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Abstract

Given an algebraic plane curve C defined by a rational parametrization P(t), we present formulae
for the computation of the degree of C, and the multiplicity of a point. Using the results presented
in [Sendra, J.R., Winkler, F., 2001. Tracing index of rational curve parametrizations. Computer Aided
Geometric Design 18 (8), 771–795], the formulae simply involve the computation of the degree of a
rational function directly determined from P(t). Furthermore, we provide a method for computing the
singularities of C and analyzing the non-ordinary ones without knowing its defining polynomial. This
approach generalizes the results in [Abhyankar, S., 1990. Algebraic geometry for scientists and engineers.
In: Mathematical Surveys and Monographs, vol. 35. American Mathematical Society; van den Essen,
A., Yu, J.-T., 1997. The D-resultants, singularities and the degree of unfaithfulness. Proceedings of the
American Mathematical Society 25, 689–695; Gutierrez, J., Rubio, R., Yu, J.-T., 2002. D-Resultant for
rational functions. Proceedings of the American Mathematical Society 130 (8), 2237–2246] and [Park, H.,
2002. Effective computation of singularities of parametric affine curves. Journal of Pure and Applied
Algebra 173, 49–58].
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Parametrizations, in particular parametrizations of rational curves, play an important role in
many practical applications in computer aided geometric design where objects are often given
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and manipulated parametrically, such as in visualization (see Hoffmann et al. (1997), Hoschek
and Lasser (1993)) or rational parametrization of offsets (see Arrondo et al. (1997)). Also, there
exists an implicitization approach based on resultants (see Cox et al. (1998) and Sendra and
Winkler (2001)).

Many authors have studied different problems related to rational curves (i.e. algebraic curves
that can be parametrized rationally) assuming that the original curve was given implicitly. Now
we consider some of these problems but from another point of view, namely, we assume that the
curve is given in parametric form.

In this paper, we first deal with the determination of the degree of a rational plane curve (i.e.
the total degree of the implicit equation) defined by a rational parametrization. We will use this
approach to compute the multiplicity of a given point.

This question, i.e. the determination of the degree, is especially interesting since the degree
of the curve can be used to approach some other problems, for instance the construction of
implicitization algorithms based on interpolation techniques (see Kotsireas (2004), Marco and
Martı́nez (2001)). Motivated by this fact, some authors have addressed this problem. For instance,
in Sendra and Winkler (2001) the authors present some formulae for the computation of the
partial degrees of the implicit equation defining a plane curve. For the surface case, interesting
contributions have also been presented. In Pérez-Dı́az and Sendra (2005), the results for curves of
Sendra and Winkler (2001) are generalized for the case of parametric surfaces. In Schicho (1999),
one may find bounds for the degree of the parametrization of a rational surface, in Chionh and
Goldman (1992) a method based on the degree of rational maps and on the base points of the
parametrization is presented, in Buse et al. (2003) and Cox (2001) one computes the degree by
analyzing the base points and by means of syzygies, etc. In addition, the degree problem has also
been studied for the case of special computer aided geometric constructions such as offsetting
(see San Segundo and Sendra (2005)).

The formula presented in this paper is obtained from the results in Sendra and Winkler (2001),
and it is based on the computation of the degree of a rational function directly obtained from the
given parametrization. Using this result, a formula for computing the multiplicity of a given point
is provided.

Moreover, we focus on the problem of computing and analyzing all the singularities of a
rational plane curve without knowing its defining polynomial. Several approaches solving this
problem when the algebraic curve is given implicitly are presented (see for instance Sakkalis
and Farouki (1990)). Many authors have addressed the problem when the curve is defined by a
rational parametrization, but up to the present only partial answers are provided. In Abhyankar
(1990), the author develops the notion of the Taylor resultant to deal with this problem for rational
curves parametrized polynomially. This concept was generalized as the D-resultant in van den
Essen and Yu (1997) which works over an arbitrary field. In Park (2002), the author extends this
result to a curve in affine n-space parametrized polynomially. Finally, in Gutierrez et al. (2002)
the authors introduce the D-resultant of two rational functions, and show how it can be used to
find the singularities of a parametric algebraic curve.

In this paper, we generalize these results. More precisely, we show how to find the singularities
and their corresponding multiplicities of a parametric algebraic curve simply by analyzing the
degree of a rational function directly obtained from the given parametrization. Moreover, we
describe the singularities without directly introducing algebraic numbers in the computations.
More precisely, we simulate the decomposition of singularities for plane curves defined implicitly
(see Sendra and Winkler (1997)) for the case of curves defined parametrically. We also analyze
the character of the singularity and we compute the neighboring singularities. The results
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presented here provide effective methods that can be used to solve the problem of curves in
affine n-space. We will deal with this problem in a future work.

The structure of the paper is as follows. In Section 2, we introduce the terminology that will
be used throughout this paper as well as some previous results. In Section 3, we present a formula
that computes the degree of a plane curve defined parametrically. Section 4 generalizes the results
of Section 3, and presents some formulae for computing the multiplicity of a given point, affine
or projective. Section 5 is devoted to the computation of singularities. In addition, we outline
the algorithm, and we illustrate it with an example. Finally, non-ordinary singularities are treated
specially in Section 6.

2. Notation and preliminaries

In this section we introduce the notation and terminology that will be used throughout this
paper. In addition, we recall some basic results on parametric curves. These results will be used
throughout the subsequent sections.

2.1. Notation and basic notions

Throughout this paper, we assume that K is a computable field of characteristic zero and K
is its algebraic closure. Let F(x1, x2) ∈ K[x1, x2] be the defining polynomial of a rational affine
irreducible curve C. In the following, we assume that C is not a line. Observe that in this case,
the problems that we deal with in this paper are trivial.
Let L be a subfield of K such that K ⊂ L ⊂ K , and let

P(t) = (p1(t), p2(t)) ∈ L(t)2,

be a rational parametrization of C, where pi (t) =
pi,1(t)
p(t) , i = 1, 2, and gcd(p1,1, p2,1, p) = 1.

Sometimes, we will need the parametrization P in reduced form. We write it as

P(t) =

(
q1,1(t)

q1,2(t)
,

q2,1(t)

q2,2(t)

)
, gcd(qi,1, qi,2) = 1, i = 1, 2.

Under these conditions, we immediately get that the corresponding projective curve C? is defined
by the homogenization F?(x1, x2, x3) of F(x1, x2). Therefore, if we write

F(x1, x2) = Fd(x1, x2) + Fd−1(x1, x2) + · · · + F0(x1, x2),

where Fk(x1, x2) is a homogeneous polynomial of degree k, and Fd 6= 0, then

F?(x1, x2, x3) = Fd(x1, x2) + Fd−1(x1, x2)x3 + · · · + F0(x1, x2)xd
3 .

Thus, a projective parametrization of C? is given by P?(t) =
(

p1,1(t), p2,1(t), p(t)
)
.

Every affine point (a, b) on C corresponds to a point (a : b : 1) of the projective plane P2 on
the curve C?, and every additional point on C? is a point at infinity. In other words, the first two
coordinates of the additional points are the nontrivial solutions of Fd(x1, x2). Thus, the curve C?

has only finitely many points at infinity.
On the other hand, associated with every projective curve there are infinitely many affine

curves. If C? is the projective curve defined by the form F?(x1, x2, x3), we denote by Cx3 the
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affine plane curve defined by F(x1, x2) = F?(x1, x2, 1). Similarly, we consider Cx2 , and Cx1 .
Observe that

Px1(t) =

(
p2,1(t)

p1,1(t)
,

p(t)

p1,1(t)

)
, Px2(t) =

(
p1,1(t)

p2,1(t)
,

p(t)

p2,1(t)

)
,

Px3(t) =

(
p1,1(t)

p(t)
,

p2,1(t)

p(t)

)
parametrize Cx1 , Cx2 , and Cx3 , respectively (note that C is not a line and then pi,1(t) 6= 0 for
i = 1, 2).

Associated with the rational functions of P(t), we consider the induced rational map φP :

K −→ C ⊂ K 2
; t 7−→ P(t), and the polynomials

GPi (s, t) = qi,1(t) qi,2(s) − qi,1(s) qi,2(t) ∈ L[s, t], i ∈ {1, 2},

GP (s, t) = gcd(GP1 , GP2 ).

The polynomials GPi play an important role in deciding whether a parametrization P(t) is proper
by means of the degree of φP ; i.e. in studying whether the parametrization is injective for almost
all parameter values (see Sendra and Winkler (2001)).

Related to the problem we are dealing with, we will use different concepts of degree:

(1) For a polynomial G ∈ K [x1, x2, x3] we denote by tdeg(G) the total degree of G and by
degxi

(G) the degree of G w.r.t. xi .
(2) We denote by deg(C) the degree of C, that is deg(C) = tdeg(F).
(3) We define the partial degree of C w.r.t. xi as the partial degree of its implicit equation, and

we denote it by degxi
(C).

(4) We define the degree of the parametrization P(t) as the maximum of the degrees of its
rational components, in reduced form, and we denote it by deg(P(t)).

(5) We denote by deg(φP ) the degree of the rational map φP (for further details see e.g.
Shafarevich (1994, pp. 143), or Harris (1995, pp. 80)). As an important result, we recall
that the birationality of φP , i.e. the properness of P(t), is characterized by deg(φP ) = 1
(see Harris (1995) and Shafarevich (1994)). Also, we recall that the degree of a rational map
can be seen as the cardinality of the fibre of a generic element (see Theorem 7, pp. 76 in
Shafarevich (1994)). We will use this characterization in our reasoning. For this purpose, we
denote by FP (P) the fibre of a point P ∈ C; that is FP (P) = P−1(P) = {t ∈ K |P(t) =

P}.

2.2. Singular points

Singular points play an important role in the theory of algebraic curves. In the following,
some basic notions and results are reviewed (see Brieskorn and Knoerrer (1986), Fulton (1989),
Shafarevich (1994) or Walker (1950)).

Definition 1. Let P = (a, b) ∈ C. We say that P is of multiplicity ` on C if and only if all the
derivatives of F up to and including the (` − 1)-th vanish at P but at least one `-th derivative
does not vanish at P . We denote it by multP (C).

P is called a simple point on C iff multP (C) = 1. If multP (C) = ` > 1, then we say that P is
a multiple or singular point (or singularity) of multiplicity ` on C or an `-fold point. Furthermore
if P 6∈ C then multP (C) = 0.
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Observe that the multiplicity of C at P is given as the order of the Taylor expansion of F at
P . The tangents to C at P are the irreducible factors of the first nonvanishing form in the Taylor
expansion of F at P , and the multiplicity of a tangent is the multiplicity of the corresponding
factor.

For analyzing a singular point P on a curve C we need to know its multiplicity but also the
multiplicities of the tangents at P . If all the ` tangents at the `-fold point P are different, then
this singularity is called ordinary, and it is called non-ordinary otherwise. Thus, we say that the
character of P is either ordinary or non-ordinary.

Now, as far as projective curves are concerned all these definitions also apply, since every
point at infinity can be transformed to a point at finite distance by a change of coordinates.

In order to compute the affine singularities one just has to find the finite solutions of the system
of algebraic equations {F = 0, ∂ F

∂x1
= 0, ∂ F

∂x2
= 0}, and to determine the singularities at infinity

one can dehomogenize F?(x1, x2, x3) with respect to another variable. Also, one can look for
the non-zero solutions of {

∂ F?

∂x1
= 0, ∂ F?

∂x2
= 0, ∂ F?

∂x3
= 0}. We remark that every curve without

multiple components has only finitely many singularities.

2.3. Computation of the degree of a rational map

In this subsection, we compute the degree of the rational map induced by φP . Intuitively
speaking, the degree measures the number of times the parametrization traces the curve when the
parameter takes values in K . All results in this subsection are included in Sendra and Winkler
(2001). Therefore, we omit proofs.

Theorem 2. Let T (s) = Resultantt (GP1 /GP , GP2 /GP ) if P does not have constant
components, and T (s) = 1 otherwise. Let M(s) = gcd(lc(GP1 , t), lc(GP2 , t)), where lc(GPi , t)
denotes the leading coefficient of GPi w.r.t. the variable t . Then, for α ∈ K such that
q1,2(α)q2,2(α)T (α)M(α) 6= 0, we have

(1) deg(φP ) = Card(FP (P(s))) = deg(GP (α, t)) = degt (G
P (s, t)),

(2) FP (P(α)) = {β ∈ K | GP (α, β) = 0}. �

Since a parametrization is proper if and only if it defines a birational mapping between the
affine line and the curve, it is clear that a parametrization is proper if and only if degt (G

P ) = 1.
The next theorem characterizes the properness of a parametrization by means of the degree of

the implicit equation of the curve.

Theorem 3. P(t) is proper if and only if deg(P(t)) = max{degx1
(F), degx2

(F)}. Furthermore,

if p1(t) is non-zero then degx2
(F) =

deg(p1(t))
deg(φP )

; similarly if p2(t) is non-zero then degx1
(F) =

deg(p2(t))
deg(φP )

. �

2.4. Normality of a rational parametrization

Any rational parametrization P(t) induces a natural dominant rational mapping φP from the
affine line onto the curve. In fact, when we study the properness of a parametrization P(t) we
analyze the injectivity of φP over almost all values in K . Now, we focus on the surjectivity. The
mapping φP is dominant; thus, in general, it might not be surjective, and hence some points of
the algebraic set are missed. In this situation, we introduce the following notion. All the results
in this subsection are included in Sendra (2002).
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Definition 4. A rational affine parametrization P(t) is normal iff the rational mapping φP is
surjective, or equivalently iff for all P ∈ C there exists t0 ∈ K such that P(t0) = P .

In Sendra (2002), it is proved that any affine rational parametrization generates, when the
parameter takes values in an algebraically closed field, all affine points on the curve with the
exception of at most one point. In fact, it is shown that any affine parametrization can always be
reparametrized into a normal one. More precisely, one has the following theorem.

Theorem 5. Let P be the given parametrization in reduced form. Let n = deg(q1, 1), m =

deg(q1,2), r = deg(q2, 1), s = deg(q2, 2), and let `1 = coeff(q1, 1, m), `2 = coeff(q1, 2, m),
`3 = coeff(q2, 1, s), `4 = coeff(q2, 2, s). Then, it holds that:

(1) If n > m or r > s then P(t) is normal.
(2) If n ≤ m and r ≤ s then P(t) is normal if and only if

deg(gcd(`1q1, 2(t) − `2q1, 1(t), `3q2, 2(t) − `4q2, 1(t))) ≥ 1.

Furthermore, if P(t) is not normal, all points in C are generated by P(t) with the exception
of (`1/`2, `3/`4) which is a point on C. �

In the following, we will refer to the only possible missing point of the parametrization,
(`1/`2, `3/`4), as the critical point of P(t).

Remark 1. Let P = (a1 : a2 : a3) ∈ P2 be a point of C? not generated by P?. Let ai 6= 0, for
some i = 1, 2, 3. Then (a j/ai , ak/ai ), where j, k ∈ {1, 2, 3}, and j 6= i 6= k, is the critical point
of the parametrization Pxi in reduced form.

3. The degree of a rational plane curve

The computation of the degree of an algebraic curve is an important problem. To approach
this problem one may for instance compute the maximum number of intersection points of the
curve with a line in general position.

In this section, we introduce an additional method that solves this problem. The approach
presented will be a necessary tool for the next section. For this purpose, we apply the result on
partial degrees presented in Theorem 3, to compute the degree of a given algebraic plane curve
C defined by a parametrization

P(t) = (p1(t), p2(t)) ∈ L(t)2,

where pi (t) = pi,1(t)/p(t), i = 1, 2, and gcd(p1,1, p2,1, p) = 1.

We remark that pi 6∈ K . Observe that in this case, the problem is trivial since C is a line and then,
deg(C) = 1.

Theorem 6. Let (a, b) 6∈ C. Then,

deg(C) =

deg
(

p2,1(t)−bp(t)
p1,1(t)−ap(t)

)
deg(φP )

.

Proof. We consider the curve D defined by the polynomial G(x1, x2) = F(x1 + a, x2 + b).

Observe that

Q(t) =

(
p1,1(t) − ap(t)

p(t)
,

p2,1(t) − bp(t)

p(t)

)
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parametrizes D, and (0, 0) 6∈ D. Thus, we write

G?(x1, x2, x3) = Gd(x1, x2) + Gd−1(x1, x2)x3 + · · · + G0(x1, x2)xd
3 ,

and since (0, 0) 6∈ D, we deduce that

d = deg(D) = degx3
(G?(x1, x2, x3)) = degx3

(G?(1, x2, x3)).

Now, we consider the parametrization Qx1(t) of the curve Dx1 (see Section 2), and we apply
Theorem 3 (one reasons similarly if one considers Qx2 ). We get that

deg(D) =

deg
(

p2,1(t)−bp(t)
p1,1(t)−ap(t)

)
deg(φQx1

)
.

Observe that since the degree is multiplicative with respect to composition (see (Shafarevich,
1994)), and taking into account that Qx1 = R ◦ P , where R = ((y − b)/(x − a), 1/(x − a)),
we deduce that deg(φQx1

) = deg(φR) · deg(φP ). Clearly deg(φR) = 1, and then deg(φQx1
) =

deg(φP ). Finally, we also note that the total degree of a curve is invariant under linear changes
of coordinates, and hence deg(D) = deg(C). �

Remark 2. In order to check whether (a, b) ∈ C, one computes

gcd(q1, 1(t) − aq1,2(t), q2, 1(t) − bq2,2(t)).

If the degree of the above polynomial is greater than or equal to 1, then (a, b) ∈ C. Otherwise,
one analyzes whether (a, b) is the critical point ofP . In the affirmative case (a, b) ∈ C, otherwise
(a, b) 6∈ C.

In the following result, we generalize Theorem 6. More precisely, we avoid the condition of
taking a point (a, b) 6∈ C.

Theorem 7. Let dk = degxk
(F), k = 1, 2, and let (a, ci ) ∈ K 2, i = 1, . . . , d1 +d2 +1, be such

that ci 6= c j for i 6= j . Then,

deg(C) =

max1≤i≤d1+d2+1

{
deg

(
p2,1(t)−ci p(t)
p1,1(t)−ap(t)

)}
deg(φP )

.

Proof. First we note that since C is not the line x = a (pi 6∈ K ) and C is irreducible, by the
Bézout Theorem (see Walker (1950)), we get that the line x − a and the curve C intersect in
deg(C) points. Taking into account that deg(C) ≤ d1 + d2, we deduce that there exists at least a
point (a, ci0) ∈ K 2 not in C. Therefore, by Theorem 6, we get that

deg(C) =

deg
(

p2,1(t)−ci0 p(t)
p1,1(t)−ap(t)

)
deg(φP )

(I).

Now, we note that if (a, c j ) ∈ C, then

deg(C) >
deg

(
p2,1(t)−c j p(t)
p1,1(t)−ap(t)

)
deg(φP )

(II).
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Indeed, let D be the curve defined by the polynomial G(x1, x2) = F(x1 + a, x2 + c j ). Observe
that G(0, 0) = F(a, c j ) = 0. Thus, we write

G?(x1, x2, x3) = Gd(x1, x2) + Gd−1(x1, x2)x3 + · · · + G0(x1, x2)xd
3 ,

and since (0, 0) ∈ D, we deduce that

d = deg(D) = deg(C) > degx3
(G?(x1, x2, x3)) = degx3

(G?(1, x2, x3)).

Reasoning similarly to in the proof of Theorem 6, we get that

degx3
(G?(x1, x2, x3)) =

deg
(

p2,1(t)−c j p(t)
p1,1(t)−ap(t)

)
deg(φP )

.

Therefore, from (I) and (II), we conclude that

deg(C) =

max1≤i≤d1+d2+1

{
deg

(
p2,1(t)−ci p(t)
p1,1(t)−ap(t)

)}
deg(φP )

. �

Example 1. Let C be the rational curve over C defined by the parametrization

P(t) = (p1(t), p2(t)) =

(
p1,1(t)

p(t)
,

p2,1(t)

p(t)

)
=

(
t4

(t2 + 1)t3 ,
(1 + 3t3)(t2

+ 1)

(t2 + 1)t3

)
.

First, we apply Theorem 2 to compute deg(φP ). We get that P is proper, that is deg(φP ) = 1. In
addition, by Theorem 3, we get that

degx2
(F) =

deg(p1(t))

deg(φP )
= 2, degx1

(F) =
deg(p2(t))

deg(φP )
= 3.

Now, we consider P = (0, 0), and we observe that P 6∈ C (see Remark 2, and note that
gcd(t, 1 + 3t3) = 1, and P is not the critical point). Thus, we apply Theorem 6, and we get
that

deg(C) =

deg
(

(1+3t3)(t2
+1)

t4

)
deg(φP )

= 5.

Now, we apply Theorem 7. For this purpose, we consider a = 1/2, and ci = i , for i = 1, . . . , 6.
Then,

deg(C) =

max1≤i≤6

{
deg

(
(1+3t3)(t2

+1)−i(t2
+1)t3

t4−1/2(t2+1)t3

)}
deg(φP )

= 5.

4. Computation of the multiplicity of a point from a rational parametrization

In this section, we compute the multiplicity of a given point (see Definition 1), directly from a
given rational parametrization of a plane curve. A direct approach to this problem could consist
in implicitizing the parametrization (see González-Vega (1997), Marco and Martı́nez (2001),
Sederberg et al. (1997) or Sendra and Winkler (2001)) to apply afterwards algorithms developed
for instance in Fulton (1989), Harris (1995), Sakkalis and Farouki (1990), Sendra and Winkler
(1991) or Walker (1950), to the implicit equation. This solution might be too time-consuming
and then, we would like to approach the problem without implicitizing.
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For this purpose, we first observe that (0, 0) is a point of multiplicity ` on C, if and only if

F?(x1, x2, x3) = Fd(x1, x2) + Fd−1(x1, x2)x3 + · · · + F`(x1, x2)xd−`
3 .

That is, d − ` = degx3
(F?), where d = deg(C). In this section, we generalize this result to any

point, affine or projective. We start with the affine case.
We recall that C is not a line. Observe that in this case, the problem is trivial since all the

points in a line are simple points.

Theorem 8. Let (a, b) ∈ K 2. Then,

mult(a:b:1)(C?) = mult(a,b)(C) = deg(C) −

deg
(

p2,1(t)−bp(t)
p1,1(t)−ap(t)

)
deg(φP )

.

Proof. Let D be the curve defined by the polynomial G(x1, x2) = F(x1 + a, x2 + b). Observe
that

Q(t) =

(
p1,1(t) − ap(t)

p(t)
,

p2,1(t) − bp(t)

p(t)

)
parametrizes D. We write

G?(x1, x2, x3) = Gd(x1, x2) + Gd−1(x1, x2)x3 + · · · + G0(x1, x2)xd
3 ,

and since mult(a,b)(C) = mult(0,0)(D), we deduce that

deg(D) − mult(a,b)(C) = degx3
(G?(x1, x2, x3)) = degx3

(G?(1, x2, x3)).

Now, we consider the parametrization Qx1(t) of the curve Dx1 (see Section 2), and we apply
Theorem 3 (one reasons similarly if one considers Qx2 ). We get that

degx3
(G?(1, x2, x3)) =

deg
(

p2,1(t)−bp(t)
p1,1(t)−ap(t)

)
deg(φQx1

)
.

Reasoning as in the proof of Theorem 6, we get that deg(φQx1
) = deg(φP ), and deg(D) =

deg(C). �

In the following theorem, we deal with the problem for the projective case.

Theorem 9. It holds that

mult(1:k:0)(C?) = deg(C) −

deg
(

p(t)
p2,1(t)−kp1,1(t)

)
deg(φP )

,

mult(0:1:0)(C?) = deg(C) −

deg
(

p(t)
p1,1(t)

)
deg(φP )

.

Proof. First, we prove the formula for the point (1 : k : 0). For this purpose, we consider
the curve Cx1 defined by the polynomial F?(1, x2, x3), and by the parametrization Px1(t) (see
Section 2). By applying Theorem 8, we get that

mult(1:k:0)(C?) = mult(k,0)(Cx1) = deg(Cx1) −

deg
(

p(t)
p2,1(t)−kp1,1(t)

)
deg(φPx1

)
.
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Observe that since the degree is multiplicative with respect to composition, and taking into
account that Px1 = R ◦ P , where R = (y/x, 1/x), we deduce that deg(φPx1

) = deg(φR) ·

deg(φP ). Clearly deg(φR) = 1, and then deg(φPx1
) = deg(φP ). Finally, we prove that

deg(Cx1) = deg(C). Indeed, since

F?(x1, x2, x3) = Fd(x1, x2) + Fd−1(x1, x2)x3 + · · · + F0(x1, x2)xd
3 , Fd 6= 0,

if deg(Cx1) 6= deg(C), then degx2
(Fk) < k, for k = 1, . . . , d, and F0 = 0. Taking into account

that Fk is an homogeneous polynomial, we get that x1 divides Fk , for k = 0, . . . , d which is
impossible since F is irreducible.

For the point (0 : 1 : 0), we reason similarly to above with the curve Cx2 defined by
F?(x1, 1, x3), and the parametrization Px2(t) (see Section 2). �

In the following, we illustrate Theorems 8 and 9 with an example.

Example 2. Let C be the rational curve over C defined by the parametrization P introduced
in Example 1. We showed that deg(φP ) = 1, and deg(C) = 5. Now, we consider the point
P = (a, b) = (1, 2), and we apply Theorem 8. We get that

multP (C) = deg(C) −

deg
(

p2,1(t)−bp(t)
p1,1(t)−ap(t)

)
deg(φP )

= 5 − deg
(

(1 + 3t3)(t2
+ 1) − 2(t2

+ 1)t3

t4 − (t2 + 1)t3

)
= 2.

Now, let P = (1 : k : 0) = (1 : 0 : 0), and we apply Theorem 9, statement (1). Then,

multP (C?) = deg(C) −

deg
(

p(t)
p2,1(t)−kp1,1(t)

)
deg(φP )

= 5 − deg
(

(t2
+ 1)t3

(1 + 3t3)(t2 + 1)

)
= 2.

Finally, let P = (0 : 1 : 0), and we apply Theorem 9, statement (2). We get that

multP (C?) = deg(C) −

deg
(

p(t)
p1,1(t)

)
deg(φP )

= 5 − deg
(

(t2
+ 1)t3

t4

)
= 3.

5. Computation of singularities from a rational parametrization

In this section, we present a method for computing the singularities of a rational plane curve
(not being a line) directly from a given rational parametrization; that is, without implicitizing.
This new approach generalizes the results in Abhyankar (1990), van den Essen and Yu (1997),
Gutierrez et al. (2002) and Park (2002) in the sense that we describe the singularities and their
multiplicities without introducing algebraic numbers in the computations.

We start with a theorem that analyzes when a point not being at infinity, and generated by
the given parametrization, is a simple point. For this purpose, in the following we consider the
polynomials

T (s) = Resultantt (GP1 /GP , GP2 /GP ), and M(s) = gcd(lc(GP1 , t), lc(GP2 , t))

introduced in Theorem 2.
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Theorem 10. Let s0 ∈ K be such that T (s0)M(s0)p(s0) 6= 0. Let P = (p1,1(s0) : p2,1(s0) :

p(s0)) ∈ P2. Then, multP (C?) = 1.

Proof. First, note that from Theorem 2, we get that deg(GP (s0, t)) = deg(φP ). In addition,
taking into account the behavior of the gcd’s under a homomorphism (see e.g. Lemma 3 in
Sendra and Winkler (2001)), we deduce that

GP (s0, t) = gcd(GP1 (s0, t), GP2 (s0, t))

= gcd(p1,1(t)p(s0) − p1,1(s0)p(t), p2,1(t)p(s0) − p2,1(s0)p(t)),

and then

deg(gcd(p1,1(t)p(s0) − p1,1(s0)p(t), p2,1(t)p(s0) − p2,1(s0)p(t))) = deg(φP ) (I).

In these conditions, we consider (a, b) 6∈ C, and we observe that gcd(p1,1(t) − ap(t), p2,1(t) −

bp(t)) = 1. Thus, using (I), we deduce that

deg
(

p2,1(t)p(s0) − p2,1(s0)p(t)

p1,1(t)p(s0) − p1,1(s0)p(t)

)
= deg

(
p2,1(t) − bp(t)

p1,1(t) − ap(t)

)
− deg(φP ).

Theorem 6 implies that

deg
(

p2,1(t) − bp(t)

p1,1(t) − ap(t)

)
− deg(φP ) = deg(C)deg(φP ) − deg(φP ),

and then, from Theorem 8, we get that multP (C?) = 1. �

The previous theorem provides a sufficient condition for a point not being at infinity,
and generated by the parametrization P?, is a simple point. Additionally, one also has to
analyze points at infinity generated by P?, and the critical point (if it exists). Therefore, from
Theorem 10, and taking into account Theorem 2, we deduce the following result.

Theorem 11. If P = (a1 : a2 : a3) ∈ P2 is a singularity, then one of the following statements
holds:

1. Let i ∈ {1, 2, 3} be such that ai 6= 0. Then (a j/ai , ak/ai ), where j, k ∈ {1, 2, 3}, and
j 6= i 6= k, is the critical point of the parametrization Pxi , in reduced form.

2. P = P?(α), where p(α) = 0.

3. P = P?(α), where T (α) = 0.
4. P = P?(α), where M(α) = 0. �

Once the singularity is determined, one computes its multiplicity by applying Theorem 8 or
9. We illustrate this process with the following example.

Example 3. Let C be the rational curve over C defined by the parametrization P introduced in
Example 1. We proved that deg(φP ) = 1, and deg(C) = 5 (see Example 1), and we computed
the multiplicity of some given points (see Example 2). Now, we deal with the problem of
computing the singularities. For this purpose, we apply Theorem 11. First, we analyze whether
the parametrizations

Px3(t) = P(t) =

(
t

t2 + 1
,

1 + 3t3

t3

)
,

Px1(t) =

(
(1 + 3t3)(t2

+ 1)

t4 ,
t2

+ 1
t

)
, Px2(t) =

(
t4

(1 + 3t3)(t2 + 1)
,

t3

1 + 3t3

)
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have a critical point (see Theorem 5). We get that (0, 3) is the critical point of Px3 . Thus, let
P1 = (0 : 3 : 1). Now, we determine the polynomials

GP1 = −ts2
− t + st2

+ s, GP2 = −s3
+ t3, GP = t − s,

T (s) = Resultantt

(
GP1
GP

,
GP2
GP

)
= s4

+ s2
+ 1,

M(s) = gcd(lc(GP1 , t), lc(GP2 , t)) = 1.

For each root α of the polynomials T and p(t) = (t2
+ 1)t3, we compute P?(α). We get the

points

P2 = (0 : 1 : 0), P3 = (−1 : 4 : 1), P4 = (1 : 0 : 0), P5 = (1 : 2 : 1).

In Example 2, we showed that multP4(C?) = multP5(C?) = 2, and multP2(C?) = 3. By applying
Theorem 8, we get that multP3(C?) = 2, and multP1(C?) = 1. Therefore, the points P2, P3, P4,

and P5 are the singular points of the curve C.

In a direct method, in order to compute the singularities, one would introduce algebraic
numbers during the computations. However, in the following we present a method based on a
notion that generalizes the concept of a family of conjugate points (see Sendra and Winkler
(1991) or Sendra and Winkler (1997)). This new notion allows us to determine the singularities
of a curve without directly introducing algebraic numbers in the computations. For this purpose,
we recall that K is a computable field of characteristic zero containing the coefficients of the
defining polynomial of C, and K is its algebraic closure. Furthermore, L is a subfield of K such
that K ⊂ L ⊂ K .

We adapt the notion of a family of conjugate points to the parametric case. The idea is to collect
points whose coordinates depend algebraically on all conjugate roots of the same polynomial
m(t). This will imply that the computations on such families can be carried out by using the
defining polynomial m(t) of these algebraic numbers.

Definition 12. Let

F = {(q1(α) : q2(α) : q3(α)) | m(α) = 0} ⊂ P2.

The set F is called a family of conjugate parametric points over L if the following conditions are
satisfied:

(1) q1, q2, q3, m ∈ L[t], and gcd(q1, q2, q3) = 1.
(2) m is square-free.
(3) deg(qi ) < deg(m), for i = 1, 2, 3.

We denote such a family by {(q1(s) : q2(s) : q3(s))}m(s).

In the following lemma, we analyze the different points of P2 containing a family of conjugate
parametric points.

Lemma 13. Let F = { (q1(s) : q2(s) : q3(s)) }m(s) be a family of conjugate parametric points
over L. Let

HF (x1, x2, x3) = sqrfree(Resultants(q1(s)x1 + q2(s)x2 + q3(s)x3, m(s))),

where sqrfree denotes the square-free part of Resultants(q1(s)x1 + q2(s)x2 + q3(s)x3, m(s)).
Then F contains tdeg(HF ) different points of P2.
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Proof. Taking into account the properties of the resultants (see Brieskorn and Knoerrer (1986)),
we deduce that up to constants in K ,

Resultants(q1(s)x1 + q2(s)x2 + q3(s)x3, m(s))

=

∏
{α∈K | m(α)=0}

(q1(α)x1 + q2(α)x2 + q3(α)x3).

Observe that by the properties of the resultants (see Brieskorn and Knoerrer (1986)), we have
that HF is an homogeneous polynomial in L[x1, x2, x3]. Furthermore, the above equality
immediately yields that F contains tdeg(HF ) different points of P2. �

Remark 3. Definition 12 generalizes the usual notion of a family of conjugate points (see e.g.
Sendra and Winkler (1997)). More precisely, conditions (1), (2) and (3) are the same. However,
a family of conjugate points contains exactly deg(m) different points of P2.

In the following, we state a definition and some properties concerning a family of conjugate
parametric points. These properties are essentially the same as the properties satisfied by a family
of conjugate points. We recall that these two notions only differ in the cardinality of the set.

Definition 14. We say that a family F of conjugate parametric points over L is a family of
conjugate `-fold parametric points on C? over L iff multP (C) = ` for all P ∈ F .

Taking into account Theorems 8 and 9, and Definition 14, one gets the following lemma.

Lemma 15. Let F = { (q1(s) : q2(s) : q3(s)) }m(s) be a family of conjugate parametric points
over L. The following statements are equivalent:

1. F is a family of conjugate `-fold parametric points on C? over L.
2. ` is the greatest non-negative integer such that all partial derivatives of F? of order less than

` vanish at (q1(s) : q2(s) : q3(s)) modulo m(s).
3. It holds that:

3.1. If q3 6= 0, then

(deg(C) − `)deg(φP ) = degt

(
p2,1(t)q3(s) − q2(s)p(t)

p1,1(t)q3(s) − q1(s)p(t)

)
mod m(s).

3.2. If q1 6= 0 and q3 = 0, then

(deg(C) − `)deg(φP ) = degt

(
p(t)

p2,1(t)q1(s) − q2(s)p1,1(t)

)
mod m(s).

3.3. If q1 = q3 = 0, then

(deg(C) − `)deg(φP ) = deg
(

p(t)

p1,1(t)

)
. �

Now, we analyze whether singularities can be structured in families of conjugate parametric
points.

Theorem 16. The singularities of the projective curve C? can be decomposed as a finite union of
families of conjugate parametric points over L such that all points in the same family have the
same multiplicity and character.

Proof. Taking into account Remark 3, and the properties of families of conjugate points (see
Sendra and Winkler (1991) and Sendra and Winkler (1997)), we have that if F = {(q1(s) :

q2(s) : q3(s))}m(s) is a family of conjugate `-fold parametric points of C? over L, and m(s) is
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irreducible over L, then all points inF have the same character (see Section 2). Thus, it is enough
to prove that singularities can be distributed in conjugate families over L of the same multiplicity.
For each irreducible factor m(s) of the square-free part of T (s)M(s)p(s) ∈ L[s] over L, we
consider F := {(q1(s) : q2(s) : q3(s))}m(s), where qi (s) is the remainder of pi,1(s) modulo
m(s), and q3(s) is the remainder of p(s) modulo m(s). Thus, by Theorem 11 and Lemma 15, we
conclude that F is a family of conjugate `-fold parametric points on C? over L. �

Algorithm and example

Results obtained in this section and in Section 4 allow us to compute the singularities of a
given curve defined by a parametrization, and their multiplicities without computing the implicit
equation and without introducing algebraic numbers. In particular, the ideas described in the
proof of Theorem 16 immediately yield the following algorithm.

Algorithm Parametric-Decomposition-Singularities.
Given the parametrization P(t) =

(
p1,1(t)/p(t), p2,1(t)/p(t)

)
∈ L(t)2 of a non-linear

irreducible curve C, the algorithm computes a set S containing the decomposition of
singularities of C?.

1. Compute the polynomials

GPi (s, t) = pi,1(t) p(s) − pi,1(s) p(t), i ∈ {1, 2}, GP (s, t) = gcd(GP1 , GP2 ),

M(s) = gcd(lc(GP1 ,t), lc(GP2 ,t)), and T (s) = Resultantt (GP1 /GP , GP2 /GP ).

Set S = ∅.
2. Let deg(φP ) = degt (G

P ). Apply Theorem 6 or 7 to compute deg(C).
3. For every irreducible factor m(s) of the square-free part of T (s)M(s)p(s) over L

consider the family F := {(q1(s) : q2(s) : q3(s))}m(s), where qi (s) is the remainder
of pi,1(s) modulo m(s), and q3(s) is the remainder of p(s) modulo m(s). Compute `

such that:
3.1. If q3 6= 0, then

(deg(C) − `)deg(φP ) = degt

(
p2,1(t)q3(s) − q2(s)p(t)

p1,1(t)q3(s) − q1(s)p(t)

)
mod m(s).

3.2. If q1 6= 0 and q3 = 0, then

(deg(C) − `)deg(φP ) = degt

(
p(t)

p2,1(t)q1(s) − q2(s)p1,1(t)

)
mod m(s).

3.3. If q1 = q3 = 0, then

(deg(C) − `)deg(φP ) = deg
(

p(t)

p1,1(t)

)
.

(see Theorems 8 and 9). If ` > 1 do S = S ∪ {(q1(s) : q2(s) : q3(s))}m(s).

4. Check whether some of the parametrizations Pxi , i = 1, 2, 3, in reduced form, have
a critical point that is a singularity (see Theorem 11, and apply Theorem 8 or 9). In
the affirmative case construct S = S ∪ P, where P is the critical point in projective
coordinates.

5. Return S.

Remark 4. In order to determine the different points containing every family F , one applies
Lemma 13.
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In the following, we illustrate Algorithm Parametric-Decomposition-Singularities with an
example.

Example 4. Let C be the rational curve over C defined by the parametrization

P(t) =

(
−50t3

− 12t2
− 18t + 31

56t5 + 49t4 + 63t3 + 57t2 − 59t + 46
,

−55t + 25

56t5 + 49t4 + 63t3 + 57t2 − 59t + 46

)
.

Let us apply the previous algorithm to compute the singularities and their corresponding
multiplicities for the curve C. For this purpose, first we determine the polynomials

GP1 = 1001t − 1001s − 1519t4
− 2319t2

− 4253t3
+ 2319s2

− 1734ts2
+ 1734st2

+ 4253s3
+ 1519s4

− 1736t5
− 2094t3s2

+ 4084t3s + 1736s5
− 672t2s5

+ 2094t2s3
− 1008ts5

− 882ts4
− 4084ts3

+ 2800t5s3
+ 672t5s2

+ 1008t5s

+ 2450t4s3
+ 588t4s2

+ 882t4s − 588t2s4
− 2800t3s5

− 2450t3s4,

GP2 = −3080ts5
− 2695ts4

− 3465ts3
− 3135ts2

− 1055t + 1400s5
+ 1225s4

+ 1575s3
+ 1425s2

+ 1055s + 3080t5s − 1400t5
+ 2695t4s

− 1225t4
+ 3465t3s − 1575t3

+ 3135st2
− 1425t2,

GP = t − s, M(s) = 1,

T = 2672 999 980 000s8
+ 2980 394 977 700s7

− 60 064 612 566 476s6

− 25 004 640 526 824s5
− 286 359 608 760 660s4

+ 31 132 294 531 008s3

+ 109 487 085 267 360s2
+ 41 560 865 358 829s − 32 588 733 598 663.

From Theorem 2, we obtain that deg(φP ) = 1, and by Theorem 6 we get that deg(C) = 5. Now,
we apply Step 3 of the algorithm. For this purpose, let

m1(s) = p(s) = 56s5
+ 49s4

+ 63s3
+ 57s2

− 59s + 46, and m2(s) = T (s).

Now, we consider the family F1 := {(q1(s) : q2(s) : q3(s))}m1(s), where qi (s) is the remainder
of pi,1(s) modulo m1(s), and q3(s) is the remainder of p(s) modulo m1(s). We get

F1 := {(−50s3
− 12s2

− 18s + 31 : −55s + 25 : 0)}m1(s).

Since q3 = 0, and q1 6= 0, we apply Step 3.2, and we compute ` such that

(deg(C) − `)deg(φP ) = degt

(
p(t)

p2,1(t)q1(s) − q2(s)p1,1(t)

)
mod m1(s).

We obtain that ` = 1, and then F1 is a family of simple points.
Now, we reason similarly for m2(s), and we get the family

F2 := {(p1,1(s) : p2,1(s) : p(s))}m2(s).

Since q3 6= 0, we apply Step 3.1, and we compute ` such that

(deg(C) − `)deg(φP ) = degt

(
p2,1(t)q3(s) − q2(s)p(t)

p1,1(t)q3(s) − q1(s)p(t)

)
mod m2(s).
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We get that ` = 2, and then F2 is a family of double points. In fact, by applying Lemma 13, we
get that F2 contains exactly tdeg(HF2) = 4 different double points of P2. Hence,

S = {(p1,1(s) : p2,1(s) : p(s))}m2(s).

Finally, in Step 4 of the algorithm, we check whether some of the parametrizations Pxi ,
i = 1, 2, 3, in reduced form, have a critical point that is a singularity. By applying Theorem 5,
we get that (0, 0) is the critical point of the parametrization Px3 = P . From Theorem 8, we have
that mult(0:0:1)(C?) = 2. Therefore,

S = {(p1,1(s) : p2,1(s) : p(s))}m2(s) ∪ (0 : 0 : 1).

6. Analysis of non-ordinary singularities

Non-ordinary singularities have to be treated specially since a non-ordinary singularity might
have other singularities in its “neighborhood”. The analysis of such neighborhoods is the topic of
the field of resolution of singularities (see e.g. Zariski (1939)). Here we treat the determination
of the so-called neighboring singularities and their multiplicities.

In order to check whether a singularity is ordinary or not, one has to analyze the tangents (see
Section 2). For this purpose, in the following, we consider the polynomial

HP (t) = gcd(GP1 (s0, t), GP2 (s0, t)), where s0 ∈ K , and

GPi (s0, t) = qi,1(t) qi,2(s0) − qi,1(s0) qi,2(t) ∈ K [t], i ∈ {1, 2}

(see Section 2). We remark that if T (s0)M(s0) 6= 0, then HP (t) = GP (s0, t) (see Lemma 3 in
Sendra and Winkler (2001)).

In the next theorem, we show that the tangents of an affine point generated from the given
parametrization can be computed by means of a gcd.

Theorem 17. Let s0 ∈ K be such that p(s0) 6= 0, and P = (p1,1(s0) : p2,1(s0) : p(s0)) ∈ P2.
Let

HP (t) =

n∏
j=1

(b j t − a j )
m j , a j , b j ∈ K , b j 6= 0.

Then, the tangents of C at P are n lines over K each of multiplicity m j , j = 1, . . . , n.

Proof. First, we note that since p(s0) 6= 0 then, q1,2(s0)q2,2(s0) 6= 0. Thus, for i = 1, 2, we may
write

GPi (s0, t) = qi,2(s0)qi,2(t)

(
qi,1(t)

qi,2(t)
−

qi,1(s0)

qi,2(s0)

)
= HP (t)NPi (t), NPi (t) ∈ K [t],

and then,

qi,1(t)

qi,2(t)
−

qi,1(s0)

qi,2(s0)
= HP (t)N̄Pi (t), N̄Pi (t) ∈ K (t), i = 1, 2 (I).

Let

`i,k(t) =
∂k(qi,1/qi,2)

∂k t
, for i = 1, 2, and k = 1, . . . , m j .



S. Pérez-Dı́az / Journal of Symbolic Computation 42 (2007) 835–857 851

From (I), we get that

`1,k(a j/b j ) = `2,k(a j/b j ) = 0, for j = 1, . . . , n, and, k = 1, . . . , m j − 1,

and

`1,m j (a j/b j ) · `2,m j (a j/b j ) 6= 0, for j = 1, . . . , n.

Therefore, there exist n places with center at q := (
q1,1(s0)

q1,2(s0)
,

q2,1(s0)

q2,2(s0)
), given by{

x1(t) =
q1,1(s0)

q1,2(s0)
+ tm j `1,m j (a j/b j ) + · · ·

x2(t) =
q2,1(s0)

q2,2(s0)
+ tm j `2,m j (a j/b j ) + · · · , j = 1, . . . , n

(see Brieskorn and Knoerrer (1986) or Walker (1950)). Since the curves tangent to C at q consist
of the tangents to the places of the curve that are centered at q (see Hoffmann (1989)), we
conclude that the tangents to C at q are n lines defined by{

x1(t) =
q1,1(s0)

q1,2(s0)
+ tm j `1,m j (a j/b j )

x2(t) =
q2,1(s0)

q2,2(s0)
+ tm j `2,m j (a j/b j ), j = 1, . . . , n,

or equivalently by(
`2,m j (a j/b j )

(
x1 −

q1,1(s0)

q1,2(s0)

)
− `1,m j (a j/b j )

(
x2 −

q2,1(s0)

q2,2(s0)

))m j

.

Note that the multiplicity of each line, i.e. the multiplicity of each tangent, is m j . �

From the proof of the previous theorem, and taking into account that multP (C?) =
∑n

j=1 m j
(see Walker (1950, pp. 113)), we get the next corollary that provides an alternative method for
computing the multiplicity of an affine point generated by the parametrization.

Corollary 1. Let s0 ∈ K be such that p(s0) 6= 0, and P = (p1,1(s0) : p2,1(s0) : p(s0)) ∈ P2.
Then, multP (C?) = deg(HP (t)).

Theorem 17 provides a method for computing the tangents to C at an affine point generated
by the parametrization. In order to determine the tangents at critical points, at points at infinity,
and at a family of conjugate parametric points, we reason as follows.

(1) Let P be the critical point of P(t). We consider a change of variable in P(t) such that P is
generated by the new parametrization (note that the tangents of C at P are invariant under
changes of variable in the parametrization). For instance, one may takeQ(t) = P(1/(t −a)),
where a ∈ L is such that p(a) 6= 0. Note that Q(a) = P . Then, we apply Theorem 17 to
Q(t), and s0 = a.

(2) For points at infinity, P = (a : b : 0), we consider the parametrizations Px1 or Px2 ,
depending on whether a 6= 0 or b 6= 0, respectively. Then, we apply Theorem 17 to the
new parametrization.

(3) LetF = {(q1(s) : q2(s) : q3(s))}m(s) be a family of conjugate parametric points. We consider
a generic point of F , say P = (q1(s) : q2(s) : q3(s)) , and we compute the polynomial
HP (t) ∈ (L[s])[t] modulo m(s). Then, the tangents are given as(

`2,m j (λ)(x1q3(s) − q1(s)) − `1,m j (λ)(x2q3(s) − q2,1(s))
)m j , where HP (λ) = 0.

We recall that all points in F have the same multiplicity and character (see Theorem 16).
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In the following, we illustrate Theorem 17 with an example.

Example 5. Let C be a rational curve over C defined by the parametrization

P(t) =

(
p1,1(t)

p(t)
,

p2,1(t)

p(t)

)
=

(
1 − t2, t − t3

)
.

We apply Algorithm Parametric-Decomposition-Singularities,to compute the singularities and their
corresponding multiplicities for the curve C. For this purpose, first we determine the polynomials

GP1 (s, t) = −(t − s)(t + s), GP2 (s, t) = −(t − s)(t2
+ st − 1 + s2),

GP (s, t) = t − s, M(s) = 1, T (s) = −(s − 1)(s + 1).

From Theorem 2, we obtain that deg(φP ) = 1, and by Theorem 6 we get that deg(C) = 3. Now,
we apply Step 3 of the algorithm. For this purpose, let

m1(s) = s − 1, and m2(s) = s + 1.

In this case, we may compute the roots of the polynomials, and we have that P := P(1) =

P(−1) = (0, 0) is a possible singular point of the curve. Now, we apply Step 3.1 of the algorithm,
and we compute ` such that

(deg(C) − `)deg(φP ) = degt

(
p2,1(t)

p1,1(t)

)
.

We obtain that ` = 2, and then P is a double point. In addition, P is the only singular point of C
since in Step 4 of the algorithm, we do not get more points.

Now, we apply Theorem 17 to compute the tangents of the curve C at P . For this purpose,
first we determine the polynomials

GP1 (1, t) = p1,1(t) = 1 − t2, GP2 (1, t) = p2,1(t) = t − t3,

HP (t) = gcd(GP1 , GP2 ) = 1 − t2.

Thus, from Theorem 17, we get that the tangents of C at P are given by two different lines
each of multiplicity 1. Thus, P is an ordinary singularity. Moreover, these tangents are defined
parametrically by{

x1(t) = 0 + t ∂(p1,1/p)

∂t (1) = −2t

x2(t) = 0 + t ∂(p2,1/p)

∂t (1) = −2t,

{
x1(t) = 0 + t ∂(p1,1/p)

∂t (−1) = 2t

x2(t) = 0 + t ∂(p2,1/p)

∂t (−1) = −2t,

and implicitly by the lines: −x1 + y1, x1 + y1.

Finally, we remark that P is a singular point of the curve (one may check that in fact C is
the cubic defined implicitly by x3

− x2
+ y2), but in parametric form, P does not perform like

a singular point. Note that ∂(pi,1/p)

∂t (1) = −2, i = 1, 2, and we can define a tangent at t = 1
without any problem.

In the following, we treat any non-ordinary singularities. The problem with these singularities
is that they have multiple tangents. We will resolve these multiple tangents by “blowing up” the
singularity, reasoning similarly to in the case where C? is given implicitly (see Brieskorn and
Knoerrer (1986), Fulton (1989) or Walker (1950)). More precisely, we achieve the blow-ups by
quadratic transformations of the plane that are special birational maps of the projective plane
onto itself (see Fulton (1989)).
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In the sequel, we briefly summarize the sequence of quadratic transformations resolving the
singularities of a given irreducible curve C? defined implicitly. The method consists in recursively
“blowing up” C? at the non-ordinary singularities (see Walker (1950)):

(1) Let P be a non-ordinary singularity of C?. Apply a linear change of coordinates, L, such that
P is moved to (0 : 0 : 1), none of its tangents is an irregular line (i.e. a line x1 = 0, x2 = 0
or x3 = 0), and no other point on an irregular line is a singular point.

(2) Apply the quadratic transformation T = (x2x3 : x1x3 : x1x2) to C?, getting the transform
curve D?. Outside of the irregular lines, this transform preserves the multiplicity of points
and their tangents. New ordinary singularities might be created at the points (1 : 0 : 0),
(0 : 1 : 0) and (0 : 0 : 1) (called the fundamental points). The new curve D? might have
singularities, also non-ordinary ones.

(3) Check whether there exists a point (a : b : 0) ∈ D?, with ab 6= 0, that is a non-ordinary
singularity. In the affirmative case, apply steps (1) and (2) recursively to D?, and this non-
ordinary singularity. Otherwise, choose any other non-ordinary singularity of C, and repeat
the process until no non-ordinary singularity is left.

This method always achieves an irreducible curve having only ordinary singularities in a finite
number of steps (see Fulton (1989)).

In order to describe this blowing-up process in more detail, we introduce the concept of
neighboring points (see Fulton (1989) or Walker (1950)). Let P be an r -fold point of the
irreducible curve C?. Assuming that P was moved to (0 : 0 : 1) by the corresponding change
of coordinates, the point P is replaced on the transformed curve D? by points {P ′

1, . . . , P ′
s}

of multiplicities {r ′

1, . . . , r ′
s}, where P ′

i = (ai : bi : 0), and ai bi 6= 0. We say that the first
neighborhood of P is defined by the points {P ′

1, . . . , P ′
s}. With this convention, each point of

D? is the transform of one or more points of C?, including those in the first neighborhood of
P . Also, every point of C? is transformed into a point of D? except P , which disappears. This
terminology is easily extended toD? and neighborhoods of arbitrarily high order. More precisely,
if {P ′

1, . . . , P ′
s} is the first neighborhood of P , we get the second neighborhood of P as the union

of the first neighborhoods of P ′

k , k = 1, . . . , s. The points in the second neighborhood of P are
called the neighboring points of P at its second neighborhood. The multiplicity and character of
points at the second neighborhood are defined in a way analogous to the one for points in the first
neighborhood. In general, we will call any point in one of the neighborhoods of P a neighboring
point of P .

It is proved that there are at most a finite number of singular points in the neighborhoods of
any point of an irreducible curve (see Walker (1950, pp. 82)). Hence the analysis of a singularity
in terms of neighboring singularities is a finite process, and leads to a complete classification of
all singular points.

With this terminology, the next theorem proves that neighboring points can also be structured
in families of conjugate parametric points.

Theorem 18. Let F be a conjugate family of non-ordinary singularities on C?. The singularities
at each neighborhood of F can be decomposed as a finite union of families of conjugate
parametric points over L such that all points in the same family have the same multiplicity and
character as neighboring points.

Proof. Let

F = {(q1(s) : q2(s) : q3(s))}m(s),
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and let qs = (q1(s) : q2(s) : q3(s)) be a generic element of F . We apply a change of projective
coordinates Ls , defined over L, such that qs is moved to (0 : 0 : 1), none of its tangents is
an irregular line, and no other point on an irregular line is singular. Let Gs be the composition
of T = (x2x3 : x1x3 : x1x2) with Ls , and let Q?(s, t) be the defining parametrization of the
transformed curve D?

s of C? under Gs ; that is Q?
= Gs(P?). Then, the first neighborhood of qs

is {(h : 1 : 0)}U (s,h,1). Furthermore, applying Theorem 16, the above family can be decomposed
into families of conjugate parametric points over L such that all elements in the same family
have the same multiplicity and character as points in D?

s . Thus, the first neighborhood of qs can
be expressed as⋃

i∈I

{(h : 1 : 0)}mi (s,h),

where within a family multiplicity and character are the same.
Repeating this process through all levels of neighborhoods and for all families of non-ordinary

singularities, one reaches a representation, in families of conjugate parametric points, of the
singularities at each neighborhood of C?. �

In the following, we illustrate Theorems 17 and 18 with an example.

Example 6. Let C be a rational curve over C defined by the parametrization

P(t) =

(
p1,1(t)

p(t)
,

p2,1(t)

p(t)

)
=

(
3t2

+ 3t + 1

−3t − 1 + t6 − 2t4 ,
t2(t4

− 2t2
+ 2)

−3t − 1 + t6 − 2t4

)
.

We apply Algorithm Parametric-Decomposition-Singularities, and we get that P1 := (−1 : 0 : 1) is
a singularity of multiplicity 2, P2 := (0 : 1 : 1) is a singularity of multiplicity 4 (in fact, P2 is
the critical point), and

F := {(−81(3s2
+ 3s + 1) : −4(35s2

+ 3s + 1) : 11(21s + 7 + 2s2))}m(s),

where m(s) = 9s4
+6s3

−16s2
−12s −2, is a family of double points. Moreover, by Lemma 13,

we get that F contains exactly 2 different double points of P2.
Now, we apply Theorem 17 to compute the tangents of the curve C at the singular points. We

start with P1. For this purpose, first we determine the polynomials

GP1 = p1,1(t) + p(t) = t2(3 + t4
− 2t2), GP2 = p2,1(t) = t2(t4

− 2t2
+ 2),

HP (t) = gcd(GP1 , GP2 ) = t2.

Thus, from Theorem 17, we get that the tangents of C at P1 are given by one line of multiplicity
2. Thus, P1 is a non-ordinary singularity. Moreover, these tangents are defined parametrically byx1(t) = −1 + t2 ∂2(p1,1/p)

∂2t
(0) = −1 − 6t2

x2(t) = 0 + t2 ∂2(p2,1/p)

∂2t
(0) = −4t2,

and implicitly by (−2x1 − 2 + 3x2)
2.

In order to compute the tangents at P2, since it is the critical point, we first consider a change
of variable in P such that P2 is generated by the new parametrization. For instance, we take
Q(t) = P(1/t). Note that Q(0) = P2. Now, reasoning similarly to above, we get that the
tangents of C at P2 are given by (−2x1 − 3 + 3x2)

4. Thus, P2 is a non-ordinary singularity.
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Finally, for the family F , we consider a generic point of F , say

P3 :=

(
−81(3s2

+ 3s + 1) : −4(35s2
+ 3s + 1) : 11(21s + 7 + 2s2)

)
,

and we compute the polynomial HP (t) modulo m(s). We get that

HP (t) = −177ts2
+ 18t2s2

− 59s2
− 36ts + 189t2s − 12s + 63t2

− 4 − 12t.

Then, the tangents of C at P3 are given by two different lines each of multiplicity 1. Thus, the
singular point P3 is ordinary. Moreover, the tangents are defined by

`2,1(λ)(11x1(21s + 7 + 2s2) + 81(3s2
+ 3s + 1))

− `1,1(λ)(11x2(21s + 7 + 2s2) + 4(35s2
+ 3s + 1)),

modulo HP (λ), where `i,1 =
∂(pi,1/p)

∂t .

Now, we structure the neighboring points in families of conjugate points. For this purpose, we
apply the ideas developed in the proof of Theorem 18. We start with the point P1. We take the
change of variables L1 = (x1 + x3 : x2 : x3) such that P1 is moved to (0 : 0 : 1), none of its
tangents is an irregular line, and no other point on an irregular line is singular. Then, we consider
the parametrization

Q?
1 = T (L1(P?)) = (t2(t4

− 2t2
+ 2)(−3t − 1 + t6

− 2t4),

t2(3 + t4
− 2t2)(−3t − 1 + t6

− 2t4), t4(3 + t4
− 2t2)(t4

− 2t2
+ 2)),

where T is the quadratic transformation T = (x2x3 : x1x3 : x1x2). Let

Q1(t) =

(
−3t − 1 + t6

− 2t4

t2(3 + t4 − 2t2)
,
−3t − 1 + t6

− 2t4

t2(t4 − 2t2 + 2)

)
.

We apply Algorithm Parametric-Decomposition-Singularities, and we get that Q1 := (2 : 3 : 0) is
a singularity of multiplicity 2, the points Q2 := (1 : 0 : 0), Q3 = (0 : 1 : 0), Q4 = (1 : 1 : 1)

are singularities of multiplicity 4, Q5 := (0 : 0 : 1) is a singularity of multiplicity 6, and

F := {(−22(508 + 1524s + 203s2) : −11(4749s + 1583 + 568s2) :

4(7753s2
+ 1095s + 365))}m(s),

where m(s) = 9s4
+ 6s3

− 16s2
− 12s − 2, is a family of double points. Moreover, by 13, we

get that F contains exactly 2 different double points of P2.
The first neighborhood of P1 is given by Q1 which is an ordinary double point of Q1 (we

apply Theorem 17). Thus, the process finishes with the point P1.
Now, we reason similarly for P2. We take the change of variables L2 = (x1 : x2 − x3 : x3),

and we consider the parametrization

Q?
2 = T (L2(P?)) = (t2(t4

− 2t2
+ 2)(−3t − 1 + t6

− 2t4),

t2(3 + t4
− 2t2)(−3t − 1 + t6

− 2t4), t4(3 + t4
− 2t2)(t4

− 2t2
+ 2)).

Let

Q2(t) =

(
−3t − 1 + t6

− 2t4

t2(3 + t4 − 2t2)
,
−3t − 1 + t6

− 2t4

t2(t4 − 2t2 + 2)

)
.
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We apply Algorithm Parametric-Decomposition-Singularities, and we get that there does not exist a
point (a : b : 0) in the new curve, with ab 6= 0, that is a singularity. Thus, the first neighborhood
of P2 is given by a simple point, and then the process finishes.
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