sensing image classification. IEEE Transactions on
Geoscience and Remote Sensing, 55, 645-657.

Mandanici, E., & Bitelli, G. (2016). Preliminary comparison of sentinel-2 and landsat
8 imagery for a combined use. Remote Sensing, 8, 1014.

Melchiorre, A., & Boschetti, L. (2018). Global analysis of burned area persistence
time with MODIS data. Remote Sensing, 10, 750.

Menges, C., Bartolo, R., Bell, D., & Hill, G. E. (2004). The effect of savanna fires
on SAR backscatter in northern Australia. International Journal of Remote Sensing, 25,
4857-4871.

Mouillot, F., Schultz, M. G., Yue, C., Cadule, P., Tansey, K., Ciais, P., & Chuvieco,
E. (2014). Ten years of global burned area products from spaceborne remote sensing—A
review: Analysis of user needs and recommendations for future developments. Interna-
tional Journal of Applied Earth Observation and Geoinformation, 26, 64-79.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference on machine learning

(ICML-10) (pp. 807-814).

Ottinger, M., Clauss, K., & Kuenzer, C. (2017). Large-scale Assessment of coastal
aquaculture ponds with sentinel-1 time series data. Remote Sensing, 9, 440.

Padilla, M., Olofsson, P., Stehman, S. V., Tansey, K., & Chuvieco, E. (2017). Stratifi-
cation and sample allocation for reference burned area data. Remote Sensing of Environ-
ment, 203, 240-255.

Padilla, M., Stehman, S. V., & Chuvieco, E. (2014). Validation of the 2008 MODIS-
MCDA45 global burned area product using stratified random sampling. Remote Sensing of
Environment, 144, 187-196.

Padilla, M., Stehman, S. V., Ramo, R., Corti, D., Hantson, S., Oliva, P., Alonso-Canas,
L., Bradley, A. V., Tansey, K., Mota, B. et al. (2015). Comparing the accuracies of remote
sensing global burned area products using stratified random sampling and estimation. Re-
mote Sensing of Environment, 160, 114-121.

Padilla, M., Wheeler, J., & Tansey, K. (2018). D4. 1.1 Product Validation Report
(PVR). In ESA CCI ECV Fire Disturbance. ESA Climate Change Initiative—Fire_cci.

Pausas, J. G., & Paula, S. (2012). Fuel shapes the fire—climate relationship: evidence
from Mediterranean ecosystems. Global Ecology and Biogeography, 21, 1074—1082.

Pinto, M. M., Libonati, R., Trigo, R. M., Trigo, L. F., & DaCamara, C. C. (2020). A
deep learning approach for mapping and dating burned areas using temporal sequences of
satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 160, 260-274.

Plummer, S., Lecomte, P., & Doherty, M. (2017). The ESA Climate Change Initia-
tive (CCI): A European contribution to the generation of the Global Climate Observing
System. Remote Sensing of Environment, 203, 2—8.



6.7. References 149

Poulter, B., Cadule, P., Cheiney, A., Ciais, P., Hodson, E., Peylin, P., Plummer, S.,
Spessa, A., Saatchi, S., Yue, C. et al. (2015). Sensitivity of global terrestrial carbon cycle
dynamics to variability in satellite-observed burned area. Global Biogeochemical Cycles,
29, 207-222.

Quegan, S., Le Toan, T., Yu, J. J., Ribbes, F., & Floury, N. (2000). Multitemporal ERS
SAR analysis applied to forest mapping. IEEE Transactions on Geoscience and Remote
Sensing, 38, 741-753.

Roteta, E., Bastarrika, A., Padilla, M., Storm, T., & Chuvieco, E. (2019). Development
of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan
Africa. Remote Sensing of Environment, 222, 1-17.

Rouse Jr, J., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation systems
in the Great Plains with ERTS. In NASA. Goddard Space Flight Center 3d ERTS-1 Symp
(pp- 309-317). NASA volume 1.

Roy, D. P., Boschetti, L., Justice, C. O., & Ju, J. (2008). The collection 5 MODIS
burned area product—Global evaluation by comparison with the MODIS active fire prod-
uct. Remote Sensing of Environment, 112, 3690-3707.

Saha, S., Bovolo, F., & Bruzzone, L. (2019). Unsupervised Deep Change Vector Anal-
ysis for Multiple-Change Detection in VHR Images. IEEE Transactions on Geoscience
and Remote Sensing, 57, 3677-3693.

Scarpa, G., Gargiulo, M., Mazza, A., & Gaetano, R. (2018). A CNN-based fusion
method for feature extraction from sentinel data. Remote Sensing, 10, 236.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
networks, 61, 85-117.

Schroeder, W., Oliva, P., Giglio, L., & Csiszar, I. A. (2014). The New VIIRS 375 m
active fire detection data product: Algorithm description and initial assessment. Remote
Sensing of Environment, 143, 85-96.

Sharma, R., Hara, K., & Tateishi, R. (2018). Developing Forest Cover Composites
through a Combination of Landsat-8 Optical and Sentinel-1 SAR Data for the Visualiza-
tion and Extraction of Forested Areas. Journal of Imaging, 4, 105.

Sitanggang, 1., Yaakob, R., Mustapha, N., & Ainuddin, A. (2013). Predictive models
for hotspots occurrence using decision tree algorithms and logistic regression. Journal of
applied sciences, 13, 252-261.

Strigl, D., Kofler, K., & Podlipnig, S. (2010). Performance and scalability of GPU-
based convolutional neural networks. In 2010 18th Euromicro Conference on Parallel,
Distributed and Network-based Processing (pp. 317-324). IEEE.

Stroppiana, D., Azar, R., Calo, F., Pepe, A., Imperatore, P., Boschetti, M., Silva, J.,
Brivio, P. A., & Lanari, R. (2015). Integration of optical and SAR data for burned area
mapping in Mediterranean Regions. Remote Sensing, 7, 1320-1345.



150 Chapter 6. CNN-based burned area mapping using radar and optical data

Tanase, M. A., & Belenguer-Plomer, M. A. (2018). 03. D3 Intermediate validation
results: SAR pre-processing and burned area detection, version 1.0. In ESA CCI ECV
Fire Disturbance. ESA Climate Change Initiative—Fire_cci.

Tanase, M. A., Belenguer-Plomer, M. A., Roteta, E., Bastarrika, A., Wheeler, J.,
Fernandez-Carrillo, A., Tansey, K., Wiedemann, W., Navratil, P., Lohberger, S. et al.
(2020). Burned Area Detection and Mapping: Intercomparison of Sentinel-1 and Sentinel-
2 Based Algorithms over Tropical Africa. Remote Sensing, 12, 334.

Tavares, P. A., Beltrdo, N. E. S., Guimaraes, U. S., & Teodoro, A. C. (2019). Integration
of sentinel-1 and sentinel-2 for classification and LULC mapping in the urban area of
Belém, eastern Brazilian Amazon. Sensors, 19, 1140.

Trigg, S., & Flasse, S. (2001). An evaluation of different bi-spectral spaces for discrim-
inating burned shrub-savannah. International Journal of Remote Sensing, 22, 2641-2647.

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring
vegetation. Remote sensing of Environment, 8, 127-150.

Van Der Werf, G. R., Randerson, J. T., Giglio, L., Van Leeuwen, T. T., Chen, Y.,
Rogers, B. M., Mu, M., Van Marle, M. J., Morton, D. C., Collatz, G. J. etal. (2017). Global
fire emissions estimates during 1997-2016. Earth System Science Data, 9, 697-720.

Van Tricht, K., Gobin, A., Gilliams, S., & Piccard, 1. (2018). Synergistic use of radar
Sentinel-1 and optical Sentinel-2 imagery for crop mapping: A case study for Belgium.
Remote Sensing, 10, 1642.

Verhegghen, A., Eva, H., Ceccherini, G., Achard, F., Gond, V., Gourlet-Fleury, S.,
& Cerutti, P. O. (2016). The potential of Sentinel satellites for burnt area mapping and
monitoring in the Congo Basin forests. Remote Sensing, 8, 986.

Ward, D., Kloster, S., Mahowald, N., Rogers, B., Randerson, J., & Hess, P. (2012). The
changing radiative forcing of fires: global model estimates for past, present and future.
Atmospheric Chemistry and Physics, 12, 10857-10886.

Wooster, M. J., Roberts, G., Perry, G., & Kaufman, Y. (2005). Retrieval of biomass
combustion rates and totals from fire radiative power observations: FRP derivation and
calibration relationships between biomass consumption and fire radiative energy release.
Journal of Geophysical Research: Atmospheres, 110.

Xu, X., Li, W., Ran, Q., Du, Q., Gao, L., & Zhang, B. (2017). Multisource remote
sensing data classification based on convolutional neural network. IEEE Transactions on
Geoscience and Remote Sensing, 56, 937-949.

Zhang, C., Pan, X., Li, H., Gardiner, A., Sargent, 1., Hare, J., & Atkinson, P. M.
(2018). A hybrid MLP-CNN classifier for very fine resolution remotely sensed image
classification. ISPRS Journal of Photogrammetry and Remote Sensing, 140, 133—-144.

Zhang, C., Sargent, 1., Pan, X., Li, H., Gardiner, A., Hare, J., & Atkinson, P. M.
(2019). Joint Deep Learning for land cover and land use classification. Remote sensing of
environment, 221, 173-187.



6.7. References 151

Zhong, L., Hu, L., & Zhou, H. (2019). Deep learning based multi-temporal crop
classification. Remote sensing of environment, 221, 430—443.

Zhong, Y., Fei, F., Liu, Y., Zhao, B., Jiao, H., & Zhang, L. (2017). SatCNN: satellite
image dataset classification using agile convolutional neural networks. Remote Sensing
Letters, 8, 136-145.

Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017).
Deep learning in remote sensing: A comprehensive review and list of resources. [EEE
Geoscience and Remote Sensing Magazine, 5, 8-36.






Chapter

Evaluation of backscatter coeflicient
temporal indices for burned area

mapping

his chapter evaluates several temporal indices based on temporal backscatter coeffi-
T cient to understand their suitability for burned area detection in future approaches.
The analysis was carried out using the random forests machine learning classifier, which
provides a rank for each independent variable used as input. Depending on land cover type,
soil moisture, and topographic conditions, remarkable differences were observed between
the temporal backscatter indices trends in areas affected by fires. Such trends conditioned
burned area mapping accuracy.

This chapter is based on the article:

Belenguer-Plomer, M.A., Chuvieco, E., and Tanase, M.A. (2019). Evaluation of backscat-
ter coefficient temporal indices for burned area mapping. In Active and Passive Microwave
Remote Sensing for Environmental Monitoring 111, Proc. SPIE 11154, 111540D.
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7.1 Introduction

Fire is considered an essential climate variable (ECV) by the Global Climate Observing
System (GCOS) since, at global scale, fire-related emission of aerosols and greenhouse
gases (GHGs) into the atmosphere may alter the global biochemical cycles and conse-
quently the climate (Andreae & Merlet, 2001; Bowman et al., 2009). Furthermore, at
regional and local scales, fire has a key role in ecosystems resilience since it may induce
soil fertility reduction, changes in water supply, soil erosion and biodiversity loss (La-
vorel et al., 2007; Van der Werf et al., 2010; Pausas & Paula, 2012). Nowadays, remote
sensing has become an essential source of fires-related information for climate modelling
(Poulter et al., 2015; Mouillot et al., 2014). However, most of the current global burned
area products are based on optical and thermal data, which are limited by meteorological
conditions (i.e., cloud cover). To overcome such limitations, the use of synthetic aperture
radar (SAR) data in fire monitoring is increasing since SAR sensors are independent of
clouds, smog, and solar illumination (French et al., 1999; Bourgeau-Chavez et al., 2002).

Vegetation combustion due to fire may result in a reduction of the scattering elements
able to reflect SAR microwaves, which may translate into reduced post-fire backscatter co-
efficient when compared to pre-fire records (Van Zyl, 1993; Antikidis et al., 1998). Nev-
ertheless, the reduction of the scattering elements may also increase ground surface scat-
tering as signal attenuation by vegetation is reduced (Tanase et al., 2010b). Thus, the in-
creased influence of soil moisture and surface roughness may result in increased post-fire
backscatter coefficients (Siegert & Hoffmann, 2000). Besides, land cover, radar polarisa-
tion, and observation geometry may also influence the backscatter coeflicient (Belenguer-
Plomer et al., 2019).

The launch of Sentinel-1 A and B C-band SAR sensors in 2014 and respectively in
2016 by the European Space Agency (ESA) allowed for the acquisition of satellite imagery
every three days when both ascending and descending satellite trajectories are considered.
The amount of SAR data from ESA’s Sentinel-1 mission has boosted the interest in SAR
based approaches for burned area detection and mapping (Belenguer-Plomer et al., 2019,
2018b,a; Engelbrecht et al., 2017; Lohberger et al., 2018; Verhegghen et al., 2016). Such
studies extracted changes related to fire activity using C-band backscatter coefficient tem-
poral indices. In the present study, a suitability analysis of such temporal indices derived
from Sentinel-1 data was carried out. The analysis considered different biomes and land
cover classes, soil moisture conditions, as well as the local topographic conditions. The
objective of this study was, therefore, the detailed evaluation of weaknesses and strengths
for different backscatter coefficient indices for burned area monitoring. The overarch-
ing aim was improving the exploitation of Sentinel-1 data for burned area detection and

mapping.

7.2 Study areas

Five Military Grid Reference System (MGRS) tiles (100 x 100 km each) distributed
worldwide were used in this work (Figure 7.1). Reference burned areas were extracted
for each tile using Landsat-8 and Sentinel-2 images using the same methods as in our pre-
vious studies (Belenguer-Plomer et al., 2019; Fernandez-Carrillo et al., 2018). The period
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for which the reference burned area was extracted together with the acquisition dates of
the Sentinel-1 images used in each tile was provided in Table 7.1. It should be noted that
the periods for reference burned area do not exactly match with the acquisition dates of
Sentinel-1 due to differences between satellites orbital pass and periods of overcast skies
that affected the optical imagery.
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Figure 7.1: Location of the study areas.

Table 7.1: Periods of reference burned area and acquisition time of Sentinel-1 images used.

MGRS tile Burned area period Sentinel-1 period

10UEC 20170705 - 20170822 20170626 - 20170825
20LQQ 20160704 - 20160922 20160703 - 20160925
29TNE 20171005 - 20171106 20170929 - 20171110
36NXP 20161230 - 20170115 20161209 - 20170126
5S0JML 20170307 - 20170510 20170304 - 20170515

7.3 Methods

7.3.1 Datasets

7.3.1.1 SAR data and pre-processing

Ground Range Detected (GRD) dual-polarised (vertical-vertical VV, and vertical-hori-
zontal VH polarisation) SAR images acquired by C-band Sentinel-1 A/B satellites in in-
terferometric wide (IW) swath mode, were used in this study. Such images were pro-
cessed employing the fully automatic processing chain S1Tiling. S1Tiling was developed
by Thierry Koleck at National Centre for Space Studies (CNES) and Centre d’Etudes Spa-
tiales de la BIOsphere (CESBIO) and is based on the open-source libraries available in the
Orfeo ToolBox (OTB) (Inglada & Christophe, 2009). S1Tiling was used in our previous
studies as it provides similar results when compared to well-established SAR processing
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commercial packages (Belenguer-Plomer et al., 2019, 2018b; Tanase & Belenguer-Plomer,
2018). S1Tiling processing may be grouped in three steps: (i) pre-processing, where the
images were calibrated to gamma nought; (ii) geocoding, where the orthorectification was
carried out; and (iii) multi-temporal filtering (Quegan et al., 2000). The Sentinel-1 data
were processed to 20 m, the nominal Sentinel-1 ground spatial resolution. For the analy-
sis, the images were aggregated to 40 m since this pixel spacing was found as having the
best trade-off between speckle reduction, computing requirements, and accuracy when
detecting burned area (Tanase & Belenguer-Plomer, 2018).

7.3.1.2 Land cover

Information of land cover was needed to understand the importance of the temporal back-
scatter coefficient indices when detecting burned area since the main scattering process
may vary with the land cover class. The most recent (i.e., 2015) global product of land
cover types, from ESA’s Land_Cover_cci project, was used. Since land cover data was
produced at 300 m pixel spacing, it was resized using a nearest-neighbour interpolation to
coincide with the processed SAR spacing (40 m). The land cover classes were simplified
in Crops, Grasslands, Shrubs, Forests, and Others as per our previous work (Belenguer-
Plomer et al., 2019).

7.3.1.3 Soil moisture

Soil moisture is an important factor affecting radar backscatter (Schoups et al., 1998).
In this study information of soil moisture was obtained from the global Soil Moisture
Active Passive (SMAP) Enhanced Level 3 Passive Soil Moisture Product, which is based
on an L-Band Radiometer. The radar indices importance when detecting burned area was
computed when a reduction, an increment or a no change in soil moisture between pre-
and post-fire dates respectively were observed in the SMAP product. Any variation lower
than 0.059 m3/m3, the error of the SMAP Enhanced Passive product when compared to
in situ measurements (Chen et al., 2017), was assumed as a no change.

7.3.1.4 Topography

Topographic slope affects burned area detection from C-band Sentinel-1 data and needs to
be accounted for (Belenguer-Plomer et al., 2019). In this study, the topographic conditions
were studied through the local slope and the slope orientation (i.e., aspect) with respect
to the SAR looking geometry. To assess the importance of the SAR temporal indices in
different topographical conditions, the slope and orientation were derived using the Shuttle
Radar Topography Mission (SRTM). Pixels were grouped in ten degrees classes of local
slope after taking into account the orientation, i.e., slopes oriented away and towards the
sensor. Notice that for local slopes below 10° the aspect information was not taken into
account since these pixels correspond to nearly flat areas.

7.3.2 SAR temporal indices

Eight backscatter coeflicient temporal radar indices (RI) were computed to evaluate their
importance when detecting burned area (Equation 7.1-7.8). RI; and Rl indices were
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used in previous approaches focused on fire severity estimation (Tanase et al., 2015); RI3
and RI, were log-ratios used in SAR based change detection (Bovolo & Bruzzone, 2005);
RIs5, Rlg, and RI7 (with RI; and RI3) were used in burned area detection using Sentinel-1
images (Belenguer-Plomer et al., 2019) and RIg was the log-ratio of the RI7.

RI =7"VVi1 AV Vit (7.1)
RIy =~"VH;1/7y°VH 4 (7.2)
RIy=log (1" VVie1//"VVii ) (7.3)
RIy=1og ('VHio1/7"V Hit) (7.4)
RI5 =7V Vie1 =7V Vi (7.5)
Rl =~V H;—1 =7V Hy1a (7.6)
RIz = (y*'VH1/7"VVie1) [ (3°V Hes1 /1°V Vi) (7.7)
Rls =log ((+*VHi-1/7"VVi1) / (1°VHi 1"V Vi) (7.8)

where 70 is the backscatter coefficient in linear scale of VV or VH polarisations, and ¢ — 1
and ¢t + 1 are pre-fire and respectively post-fire dates.

7.3.3 Importance prediction

RIs importance was analysed by using the random forests classifier (Breiman, 2001). The
importance of each index was computed by the random forests during the classification
between burned and unburned areas. The reference burned area obtained from the optical
sensors were used to label both classes. Such an approach was used recently in an increas-
ing number of studies to extract the importance of the independent variables used for the
classification process (Belgiu & Dragut, 2016; Nguyen et al., 2018; Hislop et al., 2019;
Zhang et al., 2019). Notice that for each group of land cover class, local slope and aspect,
and soil moisture variation class (i.e., reduction, increment, no-change) an individual ran-
dom forests model was constructed. The importance values recorded for each index were
converted to percentages (Equation 7.9) to carry out an inter-comparison between different
groups.

Impp 1, X 100
S5 1 Imppy,

where pImp is the percentage importance of a given radar index (RI) :.

plmppr; = (7.9)

7.4 Results and discussions

7.4.1 Indices importance as a function of land cover class

The importance of RlIs varied with the land cover class (Figure 7.2). Apart from the vari-
able vegetation structure by land cover class, these differences might also be related to
variations in the moisture content and topographic effects (see subsection 7.4.2 and subsec-
tion 7.4.3). The largest difference between RIs importance was observed for Grasslands,
where RlI5 and Rlg had the highest importance when distinguishing between burned and



158 Chapter 7. Evaluation of backscatter coefficient indices for burned area mapping

unburned pixels. This is an important finding as low burned area mapping accuracies were
observed over Grasslands when using Rls and RI7 (Belenguer-Plomer et al., 2019).

Indices based on VV polarisation tended to have higher importance when compared
to VH over Grasslands. This trend is unusual when comparing to previous studies where
C-band cross-polarised data (HV or VH) was found to provide more accurate results due to
its increased sensitivity to the volumetric scattering from vegetation (Tanase et al., 2010b;
Imperatore et al., 2017; Belenguer-Plomer et al., 2019). Therefore, future algorithms pur-
suing burned area detection and mapping over large areas must consider different indices
depending on the land cover type as opposed to using a standard set of indices regardless
of vegetation type (Belenguer-Plomer et al., 2019). Such a rationale is supported by other
studies (Belenguer-Plomer et al., 2018a) which suggest that VV polarisation may improve
burned area detection when changes in soil and vegetation moisture conditions have oc-
curred between the SAR observations (Bourgeau-Chavez et al., 2002). Since co-polarised
backscatter is more responsive to changes in soil surface properties when compared to the
cross-polarised backscatter (Freeman & Durden, 1998; Van Zyl et al., 2011) and biomass
reduction by fire may increase the effect of ground in scattering processes (penetration
of the microwave across burned vegetation increases) the co-polarised waves may pro-
vide the needed edge when detecting BA at least for some land cover types (Tanase et al.,
2010b). The log-ratio indices (RI3, Rl4, and Rlg) had similar or lower importance than
simple ratios, which have been used widely in fire monitoring using SAR data.

Crops Grasslands Shrubs Forests Others

0 0 0 0 0
RIL R[2 RI; R[,} Rli R[(, Rl7 I’{lK l{]I l{]2 RI; RI} RIg RI(V R[7 R[X RII Rll RIy l{]1 RIg l{](’ l{]7 I{Ig Rl] Rl2 RI; Rl1 RI RI() l{l7 l{]}g RlJ Rl: RI, Rl‘ RIg Rl(Y Rl7 Rl}g

Figure 7.2: Radar indices importance when detecting burned area by land cover classes.

7.4.2 Indices importance as a function of changes in soil moisture

Differences in temporal backscatter coefficient indices importance when detecting burned
area also depend on soil moisture variations between pre- and post-fire dates (Figure 7.3).
The influence of soil moisture was analysed under three different scenarios: increment,
reduction, and no-change of post-fire when compared to pre-fire levels. When soil mois-
ture increased, the VV polarisation tended to have higher importance for BA detection.
For Grasslands and Others land cover classes this trend was only observed for Rl5 and
RIg. Conversely, for reduced post-fire soil moisture levels, the VH channel tended to have
higher importance. Notice reduced post-fire soil moisture conditions were not observed
in our study areas for Grasslands and Others land classes.

Such differences between VV and VH-based Rls importance as a function of soil
moisture variations are in accordance with previous findings since the co-polarised waves
(e.g., VV) are more responsive to changes in surface properties (i.e., soil moisture) when
compared to the cross-polarised waves (Freeman & Durden, 1998; Yamaguchi et al., 2005;
Van Zyl et al., 2011). For the specific case of burned area, increased soil moisture levels
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after fire increase the VV channel variability, which explains its greater importance when
monitoring burned areas.

It should be noted that the pixel spacing of the SMAP product (9 km) used to extract
the soil moisture variations may affect the significance of this analysis. This may explain
the increased importance of VV-based RIs when compared to VH-based ones observed
for some cases under a no soil moisture change scenario.
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Figure 7.3: Radar indices importance when detecting burned area for three soil moisture variation
(post- to pre-fire) scenarios: increment, reduction, no-change. The importance is analysed sepa-
rately by land cover class. The upper row shows the no-change scenario. The middle row shows the
increment in soil moisture for post-fire dates. The bottom row shows a reduction in soil moisture
for post-fire dates.

7.4.3 Indices importance as a function of topography

The importance of each radar index by local slope and aspect (positive-towards the sensor
and negative-away from the sensor) is shown in Figure 7.4 for each land cover class. Notice
the increased number of slope categories for the Forests class. The importance of RI5 and
RIg, considerable over Grasslands, was reduced when the local slope increased, with the
smallest importance values being observed for slopes above 20°. This trend was observed
for both positive and negative aspects, particularly over Grasslands and Others land cover
classes.

VH polarisation-based indices had the largest importance when local slope was sig-
nificant (>30°) over negative aspects. This may be related to a reduced scattering from
ground in shadowed areas (Tanase et al., 2010a), which results in a reduced ground back-
scatter when compared to the positive aspects.
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Figure 7.4: Radar indices importance when detecting burned area by land cover classes, local
slope and aspect. Positive aspects denote slopes oriented towards the sensor. Negative aspects
denote slopes oriented away from the sensor.
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7.5 Conclusions

This work has quantified and analysed the importance of several Sentinel-1’s backscatter
coefficient (VV and VH polarisations) based temporal indices for burned area detection.
The study was carried out over five areas (one million hectares each) distributed world-
wide. The random forests classifier was used to predict indices importance during the
classification process. The results showed differences in RIs importance depending on the
land cover type. In particular, significant importances were observed over Grasslands for
two indices, RI5 and Rlg.

Soil moisture was a key element by improving the detection capability of different
radar indices. Rainfall after fire events resulted in an increased importance of the VV-
based indices, while reduced post-fire soil moisture resulted in an increased importance of
the VH-based indices. Topography also affected indices significance. Over shadowed
regions (negative aspect and slope >30°), the VH polarisation had higher importance
when detecting the burned area as a consequence of a reduced backscattering process
from ground.

Future burned area mapping research based on C-band Sentinel-1 backscatter coef-
ficient shall consider the differentiated potential of VV and VH based indices depending
on land cover, changes in soil moisture and topographic conditions to improve mapping
accuracies.
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Chapter

Conclusions

n this last chapter, the conclusions derived from all research activities carried out within

the doctoral thesis are resumed. The main findings, as well as the observed limitations,

are described together with potential lines for future research that may help improving

global mapping of burned areas from radar datasets and the combination of radar and
optical datasets.

165



166 Chapter 8. Conclusions

This doctoral thesis addressed burned area mapping from medium spatial resolution radar
time series as well as joint radar-optical datasets over fire-prone biomes. As burned area
mapping algorithms from radar time series are currently less mature, when compared to
optical-based algorithms, most efforts have focused on improving the radar-based mapping
methods. The research has taken advantage of the Sentinel-1 mission open data policy as
well as its global availability at high spatial and temporal resolution.

The developed radar-based algorithms relied on the C-band backscatter coeflicient
due to the much-reduced computing demands when compared to using the interferomet-
ric coherence. The Sentinel-1 data was aggregated to 40 m since such a spacing allow
reducing computing time considerably with marginal accuracy differences being observed
when compared to using the nominal Sentinel-1 spatial resolution (i.e., 20 m). A signifi-
cant achievement of the developed radar-based mapping algorithms was their potential to
work without a priori information (except for ancillary thermal-based hotspots and land
cover maps) and pre-determined thresholds. The algorithm independence a priori data and
its self-adapting to local conditions ability allow mapping burned areas in any ecosystem
from regional to global scales. Such capabilities are determinant as previous radar-based
approaches were limited to regional or local scales.

When analysing the results from the first mapping algorithm developed based on de-
tecting anomalous changes of the backscatter coefficient through the Reed-Xiaoli detector,
the mapping accuracy was positively related with the presence of thermal anomalies de-
rived from Earth observation products (i.e., hotspots). Despite such dependency, the radar-
based mapping accuracy was higher when compared to that of available products such as
MCD64A1, the most widely used global burned area product. In particular, the increased
accuracy of the radar-based algorithm was related to the reduction of omission errors.
Such improvement suggests that Sentinel-1 data may become a determinant information-
source over areas with persistent cloud cover were optical-based algorithm more limited.
Such improvements may allow for reducing burned area mapping uncertainty by estimat-
ing the near-real extension at global levels when compared to current products based on
coarser spatial resolution optical sensors.

Apart from hotspots dependency, radar-based mapping was limited over areas with
pronounced topography with slopes oriented away from the sensor being affected by omis-
sion errors. However, such omission errors were reduced by combining images from as-
cending and descending Sentinel-1 satellite passes. Omission errors were also related
to low fire severity levels, i.e., reduced biomass consumption and consequently low pre-
to post-fire backscatter coefficient variations. Commission errors were linked to fire-
unrelated changes which modify the scattering process such as variation in soil mois-
ture. Likewise, the land cover also influenced the mapping errors. In particular, higher
accuracies were found over Forests, while lower mapping accuracies were observed over
Grasslands. Such differences were explained by the lower sensitivity of C-band data when
monitoring some vegetation types.

An additional limiting factor for the radar-based algorithm was the temporal decor-
relation, linked to variations in soil moisture or fire severity. Temporal decorrelation may
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limit the accuracy of burned area mapping as more extended radar temporal series are
needed to account for the decorrelation between fire events and backscatter changes. Nev-
ertheless, for most burned pixels affected by temporal decorrelation, burned area detection
and mapping was possible during the first month after the fire, as opposed to detection on
the first post-fire acquisition. Over burned areas affected by temporal decorrelation, the
backscatter coefficient increased or decreased when compared to pre- and post-fire values.
Reduced soil moisture and delayed vegetation death were the main influencing factors be-
hind backscatter coefficient decrease. Conversely, increased post-fire soil moisture was
behind post-fire backscatter coefficient increases. Notice that these findings were validated
over Mediterranean ecosystems where more detailed (1 km spacing) soil moisture prod-
ucts were available. However, temporal decorrelation was observed in many ecosystems.
Thus, further research is needed to confirm such findings over larger areas and different
biomes.

On the other hand, deep learning methods, and concretely CNN, were also used to
for burned area mapping from radar as well as joint radar-optical datasets. Despite its
recent spawn in remote sensing-based applications, to date, few studies have addressed
fire events monitoring. In this thesis, a detailed analysis was carried out to ascertain the
optimum CNN configuration for burned area mapping. The results suggested that two
hidden layers provided the best trade-off between accuracy and computing time while
the optimum image-dimension for feature extraction, data normalisation, and softmax
thresholding, depended on the input data (radar, optical, radar-optical) and land cover
class. The CNN-based burned area mapping accuracy was similar, regardless of the input
datasets (i.e., radar or optical), with that observed in previous studies that used Sentinel-1
or Sentinel-2 imagery. However, CNNs-based mapping was considerably more versatile
and required less developing-time when compared to ad-hoc algorithms developed over
relatively small areas. Such a versatility, as well as the radar-optical data integration, al-
lowed exploiting Sentinel-1 and Sentinel-2 synergies by improving slightly the highest
mapping accuracy achieved when considering single sensors (i.e., radar or optical), and
also providing wall-to-wall mapping as gaps from clouds, a characteristic of optical-based
products, were eliminated.

The estimation of real mapping accuracy may have been obscured by the absence of
high quality burned area perimeters. Mapping algorithms developed in this thesis were
validated using independent datasets, mainly Landsat-8; however, the medium spatial res-
olution of such imagery and the mismatch between detection and reference periods may
artificially increase the observed mapping errors. Ground truthing large areas affected
by fire with field campaigns distributed worldwide is non-viable due to high cost. How-
ever, the availability of data acquired by high-resolution optical sensors such as the Planet
constellation may allow obtaining improved datasets for validation in the future. Future
research shall also focus on reducing the limitations highlighted in this thesis. Such efforts
are essential particularly for the radar-based mapping as such datasets are an essential and
complementary (to optical) source of information.

Radar indices analysis revealed that soil moisture is an essential factor that needs to
be considered if higher accuracy mapping products are needed from Sentinel-1 backscat-
ter coefficient. Soil moisture may change the importance of VV and VH polarisations
when distinguishing between burned and unburned areas. In particular, the VV polari-
sation enhances burned area discrimination after rainfall events as well as at later dates
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when soil humidity decreases. As mentioned above, water content was also found as a key
driver affecting backscatter coefficient temporal decorrelation. Hence, future algorithms
based on Sentinel-1 datasets shall take into account reliable information on soil moisture
as ancillary global products become available at higher spatial resolutions when compared
to current global products (e.g., SMAP at 9 km).

Likewise, the dual-polarised (i.e., VV and VH) C-band frequency, despite being an
asset when compared to previous spaceborne SAR sensors, may have limited the potential
of mapping burned areas using radar imagery. Full-polarised datasets (i.e., VV, VH, HH
and HV) acquired by future SAR missions such as NISAR which will provide datasets
at S- and L-band (launch in 2021) as well as P-band Biomass mission (launch in 2022),
may provide additional information potentially improving current burned area mapping
algorithms. Thus, the findings of this doctoral thesis provide a useful research starting
point into global application of medium spatial resolution sensors for operational burned
area mapping.
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