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Parathyroid hormone- (PTH-) related protein (PTHrP) and its receptor, the PTH1 receptor (PTH1R), are widely expressed
in the kidney, where PTHrP exerts a modulatory action on renal function. PTHrP is known to be upregulated in several
experimental nephropathies such as acute renal failure (ARF), obstructive nephropathy (ON) as well as diabetic nephropathy
(DN). In this paper, we will discuss the functional consequences of chronic PTHrP overexpression in the damaged kidney
using a transgenic mouse strain overexpressing PTHrP in the renal proximal tubule. In both ARF and ON, PTHrP displays
proinflammatory and profibrogenic actions including the induction of epithelia to mesenquima transition. Moreover, PTHrP
participates in the mechanisms of renal hypertrophy as well as proteinuria in experimental DN. Angiotensin II (Ang II), a critical
factor in the progression of renal injury, appears to be, at least in part, responsible for endogenous PTHrP upregulation in these
pathophysiological settings. These findings provide novel insights into the well-known protective effects of Ang II antagonists in
renal diseases, paving the way for new therapeutic approaches.

1. Introduction

Parathyroid hormone- (PTH-)related protein (PTHrP) was
discovered at the end of the 1980s as the factor responsible for
humoral hypercalcemia of malignancy [1]. However, while
PTH is a well-characterized endocrine regulator of mineral
homeostasis, PTHrP is widely expressed in nonmalignant
fetal and adult tissues [2]. Despite the widespread production
of PTHrP in normal tissues, its circulating concentration
in healthy subjects is below the detectable limit in the
majority of current assays [3]. Thus, in contrast to the
situation of humoral hypercalcemia of malignancy in which
PTHrP plays the role of a classic hormone, this protein
exerts paracrine, autocrine, and/or intracrine actions in
normal tissues. PTHrP is a key regulator of placental calcium

transport in the foetus, and it appears to be a physiological
modulator of smooth muscle tone. Current concepts indicate
that PTHrP is a developmental and/or growth-regulating
factor, much more similar to other known cytokines and
growth factors than to PTH [1, 2].

In the adult kidney, both parathyroid hormone-(PTH-)
related protein (PTHrP) and the PTH1 receptor (PTH1R)
are abundant throughout the renal parenchyma, including
the intrarenal vasculature [4–6]. In the kidney, PTHrP
appears to modulate renal plasma flow and glomerular
filtration rate, and induces proliferative effects on both
glomerular mesangial and tubuloepithelial cells [7–14].

Pioneer studies from Soifer et al. [11] at the beginning
of the 1990’s suggested the implication of PTHrP in the
mechanisms of injury and/or repair of the tubular epithelium
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after acute renal failure (ARF). Proliferation of injured tubule
cells appears to be important for timely tubular recovery after
renal injury, and for subsequent functional recovery of the
damaged kidney. Several growth factors and cytokines, acting
in an autocrine and paracrine manner, appear to participate
in the repair process of the tubular epithelium in this setting
[15–19]. The mitogenic features of PTHrP and its early over-
expression after renal injury in experimental models of ARF
induced by either ischemia or nephrotoxins initially sug-
gested that PTHrP could participate in the regenerative pro-
cess after ARF [11, 13]. The recent development of a trans-
genic mouse model characterized by PTHrP overexpression
in the renal proximal tubule made it possible to explore the
functional consequences of chronic PTHrP overexpression in
both glomerular and tubular experimental models of renal
damage. This novel approach has provided valuable data
which have helped to disclose the true roles of PTHrP in
the damaged kidney. The following paragraphs describe the
results of over a decade of intense investigation on this issue.

2. The PTHrP-Overexpressing Mice

A transgenic mouse strain characterized by PTHrP overex-
pression in the renal proximal tubule was developed at Yale
University a few years ago [15]. The renal specificity of the
transgene was conferred by the γ-glutamyl transpeptidase-
l (GGT-1) promoter, mainly expressed in the renal prox-
imal tubule. PTHrP-overexpressing mice were generated
by breeding two types of transgenic mice: one containing
a GGT-1 promoter fragment upstream of a tetracycline
transactivator fusion protein, which functions as a strong
transcription activator, and the other with a PTHrP cDNA
placed under the control of a tetracycline operator con-
struct (Figure 1). The tetracycline-controlled transactivator
strategy, which creates a reversible switch “on/off” for
gene expression, ensures the temporal control of PTHrP
gene activity. Transgene-bearing founders were continuously
outbred to normal CD-1 mice to generate hemizygotes.
Transgenic founders were identified by PCR analysis of tail
DNA using specific primers [15]. Overexpression of PTHrP,
in the renal proximal tubule, did not alter the normal
level of expression of endogenous PTHrP. Renal PTHrP
protein levels in PTHrP-overexpressing animals were 3-4
times over those in their control littermates, as confirmed
by Western blot; but its circulating levels were undetectable
(<0.2 pM) in these animals [15]. The renal protein levels
of the PTH1R, analyzed by Western blot, were similar to
those in control mice, indicating that this receptor expression
is not influenced by PTHrP upregulation in these mice
[15]. Analysis of kidney size and morphology, and serum
creatinine levels revealed no significant differences between
PTHrP-overexpressing mice and their control littermates,
indicating a normal growth and basal function of the mouse
kidney in the former mice [15]. The functional consequences
of chronic PTHrP overexpression have been extensively
studied in recent years using this transgenic mouse model
and experimental nephropathies with predominant affection
at tubular and glomerular level.
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Figure 1: Schematic representation of the different transgenes
used to generate the PTHrP-overexperssing mice. Construct A,
containing sequences for the γ-glutamyl transpeptidase-I (GGT-
I) promoter, cDNA sequences for the Tet transactivator protein
(tTA), and the SV-40 T antigen 3′ UTR, was used to generate
GGT-tTA transgenic mice, resulting in specific expression of the
tTA protein in the renal proximal tubule cells. Construct B,
containing sequences for a hybrid regulatory element composed of
a heptamerized tetracycline operator (TetoX7) fused to a minimal
human cytomegalovirus promoter element, the human growth
hormone (hGH) 3′ UTR, and hPTHrP (1–141) cDNA sequences,
was used to generate Teto-PTHrP transgenic mice. Hemizygote
mice bearing the construct A were bred with construct B-bearing
hemizygote mice to induce PTHrP overexpression in renal proximal
tubule cells.

2.1. PTHrP in Renal Inflammation. Tubulointerstitial
inflammation is a key event in a variety of nephropathies.
Early after renal injury, damaged tubuloepithelial cells begin
to overexpress proinflammatory cytokines and chemokines,
which promote migration of monocytes/macrophages and
T-lymphocytes to the renal interstitium [20, 21]. Both
infiltrating leukocytes and damaged tubuloepithelial cells
activate and induce proliferation of resident fibroblasts
in the tubulointerstitial compartment. A severe and
prolonged injury will determine a sustained activation of
proinflammatory pathways, associated with overexpression
of profibrogenic cytokines by tubulointerstitial cells leading
to fibrogenesis and renal function loss [22].

Early studies suggested that PTHrP might act as an
important mediator of proinflammatory cytokines, namely,
tumour necrosis factor and interleukin-6, in multiorgan
inflammation and rheumatoid arthritis [23]. More recent
studies have shown that PTHrP activates nuclear factor
(NF)-κB and the expression of NF-κB-dependent cytokines
and chemokines [e.g., IL-6 and monocyte chemoattractant
protein-1 (MCP-1) in different cell types [24, 25]. PTHrP
and MCP-1 were found to colocalize in smooth muscle cells
in human atherosclerotic plaques [25–27].
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Figure 2: Schematic representation of the different actions whereby PTHrP might promote inflammation and fibrogenesis in the injured
kidney.

Moreover, in mice with unilateral ureteral obstruction
(UUO), a well-characterized model of renal inflammation
we recently showed that PTHrP was upregulated in the
obstructed kidney, even in PTHrP-overexpressing mice [28].
In contrast to previous observations in ischemic or nephro-
toxic renal injury [8, 11, 13], PTH1R was not downregulated
after UUO in mice [28]. Interestingly, upregulation of
both PTHrP and PTH1R was also recently observed in the
kidney of diabetic mice [29]. Furthermore, our recent in
vitro findings indicate that PTHrP augments the produc-
tion of several proinflammatory factors in tubuloepithelial
cell and promotes monocyte/macrophage migration [28].
Extracellular signal-regulated kinase-(ERK-) mediated NF-
κB activation appears to be an important mechanism
whereby PTHrP triggers renal inflammation [28]. Therefore,
PTHrP might be envisioned as a new inflammation marker
and a potential therapeutic target in the obstructed kidney.
Finally, since sustained renal inflammation is closely related
to fibrogenesis, these data point to PTHrP as a likely
proinflammatory and profibrogenic cytokine in the damaged
kidney.

2.2. PTHrP in Renal Cell Apoptosis. Apoptosis is considered
to be an important component of the acute response of

the tubular epithelium to injury [30, 31]. Our data, using
PTHrP-overexpressing mice with folic acid-induced ARF,
suggest that this PTHrP action might have detrimental
consequences in the injured kidney. These mice showed
a significant delay in renal function recovery and higher
focal areas of tubulointerstitial fibrosis than normal mice,
associated with a decrease in apoptotic tubulointerstitial cells
[32]. The rationale for this association might come from the
fact that apoptosis of interstitial fibroblasts appears to be a
mechanism to prevent fibrogenesis [16–22].

2.3. PTHrP in Diabetic Nephropathy. Recently, we hypothe-
sized that PTHrP involvement in the mechanisms of renal
injury might not be limited to conditions with predominant
damage of the renal tubulointerstitium, and might be
extended to glomerular diseases, such as DN. Thus, using an
experimental model of DN induced by streptozotocin (STZ)
[29], we studied the possible changes in the PTHrP/PTH1R
system associated with the outcome of this nephropathy,
characterized by an initial phase of renal hypertrophy at both
tubular and glomerular levels, followed by an increase in
urinary albumin excretion (UAE) (proteinuria) [33, 34]. DN
was induced in Swiss-CD1 (CD1) mice as well as in PTHrP-
overexpressing mice. In the diabetic CD-1 mice, a significant
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increase in the expression of both PTHrP and PTH1R was
observed, at both glomerular and tubular levels, associated
with the development of an increase in the UAE [29].
On the other hand, diabetic PTHrP-overexpressing mice,
in comparison to their control littermates, have increased
renal hypertrophy, a significant higher UAE and lower total
plasma protein levels. A significant association among the
renal expression of PTHrP, PTH1R, and UAE was found to
occur in the diabetic mice. Furthermore, there was a 6-fold
increase in the risk of developing proteinuria in those mice
with the higher PTHrP and PTH1R levels, according to the
logistic regression analysis [29]. It is interesting to mention
that, albeit the STZ model has limitations for assessing long-
term histomorphological changes in the diabetic kidney [33],
the aforementioned findings might have pathophysiological
implications since the amount of proteinuria is a reliable
predictor of diabetic nephropathy [34].

More recently, the putative role of PTHrP in the
hypertrophy of the diabetic kidney was explored. It is well
established that high glucose (HG) leading to renal cell
hypertrophy appears to involve cell entry into the cell cycle
and subsequent arrest at the G1/S interphase, followed
by an increase in cell protein synthesis. Recent studies
have shown that HG-induced glomerular cell hypertrophy
(affecting both mesangial cells and podocytes) involves an
early activation of the renin-angiotensin system, followed by
an induction of TGF-β1, which in turn activates a cell cycle
regulatory protein, the cycline-dependent kinase inhibitor
(CDKI) p27Kip1 [35–37]. In mouse podocytes grown in
HG condition, Romero et al. found that Ang II induces
PTHrP upregulation, which in turn triggers both TGF-β1

and p27Kip1 overexpression, and thereby promotes podocyte
hypertrophy [38]. Interestingly, the latter factors were found
to be constitutively upregulated in nondiabetic PTHrP-
overexpressing mice [38].

Collectively, these data indicate that the renal PTHrP/
PTH1R system is upregulated in STZ-induced diabetic mice,
where it appears to be involved in renal hypertrophy and
adversely affects the outcome of DN. Furthermore, current
findings also suggest that PTHrP can participate in the
hypertrophy mechanism(s) targeted by HG in podocytes.

2.4. PTHrP in Renal Fibrosis. Renal fibrosis is recognized as
the final common stage of main renal diseases, capable of
progressing to chronic renal failure. Interstitial fibroblasts
are the main cell type responsible for fibrogenesis, a pro-
cess in which these cells proliferate and become activated
myofibroblasts [39]. Fibrosis of the kidney is known to be
induced by both tubuloepithelial and infiltrating cells, as
well as secretion of matrix compounds by both activated
fibroblasts and tubular cells. In fact, an increased matrix
synthesis and deposition, and loss of tubular structural
integrity, are paramount events at later stages of fibrogenesis
[40]. Previous studies indicate that the higher number
of infiltrating macrophages was associated with increased
fibroblast proliferation in the renal interstitium of folic
acid-injured kidneys from PTHrP-overexpressing mice [32].
In these mice, an increased immunostaining for α-smooth

muscle actin (SMA), a marker of activated fibroblasts or
myofibroblasts [41], was also observed in the renal inter-
stitium after folic acid nephrotoxicity [32]. Consistent with
the latter in vivo findings, PTHrP [1–35, 42] was found
to stimulate α-SMA expression in renal fibroblasts in vitro
[32]. In addition, a higher immunostaining for both types
I and IV collagens was observed in the renal interstitium
of the obstructed kidneys from PTHrP-overexpressing mice,
than in their normal littermates [43]. In agreement with
these in vivo findings, PTHrP [1–36] was found to stimulate
the expression of type-1 procollagen and fibronectin in
tubuloepithelial cells and renal fibroblasts in vitro. At least
part of these effects was abolished by a PTH1R antagonist
[32].

Tubuloepithelial cells might also contribute to the devel-
opment of renal fibrosis by directly generating myofibrob-
lasts through a process known as epithelial-mesenchymal
transition (EMT) [43, 44]. EMT is a multiple step process
that requires the integration of several extrinsic and intrinsic
pathways including loss of epithelia polarity and rearrange-
ment of the F-actin cytoskeleton, associated with upregula-
tion of genes used as EMT markers [45]. The latter includes,
in addition to α-SMA which increases cell contractility and
motility, extracellular matrix proteins such as fibronectin and
several types of collagens, metalloproteases, and integrin-
linked kinase. In addition, a decrease in the expression
of proteins that keep basolateral polarity and intracellular
junctions, including cytokeratin and the adherent junction
proteins E-cadherin and β-catenin, takes place in the renal
tubuloepithelium during EMT [41, 45–49].

Recently, Ardura et al. [39, 43] expanded these studies
and showed that PTHrP is capable of inducing a variety
of phenotypic changes related to EMT in tubuloepithelial
cells. Moreover, PTHrP can upregulate both TGF-β1 and
vascular endothelial growth factor (VEGF) expression in
these cells. Also, blockade of these growth factors by different
manoeuvres was found to diminish both EMT changes in
cultured renal epithelial cells. Of note in this regard, a VEGF
antibody also decreased the renal fibrosis in the obstructed
mouse kidney [43]. Hence, both VEGF and TGF-β1 are likely
to act as downstream mediators of PTHrP deleterious actions
in the damaged kidney. Interestingly, a similar interaction
between the two latter factors was recently observed in
the setting of PTHrP-induced podocyte hypertrophy. Recent
evidences strongly suggest that PTHrP, TGF-β, VEGF, as
well as activation of the epidermal growth factor receptor
(EGFR), might all act in concert through activation of ERK
to induce EMT in renal tubuloepithelial cells [39].

EMT-related changes have been found to occur in
the mouse obstructed kidney associated with constitutive
PTHrP overexpression [39]. Two important EMT mediators,
namely, TGF-β1 and p-EGFR proteins were upregulated in
the obstructed kidney of these transgenic mice, suggesting
that PTHrP might also interact with the aforementioned
factors to modulate EMT in vivo [39].

Collectively, all the available data demonstrate a major
role for PTHrP in renal fibrogenesis, due to its capacity to
induce the expression of extracellular matrix proteins as well
as by modulating EMT in renal tubuloepithelial cells.
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3. Interaction between PTHrP and Angiotensin
II in the Damaged Kidney

The renin-angiotensin system is well known for playing an
important pathogenic role in the mechanisms of renal injury
[50, 51]. Local activation of components of this system,
including Ang II, in the kidney has shown to occur early in
various experimental models of ARF, for example, folic acid-
induced nephrotoxicity and ischemia/reperfusion [13, 52–
54]. Moreover, Ang II antagonists exert beneficial effects on
renal function in these models [52, 55, 56].

Recent data strongly suggest that PTHrP might be
involved in the mechanisms related to Ang II-induced renal
injury. Exogenously administered Ang II, via its type 1 (AT1)
receptor, increases PTHrP expression in glomerular and
tubular cells as well as in vascular smooth muscle cells both
in vivo and in vitro [57–59]. Interestingly, a significant corre-
lation between PTHrP overexpression and tubular damage
and fibrosis was observed in the rat kidney after systemic
Ang II infusion [57]. Furthermore, in nephrotoxic ARF,
the improvement of renal function by Ang II antagonists
was associated with inhibition of PTHrP overexpression
[52]. These aggregated data suggest that Ang II is a likely
candidate responsible for PTHrP overexpression, and this
might contribute to the deleterious effects of Ang II in the
damaged kidney. These findings could provide novel insights
into the well-known protective effects of Ang II antagonists
in renal diseases, possibly leading the way to new therapeutic
approaches.

4. Conclusion

The upregulation of the renal PTHrP system, which occurs
at least in part through Ang II, represents a common event in
several experimental nephropathies, namely, ARF and DN.
In the former condition, PTHrP appears to contribute to the
progression of renal damage by increasing tubulointerstitial
cell survival, inflammation, and fibrogenesis in part through
promoting EMT. In DN, PTHrP can promote renal hypertro-
phy and proteinuria (Figure 2). Collectively, both in vitro and
in vivo findings in transgenic PTHrP-overexpressing mice
strongly support the role of PTHrP as a novel pathogenic
factor in kidney disease, and also provide novel insights
into the protective effects of Ang II antagonists in various
nephropathies.
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