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Abstract: The development of novel approaches to prevent bacterial infection is essential for en-
hancing everyday life. Carbon nanomaterials display exceptional optical, thermal, and mechanical
properties combined with antibacterial ones, which make them suitable for diverse fields, including
biomedical and food applications. Nonetheless, their practical applications as antimicrobial agents
have not been fully explored yet, owing to their relatively poor dispersibility, expensiveness, and
scalability changes. To solve these issues, they can be integrated within polymeric matrices, which
also exhibit antimicrobial activity in some cases. This review describes the state of the art in the
antibacterial applications of polymeric nanocomposites reinforced with 0D fullerenes, 1D carbon
nanotubes (CNTs), and 2D graphene (G) and its derivatives such as graphene oxide (GO) and reduced
graphene oxide (rGO). Given that a large number of such nanocomposites are available, only the most
illustrative examples are described, and their mechanisms of antimicrobial activity are discussed.
Finally, some applications of these antimicrobial polymeric nanocomposites are reviewed.

Keywords: antibacterial activity; polymer nanocomposites; carbon nanomaterials; fullerenes; graphene;
carbon nanotubes; synergic effects

1. Introduction

Human beings are frequently infected by numerous microorganisms such as bacteria,
fungi, viruses, algae, protozoa, and amoebas. Bacterial spread on materials has turned out
to be a crucial matter in many fields, including therapeutic instruments, healthcare prod-
ucts, clinics, food storage, food packaging, dental equipment, and so forth [1]. To address
this matter, different types of plastic materials are habitually sterilized. Nonetheless, mi-
crobes can contaminate these polymers when exposed to the atmosphere. While mortality
from infections decreased considerably over the last decade owing to the commercializa-
tion of antibiotics, handling bacteriological contamination has lately become extremely
difficult, given that many microbes have developed resiliency to antibiotics. For example,
some of the Gram-positive (e.g., Staphylococcus aureus) and Gram-negative (Escherichia coli,
Pseudomonas aeruginosa) bacteria are frequent medicine-resistant pathogens and constitute
the main cause of hospital-acquired infections. A growing list of infections, i.e., pneumonia,
tuberculosis, and gonorrhea, are becoming more difficult to treat, whereas antibiotics
are getting less effective [2]. More than 25,000 patients from the EU die every year from
hospital-acquired bacterial infections, mostly due to Gram-negative pathogens [3]. The
costs caused by drug-resistant infections amount to more than 1.5 billion euros yearly,
owing to the rise in health-related expenses. The circumstance is extremely severe, since an-
timicrobials have turned out to be a key tool for modern medicine and surgical operations.
Therefore, there is an imperative necessity for developing novel antimicrobial materials
that can inhibit bacterial proliferation [4].

One key mechanism for bacteria developing resistance is regular exposure to antibi-
otics. In this regard, nanomaterials with a size range of ≤100 nm in at least one dimension
can encapsulate antibiotics. Nanomaterials can restore antibiotic efficacy because of their
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nanoscale functionalities. As carriers and delivery agents, they can reach target sites inside
a bacterium by crossing the cell membrane, causing the leakage of the cellular compo-
nents, and damaging its metabolism [5]. The smaller size of nanomaterials compared to
their bulk counterparts modifies their physicochemical properties, leading to enhanced
effectivity. The nanomaterial size can alter pharmacokinetics, specifically translocation,
distribution, absorption, and elimination of the antibiotic [6]. The linkage of antibiotics
with functional nanomaterials is critical, since their surface charge and their densities
condition the effectiveness of bacterial killing.

Recent work has investigated the use of different carbon nanomaterials as means
of delivering antibiotics to hinder the resistant strain of E. coli [7]. Attachment of an
antibiotic, tetracycline, to the nanomaterials was needed for the restriction of bacterial
growth, demonstrating that the nanomaterials were carrying the antibiotic into the cells and
destabilizing the efflux pump. The efficiency of carbon nanomaterials as antibiotic-delivery
vehicles was found to be shape-dependent. Those with a needle-like shape showed better
activity. Nanomaterials can successfully extend the life of current antibiotics, which makes
them a key tool for supporting struggling antibiotic resistance through an efflux pump
mechanism [7].

Some polymers have the capability to prevent the spread of microbes, which are named
antimicrobial agents. They hinder cell development and induce cell apoptosis, and they
can be classified into two groups according to their means of action [8]: (1) contact-active
polymers, which use hydrophobic interactions, electrostatic forces, and the chelate effect;
and (2) non-contact-active polymers, which release antibacterial agents, thus inducing cell
death via linking or entering the cell wall. Polymers with intrinsic antimicrobial action
include polypeptides such as poly-L-lysine (PLL) and poly-L-glutamic acid (PGA); polysac-
charides such as cellulose (CL), chitosan (CS), and dextran (DEX); polyguanidines; and
conductive polymers such as polypyrrole. Further, some polymers are modified in order to
include antibacterial agents. Pendant groups frequently anchored to the polymer chains
are NR4

+ and OH−. The advantage of this approach is that the hydrophobicity, molecular
mass, and charge may be tailored for specific applications. Additional information can be
found in specific literature on this subject [9,10].

To date, many antimicrobial agents have been used as nanofillers in polymeric
nanocomposites such as metallic and metal-oxide nanoparticles [11], as well as carbon
nanostructures [12]. In particular, carbon nanostructures have gained a lot of interest
owing to their exceptional properties and higher safety. Various mechanisms underly-
ing the antibacterial activity of these nanomaterials have been reported [13], including
physical/mechanical impairment, photocatalytic effect, oxidative stress, lipid extraction,
isolation by wrapping, and the synergistic effect when they are combined with other
antibacterial materials.

Carbon nanomaterials exhibit a large variety of shapes (Scheme 1), from 0D fullerenes
to 1D carbon nanotubes (CNTs) and 2D materials, including graphene (G) and its deriva-
tives graphene oxide (GO) and reduced graphene oxide (rGO). Further, new carbon-based
nanomaterials are currently under investigation, such as mutated graphene-like nanomate-
rials, which have been found to be very effective for quick removal of organic pollutants
from wastewater via surface adsorption and photocatalysis [14].

One characteristic of all carbon nanomaterials is the possibility of functionalizing
them through non-covalent and covalent methods [15], which generally modifies their
hydrophilic, electronic, optical, and mechanical properties. Non-covalent approaches are
attained via π–π stacking, electrostatic forces, and Van der Waals forces. On the other
hand, covalent functionalization can be performed via simple oxidation, leading to oxygen-
containing groups, suitable to react with functional groups of other molecules or polymers.
These procedures have already been extensively reviewed [16–19].
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Scheme 1. Chemical structure of carbon nanomaterials: 2D graphene and its derivative graphene oxide (GO), 0D fullerenes,
and 1D carbon nanotubes (CNTs).

Fullerenes are symmetrical nanocarbon molecules with hollow structure (Scheme 1).
They are caged compounds with fused-ring shape, composed of a varying number of
polygons, and possess sp2 and sp3 hybridized carbon atoms. The most commonly known
is C60, named as Buckminster fullerene [20]. It is made up of 20 hexagons and 12 pentagons,
similar to a soccer ball. Due to delocalized π electrons, fullerenes have nonlinear optical
responses, high electron affinity, and high transport charge ability.

CNTs are rolled-up sheets of single-layer carbon atoms (Scheme 1). They can be
single-walled (SWCNT) or multi-walled (MWCNT), and they display low density and very
high electrical and thermal conductivity. However, they have a tendency to aggregate and
form bundles; hence, functionalization with polymers [19] or other molecules is typically
required for numerous applications.

G is a 2D flat atomic thick layer of sp2 carbon atoms with exceptional mechanical,
thermal, optical, and electrical properties; molecular barrier ability; low density; little
toxicity; and so forth [11]. However, the use of raw G has been restricted due to strong
aggregation tendency, together with its hydrophobicity, which leads to insolubility in
aqueous media. Thus, derivatives such as GO and rGO have been produced. GO is obtained
via oxidation of G, and comprises COOH on the edges and epoxide, OH, and C=O moieties
on the basal planes (Scheme 1). It has aqueous processability and amphiphilicity, and it
can be partially reduced to G-like flakes, resulting in rGO [17,18]. Its electrical and thermal
conductivity are lower than those of pristine G. Owing to the abovementioned motives,
great effort has been dedicated to incorporating carbon nanomaterials into polymers to
develop nanocomposites with improved properties due to synergistic effects.

Recently, some articles have discussed the antimicrobial activity of graphene and
its derivatives [14,21–23]. In this review, the antimicrobial properties of nanocomposites
containing polymers and carbon nanomaterials such as fullerenes, CNTs, G, GO, and rGO
are reviewed. Owing to the vast amount of articles published on this topic, only the most
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illustrative examples are presented. In addition, applications of these nanocomposites
are summarized.

2. Mechanisms of Antimicrobial Action of Carbon Nanomaterials

Several mechanisms have been proposed to explain the antibacterial activity of carbon
nanomaterials, as represented in Scheme 2. One of the most important chemical mecha-
nisms is oxidative stress, which consists of the extra generation of reactive oxygen species
(ROS). ROS are highly reactive oxygen-based molecules and free radicals such as peroxides
(H2O2), superoxide (•O−2), singlet oxygen (1O2), hydroxyl radical (•OH), and so forth
that cause enzyme inactivation and oxidative damage to cell components, including lipids,
proteins, nucleic acids, etc. [24]. Additionally, electron transfer interaction can take place
from bacterial membrane to carbon nanomaterials that easily accept electrons [25]. Several
physical mechanisms have also been reported. An example is “sharp edge insertion”,
in which nanomaterials such as G utilize their piercing boundaries to cut and penetrate
the cell wall of the bacteria and provoke the outflow of intracellular material. Another is
“direct contact” with the bacteria membrane, causing the membrane breakage [26]. Another
potential mechanism is penetration of the cell membrane and lipid extraction. Thus, the
nanomaterial sheets can enter the bacterial cell through the lipid bilayer. In addition, the
nanomaterial can disrupt the protein–protein membrane connection and lead to malfunc-
tioning [27]. Similar to membrane damage, disruption of DNA integrity can result in
cell death.
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Bacteria can also be enclosed within the carbon nanomaterial and thus separated
from their growth medium [28], leading to cell entrapment or wrapping, which inhibits
cell development. Additionally, some carbon nanomaterials are inhibitors of the cell
wall synthesis. For instance, some of them bind to the amino acids within the cell wall,
preventing the addition of new units to the peptidoglycan layer.
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2.1. Antimicrobial Activity of Fullerenes

Fullerenes and their derivatives can inhibit bacterial growth and metabolism. Gram-
positive bacteria are more susceptible to fullerenes, owing to their higher membrane
permeation [29]. Another issue affecting the antimicrobial properties of fullerenes is
electrostatic interaction, which changes with the fullerene form. Additionally, they can also
generate ROS, including singlet oxygen, thereby destroying the bacterial cell, and they can
avoid oxygen intake, depending on the concentration. Another mechanism for elucidating
their antimicrobial characteristics is bacterial membrane damage, due to interaction with
membrane proteins or other molecules. Thus, the outer membrane surface has a negatively
charged lipopolysaccharide layer prone to interacting strongly with cationic fullerenes [30].
Consequently, positively charged fullerenes are very effective against Gram-negative
bacteria such as E. coli. In addition, those with amino groups display stronger antimicrobial
activity. They also seem to display environment-related selectivity. Thus, fullerenes have
no toxicity or effects on anaerobic microorganisms, while having significant effects on
microorganisms in soils containing a small amount of clay and organic matter [31].

2.2. Antimicrobial Activity of Carbon Nanotubes

SWCNTs can display excellent antimicrobial activity, especially those with smaller size,
hence larger specific surface area. The mechanism relies on their direct contact with bacteria
membrane, thus altering its fluidity, causing oxidative stress, enzyme inhibition, and
decreased transcription of various genes [32]. A large number of parameters including CNT
size, agglomeration state, degree of functionalization, level of purification, concentration,
period of contact, etc., significantly condition the antibacterial action of CNTs. The smaller
the diameter, the better the penetration into the cell wall. The bacteriostatic characteristics of
SWCNTs and MWCNTs have been compared, and it was found that SWCNTs show better
performance, particularly those with surface functional groups (i.e., OH and COOH) [33].
The surface charge also has an impact on the biocide properties. Both positively and
negatively charged tubes have an antibacterial effect due to ROS generation such as
hydroxyl radicals. The CNT length also has a strong effect: in liquid media, the lengthier
the SWCNTs, the more intense their outcome [34]. Another crucial parameter is their
diameter: smaller ones can better interact with the bacteria wall, which is detrimental [35].
CNTs with small diameters connect to the microorganism at one termination, while those
with big diameters (i.e., >15 nm) link to the microorganism by their sidewalls.

Synergy is crucial for biocide action. For instance, CNTs and nanoparticles such
as Ag, ZnO, and CuO have a great synergistic effect [36–38]. In particular, composites
with MWCNTs and AgNPs have been produced and have showed excellent antimicrobial
properties [38] against Methylobacterium spp. and Sphingomonas spp. (Figure 1), with high
selectivity, since no cytotoxicity towards mammal cells was detected.
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Figure 1. (A) Antibacterial activity of acid-treated multiwalled carbon nanotubes (MWCNTs-COOH)
and different concentrations of Ag-MWCNTs against Sphingomonas spp. and Methylobacterium
spp. * p < 0.05, one-tailed Mann–Whitney U-test. Data are representative of three experiments.
(B) Evaluation of the inhibition zone of different samples against Sphingomonas spp. (C) Inhibition
zone against Methylobacterium spp. Reproduced from Ref. [38].

2.3. Antimicrobial Action of Graphene, Graphene Oxide and Reduced Graphene Oxide

The antimicrobial action of graphene-related nanomaterials arises from membrane
damage due to direct contact with its piercing boundaries and oxidation stress (ROS
generation) by electron transfer [39]. The effects of G, GO, rGO, and graphite oxide
on E. coli have been compared [40] under analogous conditions and followed the order:
GO > rGO > G > graphite oxide. GO, with the smallest average size, had the highest defect
density, and hence the toughest oxidative stress. Further, the amount of surface groups
influences the biocide action [41]. GOs with lower level of oxidation generated more ROS
by supporting the decomposition of H2O2 into •OH.

Gram-negative bacteria such as E. coli are more resistant to membrane harm produced
by rGO than Gram-positive ones such as S. aureus, since these do not have any outer
membrane [28]. Size also influences the penetration of G into the lipid bilayer. Large-sized
G adopted a perpendicular conformation to the cell wall, while small-sized ones took a
parallel configuration [42]. Furthermore, the activity depends on the flake size and number
of layers. Smaller flakes show greater cellular internalization and hence have more effect
on the cell functionality. Additionally, G with a few layers has less antimicrobial activity
than G monolayer [43]. Other features that condition the antibacterial activity are specific
surface area and roughness. The bigger the surface area, the higher the number of locations
accessible for bacterial contact. The rougher the surface, the higher the number of contacts
with the bacteria. Additionally, the degree of dispersion of carbon nanomaterial in the
medium has a great influence on the biocide effect [28]. Selective antibacterial effect of
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these nanomaterials towards human pathogenic bacteria has also been reported [44], which
is a key point in order to avoid cell damage.

3. Antibacterial Action of Polymer Nanocomposites with Carbon-Based Nanomaterials

Polymeric nanocomposites contain a polymer or copolymer as matrix, having nanopar-
ticles or nanofillers dispersed. Polymeric nanocomposites comprising carbon-based nano-
materials can be prepared by different methods such as melt compounding, solution
blending, latex mixing, in situ polymerization, and electropolymerization [16]. In the
following sections, a brief overview of different polymer/carbon-based nanocomposites
with antibacterial activity will be provided.

3.1. Antibacterial Properties of Nanocomposites Incorporating Fullerenes

A few studies have investigated the antimicrobial properties of polymeric nanocom-
posites reinforced with fullerenes. For instance, Alekseeva et al. [45] found that polystyrene
films filled with fullerenes had antibacterial characteristics against S. aureus, E. coli, and
C. albicans. In fact, disk diffusion tests revealed zones without bacterial growth nearby
the nanocomposite films, while the polymer alone did not show antimicrobial properties.
The reason for microbial inactivation is believed to be the interaction of fullerene with the
amino acids of proteins in the bacteria, causing cell membrane damage. Additionally, the
bacterial inactivation persisted for one month. Other researchers investigated the effect of
incorporating C60 or OH-C60 with polysaccharides such as CL, CS, and γ-cyclodextrin. It
was found that γ-cyclodextrin/CS/fullerene nanocomposite had significant antimicrobic
action versus vancomycin-resistant enterococci and was suitable for a diversity of uses,
such as food wrapping. Porphyrin-fullerene C60 polymeric films (Scheme 3) also displayed
antibacterial action versus S. aureus and E. coli. The number of S. aureus and E. coli
bacteria was reduced by up to 4 logs after 30 and 60 min of irradiation, respectively [46].
The formation of •O−2 was believed to be the main reason for the antimicrobial action.
Consequently, porphyrin-fullerene films possess an active, elastic, photodynamic surface
that can overwhelm microbes.
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3.2. Antibacterial Properties of Nanocomposites with Carbon Nanotubes

Nanocomposites filled with CNTs have been developed to modulate antimicrobial
properties. It was found that the incorporation of AgNPs on MWCNTs into polyami-
doamine caused bacteriostatic effects versus E. coli, S. aureus, and P. aeruginosa. Owing
to the CNT-AgNPs’ interaction, the AgNPs were enclosed, and the Ag toxicity was re-
duced. Further, a synergistic behavior of both nanomaterials on the antibacterial activity
was proposed. The antimicrobic action of SWCNTs layer-by-layer (LbL) assembled with
polyelectrolytes such as PLL and PGA was assessed (Figure 2) [47].
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Figure 2. Top: SEM micrographs of (A) (PLL/PGA)10, (B) (PLL/PGA)10 + (PLL/SWCNT-
Tween)2, (C) (PLL/PGA)10 + (PLL/SWNT-PL-PEG/PGA/PLL/SWNT-PL-PEG), and (D) SWCNT
on (PLL/PGA)10. Bottom: Deactivation percentage of E. coli on various substrates. Controls are neat
glass, a LbL film without SWCNT, a film with SWCNTs and Tween or PL-PEG, and a neat polymer
film with SWCNTs. Taken from Ref. [47].

SWCNT dispersion in water was attained using Tween 20, a nonionic biocompatible
surfactant and phospholipid-poly(ethylene glycol) (PL-PEG), an amphiphilic biocompatible
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polymer. SEM micrographs of the LbL films showed that PLL-PGA without SWCNTs is
smooth and featureless (Figure 2A), while single or little SWCNT bundles were found
in SWCNT-Tween and SWNT-PL-PEG films (Figure 2B,C). When pure SWCNTs were
deposited onto (PLL-PGA) from chloroform, a considerably higher agglomeration was
found (Figure 2D). The deactivation rate of E. coli after 1 day of incubation on several
substrates was analyzed (Figure 2). A very small amount of bacteria expired on neat
glass. Films comprising raw polymers or those exposed to Tween and PL-PEG were almost
innocuous, with deactivation rates lower than 20%. The coating with PL-PEG displays
a certain toxicity (about 40% deactivation) at intermediate and elevated concentrations,
whereas the film with SWCNT-Tween deactivates more than 80% of the bacteria for all
the concentrations tested [47]. The film with SWCNT-PL-PEG also deactivates about
90% of bacteria at the maximum SWCNT loading, though is not as effective. A biocide
activity of 90% against S. epidermidis was also attained, which demonstrates the suitability
of SWCNT/PLL/PGA thin films as antimicrobial biomaterials. Additionally, SWCNTs
bonded to PLL via covalent bonding had biocide action versus E. coli, S. aureus, and
P. aeruginosa.

In CS/CNT nanocomposites, antibacterial properties rise with increasing CN loading;
these nanocomposites exhibit a clear porous structure with elevated water absorption [48],
and the inhibition zone diameters are close to those recorded for common antibiotics. On
the other hand, gelatin/MWCNT nanocomposites also display antibacterial effect against
Gram-negative and Gram-positive bacteria. The use of gelatin in nanocomposites is limited
owing to its poor mechanical properties, which may be solved through the incorporation of
CNTs [49]. Polylactic acid (PLA)/ CNT/AgNP nanocomposites have also been developed,
which have showed antibacterial properties against S. haemolyticus due to synergistic
effects [50].

The application of conducting polymers as antibacterial agents is also a very promising
strategy for the development of novel antibacterial systems [51]. The electrostatic interac-
tions between the conducting polymer and the bacteria lead to microorganism adhesion
to the polymer surface. Subsequently, diffusion of nanoparticles and active counter-ions
particles towards the cytoplasmic membrane takes place, followed by their permeation
into the cell, which ultimately results in cell death. In particular, polypyrrole (PPy) has
been regarded as an effective antimicrobial polymer. However, the aggregation of polymer
chains is a critical drawback that needs to be addressed. A plausible solution is combi-
nation with nanomaterials such as CNTs. Thus, PPy/CNT nanocomposites show a good
combination of conductivity, antibacterial activity, and strong absorption of light in the NIR
region. Tondro et al. [52] developed this type of nanocomposites and applied them in a
phototherapy treatment based on IR light irradiation. The straight incidence of irradiation
boosts the physical rupture of the cells by the CNTs, the electrostatic attraction of PPy to
the bacterial cells, and the extra generation of ROS. Therefore, a reduction in cell viability is
observed, as a consequence of protein and DNA leakage and ROS production that inhibit
essential processes in the bacteria. The development of alternative antibacterial agents
based on conducting polymers and CNTs represents a promising strategy to circumvent
the increasing resistance to antibiotics. This can be further improved by physical methods
such as phototherapy and electrical excitation to avoid restrictions related to the anchoring
of microorganisms to the polymer surface, which is of great interest in different areas such
as medical, food, and textile industries.

Benigno et al. [53] prepared low-density polyethylene (LDPE)/MWCNT nanocom-
posites, which showed biocide action versus E. coli. In particular, the nanocomposite
with 1 wt% MWCNTs had strong antimicrobial activity (Figure 3). It seems that the
substrate influences bacteria adhesion and also changes their metabolism. Thus, worse ad-
hesion is found for the nanocomposite, and hence no E. coli bacteria remained (Figure 3c),
while 2.6 × 107 CFU/mL were found for neat LDPE (Figure 3a) and 4 × 106 CFU/mL
for a ball-milled LDPE that was used as control (Figure 3b). Aslan et al. [54] developed
poly(lactic-co-glycolic acid) (PLGA) nanocomposites with SWCNT concentration up to
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2 wt%, which effectively reduced the viability of both E. coli and S. epidermidis (up to 98% at
2 wt% loading). Shorter SWCNTs were more toxic, probably owing to their higher number
of exposed tube terminations. This study demonstrates the potential of PLGA/SWCNT as
an antimicrobial biomaterial.
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Figure 3. Images showing the colonies of E. coli bacteria left on the surfaces of neat LDPE (a),
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3.3. Antibacterial Properties of Nanocomposites with Graphene and Its Derivatives

A number of studies have investigated the effect of nanocomposites based on poly-
meric matrices and graphene or its derivatives. For instance, polymethyl methacrylate
(PMMA) matrix filled with 1 and 2 wt% Ag nanoparticles and GO displayed strong antimi-
crobial action versus S. aureus, E. coli, and S. mutans [55]. The nanocomposite comprising
GO and Ag wraps the bacteria via a direct contact, assisted through H-bonding formation
with the proteins of the membrane, hindering them and producing programmed cell death.
There is a synergy of GO and Ag nanomaterials in enhancing biocide effect, as found for
numerous G-based hybrid nanocomposites [56].

Furthermore, fibers of PMMA comprising GO have been manufactured, which showed
antibacterial action versus E. coli ascribed to ROS generation. The maximum bactericide
action (about 85%) was found for the nanocomposite with 8 wt% GO content [57]. PNiPAM
nanocomposite hydrogels based on Ag/G mixtures (0.5:1, 1:1, and 5:1 w/w) with acrylic
acid crosslinked with N,N′-methylene bisacrylamide have also been synthesized [58]. The
nanocomposite with Ag:G mass ratio of 5:1 displayed optimum performance, with excellent
biocompatibility, high swelling ratio, and superior antimicrobial activity (Figure 4). It was
reported that the greater the Ag concentration, the stronger the biocide action. Moreover,
Ag/G nanocomposites showed considerably stronger antibacterial properties than pristine
G or Ag nanomaterials, since G can avoid nanoparticle agglomeration. Similar PNIPAM
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hydrogels filled with GO or GO/CNT nanocomposites were synthesized by free radical
polymerization [59], and the results corroborated the outstanding antimicrobial activity
against P. aeruginosa.
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Figure 4. Images demonstrating the antibacterial activity of PNiPAM hydrogels against E. coli (a)
and S. aureus (b). The nanocomposites with different Ag:G mass ratios (0.5:1, 1:1, and 5:1) are named
as Ag0.5G1, Ag1G1, and Ag5G1, respectively. Taken from Ref. [58].

Antimicrobial nanocomposites comprising biocompatible synthetic polymers have
been prepared. For instance, solution-casted poly(vinyl alcohol) (PVA)/GO nanocompos-
ites with 1, 5, and 10 wt% loading had good antimicrobial properties against E. coli and
S. aureus [60]. Additionally, stronger action was found against the Gram-positive bacteria,
as previously reported by other authors, since the structure of their membrane is different.
Thus, Gram-negative bacteria has an additional peptidoglycan layer in the membrane,
which offers an additional barrier for microbial penetration [61]. PVA/Ag/GO nanocom-
posites synthesized via chemical reduction combined with solution casting had strong
antibacterial action versus E. coli and S. aureus owing to synergy of both nanofillers [62].
Additionally, the antibacterial performance was influenced by the GO/Ag content and
the period of time [63]. Samples with GO/Ag content lower than 1 wt% did not affect
the growth of S. aureus and hardly affected E. coli, while those with 2 wt% led to a strong
reduction in bacterial growth, and nanocomposites with 5 wt% GO/Ag inhibited com-
pletely both bacteria after 24 h. Usman et al. [64] added starch as a reducing agent, thereby
forming in situ rGO, intercalated within PVA. In this case, the antibacterial outcome arose
from the synergy of rGO and Ag dispersed into the polymer matrix comprising starch.

Antibacterial poly(N-vinylcarbazole) (PVK)-based nanocomposites with GO have
also been developed via bulk polymerization, and their effects were assessed versus
C. metallidurans and E. coli (Gram-negative) as well as R. opacus and B. subtilis (Gram-
positive) [65]. The PVK–GO nanocomposites had stronger antimicrobial properties than
pristine GO. The mechanism of inactivation was related to the wrapping of the bacteria by
the nanocomposite, which lessened the metabolic activity of the bacteria and lastly caused
cell decease. S. aureus was less resistant to these nanocomposites than E. coli.

Polylactide acid (PLA) has also been combined with GO and its mixtures with nanopar-
ticles, resulting in nanocomposites with improved antibacterial action versus S. aureus
and E. coli [66–69]. Several parameters including nanocomposite preparation technique,
nanofiller content, morphology, and level of nanofiller dispersion within the matrix condi-
tion the final properties. In general, the efficiency grows with increasing GO concentration
and can also be enhanced via application of an external electrical stimulus. Ternary
PLA/GO/ZnO nanocomposites prepared by solution-blending technique showed durable
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UV resistance and biocide action with small GO/ZnO contents [67]. PLA/GO/Ag hybrids
were prepared via in-situ polymerization followed by mechanical blending, and the effects
of the GO/Ag content were examined [69]. The antibacterial efficiency increased up to 99%
as the loading augmented up to 2.0 wt%. GO was believed to improve the antibacterial
action of Ag nanoparticles in the matrix owing to improved distribution of Ag onto GO
surfaces and hence stronger Ag-cell wall interactions.

Another biodegradable polymer, polycaprolactone (PCL), shows antibacterial activity
after mixing with rGO/Ag [70]. PLC/rGO/Ag nanocomposites with a mass ratio of 94:5:1
were synthesized by solution casting and had stronger biocide action than binary PLA/Ag
or PLA/rGO, ascribed to a direct contact mechanism by mechanical breakage of the cell
membrane in the presence of Ag well-dispersed onto the rGO surface. PCL scaffolds
with conductive rGO nanoparticles have been prepared via a 3D-printing process [71].
A noteworthy antibacterial effect was found upon application of DC to the percolated
scaffolds: under electrical stimulation, a 45% decrease in S. aureus colonies was attained
in neat PCL, which is electrically nonconductive, compared to PCL without electrical
stimuli (Figure 5a). This behavior was attributed to electrophoretic effects, given that the
unique membrane of S. aureus is subtle to exterior electrical fields, which cause damage
and release of intracellular content, reducing cell viability. In the PCL/rGO scaffolds, 100%
bacterial colonies were eradicated under electrical stimulation. The surface topography
is another key parameter governing bacterial adhesion. Thus, a certain roughness was
found in PCL/rGO scaffolds surfaces that contributed to the detachment of bacteria in
the lack of electrical stimulation. A potential antibacterial mechanism is related to the
flow of electrons between the conductive scaffolds and the carbon electrode, since the
electrophoretic forces within the nanomaterial produced an antiadhesive effect, which
increased bacterial mobility. This effect was corroborated via counting the CFU from the
reactor solution, as displayed in Figure 5b. Under electrical stimuli, a noteworthy reduction
in CFU was found, equal to about 49% and 89% for neat PCL and PCL/rGO, respectively,
compared with the control. The hypothetical antibacterial mechanisms are depicted in
Figure 5c.

PVDF/Ag/GO fiber mats with a GO content of 1 wt% and Ag nanoparticle contents
of 0.5, 1, and 2 wt% have been synthesized via electrospinning [72]. Pure PVDF showed no
antibacterial activity, since its hydrophobicity helps the bacteria to adhere onto its surface.
However, PVDF/Ag nanocomposites can hinder bacteria from linking to the membrane
surfaces via release of Ag+ ions that interact with the SH moieties of DNA enzymes. The
addition of 1 wt% GO further improved the bactericidal activity against E. coli, particularly
at 2 wt% Ag loading, attributed to a better Ag dispersion within GO, and the cutting edge
mechanism. As mentioned earlier, GO can pierce the bacterial membrane and provoke the
outflow of intracellular constituents. Besides, a synergy of Ag and GO nanofillers should
take place [73].

Nanocomposites of polyethylene glycol (PEG)-functionalized GO with Ag nanopar-
ticles were synthesized via a rapid and environmentally friendly microwave irradiation
method [74], at different radiation periods and with different Ag nanoparticle sizes (8 and
50 nm). They showed outstanding microbial activity against E. coli, and those with the
smaller nanoparticles showed better antibacterial activity. Smaller nanoparticles adsorb
more easily onto the surface of the cell, which can impact the membrane permeability and
origin its rupture. Besides, bacteria could be enveloped by the ternary, which would limit
bacterial nutritional supplementation, and consequently, their metabolism. They can also
weaken the E. coli cell wall, and provoke the rupture of the cell membrane via a synergetic
effect of both nanofillers.
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Poly(propylene fumarate) (PPF), a biocompatible and biodegradable copolyester, has
been combined with GO previously functionalized with PEG via a noncovalent strategy [13].
The antibacterial performance versus P. aeruginosa, E. coli, S. aureus, and S. epidermidis
increased intensely with growing GO content (Figure 6), and the nanocomposite with 3.0
wt % GO loading showed the highest antibacterial activity.
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S. aureus, S. epidermidis, P. aeruginosa, and E. coli. Taken from Ref. [13].

The antibacterial effect was more intense against Gram-positive bacteria. Thus, in this
type of bacteria, at 1.0 wt% GO loading, the logarithmic ratio of viable cell count in the
control to that in the nanocomposite was equal to or higher than 2, while for the Gram-
negative bacteria, this value was overpassed at 3 wt% GO content. Hardly any difference
between the effect on S. aureus and S. epidermidis was detected, and the same behavior was
found when comparing E. coli and P. aeruginosa. The same mechanism was proposed to
explain the antibacterial activity of poly(glycolic acid-co-propylene fumarate) (PGA-co-
PPF)/GO/hydroxyapatite nanorods (HA) nanofibers prepared via electrospinning [75].
(PGA-co-PPF) did not show antibacterial action on the bacteria, though nanocomposites
comprising GO showed activity towards both types, which was more intense versus
S. aureus. Conversely, PGA-co-PPF/HA nanocomposites did not affect S. aureus and
only had a small impact on E. coli. It seems that the blend of HA and GO increases the
antimicrobial effect.

Some studies focused on nanocomposites based on polysaccharides such as CL, CS,
alginate, and starch, filled with G or its derivatives, have been reported [76–86]. Mem-
branes of CL, a linear homopolymer of β-D glucose with GO and Ag nanoparticles, were
synthesized by a process comprising two stages [76]. First, the mixture was coagulated to
fabricate membranes comprising different GO loadings. Then, Tollens’ method was applied
to synthesize in situ the AgNPs [87]. The presence of GO enhanced the deposition of Ag
owing to the electrostatic interactions with surface GO groups. These nanomembranes
were very effective towards S. aureus and E. coli.

Agar, a mixture of agarose and agaropectin, has been reinforced with ZnO, Ag-
NPs, and rGO nanosheets [77]. Chemical interaction/complexation occurred between
functional moieties of rGO and the hydroxyl groups of the inorganic nanoparticles. This
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nanocomposite revealed superior antibacterial effect (close to 95%) against S. aureus and
P. aeruginosa, for a long period of about 90 days, ascribed to a synergy of the three nanofillers.
Nanocomposite films based on furcellaran, a type of high-molecular-weight polysaccharide
with sulphate groups, GO, carbon quantum dots (CQDs), and maghemite nanoparticles,
were developed via solution casting [78]. The nanocomposites demonstrated a noteworthy
inhibition on the proliferation of S. aureus and E. coli.

CS presents antibacterial and antifungal properties, which depend on molecular
weight, degree of acetylation, and pH: high molecular weight and low degree of acetylated
CS is less effective against Gram-negative bacteria [88]. Its bactericide action is ascribed
to the interaction between its positively charged NH3

+ groups and negatively charged
bacteria membranes. This electrostatic interaction changes the membrane permeability,
causing osmotic disproportions, and hence hinders the bacteria growth. It also causes
the hydrolysis of the peptidoglycans in the bacteria wall, causing the release of the cell
components. A mixture of poly(lactide-co-glycolide) (PLGA) and CS electrospun fiber mats
have been modified with GO–AgNPs through reaction between the NH2 moieties of the
PLGA–CS fibers and the COOH moieties of GO; a carbodiimide hydrochloride derivative
and N-hydroxysuccinimide were used as cross-linkers. [79]. The ternary nanocomposites
successfully deactivated S. aureus, E. coli, and P. aeruginosa, showing better activity than
PLGA-CS mixtures (Figure 7). The PLGA-CS/GO-Ag inhibits almost completely E. coli
and P. aeruginosa, but has weaker effect (close to 80%) against S. aureus. This is ascribed
to the different assemblies of the bacterial wall. SEM micrographs confirm that Gram-
negative bacteria stuck on PLGA-CS/GO-Ag fibers collapse and lose their physical integrity
(Figure 7A,B). The characteristic structure of the Gram-negative bacteria, with a rod-like
shape, is not found, and just a small amount of cell debris can be observed. Conversely,
very little debris can be observed in the micrographs of S. aureus (Figure 7C). Bactericidal
effect through a direct contact mechanism was proposed.
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CS/rGO composites have been prepared by an environmentally friendly procedure.
The rGO was synthesized by reduction with caffeic acid and afterwards distributed into
CS. The films with rGO content in the range of 20–30 wt% of rGO displayed a rise of
inhibition between 54% and 82% [80], ascribed to their ability to disrupt the cell membrane
and provoke oxidative stress. CS/GO/TiO2 nanocomposites were also manufactured
and exhibited almost complete inhibition versus A. niger and B. subtilis [81] when their
ratio was 20:1:4. The activity was related to cell wall harm induced by the nanocomposite.
CS/polyvinylpyrrolidone (PVP)/GO were also prepared, and both covalent interactions
via nucleophilic substitution reaction between the epoxy moieties of GO and amino groups
of CS and non-covalent interactions by H bonding between the OH groups of GO and
the NH2 moieties of CS were analyzed [82]. When the GO content was low, the degree
of crosslinking with CS was low, and it remained as an individual nanofiller. Conversely,
when the GO content was high, the crosslinking level was high, and it formed aggregates
that worsened the nanocomposite’s physical characteristics. Better bactericidal capability
versus S. aureus and E. coli was observed for the nanocomposite with 25 vol% PVP and
1 wt% GO. Although the mechanism behind the antimicrobial effect of CS is still not entirely
understood, it could be ascribed to its aptitude for passing the bacteria cell wall through
permeation and development of a polymer coating on the surface of the cell wall, therefore
avoiding nutrients entering the cell [83]. In addition, its NH3

+ are prone to interact with
the negative charges of the cell membranes, causing the release of proteins and other
constituents from the interior of the cell. Moreover, this polysaccharide can modify the
phospholipid bilayer structure in the cell membrane, altering its degree of permeation,
henceforth causing the liberation of cellular components.

Starch is a blend comprising 20–30% of linear amylose with α-(1,4)-linkages and
70–80% highly branched amylopectin, with α-(1,4) and α-(1,6) linkages. Starch-reduced
GO (SRGO) linked to polyiodide nanocomposites have been prepared via a hydrothermal
treatment [84]. The nanocomposites exhibited good antibacterial activity versus E. coli and
S. Aureus, while neat SRGO did not display any inhibition. The mechanism proposed was
the continued release of polyiodide, which disrupts the bacterial membrane.

Alginates are ionic-block copolymers comprising sections of consecutive β-D-mannuronic
acid monomers (M-blocks), sections of α-L-guluronic acid (G blocks), and regions of scattered
M and G units. Alginates crosslinked with Ca2+ cations and GO were prepared by mixing
ZnCl2 with a GO/Ag dispersion in water under agitation and then solution casting [85]. The
addition of 1 wt% GO produced a significant biocide effect versus S. aureus and S. epidermidis,
while it was not toxic for human cells. An analogous method was used to synthetize alginates
crosslinked with Na+ that incorporated GO, which showed higher antibacterial action versus
the aforementioned bacteria for identical GO concentration [86].

Polyhydroxyalkanoates (PHAs) are a family of bacteria-based biodegradable plastics
produced from natural resources such as cane sugar. Their synthesis typically occurs
during fermentation under nutrient-limiting conditions. The most commonly investi-
gated is poly(3- hydroxybutyrate) (PHB), a polyester with properties comparable to syn-
thetic polypropylene [89,90]. Further, its copolymerization with 3-hydroxypentanoic acid
produces poly(3-hydroxybutyrate-co-3-hydroxyvalerate), abbreviated as PHBV, another
biocompatible green thermoplastic. PHBV/GO films with 1 wt% loading have been man-
ufactured via solvent casting with the purpose of improving thermal and antibacterial
properties as well as film wettability. The results showed that PHBV/GO exhibited better
biocide action versus S. aureus than PHBV/carbon nanofibers (CNFs) [91]. Following the
same approach, ternary PHBV/cellulose nanocrystals (CNC)/GO nanocomposites with
CNC/GO weight percentages of 1:0.5 and 1:1 were prepared [92], and their properties com-
pared with binary PHBV/GO and PHBV/CNC nanocomposites. The antibacterial activity
for the binary nanocomposite with 0.5 wt% GO was higher than 99% versus E. coli and
S. aureus. Superior performance was found for a PHBV/CNC/GO (98:1:1 wt%) nanocom-
posite that completely eradicated the growth of both bacteria, ascribed to cell membrane
damage by oxidative stress or free radicals and the synergy of CNC covalently linked to
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GO by physical mixing. PHBV/rGO/ZnO hybrids with 3, 6, and 9 wt% nanofiller concen-
tration were prepared by melt blending [93]. Prior to the hybrid synthesis, the concurrent
reduction of Zn(O2CCH3)2 and GO at 20:1 ratio was performed, leading to the ZnO-GO
nanocomposite. A noteworthy antimicrobial effect versus E. coli was observed, attributed
to the intimate contact between the hybrid nanocomposite and the bacteria surface.

A comparison between the antimicrobial activity of some common antibiotics, nanopar-
ticles, and polymeric nanocomposites with carbon-based nanomaterials is summarized in
Table 1.

Table 1. Comparison between the antimicrobial activity of nanoparticles, antibiotics, and polymer
nanocomposites with carbon-based nanomaterials.

Matrix

Antibacterial
Agent Processing Method Bacteria

Inhibition
Ref.

(Shape or
wt%) (%)

SnO2
(rod-shaped)

E. coli 99.5
[11]S. aureus 99.5

Ag
(spherical)

E. coli
90 [94]

– Ag
(rod-shaped) – 100 [94]

Ag (cubocta-
hedral and
dodecahe-

dral)

E. coli 100

– – P. Aeruginosa 100 [95]

S. Aureus 100

Cu
(spherical)

P. Aeruginosa 99.5

[96]
– – S. Aureus 99.6

B. subtilis 99.6

C. Albicans 82.5

P. Aeruginosa 100

– CuO – S. Aureus 100 [97]

(spherical) B. subtilis 68

C. Albicans 65

ZnO
(spherical)

E. coli 90
[89]

S. aureus 85

TiO2
(spherical)

E. coli 98
[98]

S. aureus 100

vancomycin
S. aureus 98.3

86
[99]

TMP

penicillin
S. aureus

100
[100]

tetracycline 100

chloramphenicol H.
influenzae 87.5

penicillin S. pneumoniae 100 [101]

oxacillin S. aureus 88
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Table 1. Cont.

Matrix

Antibacterial
Agent Processing Method Bacteria

Inhibition
Ref.

(Shape or
wt%) (%)

amoxicillin

H.
influenzae 100

[102]
Salmonella

spp. 100

Shigella spp. 100

Corynebacteria
spp. 100

PMMA
GO-Ag (1)
GO-Ag (2)

SN + curing

E. coli

– [55]S. aureus

S. mutans

PMMA
fibers GO (8) pressurized

gyration E. coli 85 [57]

PNIPAM

Ag/G (0.5:1)
in situ

polymerization
E. coli

S. aureus
– [58]Ag/G (1:1)

Ag/G (5:1)

PNIPAM GO/CNT
(1:1)

free radical
polymerization P. aeruginosa – [59]

PVK GO (3) bulk polymerization

B. subtilis 89

[65]
R. opacus 89

E. coli 89

C.
metallidurans 91

PVA

G (1)

SN+ solution casting

E. coli 92

[60]
G (10) E.coli 97.1

G (1) S. aureus 92.3

G (10) S. aureus 99.7

PLA GO/Ag (2)
in situ

polymerization
E. coli 99

[69]
S. aureus 99

PVDF
fibers

GO/Ag
(1:0.5)

ES E. coli
S. aureus

– [72]GO/Ag (1:1)

GO/Ag (1:2)

PCL GO/Ag (5:1) SN+ solution casting E. coli 59 [70]

PPF PEG-GO (3) SN+ curing

S. aureus 97

[12]
S. epidermidis 94

P. aeruginosa 85

E. coli 81
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Table 1. Cont.

Matrix

Antibacterial
Agent Processing Method Bacteria

Inhibition
Ref.

(Shape or
wt%) (%)

CS
GO/TiO2

(4/16) SA
A. niger 99

[81]B. subtilis 99

PHBV
CNC/GO

(1:1)
solution casting E. coli 99.7

[92]
S. aureus 99.8

AGAR rGO/Ag/ZnO solution casting S. aureus 95
[77]

P. aeruginosa 95

AG GO (1) SN+ solution casting S. aureus 99
[85]

S.epidermis 99

polyporphyrin C60 electropolymerization S. aureus 100
[46]

E. coli 100

PLL/PGA

SWCNT

LBL

E.coli 80

[47]
SWCNT-PL-

PEG E.coli 90

SWCNT-PL-
PEG S. epidermidis 90

PLGA SWCNT (2) solution casting E.coli
[54]

S. epidermidis 98
SN: sonication; ES: electrospinning; SA: self-assembly; LBL: layer-by-layer TMP: trimethoprim-sulfamethoxazole.

4. Applications for Antimicrobial Polymeric Nanocomposites with Carbon Materials

Polymeric nanocomposites with carbon nanomaterials have great potential for nu-
merous uses. For instance, they are widely examined for food packaging due to their
extraordinary antimicrobial effects against most types of microbes [103]. The exceptional
mechanical properties of carbon nanomaterials make them very suitable for development of
active/smart packaging materials, since their incorporation in films can lessen the prolifer-
ation of microorganisms by eliminating or dropping oxygen in the interior of the wrapping,
thus expanding the product shelf life and simultaneously reducing weight. High-fat foods
can be wrapped by fullerene derivatives that have antioxidant properties [104]. One of
the key uses of CNTs in the field of smart packaging is connected to the arena of sensors.
CNTs can be used in sensors that monitor the state of the food, so that when an alteration
occurs, it is reflected in a change in the packaging color, cautioning consumers about the
lifetime of the product [105]. Likewise, CNTs can instantaneously detect some microbes
that spoil foodstuffs.

Numerous cases of smart packaging comprising biopolymers and graphene nanos-
tructures have been recently described [106]. The incorporation of G usually enhances the
mechanical, barrier, thermal, and antimicrobial properties of the resulting nanocomposites.
For example, CS/GO nanocomposites display optimal mechanical and barrier properties,
and they restricted the proliferation of both E. coli and B. subtilis [107].

GO and clove essential oil have been incorporated into PLA by solvent casting [108].
The inclusion of GO enhanced the elasticity of the nanocomposite films by dropping the
number of pores, thereby decreasing the permeability to oxygen, and the glass transition
temperature. The nanocomposites displayed exceptional effectivity versus E. coli and
S. aureus. All the mentioned features indicate the extraordinary capacity of GO and G for
use in food storing. Fe2O3 coated GO/CS hydrogels were fabricated by co-precipitation
followed by gel casting method [109]. The nanocomposites showed better thermostability,
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mechanical strength, and antimicrobial action versus S. aureus, E. coli, and C. albican and
were found to be suitable for application in the food industry.

Nanocomposites with carbon nanomaterials also have many uses in the medical
area [49,54], including wound-healing materials, drug delivery, and tissue engineering. In
particular, nanocomposites with G may have applications in speeding up wound healing,
lessening contaminations, and favoring proper curing without graze development. For
instance, acrylic acid hydrogels crosslinked with N,N′-methylene bisacrylamide incor-
porating different Ag/G mass ratios have been developed. The hydrogel with an Ag:G
ratio of 5:1 was biocompatible and exhibited elevated swelling ratio and superior biocide
combined with exceptional mechanical performance, resulting in quicker wound-healing
process [58].

Similarly, antibacterial polyurethane (PU)/siloxane membranes incorporating GO
nanoplatelets were prepared by the sol–gel technique, and displayed optimal biocompati-
bility with fibroblasts and better wound closure capacity [110]. The crosslinked siloxane
areas and the GO nanoplatelets embedded within the PU chains provided the mechanical
strength required for dressings. Additionally, the blending of hydrophilic and hydrophobic
parts in the dressing allowed appropriate wound exudation management (Figure 8).
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Figure 8. Pictures (a) and closure percentage (b) of wounds treated with gauze (control),
polyurethane/siloxane membrane (XSi-PU), and the nanocomposite with 5 wt% GO (XSi-PU/GO5%)
during the wound healing for 20 days. According to the analysis of variances, * p < 0.05, values are
significantly different from the previously compared group. Taken from [110].

In fact, better performance was observed for the membrane containing 5 wt% GO
(XSi-PU/GO5%) than for the dressing without GO (XSi-PU) for the same period of time.
For instance, on the 7th day, the wound enclosed by XSi-PU/GO5% membrane displayed
about 55% wound healing, while control groups and XSi-PU treated wounds displayed
values of 34% and 48%, respectively. On the 20th day, the wounds covered with the
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indicated nanocomposite displayed almost complete wound healing, whereas XSi-PU
membrane and cotton gauze led to 91% and 81% decreases in wound size, respectively.
SWCNTs and MWCNTs complexed with chitosan also improved the re-epithelialization of
wounds; the most effective in the healing treatment was the nanocomposite with 1 wt%
MWCNTs, due to the increase in the amount of deposited collagen in the wound [111].
On the other hand, antibacterial PU electrospun nanofibers with CNTs developed via
an environmentally friendly approach using ethanol as the dispersion solvent exhibited
excellent hemocompatibility and inferior hemolysis percentages, and they were found to
be suitable as wound dressing materials [112].

Additionally, nanocomposites comprising G and polymers have been used for drug
delivery. For instance, a mixture of polysebacic anhydride (PSA) and GO was developed
by Gao et al. [113], and its effectiveness for the liberation of levofloxacin, a bactericidal
drug, was examined. The PSA/GO nanocomposites required much more time for drug
liberation than the raw polymer, as well as exceptional antibacterial efficacy without any
toxic outcome. In addition, a PCL/G fiber comprising chlorhexidine (CHX), an antibacterial
agent, was manufactured through melt rotation. The hybrid fibers showed excellent biocide
performance and were crucial to minimize the risk of infections after operation [114].

In another study, molecularly imprinted polymers (MIPs) were manufactured via in
situ polymerization in the presence of CNTs and were found to be appropriate for the elec-
troresponsive liberation of a drug, diclofenac sodium salt [115]. In vitro tests, performed
in water solution, revealed the optimal aptitude of the MIPs filled with CNTs to release
the drug continuously, in a better way than the nonimprinted materials. Other researchers
developed electroresponsive gelatin/MWCNT microgels with the aim to liberate the same
drug upon application of an external voltage [116]. Several MWCNTs’ contents (up to
35 wt%) were used to select the CNT amount that offered the best sensitivity. At pH 7.4,
the external electric field produced a decrease in the swelling rate from 1350% to 420%.
Drug liberation tests revealed the potential of thermoresponsive nanocomposites to tailor
the drug release over time.

Owing to their mechanical stability, nanocomposites with carbon nanomaterials and
polymers have been used in numerous tissue engineering studies. For example, a 3D
CS/GO scaffold has been designed for bone tissue engineering [117]. The incorporation of
GO enhanced pore development, mechanical properties, and bioactivity, thus promoting
the possibilities for in vitro and in vivo applications. Several composite scaffolds including
hydroxyapatite (HA) and collagen have been prepared via an in situ precipitation technique.
The resulting scaffolds exhibited better strength and porosity than pure collagen, and thus,
it is a hopeful approach for bone tissue engineering. Further mechanical improvement
can be attained via the addition of CNTs. In this regard, collagen has been covalently
bonded onto CNTs via creation of amide bonds. Afterwards, a HA coating was deposited
onto the collagen-g-CNTs. Due to the chemical bonding, the flexural strength and fracture
toughness of the collagen-g-CNT/HA nanocomposite with 3 wt% CNT increased by about
74% and 275%, respectively, compared to those of neat HA [118]. In addition, improved
cell adhesion and growth were detected for the ternary nanocomposites.

G and related materials can also play a key role in the global competition against
viral illnesses such as COVID-19 by designing sensitive biosensors and diagnostic sys-
tems [119]. They can control virus spread and transmission via development of antiviral
surfaces/coatings, nanofoams for facemasks, and 3D-printed components. Principally,
for the SAR-CoV-2, since the virus structure is rich in carboxylic acid groups, GO/rGO-
SO3 coatings on polymeric substrates such as polyvinylpyrrolidone (PVP) or poly(diallyl
dimethylammonium chloride) (PDDA) could be developed [120]. Nanocomposites with
antimicrobial metals such as Ag, Cu, Ti, and Au could also be examined for the manufacture
of active antiviral coatings. These nanocomposites can aid in the capture and destruction
of the virus structure and lessen its survival time on different substrates via diverse types
of interactions, as schematized in Scheme 4.
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Carbon nanomaterials have also been broadly investigated for water treatment, in
particular for the manufacture of novel filtration membranes [121]. However, the complex
procedure for the development of carbon-based adsorbents hinders their real uses. To
resolve these issues, polymeric membranes incorporating carbon nanomaterials have been
developed for different applications such as ultra- or nano-filtration, forward or reverse
osmosis desalination, wastewater treatment, and so forth [122–124]. For instance, polyether
sulfone (PES)/GO, PES/rGO, and polyethyleneimine (PEI)-wrapped GO membranes pre-
pared through a simple mixing approach that can be applied for wastewater filtration [125].
PVDF membranes covalently functionalized with GO quantum dots also exhibited antibio-
fouling properties and outstanding antibacterial action versus E. coli [126], and they could
be used for water treatment.

Nitrocellulose membrane filters wrapped with PVK:SWCNT (97:3 wt%) nanocompos-
ites exhibited important antimicrobial action versus Gram-positive and Gram-negative
bacteria (∼80–90%), and they showed a virus elimination effectiveness close to 2.5 logs [127].
A possible mechanism of cellular inactivation was bacteria cell membrane damage, since
higher effluence of DNA was measured in the rest of the nanocomposite compared to the
control. Their toxicity was assessed versus fibroblasts, and no toxic effects were found.
These nanocomposites are more suitable than pure SWCNTs’ coated membranes for drink-
ing water treatment, given that the lower amount of SWCNTs in the nanocomposite will
decrease price and minimize toxicity.

5. Conclusions

Carbon-based nanomaterials such as fullerenes, CNTs, and G and its derivatives GO
and rGO, show outstanding antibacterial activity, and hence, they are suitable for manufac-
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turing innovative nanocomposites for a wide range of applications from medicine to the
food industry. These nanostructures utilize their antibacterial characteristics via physical
damage (i.e., disruption of the cellular membrane) as well as via chemical impairment
(phospholipid oxidation via ROS production). However, their practical applications as
antimicrobial agents have not been completely explored yet, owing to their relatively poor
dispersibility, expensiveness, and scalability challenges. To address these challenges, they
can be incorporated within polymeric matrices, which also display antimicrobial activity
in some cases.

This review recapitulates the state of the art in the research of polymeric nanocompos-
ites with carbon nanomaterials as antimicrobial agents to fight against bacteria. Illustrative
examples have been selected with the intent to clarify the potential modes of action and pro-
vide a better understanding of the antibacterial capabilities of polymeric nanocomposites
with carbon-based nanostructures owing to synergistic effects.

6. Future Perspectives

To date, numerous inquiries regarding the antibacterial activity of carbon-based poly-
meric nanocomposites remain unanswered, including the specific mechanisms of action
and the consequences of nanostructure size, loading, amount of surface groups, and so
forth on the restriction of bacterial spread. Commonly, the antimicrobial properties have
been assessed versus model pathogenic bacteria such as E. coli and S. aureus. Nevertheless,
considering the increasing spread of antibiotic-resistant bacteria, it is critical to examine
other microbes to demonstrate the wide variety of bactericidal properties of carbon nano-
materials. Besides, a more comprehensive and reliable understanding of the mechanisms of
antimicrobial activity of this family of nanomaterials is critical. Another critical issue is that
the procedures to synthesize carbon nanomaterials at an industrial level are very scarce
and hence are highly desirable with a view towards using them in practical commercial
applications. A simple and straightforward method to meet the strong demand for carbon
nanomaterials via a sustainable approach with high yield is lacking.

Another restraint on the real use of this type of nanocomposites is that to date, no
in vivo test has been applied to animals. Though carbon nanomaterials may be suitable for
several biomedical applications including wound healing, forthcoming uses in vivo cannot
be predicted. One significant query that has to be addressed is if carbon nanomaterials can
specifically target pathogenic microbes without disturbing mammal cells or non-pathogenic
bacteria. Very few investigations regarding discriminatory killing have been reported so
far. Additionally, the toxicity of carbon nanomaterials is still not well documented. Despite
considerable struggles in evaluating the consequence of these nanomaterials on humans,
results are frequently unreliable. This matter should be investigated in more detail, since
the effects of carbon nanomaterials may be strongly influenced by their inherent properties.

Overall, investigation in this arena is still in its childhood. The combination of these
carbon nanomaterials and polymers offers novel perspectives owing to cooperation behav-
ior. However, more research is required to assure that they are nontoxic. It can be foreseen
that with exhaustive research and unceasing efforts, polymer nanocomposites with carbon
nanomaterials will offer a novel perspective for the progress of antimicrobial agents.

Funding: Financial support from the Community of Madrid within the framework of the Multi-year
Agreement with the University of Alcalá in the line of action “Stimulus to Excellence for Permanent
University Professors”, Ref. EPU-INV/2020/012, is gratefully acknowledged.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Wadi, A.K.A. Preparation and Characterization of Polymeric Composites as Antibacterial Surfaces for Medical Applications.

Master’s Thesis, University of Babylon, Hillah, Iraq, 2017.
2. Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on Antibiotic Resistance: Alarm Bells are

Ringing. Cureus 2017, 9, 1403. [CrossRef] [PubMed]

http://doi.org/10.7759/cureus.1403
http://www.ncbi.nlm.nih.gov/pubmed/28852600


Int. J. Mol. Sci. 2021, 22, 10511 24 of 28

3. Price, R. O′Neill report on antimicrobial resistance: Funding for antimicrobial specialists should be improved. Eur. J. Hosp. Phar.
Sci. Prac. 2016, 23, 245–247. [CrossRef] [PubMed]

4. Díez-Pascual, A.M. Antibacterial Activity of Nanomaterials. Nanomaterials 2018, 8, 359. [CrossRef] [PubMed]
5. Mustafa, M.M.; Julian, S.A.; Mariya, M.; Vejerano, E.P. Nanoantibiotics: Functions and Properties at the Nanoscale to Combat

Antibiotic Resistance. Front. Chem. 2021, 9, 348. [CrossRef]
6. Sargazi, S.; Mukhtar, M.; Rahdar, A.; Barani, M.; Pandey, S.; Díez-Pascual, A.M. Active Targeted of Nanoparticles for Delivery of

Antibiotics: A Preliminary Review. Int. J. Mol. Sci. 2021, 22, 10319, in press. [CrossRef]
7. Carver, J.A.; Simpson, A.L.; Rathi, R.P.; Normil, N.; Lee, A.G.; Force, M.D.; Fiocca, K.A.; Maley, C.E. Functionalized Single-

Walled Carbon Nanotubes and Nanographene Oxide to Overcome Antibiotic Resistance in Tetracycline-Resistant Escherichia coli.
ACS Appl. Nano Mater. 2020, 3, 3910–3921. [CrossRef]

8. Kenawy, E.; Worley, S.D.; Broughton, R. The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review.
Biomacromolecules 2007, 8, 1359–1384. [CrossRef]

9. Kamaruzzaman, N.F.; Tan, L.P.; Hamdan, R.H.; Choong, S.S.; Wong, W.K.; Gibson, A.J.; Chivu, A.; Pina, M.F. Antimicrobial
Polymers: The Potential Replacement of Existing Antibiotics? Int. J. Mol. Sci. 2019, 20, 2747. [CrossRef]

10. Muñoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012, 37, 281–339.
[CrossRef]

11. Díez-Pascual, A.M.; Díez-Vicente, A.L. Antibacterial SnO2 nanorods as efficient fillers of poly(propylene fumarate-co-ethylene
glycol) biomaterials. Mater. Sci. Eng. C 2017, 78, 806–816. [CrossRef]

12. Díez-Pascual, A.M.; Díez-Vicente, A.L. Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocompos-
ites for Tissue Engineering. ACS Appl. Mater. Interfaces 2016, 8, 17902–17914. [CrossRef]

13. Lukowiak, A.; Kedziora, A.; Strek, W. Antimicrobial graphene family materials: Progress, advances, hopes and fears. Adv. Colloid
Interface Sci. 2016, 236, 101–112. [CrossRef]

14. Maqbool, Q.; Barucca, G.; Sabbatini, S.; Parlapiano, M.; Ruello, M.L.; Tittarelli, F. Transformation of industrial and organic waste
into titanium doped activated carbon–cellulose nanocomposite for rapid removal of organic pollutant. J. Hazard. Mater. 2022,
423, 126958. [CrossRef] [PubMed]

15. Panayiotis, B.; Dimitrios, K.; Apostolos, A.; Georgios, S. Non-covalent functionalization of carbon nanotubes with Polymers.
RSC Adv. 2014, 4, 2911–2934. [CrossRef]

16. Díez-Pascual, A.M. Chemical Functionalization of Carbon Nanotubes with Polymers: A Brief Overview. Macromol 2021, 1, 6.
[CrossRef]

17. Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2009, 39, 228–240. [CrossRef]
18. Díez-Pascual, A.M.; Luceño Sánchez, J.A.; Peña Capilla, R.; García Díaz, P. Recent Developments in Graphene/Polymer

Nanocomposites for Application in Polymer Solar Cells. Polymers 2018, 10, 217. [CrossRef] [PubMed]
19. Díez-Pascual, A.M.; Naffakh, M. Grafting of an aminated poly(phenylene sulphide) derivative to functionalized single-walled

carbon nanotubes. Carbon 2012, 50, 857–868. [CrossRef]
20. Kroto, H.W. C60: Buckminsterfullerene, The Celestial Sphere that Fell to Earth. Ang. Chem. Int. Ed. 1992, 31, 111–129. [CrossRef]
21. Ahmed, A.-J.; Surjith, A.; Kateryna, B.; Mohan, V.J. Review on the Antimicrobial Properties of Carbon Nanostructures. Materials

2017, 10, 1066. [CrossRef]
22. Han, W.; Wu, Z.; Li, Y.; Wang, Y. Graphene family nanomaterials (GFNs)—promising materials for antimicrobial coating and film:

A review. Chem. Eng. J. 2019, 358, 1022–1037. [CrossRef]
23. Zheng, H.; Ma, R.; Gao, M.; Tian, X.; Li, Y.; Zeng, L.; Li, R. Antibacterial applications of graphene oxides: Structure-activity

relationships, molecular initiating events and biosafety. Sci. Bull. 2018, 63, 133–142. [CrossRef]
24. Hancock, J.T.; Desikan, R.; Neill, S.J. Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans. 2001, 29,

345–350. [CrossRef]
25. Panda, S.; Rout, T.; Prusty, A.; Ajayan, P.; Nayak, S. Electron Transfer Directed Antibacterial Properties of Graphene Oxide on

Metals. Adv. Mater. 2018, 30, 1702149. [CrossRef] [PubMed]
26. Li, J.; Wang, G.; Zhu, H.; Zhang, M.; Zheng, X.; Di, Z.; Liu, X.; Wang, X. Antibacterial activity of large-area monolayer graphene

film manipulated by charge transfer. Sci. Rep. 2014, 4, 4349. [CrossRef] [PubMed]
27. Luan, B.; Huynh, T.; Zhao, L.; Zhou, R. Potential Toxicity of Graphene to Cell Functions via Disrupting Protein–Protein

Interactions. ACS Nano 2015, 9, 663–669. [CrossRef]
28. Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls against Bacteria. ACS Nano 2010, 4, 5731–5736.

[CrossRef] [PubMed]
29. Zhang, X.; Cong, H.; Yu, B.; Chen, Q. Recent advances of water-soluble fullerene derivatives in biomedical applications. Mini-Rev.

Org. Chem. 2019, 16, 92–99. [CrossRef]
30. Deryabin, D.G.; Davydova, O.K.; Yankina, Z.Z.; Vasilchenko, A.S.; Miroshnikov, S.A.; Kornev, A.B. The activity of [60] fullerene

derivatives bearing amine and carboxylic solubilizing groups against Escherichia coli: A comparative study. J. Nanomater. 2014,
2014, 907435. [CrossRef]

31. Berry, T.D.; Filley, T.R.; Clavijo, A.P.; Gray, M.B.; Turco, R. Degradation and microbial uptake of C60 fullerols in contrasting
agricultural soils. Environ. Sci. Technol. 2017, 51, 1387–1394. [CrossRef] [PubMed]

http://doi.org/10.1136/ejhpharm-2016-001013
http://www.ncbi.nlm.nih.gov/pubmed/31156859
http://doi.org/10.3390/nano8060359
http://www.ncbi.nlm.nih.gov/pubmed/29882933
http://doi.org/10.3389/fchem.2021.687660
http://doi.org/10.3390/ijms221910319
http://doi.org/10.1021/acsanm.0c00677
http://doi.org/10.1021/bm061150q
http://doi.org/10.3390/ijms20112747
http://doi.org/10.1016/j.progpolymsci.2011.08.005
http://doi.org/10.1016/j.msec.2017.04.114
http://doi.org/10.1021/acsami.6b05635
http://doi.org/10.1016/j.cis.2016.08.002
http://doi.org/10.1016/j.jhazmat.2021.126958
http://www.ncbi.nlm.nih.gov/pubmed/34464859
http://doi.org/10.1039/C3RA44906H
http://doi.org/10.3390/macromol1020006
http://doi.org/10.1039/B917103G
http://doi.org/10.3390/polym10020217
http://www.ncbi.nlm.nih.gov/pubmed/30966253
http://doi.org/10.1016/j.carbon.2011.09.046
http://doi.org/10.1002/anie.199201113
http://doi.org/10.3390/ma10091066
http://doi.org/10.1016/j.cej.2018.10.106
http://doi.org/10.1016/j.scib.2017.12.012
http://doi.org/10.1042/bst0290345
http://doi.org/10.1002/adma.201702149
http://www.ncbi.nlm.nih.gov/pubmed/29315841
http://doi.org/10.1038/srep04359
http://www.ncbi.nlm.nih.gov/pubmed/24619247
http://doi.org/10.1021/nn506011j
http://doi.org/10.1021/nn101390x
http://www.ncbi.nlm.nih.gov/pubmed/20925398
http://doi.org/10.2174/1570193X15666180712114405
http://doi.org/10.1155/2014/907435
http://doi.org/10.1021/acs.est.6b04637
http://www.ncbi.nlm.nih.gov/pubmed/28024122


Int. J. Mol. Sci. 2021, 22, 10511 25 of 28

32. Maksimova, Y.G. Microorganisms and carbon nanotubes: Interaction and applications. Appl. Biochem. Microbiol. 2019, 55, 1–12.
[CrossRef]

33. Ding, L.; Wang, H.; Liu, D.; Zeng, X.-A.; Mao, Y. Bacteria capture and inactivation with functionalized multi-walled carbon
nanotubes (MWCNTs). J. Nanosci. Nanotechnol. 2020, 20, 2055–2062. [CrossRef] [PubMed]

34. Yang, C.; Mamouni, J.; Tang, Y.; Yang, L. Antimicrobial activity of single-walled carbon nanotubes: Length effect. Langmuir 2010,
26, 16013–16019. [CrossRef] [PubMed]

35. Smith, S.C.; Rodrigues, D.F. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: A
review of mechanisms and applications. Carbon 2015, 91, 122–143. [CrossRef]

36. Yuan, W.; Jiang, G.; Che, J.; Qi, X.; Xu, R.; Chang, M.W. Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted
with hyperbranched poly (amidoamine) and their antimicrobial effects. J. Phys. Chem. C 2008, 112, 18754–18759. [CrossRef]

37. Morsi, R.E.; Alsabagh, A.M.; Nasr, S.A.; Zaki, M.M. Multifunctional nanocomposites of chitosan, silver nanoparticles, copper
nanoparticles and carbon nanotubes for water treatment: Antimicrobial characteristics. Int. J. Biol. Macromol. 2017, 97, 264–269.
[CrossRef] [PubMed]

38. Seo, Y.; Hwang, J.; Kim, J.; Jeong, Y.; Hwang, M.; Choi, J. Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes
decorated with silver nanoparticles. Int. J. Nanomed. 2014, 9, 4621–4629. [CrossRef]

39. Hui, L.; Piao, J.; Auletta, J.; Hu, K.; Zhu, Y.; Meyer, T.; Liu, H.; Yang, L. Availability of the Basal Planes of Graphene Oxide
Determines Whether It Is Antibacterial. ACS Appl. Mater. Interfaces 2014, 6, 13183–13190. [CrossRef] [PubMed]

40. Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite
Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano 2011, 5, 6971–6980. [CrossRef]

41. Zhang, W.; Yan, L.; Li, M.; Zhao, R.; Yang, X.; Ji, T.; Gu, Z.; Yin, J.; Gao, X.; Nie, G. Deciphering the underlying mechanisms of
oxidation-state dependent cytotoxicity of graphene oxide on mammalian cells. Toxicol. Lett. 2015, 237, 61–71. [CrossRef]

42. Dallavalle, M.; Calvaresi, M.; Bottoni, A.; Melle-Franco, M.; Zerbetto, F. Graphene Can Wreak Havoc with Cell Membranes.
ACS Appl. Mater. Interfaces 2015, 7, 4406–4414. [CrossRef]

43. Wang, J.; Wei, Y.; Shi, X.; Gao, H. Cellular entry of graphene nanosheets: The role of thickness, oxidation and surface adsorption.
RSC Adv. 2013, 3, 15776. [CrossRef]

44. Kumar, P.; Huo, P.; Zhang, R.; Liu, B. Antibacterial Properties of Graphene-Based Nanomaterials. Nanomaterials 2019, 9, 737.
[CrossRef]

45. Alekseeva, O.; Bagrovskaya, N.; Noskov, A. Polystyrene film composites filled with fullerenes. In Proceedings of the International
Conference Nanomaterials: Applications and Properties, Alusha, Ukranie, 21 September 2013.

46. Ballatore, M.B.; Durantini, J.; Gsponer, N.S.; Suarez, M.B.; Gervaldo, M.; Otero, L. Photodynamic inactivation of bacteria using
novel electrogenerated porphyrinfullerene C60 polymeric films. Environ. Sci. Technol. 2015, 49, 7456–7463. [CrossRef] [PubMed]

47. Aslan, S.; Määttä, J.; Haznedaroglu, B.Z.; Goodman, J.P.; Pfefferle, L.D.; Elimelech, M. Carbon nanotube bundling: Influence on
layer-by-layer assembly and antimicrobial activity. Soft Matter 2013, 9, 2136–2144. [CrossRef]

48. El-Ghany, N.A.A. Antimicrobial activity of new carboxymethyl chitosan–carbon nanotube biocomposites and their swell ability
in different pH media. J. Carbohydr. Chem. 2017, 36, 31–44. [CrossRef]

49. Kavoosi, G.; Dadfar, S.M.M.; Dadfar, S.M.A.; Ahmadi, F.; Niakosari, M. Investigation of gelatin/multi-walled carbon nanotube
nanocomposite films as packaging materials. Food Sci. Nutr. 2014, 2, 65–73. [CrossRef] [PubMed]

50. Gan, L.; Geng, A.; Jin, L.; Zhong, Q.; Wang, L.; Xu, L. Antibacterial nanocomposite based on carbon nanotubes–silver nanoparticles-
co-doped polylactic acid. Polym. Bull. 2020, 77, 793–804. [CrossRef]

51. Silva, F.A.G.D.J.; Vieira, S.A.; Botton, S.D.A.; Costa, M.M.D.; Oliveira, H.P.D. Antibacterial activity of polypyrrole-based
nanocomposites: A mini-review. Polímeros 2020, 30, e2020048. [CrossRef]

52. Tondro, G.H.; Behzadpour, N.; Keykhaee, Z.; Akbari, N.; Sattarahmady, N. Carbon@polypyrrole nanotubes as a photosensitizer
in laser phototherapy of Pseudomonas aeruginosa. Colloids Surf. B 2019, 180, 481–486. [CrossRef]

53. Benigno, E.; Lorente, M.A.; Olmosm, D.; González-Gaitano, G.; González-Benito, J. Nanocomposites based on LDPE filled with
carbon nanotubes prepared by high energy ball milling and its potential anti-bacterial activity. Polym. Int. 2020, 68, 1155–1163.
[CrossRef]

54. Aslan, S.; Loebick, C.Z.; Kang, S.; Elimelech, M.; Pfefferle, L.D.; Tassel, P.R.V. Antimicrobial biomaterials based on carbon
nanotubes dispersed in poly (lactic-co-glycolic acid). Nanoscale 2010, 2, 1789–1794. [CrossRef] [PubMed]

55. Bacali, C.; Baldea, I.; Moldovan, M.; Carpa, R.; Olteanu, D.E.; Filip, G.A.; Nastase, V.; Lascu, L.; Badea, M.; Constantiniuc, M.; et al.
Flexural strength, biocompatibility, and antimicrobial activity of a polymethyl methacrylate denture resin enhanced with graphene
and silver nanoparticles. Clin. Oral Investig. 2020, 24, 2713–2725. [CrossRef]

56. Díez-Pascual, A.M. Antibacterial Action of Nanoparticle Loaded Nanocomposites Based on Graphene and Its Derivatives: A
Mini-Review. Int. J. Mol. Sci. 2020, 21, 3563. [CrossRef]

57. Matharu, R.K.; Tabish, T.A.; Trakoolwilaiwan, T.; Mansfield, J.; Moger, J.; Wu, T.; Lourenço, C.; Chen, B.; Ciric, L.; Parkin, I.P.; et al.
Microstructure and antibacterial efficacy of graphene oxide nanocomposite fibres. J. Colloid Interface Sci. 2020, 571, 239–252.
[CrossRef] [PubMed]

58. Fan, Z.; Liu, B.; Wang, J.; Zhang, S.; Lin, Q.; Gong, P.; Ma, L.; Yang, S. A Novel Wound Dressing Based on Ag/Graphene Polymer
Hydrogel: Effectively Kill Bacteria and Accelerate Wound Healing. Adv. Funct. Mater 2014, 24, 3933–3943. [CrossRef]

http://doi.org/10.1134/S0003683819010101
http://doi.org/10.1166/jnn.2020.17332
http://www.ncbi.nlm.nih.gov/pubmed/31492212
http://doi.org/10.1021/la103110g
http://www.ncbi.nlm.nih.gov/pubmed/20849142
http://doi.org/10.1016/j.carbon.2015.04.043
http://doi.org/10.1021/jp807133j
http://doi.org/10.1016/j.ijbiomac.2017.01.032
http://www.ncbi.nlm.nih.gov/pubmed/28082228
http://doi.org/10.2147/IJN.S69561
http://doi.org/10.1021/am503070z
http://www.ncbi.nlm.nih.gov/pubmed/25026597
http://doi.org/10.1021/nn202451x
http://doi.org/10.1016/j.toxlet.2015.05.021
http://doi.org/10.1021/am508938u
http://doi.org/10.1039/c3ra40392k
http://doi.org/10.3390/nano9050737
http://doi.org/10.1021/acs.est.5b01407
http://www.ncbi.nlm.nih.gov/pubmed/25984839
http://doi.org/10.1039/c2sm27444b
http://doi.org/10.1080/07328303.2017.1353610
http://doi.org/10.1002/fsn3.81
http://www.ncbi.nlm.nih.gov/pubmed/24804066
http://doi.org/10.1007/s00289-019-02776-1
http://doi.org/10.1590/0104-1428.08020
http://doi.org/10.1016/j.colsurfb.2019.05.020
http://doi.org/10.1002/pi.5808
http://doi.org/10.1039/c0nr00329h
http://www.ncbi.nlm.nih.gov/pubmed/20680202
http://doi.org/10.1007/s00784-019-03133-2
http://doi.org/10.3390/ijms21103563
http://doi.org/10.1016/j.jcis.2020.03.037
http://www.ncbi.nlm.nih.gov/pubmed/32200168
http://doi.org/10.1002/adfm.201304202


Int. J. Mol. Sci. 2021, 22, 10511 26 of 28

59. Pereyra, J.Y.; Cuello, E.A.; Rodriguez, R.C.; Barbero, C.A.; Yslas, E.I.; Salavagione, H.J.; Acevedo, D.F. Synthesis and characteriza-
tion of GO-hydrogels composites. IOP Conf. Ser. Mater. Sci. Eng. 2017, 258, 012002. [CrossRef]

60. Cao, Y.; Wei, W.; Liu, J.; You, Q.; Liu, F.; Lan, Q.; Zhang, C.; Liu, C.; Zhao, J. The Preparation of Graphene Reinforced Poly(vinyl
alcohol) Antibacterial Nanocomposite Thin Film. Int. J. Polym. Sci. 2015, 2015, 407043. [CrossRef]

61. Díez-Pascual, A.M.; Díez-Vicente, A.L. PEGylated boron nitride nanotube-reinforced poly(propylene fumarate) nanocomposite
biomaterials. RSC Adv. 2016, 6, 79507–79519. [CrossRef]

62. Gautam, S.; Sharma, S.; Sharma, B.; Jain, P. Antibacterial efficacy of poly (vinyl alcohol) nanocomposites reinforced with graphene
oxide and silver nanoparticles for packaging applications. Polym. Compos. 2021, 42, 2829–2837. [CrossRef]

63. Cobos, M.; De-La-Pinta, I.; Quindós, G.; Fernández, M.J.; Fernández, M.D. Synthesis, Physical, Mechanical and Antibacterial
Properties of Nanocomposites Based on Poly(vinyl alcohol)/Graphene Oxide-Silver Nanoparticles. Polymers 2020, 12, 723.
[CrossRef] [PubMed]

64. Usman, A.; Hussain, Z.; Riaz, A.; Khan, A.N. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl
alcohol)/graphene oxide/starch/silver nanocomposites films. Carbohydr. Polym. 2016, 153, 592–599. [CrossRef] [PubMed]

65. Carpio, I.E.M.; Santos, C.M.; Wei, X.; Rodrigues, D.F. Toxicity of a polymer–graphene oxide composite against bacterial planktonic
cells, biofilms, and mammalian cells. Nanoscale 2012, 4, 4746–4756. [CrossRef] [PubMed]

66. Arriagada, P.; Palza, H.; Palma, P.; Flores, M.; Caviedes, P. Poly(lactic acid) composites based on graphene oxide particles with
antibacterial behavior enhanced by electrical stimulus and biocompatibility. J. Biomed. Mater. Res. A 2018, 106, 1051–1060.
[CrossRef]

67. Huang, Y.; Wang, T.; Zhao, X.; Wang, X.; Zhou, L.; Yang, Y.; Liao, F.; Ju, Y. Poly(lactic acid)/graphene oxide–ZnO nanocomposite
films with good mechanical, dynamic mechanical, anti-UV and antibacterial properties. J. Chem. Technol. Biotechnol. 2015, 90,
1677–1684. [CrossRef]

68. Pal, N.; Dubey, P.; Gopinath, P.; Pal, K. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid
matrix nanocomposite as a scaffold and its antibacterial activity. Int. J. Biol. Macromol. 2017, 95, 94–105. [CrossRef]

69. Shen, X.; Yang, S.; Shen, J.; Ma, J.; Wu, Y.; Zeng, X.; Fu, S. Improved mechanical and antibacterial properties of silver-graphene
oxide hybrid/polylactid acid composites by in-situ polymerization. Ind. Crop. Prod. 2019, 130, 571–579. [CrossRef]

70. Kumar, S.; Raj, S.; Jain, S.; Chatterjee, K. Multifunctional biodegradable polymer nanocomposite incorporating graphene-silver
hybrid for biomedical applications. Mater. Des. 2016, 108, 319–332. [CrossRef]

71. Angulo-Pineda, C.; Srirussamee, K.; Palma, P.; Fuenzalida, V.M.; Cartmell, S.H.; Palza, H. Electroactive 3D Printed Scaffolds
Based on Percolated Composites of Polycaprolactone with Thermally Reduced Graphene Oxide for Antibacterial and Tissue
Engineering Applications. Nanomaterials 2020, 10, 428. [CrossRef]

72. Liu, C.; Shen, J.; Liao, C.Z.; Yeung, K.W.K.; Tjong, S.C. Novel electrospun polyvinylidene fluoride-graphene oxide-silver
nanocomposite membranes with protein and bacterial antifouling characteristics. Express Polym. Lett. 2018, 12, 365–382.
[CrossRef]

73. Diez-Pascual, A.M. Antibacterial Nanocomposites Based on Thermosetting Polymers Derived from Vegetable Oils and Metal
Oxide Nanoparticles. Polymers 2019, 11, 1790. [CrossRef]

74. Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am.
Chem. Soc. 2008, 130, 10876–10877. [CrossRef]

75. Díez-Pascual, A.M.; Díez-Vicente, A.L. Multifunctional poly(glycolic acid-co-propylene fumarate) electrospun fibers reinforced
with graphene oxide and hydroxyapatite nanorods. J. Mater. Chem. B 2017, 5, 4084–4096. [CrossRef]

76. Chook, S.W.; Chia, C.H.; Zakaria, S.; Ayob, M.K.; Huang, N.M.; Neoh, H.M.; Jamal, R. Antibacterial hybrid cellulose-graphene
oxide nanocomposite immobilized with silver nanoparticles. RSC Adv. 2015, 5, 26263–26268. [CrossRef]

77. Naskar, A.; Khan, H.; Sarkar, R.; Kumar, S.; Halder, D.; Jana, S. Anti-biofilm activity and food packaging application of room
temperature solution process based polyethylene glycol capped Ag-ZnO-graphene nanocomposite. Mater. Sci. Eng. C 2018, 91,
743–753. [CrossRef]

78. Jamróz, E.; Kopel, P.; Tkaczewska, J.; Dordevic, D.; Jancikova, S.; Kulawik, P.; Milosavljevic, V.; Dolezelikova, K.; Smerkova, K.;
Svec, P.; et al. Nanocomposite Furcellaran Films—the Influence of Nanofillers on Functional Properties of Furcellaran Films and
Effect on Linseed Oil Preservation. Polymers 2019, 11, 2046. [CrossRef]

79. Faria, A.F.D.; Perreault, F.; Shaulsky, E.; Chavez, L.H.A.; Elimelech, M. Antimicrobial Electrospun Biopolymer Nanofiber Mats
Functionalized with Graphene Oxide–Silver Nanocomposites. ACS Appl. Mater. Interfaces 1900, 7, 12751–12759. [CrossRef]

80. Barra, A.; Ferreira, N.M.; Martins, M.A.; Lazar, O.; Pantazi, A.; Jderu, A.A.; Neumayer, S.M.; Rodriguez, B.J.; Enăchescu, M.;
Ferreira, P.; et al. Eco-friendly preparation of electrically conductive chitosan–reduced graphene oxide flexible bionanocomposites
for food packaging and biological applications. Compos. Sci. Technol. 2019, 173, 53–60. [CrossRef]

81. Xu, W.; Xie, W.; Huang, X.; Chen, X.; Huang, N.; Wang, X.; Liu, J. The graphene oxide and chitosan biopolymer loads TiO2 for
antibacterial and preservative research. Food Chem. 2017, 221, 267–277. [CrossRef] [PubMed]

82. Mahmoudi, N.; Ostadhossein, F.; Simchi, A. Physicochemical and antibacterial properties of chitosan-polyvinylpyrrolidone films
containing self-organized graphene oxide nanolayers. J. Appl. Polym. Sci. 2016, 133, 43194. [CrossRef]

83. Díez-Pascual, A.M.; Díez-Vicente, A.L. Electrospun fibers of chitosan-grafted polycaprolactone/poly(3-hydroxybutyrate-co-3–
hydroxyhexanoate) blends. J. Mater. Chem. B 2016, 4, 600. [CrossRef] [PubMed]

http://doi.org/10.1088/1757-899X/258/1/012002
http://doi.org/10.1155/2015/407043
http://doi.org/10.1039/C6RA09884C
http://doi.org/10.1002/pc.26017
http://doi.org/10.3390/polym12030723
http://www.ncbi.nlm.nih.gov/pubmed/32214025
http://doi.org/10.1016/j.carbpol.2016.08.026
http://www.ncbi.nlm.nih.gov/pubmed/27561532
http://doi.org/10.1039/c2nr30774j
http://www.ncbi.nlm.nih.gov/pubmed/22751735
http://doi.org/10.1002/jbm.a.36307
http://doi.org/10.1002/jctb.4476
http://doi.org/10.1016/j.ijbiomac.2016.11.041
http://doi.org/10.1016/j.indcrop.2019.01.018
http://doi.org/10.1016/j.matdes.2016.06.107
http://doi.org/10.3390/nano10030428
http://doi.org/10.3144/expresspolymlett.2018.31
http://doi.org/10.3390/polym11111790
http://doi.org/10.1021/ja803688x
http://doi.org/10.1039/C7TB00497D
http://doi.org/10.1039/C5RA01897H
http://doi.org/10.1016/j.msec.2018.06.009
http://doi.org/10.3390/polym11122046
http://doi.org/10.1021/acsami.5b01639
http://doi.org/10.1016/j.compscitech.2019.01.027
http://doi.org/10.1016/j.foodchem.2016.10.054
http://www.ncbi.nlm.nih.gov/pubmed/27979202
http://doi.org/10.1002/app.43194
http://doi.org/10.1039/C5TB01861G
http://www.ncbi.nlm.nih.gov/pubmed/32262942


Int. J. Mol. Sci. 2021, 22, 10511 27 of 28

84. Narayanan, K.B.; Park, G.T.; Han, S.S. Antibacterial properties of starch-reduced graphene oxide–polyiodide nanocomposite.
Food Chem. 2021, 342, 128385. [CrossRef]

85. Martí, M.; Frígols, B.; Salesa, B.; Serrano-Aroca, Á. Calcium alginate/graphene oxide films: Reinforced composites able to
prevent Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis infections with no cytotoxicity for human
keratinocyte HaCaT cells. Eur. Polym. J. 2019, 110, 14–21. [CrossRef]

86. Frígols, B.; Martí, M.; Salesa, B.; Hernández-Oliver, C.; Aarstad, O.; Ulset, A.T.; Sӕtrom, G.I.; Aachmann, F.L.; Serrano-Aroca, Á.
Graphene oxide in zinc alginate films: Antibacterial activity, cytotoxicity, zinc release, water sorption/diffusion, wettability and
opacity. PLoS ONE 2019, 14, e0212819. [CrossRef]

87. AbuDalo, M.A.; Al-Mheidat, I.R.; Al-Shurafat, A.W.; Grinham, C.; Oyanedel-Craver, V. Synthesis of silver nanoparticles using a
modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity. PeerJ 2019, 7, e6413.
[CrossRef]

88. Díez-Pascual, A.M.; Díez-Vicente, A.L. Antimicrobial and sustainable food packaging based on poly(butylene adipate-co-
terephthalate) and electrospun chitosan nanofibers. RSC Adv. 2015, 5, 93095–93107. [CrossRef]

89. Díez-Pascual, A.M.; Díez-Vicente, A.L. ZnO-Reinforced Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Bionanocomposites with
Antimicrobial Function for Food Packaging. ACS Appl. Mater. Inferfaces 2014, 6, 9822–9834. [CrossRef]

90. Díez-Pascual, A.M.; Díez-Vicente, A.L. Poly(3-hydroxybutyrate)/ZnO bionanocomposites with improved mechanical, barrier
and antibacterial properties. Int. J. Mol. Sci. 2014, 15, 10950–10973. [CrossRef]

91. Rivera-Briso, A.L.; Aachmann, F.L.; Moreno-Manzano, V.; Serrano-Aroca, Á. Graphene oxide nanosheets versus carbon nanofibers:
Enhancement of physical and biological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for biomedical
applications. Int. J. Biol. Macromol. 2020, 143, 1000–1008. [CrossRef] [PubMed]

92. Li, F.; Yu, H.; Wang, Y.; Zhou, Y.; Zhang, H.; Yao, J.; Abdalkarim, S.Y.H.; Tam, K.C. Natural Biodegradable Poly(3-hydroxybutyrate-
co-3-hydroxyvalerate) Nanocomposites with Multifunctional Cellulose Nanocrystals/Graphene Oxide Hybrids for High-
Performance Food Packaging. J. Agric. Food Chem. 2019, 67, 10954–10967. [CrossRef] [PubMed]

93. Gouvêa, R.F.; Aguila, E.M.D.; Paschoalin, V.M.F.; Andrade, C.T. Extruded hybrids based on poly(3-hydroxybutyrate-co-3-
hydroxyvalerate) and reduced graphene oxide composite for active food packaging. Food Packag. Shelf Life 2018, 16, 77–85.
[CrossRef]

94. Pal, S.; Tak, Y.K.; Song, J.M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A
Study of the Gram-Negative Bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [CrossRef] [PubMed]

95. Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver
nanoparticles. Nanotechnology 2005, 16, 2346–2353. [CrossRef] [PubMed]

96. Zowalaty, M.E.; Ibrahim, N.A.; Salama, M.; Shameli, K.; Usman, M.; Zainuddin, N. Synthesis, characterization, and antimicrobial
properties of copper nanoparticles. Int. J. Nanomed. 2013, 8, 4467–4479. [CrossRef]

97. Ren, G.; Hu, D.; Cheng, E.W.; Vargas-Reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of copper oxide nanoparticles for
antimicrobial applications. Int. J. Antimicrob. Agents 2009, 33, 587–590. [CrossRef]

98. Díez-Pascual, A.M.; Díez-Vicente, A.L. Development of linseed oil–TiO2 green nanocomposites as antimicrobial coatings. J. Mater.
Chem. B 2015, 3, 4458. [CrossRef]

99. Markowitz, N.; Quinn, E.L.; Saravolatz, L.D. Trimethoprim-sulfamethoxazole compared with vancomycin for the treatment of
Staphylococcus aureus infection. Ann. Intern. Med. 1992, 117, 390–398. [CrossRef]

100. Chudobova, D.; Dostalova, S.; Blazkova, I.; Michalek, P.; Ruttkay-Nedecky, B.; Sklenar, M.; Nejdl, L.; Kudr, J.; Gumulec, J.;
Tmejova, K.; et al. Effect of ampicillin, streptomycin, penicillin and tetracycline on metal resistant and non-resistant Staphylococ-
cus aureus. Int. J. Environ. Res. Public Health 2014, 11, 3233–3255. [CrossRef]

101. Cid, S.R.C.; Cruz, M.C.; Faustino, V.; Tuazon, A.O. In vitro study on the antimicrobial activity of probiotic milk against common
pediatric community acquired respiratory pathogens. PIDSP J. 2005, 9, 25–29.

102. Matsuura, M.; Nakazawa, H.; Hashimoto, T.; Mitsuhashi, S. Combined antibacterial activity of amoxicillin with clavulanic acid
against ampicillin-resistant strains. Antimicrob. Agents Chemother. 1980, 17, 908–911. [CrossRef]
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