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Transforming ODEs and PDEs from radical
coefficients to rational coefficients

Jorge Caravantes, J. Rafael Sendra, David Sevilla and Carlos
Villarino

Abstract. We present an algorithm that transforms, if possible, a given
ODE or PDE with radical function coefficients into one with rational
coefficients by means of a rational change of variables so that solutions
correspond one-to-one. Our method also applies to systems of linear
ODEs. It is based on previous work on reparametrization of radical
algebraic varieties.

Mathematics Subject Classification (2010). Primary 68W30; Secondary
34A26, 35A30, 14J70.

Keywords. Algebraic ordinary differential equations, Algebraic partial
differential equations, Rational reparametrization, Radical coefficients.

1. Introduction

Within the vast variety of differential equations, certain subtypes are amenable
to solving. A reasonable strategy is to transform given equations, by means
of a change of variables, into subtypes for which algorithms exist. Let us
consider an example, that will be revisited in Remark 3.7.

Example 1. We consider the ODE(
(14x+ 12)

√
x+ (13x+ 4)

√
x+ 1

)
y + 4(x2 + x) (y′)2 = 0. (1.1)
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of the Comunidad de Madrid (Spain), and Universidad de Alcalá (UAH) under grant
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Maple 2018 expresses the nontrivial solution as the solution of an integral
equation. Using the techniques described in this article, we find the change

x = r(z) =
(z2 − 1)2

4z2

that transforms the equation into one with the unknown Y (z) = y(r(z)):(
z12 − 2 z10 − z8 + 4 z6 − z4 − 2 z2 + 1

)
Y + 16 z8 (Y ′)

2
= 0. (1.2)

The nonzero solution is, as given by Maple 2018,

Y (z) = −
(
z6 + 3C z3 − 3 z4 + 3 z2 − 1

)2
576 z6

. (1.3)

The inverse substitution, also obtained with our method, is z =
√
x+
√
x+ 1,

so the general solution of the original equation is y(x) = Y
(√
x+
√
x+ 1

)
.

A class of ODEs and PDEs for which there is a body of research is
that of algebraic equations. They are polynomials in the unknown and its
derivatives, and the coefficients of the polynomial are rational function in the
variable(s) of the unknown. See [8, 5, 9, 2, 1, 15, 4, 3, 6]. In the previous
example we transform a nonalgebraic equation into an algebraic one.

Our contribution is a method to find, if they exist, changes of vari-
ables that convert polynomial ODEs and PDEs with radical coefficients into
equations that are algebraic. It is based on our previous work on rational
reparametrization of radical varieties; see [11, 12] and specially [13].

The problem that we will study is the following. Given the variables
x1, . . . , xn, define a radical tower over C(x1, . . . , xn),

F0 = C(x1, . . . , xn) ⊆ · · · ⊆ Fm−1 ⊆ Fm (1.4)

where Fi = Fi−1(δi) = F0(δ1, . . . , δi) with δeii = αi ∈ Fi−1, ei ∈ N. Intuitively,
Fm is the field of functions built using several radicals (possibly nested).

Now we consider, in the case of only one variable, an ODE

F (x, y, y′, . . . , y(s)) = 0 (1.5)

where y is a function of x and F ∈ Fm[w ], where w = (w0, . . . , ws) is a tuple
of independent indeterminates over Fm. That is, the equation is polynomial
in y and its derivatives, with the x in the coefficients possibly appearing inside
radicals. Our goal is to find, if it exists, a rational change of variable of the
form

x = r(z)

such that the new equation

G(r(z), Y (z), . . . , Y (s)(z)) = 0, where Y (z) = y(r(z)), (1.6)

is an algebraic ODE in sense that the coefficients of G are not just in Fm but
are in fact rational functions.

In an analogous way, given a PDE that can be expressed as a polynomial
in the partial derivatives of the unknown y(x1, . . . , xn), and whose coefficients
are radical functions of the xi, we compute, if it exists, a rational change of
the n variables such that the transformed equation has rational coefficients.
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The structure of this article is as follows. The next section describes
the algebraic preliminaries that will be used later. Section 3 describes the
results on ordinary differential equations, Section 4 deals with linear systems
of them, and Section 5 treats the case of partial differential equations.

2. Preliminaries on radical varieties

In this section we recall some results on radical varieties; for further details
see [13]. Some of the notions and results in this section are framed within
the field of algebraic geometry, A good starting point for algebraic geometry
from a computational point of view is [2].

We will express tuples of variables or functions by using bars over their
names, like x = (x1, . . . , xn).

Let Fm and δi be defined as in (1.4); the latter can be regarded as
functions of the x . A radical parametrization is a tuple P = ( a (x )) of
elements of Fm whose Jacobian has rank n. For a suitable election of branches
we obtain a (usually nonrational) function with domain in Cn and whose
image is Zariski dense in an n-dimensional variety; the Zariski closure of
Im(P) is the radical variety determined by P, denoted by VP .

Theorem 2.1 ([13],Theorem 3.11 (iii)). VP is an n-dimensional irreducible
algebraic variety.

The function P can be factored as R ◦ ψ, where ψ is a nonrational
function whose components are the δ (the radicals in the construction) and
R is a rational function in the x and the δ .

Another relevant algebraic variety in our construction is the tower vari-
ety of P, defined as the Zariski closure of Im(ψ), denoted by VT. It is also irre-
ducible of dimension n. Therefore we have now a rational map R : VT → VP .
The tower variety contains useful information about P and is the central
object in this article’s results.

One more ingredient is an incidence variety, the Zariski closure of the
map x 7→ (x , δ , a ), that we denote as BP . This provides a projection
π : BP → VP . We define the tracing index of P as the cardinal of the generic
fibre of π. See [13, Example 4.4] for the calculation of the tracing index.

The following diagram summarizes the different elements introduced so
far.

BP ⊂ Cn+m+r

VP⊃Cr Cn

π

��

ϕ

ZZ

Poo

VT ⊂ Cn+m

ψ

OO

R
{{

defined as

( t , δ , x )

x t

Y

π

�� t

ϕ

ZZ

�Poo

( t , δ )

_

ψ

OO8

R

{{

(2.1)
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The case where the tracing index is 1 is of particular interest.

Theorem 2.2 ([13], Theorem 4.11). If the tracing index of P is 1, then VP
and VT are birationally equivalent. Therefore, VP is rational (parametrizable
rationally in an invertible way) if and only if VT is rational.

3. ODEs

In this section, we will use some of the notation introduced previously. In par-
ticular, Fm is the last field of a radical tower over C(x) and δ = (δ1, . . . , δm)
is the tuple of algebraic elements used in the construction of the tower. We
also consider the ODE F (x, y, y′, . . . , y(s)) = 0 introduced in (1.5).

We start with a technical lemma that describes what happens to the
unknown when a change of variable is applied.

Lemma 3.1. Let r(z) be a non-constant rational function, and let Y (z) =
y(r(z)). Then 

y(r(z))
y′(r(z))

...
y(s)(r(z))

 = L(z)


Y (z)
Y ′(z)

...
Y (s)(z)

 ,

where L is a lower triangular matrix with entries in C[r′(z), . . . , r(s)(z), 1
r′(z) ],

in particular of the form

P (r′(z), . . . , r(s)(z))

r′(z)k

with k ∈ N and P a polynomial with complex coefficients. Moreover, det(L)
is a power of 1

r′(z) .

Proof. We prove by induction that for k ∈ {0, . . . , s} it holds that

r′(z)ky(k)(r(z)) = Y (k)(z) +

k−1∑
j=1

Rj(r
′, . . . , r(k))Y (j)(z)

for some Rj ∈ C[w1, . . . , wk,
1
w1

]. For k = 0, it is obvious. Let us assume that
it holds for k = `. Taking derivatives in the expression above for k = `, we
have that for some Qj ∈ C[w1, . . . , w`+1,

1
w1

],

`r′(z)`−1r′′(z)y(`)(r(z)) + r′(z)`+1y(`+1)(r(z)) =

= Y (`+1)(z) +
∑̀
j=1

Qj(r
′, . . . , r(`+1))Y (j)(z).

Applying the hypothesis of induction one ends the proof. �

Remark 3.2. There exist transcendental functions r(z) with radical or ra-
tional derivatives, like logarithms, arctangents and arcsines, but they fall
outside the scope of this article, because we need δ (r(z)) to be rational, and
this implies that r(z) must be algebraic.
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Theorem 3.3. Let r(z) be a non-constant rational function, and let a (x) ∈ F`
m

be the tuple of non-rational (function) coefficients of F (x, w ) w.r.t. w , taken
in any order. The following are equivalent:

1. Equation (1.6) is algebraic for the substitution x = r(z).
2. All the components of a (r(z)) are rational.

Proof. The implication 2⇒ 1 follows from Lemma 3.1. Since the matrix L(z)
in that lemma is invertible (it is lower triangular with nonzero determinant),
the same argument can be applied to L−1 to prove 1⇒ 2. �

In order to use Theorem 3.3, we define the radical parametrization
P = (x, a (x)) and consider its associated radical variety VP as well as its
tower variety VT, see Section 2.

Corollary 3.4. Suppose that VT be rational. Then it holds that

1. VP is a rational curve.
2. If Q(z) = (r(z), δ (r(z))) is a rational parametrization of VT, then ODE

(1.6), obtained by applying the change x = r(z) in the equation (1.5), is
algebraic.

3. Assume that Q(z) in the previous item is invertible and let h( z ) be its
inverse. If Y (z) is a solution of (1.6), then Y (h(x, δ (x))) is a solution
of (1.5).

4. If y(x) is a solution of (1.5) then y(r(z)) is a solution of (1.6).

Proof.

1. Since VT is rational, by [13, Theorem 4.9], VP is rational.
2. Since the R : VT → VP in (2.1) is rational, R(Q(z)) = (r(z), a (r(z))

is a rational parametrization of VP and so a (r(z)) is algebraic with
r(z) ∈ C(z). Now, the result follows from Theorem 3.3.

3. Let us consider from Section 1 the equality y(r(z)) = Y (z). Then Y (z) is
a solution of (1.6) when y(x) is a solution of (1.5). Since z = h(Q(z)) =
h(r(z), δ (r(z))) we have

y(r(z)) = Y (h(r(z), δ (r(z)))).

Since r(z) is not constant (otherwise, Q would also be constant), we can
call x = r(z). We get now y(x) = Y (h(x, δ (x))).

4. Trivial.

�

All previous ideas are algorithmically treated next. For this purpose, we
will use two auxiliary algorithms (see [14] for details):

• RatParamAlg will be an algorithm to decide whether an algebraic curve is
rational and, in the affirmative case, to compute a proper (i.e. invertible)
rational parametrization,
• InvParamAlg will be an algorithm to compute the inverse of a proper

rational curve parametrization.
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Algorithm 3.5 (Transforming ODEs with radical coefficients into rational
coefficients).
Input: An ODE as in (1.5).
Output: One of the following:

• a rational change of variable x = r(z) such that, when applied to
(1.5), it yields an algebraic ODE as in (1.6); and a rational function
h( z ) such that if Y (z) is a solution of (1.6), then Y (h(x, δ (x))) is
a solution of (1.5).

• “No such rational reparametrization exists”
• “No answer”

1. Collect in the tuple a all nonrational coefficients of (1.5).
2. Compute the tower variety VT of P = (x, a ) (see [13, Remark 4.7]) and

apply RatParamAlg to it.
3. if VT has a rational parametrization then
4. Compute an invertible parametrization Q(z) = (r(z), δ (r(z))) and its

inverse h = InvParamAlg(Q).
5. return x = r(z) and h.
6. else
7. if The tracing index of P is 1 then
8. return “No such rational change of variables exists”
9. else

10. return “No answer”

Remark 3.6. If the tracing index of P is 1, VP and VT are birationally equiv-
alent; then if VT is not rational VP cannot be rational. Therefore there exists
no rational r(z) that reparametrizes (1.5) into an algebraic ODE. See [13,
Theorem 4.11, (i)].

On the other hand, when the tracing index is T > 1, points in VP
would generically have T preimages by π (see diagram (2.1)), and they have
the shape (p, δ (p), a (p)); the second block in that shape would consist of all
the conjugates of p by the δ , and we consider it possible that, by working
on the Galois group of the extension, one can find more information on the
radical parametrization, possibly even being able to find a simpler tower of
radicals to convert to.

Remark 3.7. Revisiting Example 1 from the introduction, one can observe
that the tower curve VT can be defined by (x, δ1(x), δ2(x)) = (x,

√
x,
√
x+ 1 ).

Then VT can be parametrized rationally by

Q(z) = ( r(z), δ1(r(z)), δ2(r(z)) ) =

(
(z2 − 1)2

4z2
,
z2 − 1

2z
,
z2 + 1

2z

)
,

whose inverse is h(A,B,C) = B +C. The substitution Y (z) = y(r(z)) is the
one we used to obtain (1.2). We found the solution (1.3), which means that
y(x) = Y (h(x, δ1(x), δ2(x)) ) = Y

(√
x+
√
x+ 1

)
solves (1.1).
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Example 2. The following equation is based on [7, Part I, Section C, 1.525]:
for a parameter a, find y(x) such that

8(y′)3(x+ 1)3/2 − 2a(x+ 1)yy′ + 2ay2 = 0.

Maple 2018 finds a solution after hundreds of seconds, and it is not explicit
(it involves RootOf and integral signs). On the other hand, the coefficients
have δ =

√
x+ 1 so that we can consider VT, the closure of the image of x 7→

(x,
√
x+ 1). It is clearly parametrizable, for example as Q(z) = (z2 − 1, z),

so the change x = z2 − 1 should make all the coefficients rational; indeed, in
terms of Y (z) = y(z2 − 1), we obtain

(Y ′)3 − azY Y ′ + 2aY 2 = 0.

Maple immediately finds the general solution (see also [1, Example 7.1])

Y (z) =
z2

4C
− z

2aC2
+

1

4a2C3
.

To return to the variable x, we use the inverse of Q(z), namely h(A,B) = B;
the substitution is then z = δ(x), so

y(x) =
x+ 1

4C
−
√
x+ 1

2aC2
+

1

4a2C3

is the general solution.

Example 3. We now take the equation [7, Part I, Section C, 6.166]:

ayy′′ + b (y′)
2 − yy′√

c2 + x2
= 0.

Maple 2018 gives the solution in terms of the generalized hypergeometric
function. We consider the tower curve VT, defined by (x, δ(x)) =

(
x,
√
c2 + x2

)
.

Then VT (the hyperbola δ2 − x2 = c2) can be rationally parametrized by

Q(z) = (r(z), δ(r(z))) =

(
−c2 + z2

2z
,
c2 + z2

2z

)
.

We now perform the change x = r(z) and we get, for Y (z) = y(r(z)), the
equation

(ac2z + az3)Y Y ′′ + (bc2z + bz3)(Y ′)2 + (2ac2 − c2 − z2)Y Y ′ = 0,

whose solution Y (z), given by Maple 2018, is


((
− a
√
za2c2 − a

√
zac2 + z

1+2 a
a a2 − z 1+2 a

a a
)
C1 +

(
a2z − z

)
C2

)
az(1 + a)(a− 1) / (b+ a)


a

b+ a

.

The inverse of Q is defined by h(A,B) = A + B, so we substitute

z = x +
√
c2 + x2 to get y(x) = Y (h(x, δ(x))) = Y

(
x+
√
c2 + x2

)
, that

solves the original equation.
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4. Systems of linear ODEs

In this section we extend the results of the previous section to the case of
systems of linear ODEs.

Theorem 4.1. Consider a system of linear ODEs with unknowns

y1(x), . . . , yn(x) and coefficients a
(k)
i,j (x) ∈ Fm:

a
(1)
1,0 · y1 + a

(1)
1,1 · y1′ + a

(1)
1,2 · y1′′ + · · ·+ a

(1)
2,0 · y2 + · · ·+ a

(1)
n,0 · yn + · · · = b(1)

a
(2)
1,0 · y1 + a

(2)
1,1 · y1′ + a

(2)
1,2 · y1′′ + · · ·+ a

(2)
2,0 · y2 + · · ·+ a

(2)
n,0 · yn + · · · = b(2)

...

a
(l)
1,0 · y1 + a

(l)
1,1 · y1′ + a

(l)
1,2 · y1′′ + · · ·+ a

(l)
2,0 · y2 + · · ·+ a

(l)
n,0 · yn + · · · = b(l)

(the superindex denotes the equation, and the subindexes denote the unknown
and its derivation order). Then for every r(z) ∈ C(z) the following are equiv-
alent:

1. All of the a
(k)
i,j (r(z)) are rational.

2. The system resulting from the reparametrization x = r(z) has rational
coefficients.

Proof. It is a consequence of applying Lemma 3.1 to each variable. �

Remark 4.2. The theorem also holds for slightly more general systems of
ODEs: those where no monomial contains a product of derivatives of yi and
yj for i 6= j. We do not know if the result holds for systems of polynomial
ODEs.

The results of the previous section can be adapted. Namely, by defining
a radical parametrization P = (x, a ) where a is a tuple of all the non-
rational coefficients in any order, we can work with VP and VT in the same
way.

Corollary 4.3. Suppose that VT is rational and let Q(z) = (r(z), δ (r(z)))
be an invertible rational parametrization of VT with inverse h( z ). Then the
linear system obtained by applying the change x = r(z) to the original one
is algebraic. Also, if Y1(z), . . . , Yn(z) is a solution of the new system, then
Y1(h(x, δ (x))), . . . , Yn(h(x, δ (x))) is a solution of the original system. Fi-
nally, if y1(x), . . . , yn(x) is a solution of the original system, then
y1(r(z)), . . . , yn(r(z)) is a solution of the new system.

5. PDEs

In this section we present similar results for the case of PDEs. We will denote

partial derivatives with subindexes: yi1...is(x1, . . . , xn) =
∂sy

∂xi1 · · · ∂xis
. We

will consider a PDE

F (x1, . . . , xn, y, y1(x ), . . . , yn(x ), y11(x ), . . .) = 0 (5.1)
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where F is a polynomial with coefficients in a radical tower Fm over C(x ),
and the problem of converting it to a PDE with a change of variables xi =
ri(z1, . . . , zn)

G(r1( z ), . . . , rn( z ), Y ( z ), Y1( z ), . . . , Yn( z ), Y11( z ), . . .) = 0 (5.2)

which is algebraic (that is, the coefficients of G are rational).

Definition 5.1. Let k be a positive integer and let f be a function of n variables
that is continuously differentiable up to order k. Its generalized gradient vector
up to order k is the column vector
−−→
k∂f = (f, f1, . . . , fn, f11, f12, . . . , f1n, f22, . . . , fnn, . . . , . . . , fn···n)T

so that:

• it contains the derivatives of order 0, then order 1, etc. up to order k,
sorted lexicographically within the same derivation order;
• when equality of mixed partials applies, only the first one (lexicograph-

ically) is included. For example, since f12 = f21, we include the first one
but not the second one.

Lemma 5.2. Let ri ∈ C( z ), i = 1, . . . , n be a change of variables, i.e. whose
Jacobian is invertible. For any y(x1, . . . , xn) define Y ( z ) = y(r1( z ), . . . , rn( z )).
Then −−→

k∂Y ( z ) = M( z ) ·
−−→
k∂y( r ( z ))

where M( z ) is an invertible matrix whose entries are polynomials in the
partial derivatives of the ri.

Proof. Each derivative of Y is computed, by repeated application of the chain
rule, as a linear combination of the corresponding derivatives of y( r ). This
proves the claim on the elements ofM , and only the invertibility ofM remains
to be proven, which we do next.

First, we establish a sort of reciprocal formula. Note that

−−→
1∂y( r ( z )) =


1 0 . . . 0
0
...
0

(J r )T


−1

·
−−→
1∂Y ( z ),

which this is possible because the Jacobian matrix J r is invertible. Reasoning
as above, we obtain linear relations

−−→
k∂y( r ( z )) = N( z ) ·

−−→
k∂Y ( z ),

where the entries of N are rational functions in the partial derivatives of r .
We will finish the proof by showing that M · N = Id. Combining the

last equality with the one stated in the lemma,
−−→
k∂Y = (M ·N)

−−→
k∂Y . (5.3)

Let us write ei for a column vector whose elements are all zero except for a
one at the i-th position (i.e. the i-th vector of the canonical basis).
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Note that, by the inverse function theorem applied generically to r ,
for any continuously differentiable g there exists g̃ such that g̃( r ) = g. This
allows us to prescribe Y ( z ) so that it will be equal to y( r ) for some y.

Therefore, it makes sense to consider a monomial Y = zu1
1 · · · zun

n . Since
its degree is

∑
ui:

• its derivatives of order >
∑
ui are zero;

• its derivatives of order
∑
ui are zero except one, which is a nonzero

constant.

Now we will do an induction on the order h of derivation in order to
show that the i-th column of M ·N , which we will denote by ci, is equal to
ei. We will make use of the fact that

M ·N ·

λ1λ2
...

 = λ1c1 + λ2c2 + · · ·

• Case h = 0: let Y = 1. Then
−−→
k∂Y = e1, and from (5.3) we deduce that

c1 = e1.

• Case h = 1: let Y = zi. Then
−−→
k∂Y = zi · e1 + ei+1. From (5.3) we have

that zi · e1 + ei+1 = zi · c1 + ci+1. Since c1 = e1 by the previous case,
then ci+1 = ei+1.
• Assume that the columns corresponding to orders of derivation < h

(let us say that there are q of them) have been proven to be e1, . . . , eq.
We proceed as in the previous case. Let Y be a monomial of degree h.

Then, by a previous observation on derivatives of monomials,
−−→
k∂Y =

w1e1 + · · · + wqeq + ceq′ , where the wi are continuously differentiable
(they are lower-order derivatives of Y ), c is a nonzero constant, and
q′ > q is the position in the column vector corresponding to the only
derivative of Y of order h that is nonzero (because for any index greater
than q the corresponding entry in the gradient is zero, except for position
q′). Once more, by (5.3),

w1e1 + · · ·+ wqeq + ceq′ = w1c1 + · · ·+ wqcq + ccq′ .

By the induction hypothesis, ci = ei for i ≤ q. Therefore, cq′ = eq′ .
Finally, for every column corresponding to a derivative of order h there
is such a monomial, and the induction is concluded; it follows that M
is invertible (and its inverse is precisely N).

�

Now we follow a path analogous to that of ODEs.

Theorem 5.3. With the previous notations, the following statements are equiv-
alent:

1. The PDE (5.2) is algebraic.
2. All the components of the vector a ( r ( z )) are rational, where a (x ) are

the non-rational coefficients of the PDE (5.1).
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Proof. As in Lemma 3.1, both implications are proven by using the matrix
M( z ) and its inverse from Lemma 5.2. �

Corollary 5.4. Suppose that VT be unirational (i.e. rationally parametrizable).
Then it holds that

1. VP is unirational.
2. If Q( z ) = ( r ( z ), δ ( r ( z ))) is a rational parametrization of VT, then

(5.2), obtained by applying the change x = r ( z ) in (5.1), is algebraic.
3. Assume that Q( z ) in the previous item is invertible and let h( z ) be

its inverse. If Y ( z ) is a solution of (5.2), then Y (h(x , δ (x ))) is a
solution of (5.1).

4. If y(x ) is a solution of (5.1) then y( r ( z )) is a solution of (5.2).

Proof. 1 and 2 are consequences of [13, Theorem 4.11, (ii)] and Theorem 5.3.
On the other hand, 3 is analogous to item 3 of Corollary 3.4 and 4 is trivial
. �

In order to apply the reparametrization algorithm to the case of PDEs,
a parametrization algorithm for n-dimensional algebraic varieties is required.
For n = 2, surface parametrization algorithms do exist, see for example [10];
no general constructive results are known to us.

Example 4. We consider an equation based on [16, Section II.B.88, Example
2]: find y(x1, x2, x3) such that

(−
√
x2 y3 + 2 y1)

√
x1 +

√
x2 + 2

√
x2 y2 − y2 − y1 = 0.

Maple 2018 fails to solve it.
In this case the radicals are nested, but it does not affect our construc-

tion. The radical tower is generated by δ1 such that δ21 = x2, and δ2 such
that δ22 = x1 + δ1. The tower variety is parametrized (nonrationally) by
(x1, x2, x3, δ1, δ2) and it does admit a rational parametrization

Q(z1, z2, z3) = (z1, (z
2
2 − z1)2, z3, z

2
2 − z1, z2)

that can be deduced from the defining equations of the δ . If we substitute
the x by the first three components of Q we obtain the new equation in
Y (z1, z2, z3)

(2z2 − 1)Y1 + z2(z1 − z22)Y3 − Y 2 + Y2.

With Maple we obtain the following general solution:

Y =
2

1− 2z2 + F (w1, w2)
, where w1 = z22 − z1 − z2,

w2 =
5

6
z32 −

5

4
z22 +

3

4
z2 −

1

6
+

1

2
z1z

2
2 −

1

2
z21 − z1z2 +

3

4
z1 + z3.

The inverse of Q is h(A,B,C,D,E) = (A,E,C). Therefore the inverse of the
change of variables is (x1, x2, x3) 7→ (x1, δ2, x3) and the general solution of
the original equation is, after simplification,

y =
2

1− 2
√
x1 +

√
x2 + F (q1, q2)

, where q1 =
√
x2 −

√
x1 +

√
x2,
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q2 =
(10
√
x2 − 2x1 + 9)

√
x1 +

√
x2 + (6x1 − 15)

√
x2

12
− x1

2
+ x3 −

1

6
.

Example 5. We take the equation [7, Part II, Section E, 6.62]: find the
u(x1, x2) such that

u21 + u22 =
1√

x21 + x22
.

Maple 2018 does not give any solution.

The surface VT is the image of (x1, x2,
√
x21 + x22) which is a cone, and

can be parametrized rationally as

Q(z1, z2) =

(
2z1z2
z21 + 1

,
z2(z21 − 1)

z21 + 1
, z2

)
.

Substituting the first two components of this into the x we have the new
equation

Y 2
1 (z21 + 1)2 + 4z22Y

2
2 − 4z2 = 0.

It is clearly an equation with separated variables, and so Maple provides the
general solution

Y (z1, z2) = F1(z1)+F2(z2) with F ′1(z1)2 =
K

(z21 + 1)2
, F ′2(z2)2 =

4z2 −K
4z22

which is, explicitly,

Y (z1, z2) =
√
K arctan(z1)−

√
K arctan

(√
4z2 −K√

K

)
+
√

4z2 −K.

In order to recover solutions of the original equation we consider the inverse
of Q, which is h(A,B,C) = (A/(C − B), C). Then the change that recovers
the solutions of the original equation is

(z1, z2) =

(
x1√

x21 + x22 − x2
,
√
x21 + x22

)
.
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