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Abstract In this paper, we study the algebraic, rational and formal Puiseux series solutions of certain type of
systems of autonomous ordinary differential equations. More precisely, we deal with systems which associated
algebraic set is of dimension one. We establish a relationship between the solutions of the system and the solutions
of an associated first order autonomous ordinary differential equation, that we call the reduced differential equation.
Using results on such equations, we prove the convergence of the formal Puiseux series solutions of the system,
expanded around a finite point or at infinity, and we present an algorithm to describe them. In addition, we bound
the degree of the possible algebraic and rational solutions, and we provide an algorithm to decide their existence and
to compute such solutions if they exist. Moreover, if the reduced differential equation is non trivial, for every given
point (x0, y0) ∈ C

2, we prove the existence of a convergent Puiseux series solution y(x) of the original system such
that y(x0) = y0.

Keywords Algebraic autonomous ordinary differential equation · Formal Puiseux series solution · Algebraic
solutions · Rational solutions · Convergent solution · Algebraic space curve
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1 Introduction

In [2], we have studied local solutions of first order autonomous algebraic ordinary differential equations. In this
paper, we generalize the results obtained there to systems of higher order autonomous ordinary differential equations
in one unknown function which associated algebraic set is of dimension one, i.e. the algebraic set is a finite union
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of curves and, maybe, points. In particular, we prove that every fractional power series solution of such systems is
convergent, and an algorithm for computing these solutions is provided. Note that in [4] it is shown that for general
systems of algebraic ordinary differential equations the existence of non-constant formal power series solutions can
not be decided algorithmically. Nevertheless, in the case of systems as above, this undecidability property does not
hold.

Finding rational general solutions of such systems has been studied in [8]. There, a necessary condition on
the degree of the associated algebraic curve is provided. If the condition is fulfilled, the solutions are constructed
from a rational parametrization of a birational planar projection of the associated space curve. Here, we provide an
algorithm which decides the existence of not only rational but also algebraic solutions of such systems. Differently
to the method described in [8], in the current approach we do not need to consider a rational parametrization of
the associated curve. We instead triangularize the given system and we derive from there a single autonomous
ordinary differential equation of first order with the same non-constant formal Puiseux series solutions. We call it
the reduced differential equation of the system. Since rational or algebraic functions are determined by their Puiseux
series expansion, the reduced differential equation has also the same algebraic solutions that the original system.
Furthermore, taking into account that the reduced equation is autonomous and of order one, we bound, using the
results from [1], the degree of its possible algebraic solutions, and hence of those of the original system. Once the
degree of the solutions is bounded, one may use the algorithm from section 4.3 in [1] to decide the existence and
compute such solutions.

We derive the existence and convergence of formal Puiseux series solutions of such systems (see Theorems 5
and 4) from the corresponding results (see [2]) applied to the obtained reduced differential equation. With respect
to the convergence of formal solutions a related result is given by Gerasimova and Razmyslov in [6]. They show the
convergence of formal power series solutions of a system of ordinary differential equations under some additional
conditions such as that there are no zero-divisors of the differential algebra induced by the system and that the
system is of transcendence degree one. Their method is based on the fact that the induced differential algebra is
finitely generated as an algebra over its base field and then they reduce the problem to the Cauchy-Kowalevski
theorem. Their method does not deal with fractional power series solutions.

In the literature there are several methods to triangularize differential systems and to obtain resolvent represen-
tations of them, see for instance [3,9] and references therein. The description of these methods are quite involved
because they apply to general differential systems. This paper addresses only ordinary differential systems which
associated algebraic set has dimension one and we can split the process into an algebraic triangularization part and
then a straightforward differential elimination process. For the algebraic part we use regular chains as described
in [7,11]. This simple description of the process allow us to have a precise relation between the formal Puiseux
series solutions of the original system and those of the reduced differential equation.

The structure of the paper is as follows. In Sect. 2 we recall some necessary concepts such as regular chains
and regular zeros. Section 3 is devoted to derive from a system of autonomous ordinary differential equations
of dimension one in one unknown function, a finite union of such regular chains. From them we derive a single
autonomous ordinary differential equation of order one with the same non-constant formal Puiseux series solutions
as the original system. Using this reduction, the main results in [2] can be generalized to these particular systems
(see Theorems 4 and 5). In Sect. 4 we present an algorithm for this reduction and, using the algorithms in [1,2], all
formal Puiseux series and algebraic solutions of the original system can be found as we illustrate by examples.

2 Preliminaries

We recall the notion of regular chains and regular zeros; for further details we refer to [7,11]. Let us denote for
f, g ∈ C[y0, . . . , ym] by lv( f ) the leading variable, by lc( f ) the leading coefficient and by init( f ) the initial of
f with respect to the ordering y0 < · · · < ym . In addition, we denote by Resyi ( f, g) the resultant of f and g
with respect to yi . Let S = {F1, . . . , FM } ⊂ C[y0, . . . , ym] be a finite system of polynomials in triangular form,
i.e. lv(Fi ) < lv(Fj ) for any 1 ≤ i < j ≤ M . Then we define Res( f,S) as the resultant of f and consecutively
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FM , . . . , F1 with respect to their leading variables, i.e.

Res( f,S) = Reslv(F1)(· · ·Reslv(FM )( f, FM ), . . . , F1).

Moreover, we define init(S) = {init(Fj ) | 1 ≤ j ≤ M} and pinit(S) = ∏M
j=1 init(Fj ). A regular chain is a system

of algebraic equations S in triangular form with the additional property that Res( f,S) �= 0 for any f ∈ init(S).
Let K ⊇ C be a field and S ⊂ C[y0, . . . , ym]. Then let us denote

VK (S) = {a ∈ Km+1 | f (a) = 0 for all f ∈ S}.
For a regular chain S, we define a regular zero of S as an element a = (a0, . . . , am) ∈ VK (S) such
that for (S ∩ C[y0])\C = ∅ the component a0 is transcendental over C and for 1 ≤ k ≤ m with
(S ∩ C[y0, . . . , yk])\C[y0, . . . , yk−1] = ∅ the component ak is transcendental over C(a0, . . . , ak−1).

We recall a well-known theorem for the relation between regular chains and regular zeros, see [11, Proposition
5.1.5, Corollary 5.1.6].

Theorem 1 Let S = {F1, . . . , FM } ⊂ C[y0, . . . , ym] be a finite system of polynomials in triangular form and
denote by Sk the first k polynomials of S. Then the following are equivalent:

1. S is a regular chain.
2. |S| = 1 or for any k = 2, . . . , M the subsystem Sk−1 is a regular chain and for any regular zero a of Sk−1 and

f ∈ Sk it holds that init( f )(a) �= 0.

In fact, statement (2) above is used in [7] as definition of regular chains. Note that in [12] regular chains are
called “proper ascending chains”, but are defined exactly as in this paper.

Regular chains can be helpful in order to represent algebraic sets as Theorem 5.2.2 in [11] shows.

Theorem 2 Let S ⊆ C[y0, . . . , ym] be a polynomial system. Then there exists a finite set of regular chains
S1, . . . ,SN ⊆ C[y0, . . . , ym] such that

VK (S) =
N⋃

j=1

VK (S j )\VK (pinit(S j )), (1)

We note that, in the notation of [11],VK (S j/ init(S j )) = VK (S j )\VK (pinit(S j )), as it is also mentioned in chapter
1.5 therein. Let us recall that VC(S j ) is an algebraic set of dimension m − |S j |.

There are several implementations for performing computations with regular chains and in particular computing
regular chain decomposition as in (1) such as in the Maple-package RegularChains.

Let K be the field of formal Puiseux series expanded around any x0 ∈ C∞, where C∞ = C ∪ {∞}. We are
interested in non-constant formal Puiseux series solutions y(x) ∈ K such that y(x0) = y0 ∈ C∞. Since the systems
we are dealing with, see (2) below, are invariant under the translation of the independent variable, we can assume
without loss of generality that the formal Puiseux series is expanded around zero or at infinity such as in [2]. For
any subset S̃ ⊆ C[y, y′, . . . , y(m)] let us denote
VK(S̃) = {(a0, a1, . . . , am) ∈ Km+1 | F(a0, a1, . . . , am) = 0 for all F ∈ S̃}.

3 Systems of Algebro-Geometric Dimension One

Let us consider systems of differential equations of the form

S̃ = {Fj (y, y
′, . . . , y(m)) = 0}1≤ j≤M , (2)

where F1, . . . , FM ∈ C[y, y′, . . . , y(m)] with m > 0. For a field K ⊇ C, by considering y and its derivatives as
independent variables, we write VK (S̃) for the algebraic set generated by S̃. We assume the dimension of VC(S̃)
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to be one, i.e. VC(S̃) is a finite union of curves and, maybe, a finite union of points. Note that a single AODE of
order one can be seen as a system of the type (2) with M = m = 1 and is of dimension one.

Lemma 1 For every S̃ as in (2) we can compute a finite union of regular chains S as in (3) with the same non-
constant formal Puiseux series solutions.

Proof Let us choose the ordering y < y′ < · · · < y(m). By Theorem 2 there is a regular chain decomposition
S1, . . . ,SN such that every regular chain has a zeroset of dimension zero or one. We omit systems of regular chains
starting with an algebraic equation in y, since they only lead to constant solutions. Thus, the remaining systems are
of dimension one and of the form

S =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G1(y, y′) = ∑r1
j=0 G1, j (y) · (y′) j = 0

G2(y, y′, y′′) = ∑r2
j=0 G2, j (y, y′) · (y′′) j = 0

...

Gm(y, . . . , y(m)) = ∑rm
j=0 Gm, j (y, . . . , y(m−1)) · (y(m)) j = 0

(3)

with r j ≥ 1 and init(G j ) = G j,r j �= 0 for every 1 ≤ j ≤ m.
Now we want to study in (1) which kind of solutions might be a solution of a regular chain but not of the original

system, i.e. the solutions of S and pinit(S) = init(G1) · · · init(Gm) = 0. If y(x) is a non-constant formal Puiseux
series solution of a S j , then (y(x), y′(x), . . . , y(m)(x)) is a regular zero of S j , because y(x) is transcendental over
C and for every 1 ≤ k ≤ m we have

(S j ∩ C[y, . . . , y(k)])\C[y, . . . , y(k−1)] = Gk �= ∅.

Then, by Theorem 1,

init(G2)(y(x), y
′(x)), . . . , init(Gm)(y(x), . . . , y(m−1)(x)) �= 0.

Since init(G1)(y) = 0 is an algebraic equation in y, there can only be constant common zeros of S j and pinit(S j ).
��

System (3) could be further decomposed into systems with the factors of G1 as initial equations. However, for
our purposes it is sufficient that G1 and its separant, namely ∂ G1

∂u1
, have no common differential solutions, i.e. if

G1(y(x), y′(x)) = 0 for y(x) ∈ K then ∂ G1
∂u1

(y(x), y′(x)) �= 0. To ensure this we consider G1 ∈ C[u0, u1] to be
square-free and with no factor in C[u0] or C[u1]; compare with the hypotheses in [2].

Moreover, we can assume without loss of generality for every solution y(x) ∈ K of a system S as in (3) that
y(0) = y0 ∈ C. Otherwise, if y0 = ∞, consider the change of variable y = 1/ỹ . Let G∗

j (ỹ , ỹ ′, . . . , ỹ ( j)) be

the numerator of G j (1/ỹ , (1/ỹ )′, . . . , (1/ỹ )( j)), and let S∗ be the system {G∗
j = 0}1≤ j≤m . In this situation, if

y(x) ∈ K is a solution of S such that y(x0) = ∞, then ỹ (x) = 1/y(x) is a formal Puiseux series solution of S∗
with ỹ (x0) ∈ C. Moreover, for j > 0, the j th derivative of ỹ can be written as

ỹ ( j) = −y j−1 y( j) + Pj (y, . . . , y( j−1))

y j+1

where Pj ∈ C[u0, . . . , u j−1]. In this situation, we consider the rational map

� : Cm+1\V(u0) → C
m+1\V(w0); (u0, . . . , um) �→ (w0, . . . , wm),

where w0 = 1/u0 and

w j = −u j−1
0 u j + Pj (u0, . . . , u j−1)

u j+1
0

.
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Since the equality above is linear in u j , � is birational. In addition, taking into account that u0 is not a factor of
G1(u0, u1), one has that theZariski closure of�(VC(S)) isVC(S∗). Since dim(VC(S)) = 1, also dim(VC(S∗)) = 1
and one may proceed with S∗ instead of S.

For a given system S as in (3) we now associate a finite set of bivariate polynomials H(S) = {H1, . . . , Hm} ⊂
C[u0, u1]. According to [10, p. 6], for every j ≥ 2 there exists a differential polynomial R j−1 of order j − 1 such
that

G( j−1)
1 (y, . . . , y( j)) = ∂ G1

∂u1
(y, y′) · y( j) + R j−1(y, . . . , y

( j−1)). (4)

Then, for 2 ≤ j ≤ m, we introduce the rational functions

A j (u0, . . . , u j−1) = −R j−1(u0, . . . , u j−1)

∂ G1
∂u1

(u0, u1)
. (5)

Now we recursively substitute in (5) the variables u2, . . . , um by
A2(u0, u1), . . . , Am(u0, . . . , um−1) to obtain the new rational functions B2, . . . , Bm ∈ C(u0, u1):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B2(u0, u1) = A2(u0, u1)
B3(u0, u1) = A3(u0, u1, B2(u0, u1))

...

Bm(u0, u1) = Am(u0, u1, B2(u0, u1), . . . , Bm−1(u0, u1)).

(6)

Observe that the denominators of the rational functions A j are powers of the separant and depend only on u0 and
u1. Finally we set

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H1(u0, u1) = num(G1(u0, u1))
H2(u0, u1) = num(G2(u0, u1, B2(u0, u1)))
...

Hm(u0, u1) = num(Gm(u0, u1, B2(u0, u1), . . . , Bm(u0, u1))),

(7)

where num( f ) denotes the numerator of the rational function f .
In this situation, we introduce a new autonomous first order algebraic differential equation, namely

H(y, y′) = gcd(H1, . . . , Hm)(y, y′) = 0, (8)

and call it the reduced differential equation (of S). Note that by construction, H dividesG1. Moreover, if S contains
only one single equation G1, then the reduced differential equation of S is equal to G1.

Theorem 3 Let S be as in (3). Then S and its reduced differential equation have the same non-constant formal
Puiseux series solutions.

Proof LetG1 be the square-free starting equation ofS. First of all we observe that gcd(G1,
∂ G1
∂u1

) = 1 (see e.g. proof

of Theorem 4.4. in [5]). Therefore, if y(x) ∈ K is non-constant and G1(y(x), y′(x)) = 0, then ∂ G1
∂u1

(y(x), y′(x)) �=
0.

Let y(x) ∈ K be a non-constant formal Puiseux solution of S. Then
G1(y(x), y′(x)) = 0, and hence G( j−1)

1 (y(x), . . . , y( j)(x)) = 0. Applying formula (4) and since
∂ G1
∂u1

(y(x), y′(x)) �= 0, we get that

A j (y(x), . . . , y
( j−1)(x)) = y( j)(x)
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and we obtain that

Bj (y(x), y
′(x)) = y( j)(x).

Therefore,

Hj (y(x), y
′(x)) = num(G j (y(x), y

′(x), B2(y(x), y
′(x)), . . . , Bj (y(x), y

′(x)))
= G j (y(x), . . . , y

(r)(x)) = 0

for every 2 ≤ j ≤ m. By Bézout’s identity, there exists Q ∈ C[y] such that the polynomial Q · gcd(H1, . . . , Hm)

is an algebraic combination of the Hj . Since the equation Q(y) = 0 has only constant solutions, y(x) is a solution
of H(y, y′) = 0.

Conversely, let y(x) ∈ K be a non-constant solution of the reduced differential equation H(y, y′) =
gcd(H1, . . . , Hm)(y, y′) = 0. Then, G1(y(x), y′(x)) = H1(y(x), y′(x)) = 0 and as observed above,
∂ G1
∂u1

(y(x), y′(x)) �= 0. Thus, for every 1 ≤ j ≤ m the denominator of G j (u0, u1, B2(u0, u1), . . . , Bj (u0, u1))
does not vanish at (y(x), y′(x)). Taking into account (7), it follows that

G j (y(x), y
′(x), B2(y(x), y

′(x)), . . . , Bj (y(x), y
′(x))) = 0.

Now, let us recursively show Bj (y(x), y′(x)) = y( j)(x) for 2 ≤ j ≤ m, which proves the theorem: since
B2(y(x), y′(x)) = A2(y(x), y′(x)) and by (5),

R1(y(x), y
′(x)) = −B2(y(x), y

′(x)) ∂ G1

∂u1
(y(x), y′(x)).

Then, by (4),

0 = G(1)
1 (y(x), y′(x), y′′(x)) = ∂ G1

∂u1
(y(x), y′(x))(y′′(x) − B2(y(x), y

′(x))).

Using that ∂G1
∂u1

(y(x), y′(x)) �= 0, we obtain B2(y(x), y′(x)) = y′′(x). Now, let us assume that Bi (y(x), y′(x)) =
y(i)(x) for 2 ≤ i ≤ j . By (6), Bj+1(y(x), y′(x)) = A j+1(y(x), . . . , y( j)(x)). Then, reasoning as above, we obtain

0 = G( j)
1 (y(x), . . . , y( j)(x))

= ∂ G1

∂u1
(y(x), y′(x))(y( j+1)(x) − Bj+1(y(x), y

′(x))),

and hence, Bj+1(y(x), y′(x)) = y( j+1)(x). ��
Corollary 1 Let S be as in (3) and let its reduced differential equation H be a product of factors inC[y] andC[y′].
Then S has only linear formal Puisex series solutions, i.e. solutions of the form α x + β for some α, β ∈ C.

Proof From the construction of the reduced differential equations, and the assumption that G1, . . . ,Gm �= 0, we
know that H �= 0. For every factor in C[y] of H , there are only constant solutions, and for every factor in C[y′],
there are only linear solutions of H(y, y′) = 0. Then from Theorem 3 the statement follows.

Let S̃ be as in (2). Then, by Lemma 1, it can be written as the union of systems S1, . . . ,SK of the form (3).
Let H1, . . . , HK be the reduced differential equations of these systems S1, . . . ,SK . Then, as a consequence of
Theorem 3, S̃ and

H(y, y′) = lcm(H1, . . . , HK )(y, y′) = 0 (9)

have the same non-constant formal Puiseux series solutions. Equation (9) is called a reduced differential equation
of S̃. Now we are in the position to generalize the theoretical results obtained in [2], in particular the two main
Theorems in Sect. 3, to systems of dimension one.
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Theorem 4 All formal Puiseux series solutions of the system of differential Eq. (2), expanded around a finite point
or at infinity, are convergent.

Proof By Theorem 3, the system (2) and its reduced differential equation have the same non-constant solutions.
By [2, Theorem 10] all formal Puiseux series solutions of H = 0 are convergent. Since constant solutions are
convergent as well, the statement follows.

Theorem 5 Let S̃, as in (2), have a non-linear solution. Then for any point (x0, y0) ∈ C
2 there exists an analytic

solution y(x) of (2) such that y(x0) = y0.

Proof By Corollary 1, the reduced differential equation of S̃ has at least one irreducible factor depending on y and
y′. Then by [2, Theorem 11] the statement follows.

Theorem 6 Let y(x) be a non-constant formal Puiseux series solution of S̃ as in (2) algebraic over C(x) and H
the reduced differential equation of S̃ . Then the minimal polynomial G(x,Y ) of y(x) fulfills the degree bounds

degx (G) ≤ degy′(H), and degY (G) ≤ degy(H) + degy′(H). (10)

In particular if y(x) is a rational solution of S̃, then its degree, the maximum of the degree of the numerator and
denominator, is less than or equal to degy′(H).

Proof By Theorem 3, y(x) is a solution of the autonomous first order differential equation H(y, y′) = 0. Then by
Theorems 3.4 and 3.8 in [1] the degree bounds (10) follow.

4 Algorithms and Examples

In this section we outline an algorithm based on the results in Sect. 3 to derive the reduced differential equation
from a given system (2). By Triangularize(S̃) we refer to the computation of a regular chain decomposition of
a given system S̃ as in Theorem 2. Then, using the algorithms in [2], it is possible to algorithmically describe all
formal Puiseux series solutions of the given system. We illustrate this in the subsequent examples.

Algorithm 1 ReduceSystem

Input: A finite system of autonomous algebraic ordinary differential equations S̃ ⊂ C[y, . . . , y(m)] which associated algebraic set is
of dimension one.

Output: The reduced differential equation of S̃.
Set S =Triangularize(S̃) and H = 1.
for every S ∈ S of dimension one let G1 be the polynomial in C[u0, u1] associated to the equation of S depending on y, y′ do
Take the square-free part of G1(u0, u1) and divide by its factors in C[u0] and C[u1]; call it G∗

1(u0, u1).
Replace in S the equation G1(y, y′) = 0 by G∗

1(y, y
′); call it S∗.

Compute the associated set H(S∗) = {H1, . . . , Hm} as in (4)-(7) and set H = lcm(H, gcd(H1, H2, . . . , Hm)).
end for
return H .

Example 1 Let us consider the system of differential equations given by

S̃ =
{
yy′y′′ + y′3 − yy′′ − y′2 = 0
yy′ − 1 − y′2 − yy′′ = 0.

(11)
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The system S̃ can be decomposed into the system of regular chains

S1 =
{
G1 = yy′ − 1 = 0
G2 = y′2 + yy′′ = 0

and S2 =
{
y′ − 1 = 0
2 − y + yy′′ = 0

For the systemS1 the starting equationG1 is already square-freewith no factor inC[y] orC[y′] andwe set H1 = G1.

By computing d G1
dx (y, y′, y′′) and setting it to zero we obtain y′′ = −y′2

y . Hence,

H2(y, y
′) = num

(

G2

(

y, y′, −y′2

y

))

= H1(y, y
′).

Then the reduced differential equation of S is

H(y, y′) = gcd(H1, H2)(y, y
′) = yy′ − 1 = 0.

For the system S2 we obtain H1(y, y′) = y′ − 1 and H2(y, y′) = 2− y′, which are coprime. Hence, the reduced
differential equation of S2 is equal to one and therefore, the reduced differential equation of S̃ is H(y, y′) = yy′−1.

We remark that by using the RosenfeldGroebner-command from Maple, which uses regular differential
chains as described in [3], the reduced differential equation H(y, y′) = 0 of S̃ can be found as well.

The next algorithm describes all formal Puiseux series solutions of a system S̃ which associated algebraic
set is of dimension one. We use algorithm PuiseuxSolve described in [2] whose input is an autonomous ordinary
differential equation of order one and algorithmReduceSystem from above. The output is a finite set of truncations
in one-to-one correspondence to all Puiseux series solutions.

Algorithm 2 PuiseuxSolveSystem

Input: A finite system of autonomous algebraic ordinary differential equations S̃ ⊂ C[y, . . . , y(m)] which associated algebraic set is
of dimension one.

Output: A set � of all solution truncations of S̃ such that the truncation can be uniquely extended. � has non constant solutions if and
only if � �= ∅.
Set � = ∅ and H(y, y′) =ReduceSystem(S̃).
Let H∗(y, y′) be the polynomial obtained after factoring out factors in C[y] and C[y′] and taking the square-free part of H(y, y′).
If H∗ is not a constant, then set � =PuiseuxSolve(H∗).
Add to � the non constant linear solutions of S̃. This can be done by making the ansatz y(x) = α x + β with unknown α and β and
plug it into the equations and solving the algebraic system obtained in α and β.
return �.

Wecandevise a similar algorithm to compute a set of truncations ofPuiseux solutions expanded at the infinity point
replacing in the above algorithm the algorithm PuiseuxSolve by the algorithm PuiseuxSolveInfinity from [2].
However, the uniqueness of the extension can in general not be ensured.

The next algorithm decides if a system S̃ as (2) has an algebraic solution and compute some of them in the
affirmative case. Its correctness is based on the proof of Theorem 3 where it is shown that the non constant algebraic
solutions of the system S̃ are the non constant algebraic solutions of the reduced equation of S̃. In section 4
of [1] there is a description of an algorithm that decides if an autonomous differential equation Hi (y, y′) = 0 has
algebraic solutions and compute them in the affirmative case. This algorithm needs that the polynomials Hi (y, y′)
are irreducible. Hence, the next algorithm is not factor free. Let us call the output of this algorithm AlgSol(Hi ).
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Algorithm 3 AlgSolutionSystem

Input: A finite system of autonomous algebraic ordinary differential equations S̃ ⊂ C[y, . . . , y(m)] which associated algebraic set is
of dimension one.

Output: A set � of algebraic solutions of S̃ or the emptyset such that system S̃ has an algebraic solution if and only if � �= ∅.
Set � = ∅ and H(y, y′) =ReduceSystem(S̃).
Let H∗(y, y′) be the polynomial obtained after factoring out factors in C[y] and C[y′].
for each irreducible factor Hi (y, y′) of H∗(y, y′) do
Add to � the output of the above mentioned algorithm AlgSol(Hi ).

end for
Add to � the non constant linear solutions of S̃.
return �.

Example 2 Let us consider system (11) of Example 1. By Theorem 3, the solutions are those of the reduced
differential equation

H(y, y′) = y y′ − 1 = 0.

We obtain all the formal Puiseux series solutions, expanded around zero, by the one-parameter family of solutions

y(x) = y0 + x

y0
− x2

2y30
+ x3

2y50
+ O(x4)

with y0 ∈ C\{0}, and the particular solutions

y(x) = ±√
2 x1/2.

There is no formal Puiseux series solution with the initial value y(0) = ∞. The only linear solutions of S̃ are
y(x) = ±1. The possible algebraic solutions y(x) have a minimal polynomial G(x,Y ) with degree bound of
degx G ≤ degy′(H) = 1 and degY G ≤ degy′(H) + degy(H) = 2. They are given by the zeros of

Gy0(x,Y ) = Y 2 − 2

(

x + y20
2

)

.

The assumption on the dimension of the given system is crucial in our work. Otherwise for instance Theorem 4
does not hold anymore as the following example shows.

Example 3 Let us consider F(x, y, y′) = x2 y′ − y + x . The non-convergent formal power series

y(x) =
∑

j≥0

j ! x j+1

is a solution of F = 0. Hence, y(x) is also a zero of d F
dx (x, y, y′, y′′) and consequently, of the resultant of F and

d F
dx with respect to x , namely

Resx

(

F,
d F

dx

)

= y′′ + y′′2y2 − y′′y′ + 4y′′y′y − y′2 − 2y′′y′2y − 4y′3y + y′4.

Note that {Resx
(
F, d F

dx

)
(y, y′, y′′) = 0} defines a system of autonomous ordinary algebraic differential equations

of algebro-geometric dimension two.
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