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Abstract
In this paper we characterize the properness of rational parametrizations of

hypersurfaces by means of the existence of intersection points of some additional
algebraic hypersurfaces directly generated from the parametrization over a field
of rational functions. More precisely, if V is a hypersurface over an algebraically
closed field K of characteristic zero and P(t) =

(
p1(t)

q1(t)
, . . ., pn(t)

qn(t)

)
is a rational

parametrization of V , then the characterization is given in terms of the intersec-
tion points of the hypersurfaces defined by xiqi(t) − pi(t), i = 1, . . ., n over the
algebraic closure of K(V ). In addition, for the case of surfaces we show how these
results can be stated algorithmically. As a consequence we present an algorithmic
criteria to decide whether a given rational parametrization is proper. Further-
more, if the parametrization is proper, the algorithm also computes the inverse
of the parametrization. Moreover, for surfaces the auxiliary hypersurfaces turn
to be plane curves over K(V ), and hence the algorithm is essentially based on
resultants. We have implemented these ideas, and we have empirically compared
our method with the method based on Gröbner basis.
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Introduction

Unirational algebraic varieties, specially rational curves and surfaces, play an impor-
tant role in the frame of practical applications (see [10],[11],[12]). Many authors have
addressed problems related to the construction of conversion algorithms for these type
of varieties; i.e. algorithmic methods that change from the implicit representation to
the parametric one, and vice versa (see [5], [8], [9], [11], [14], [15], [18], [21], [22], etc).

In addition, if one considers rational parametrizations as rational mappings from
an affine space onto the variety, two natural questions appear. First, deciding whether
the mapping is birational (i.e. whether the parametrization is proper); secondly, in
case of birationality, the question of computing the inverse of the parametrization is
considered. More precisely, let P(t1, . . ., tr) be a rational parametrization of a variety
V over an algebraically closed field K of characteristic zero. Then P defines the rational
mapping

P : Kr −→ V.
(t1, . . ., tr) 7−→ P(t1, . . ., tr)

In this situation, the following two problems are considered:

(1) Decide whether P(t1, . . ., tr) is proper, i.e. P is invertible (properness problem).

(2) If P(t1, . . ., tr) is proper, compute its rational inverse; i.e a rational mapping
assigning to every point, in a non-empty Zariski subset of V , the corresponding
parameter value (inversion problem).

Before reporting on the state of the art of these two problems, and before describing
the contributions of the paper, we motivate the problem with some applications. Both
of these problems are important by their own right. However, for the case of curves
and surfaces, they appear in many applications. For instance:

(i) One of the first applications of parametric representations is in computer graphics.
However, if the parametrization is not proper the injectivity is lost. This implies
that the variety is traced more than once when giving values to the parameters,
and this affects the computing real time.

(ii) Computing the intersection of two varieties is also an application of parametriza-
tions, since they allow to reduce the number of variables. But, once more, if the
properness of the parametrization is not guaranteed, the degrees of the polynomi-
als in the system of algebraic equations increase. Similarly the injectivity of the
parametrization affects the efficiency of methods for line (or surface) integrals,
since it provides the optimal degrees before integrating.

(iii) Parametrizations of curves and surfaces arise in the algebraic manipulation of
offsets (see [2], [10], [19]), and therefore they are applicable to tolerance analysis,
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geometric control, robot path-planning, numerical–control machining problems,
etc. One of the most relevant problems in this frame is to guarantee the com-
putability of data structures and algorithms, and therefore rational parametriza-
tions of offset varieties are required. In [2] it is shown how to solve this problem
by means of the properness analysis of certain hypersurfaces.

On the other hand, inverting rational parametrizations of offsets provides the
necessary information on the original variety to reach this point. Note that this
is connected to kinematic problem in robotics.

(iv) Most of the parametrizing algorithms, specially for the case of surfaces, output
parametrizations over some algebraic extension of Q, not necessarily real. Thus,
the feasibility of applications requires parametrization techniques over real alge-
braic extensions of Q. In [1],[20] this problem is reduced to the Weil’s descente
variety of the parametrization. Furthermore, parametrizations of the descente
variety are generated from the inverse of the parametrization. Thus, producing
inverse of parametrizations provides a necessary tool to approach this problem.

(v) Another interesting application of inverses is that they can be used to compute
the implicit equation of a variety. More precisely, if M(x̄) is the inverse of P( t̄ ),
one can use the fact that P(M(x̄)) = x̄ modulo the implicit equation of V .

An algorithmic approach to a more general statement of these two problems
(namely, rational maps between algebraic varieties), based on Gröbner Basis, can be
found in [16]. We, in this paper, deal with the case of hypersurfaces. For plane curves,
the problem is directly related to Lüroth’s theorem, that is valid over any field, and
different algorithmic procedures to solve the problem can be found in [3], [4], [17], [23],
[25]. For surfaces, although it is known from Castelnuovo’s theorem that unirationality
and rationality are equivalent over algebraically closed fields, algorithmic questions and
approaches are still required.

In this paper we present a criteria for deciding the properness of rational
parametrizations of hypersurfaces, based on the existence of intersection points of some
algebraic hypersurfaces over the field of rational functions K(V ) of the given hypersur-
face. For the case of surfaces, these auxiliary hypersurfaces turn to be plane curves,
and therefore the problem is solved by means of resultants. Furthermore, the general
criteria can be stated algorithmically. As a consequence of these results we present an
algorithm that decides whether a given rational parametrization is proper, and in the
affirmative case computes the inverse. Moreover, we have implementated these ideas
in Maple. We have designed two prototypes of the algorithm, one deterministic and
the second heuristic, and actual computing times in comparison to the method based
on Gröbner bases are analyzed.
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The structure of the paper is as follows: In Section 1 we prove the characterization
of the properness of rational parametrizations of hypersurfaces. In Section 2 we show
how these results can be improved in order to derive an algorithmic approach for the
case of surfaces. Section 3 is devoted to outline the algorithm and examples. Section
4 focuses on the actual computing times of our implementations. In the appendix, we
show the data parametrizations used in Section 4.

1 Characterization of the Properness

In this section we show how to characterize the birationality of a rational parametriza-
tion of a hypersurface over an algebraically closed field of characteristic zero by means of
some auxiliary hypersurfaces constructed directly from the parametrization. This result
provides a constructive method for checking the properness of rational parametriza-
tions of hypersurfaces, and for computing the inverse, if a method for determining
intersection points is given. Applications of this statement can be seen in the next
section.

We start with a lemma that characterizes the birationality of parametrizations in
terms of the injectivity.

Lemma 1. Let F be an algebraically closed field of characteristic zero, let

Q : Fn−1 −→ V ⊂ Fn

t 7−→ (Q1(t), . . . ,Qn(t))

be a rational parametrization of a hypersurface V , and let

U : V −→ Fn−1

x 7−→ (U1(x), . . . ,Un−1(x))

be a rational map, where the denominators of U do not belong to the ideal of V . The
following statements are equivalent:

(1.) U is the inverse of Q.

(2.) For almost all points x ∈ V , it holds that x = Q(U(x)).

(3.) For almost all points t ∈ Fn−1, it holds that t = U(Q(t)).

Proof.

By definition, (2) is an explicit way of saying that the composition Q ◦ U : V → V is
defined and is the identity as a rational map, and (3) is an explicit way of saying that
U ◦ Q : Fn−1 → Fn−1 is defined and is the identity. This shows that (1) implies both
(2) and (3), and that the conjunction of (2) and (3) implies (1).
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By definition of “parametrization”, Q is a dominant rational map from Fn−1 to V , i.e.
its image is Zariski dense. We show indirectly that either (2) or (3) implies that also
U is dominant. Indeed: if U would not be dominant, then we would have a rational
map (either Q◦U or U ◦Q) between two varieties of dimension n−1 factoring through
a set of strictly lower dimension. But on the other hand, this map is supposed to be
the identity, which is clearly dominant. Thus this is a contradiction, and then U is
dominant.
It is well-known (see [7], p. 77) that dominant maps induce field embeddings. Hence
we have field embeddings Q∗ : F(V ) → F(t) and U∗ : F(t) → F(V ).
Next we show that (2) implies (3). Let us assume (2). Then the composite field
embedding U∗ ◦ Q∗ : F(V ) → F(V ) is the identity. It follows that

U∗ ◦ Q∗ ◦ U∗ = U∗ ◦ idF(t).

Because of U∗ is injective and therefore left cancelable, it follows that Q∗ ◦ U∗ = idF(t),
which is equivalent to (3).
The proof of (3) implies (2) is analogous. 2

We observe that from Lemma 1 one might derive two methods to compute the
inverse. The first one uses statement (3), and deals with linear conditions, provided
some assumptions on the degree. A second approach may be based on statement (2),
and leads to algebraic equations over the field of rational functions of the hypersurface.
Even though, the second method seems to be more complicated, we will see that
it leads to better algorithms where no assumptions on the degree have to be taken.
Furthermore, if one works with surfaces, the algebraic equations that appear in the
method can be resolved by means of resultants.

Once we have this general statement (Lemma 1) we introduce the notation that
will be use in the sequel. Let K be an algebraically closed field of characteristic zero,
F ∈ K[x1, x2, . . ., xn] an irreducible polynomial defining a unirational hypersurface V,
and let

P(t1, . . ., tn−1) =

(
p1(t1, . . ., tn−1)

q1(t1, . . ., tn−1)
, . . .,

pn(t1, . . ., tn−1)

qn(t1, . . ., tn−1)

)
∈ K(t1, . . ., tn−1)

n

be a rational parametrization of V , such that gcd(pi, qi) = 1 ∀i ∈ {1, 2, . . ., n}.
Also let K the algebraic closure of the field K(V ); i.e K = K(V ).

In this situation, we consider the affine hypersurfaces V1, V2, . . . , Vn defined, respec-
tively, over K by the polynomials

Gi(t1, . . . , tn−1) = xiqi(t1, . . . , tn−1)−pi(t1, . . . , tn−1) ∈ K(V )[t1, . . . , tn−1], i = 1, . . . , n.

Finally let us also consider the affine hypersurface Vn+1 defined, over K by the poly-
nomial

Gn+1(t1, . . . , tn−1) = lcm(q1(t1, . . . , tn−1), . . . , qn(t1, . . . , tn−1)) ∈ K(V )[t1, . . . , tn−1].
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The next theorem characterizes the properness of the parametrization P(t1, . . ., tn−1)
by means of the intersection points of the hypersurfaces V1, . . ., Vn defined above.

Theorem 1. The following statements are equivalent:

(1.) The parametrization P(t1, . . . , tn−1) is proper.

(2.) There exists exactly one point A = (A1, A2, . . . , An−1) ∈ [(V1 ∩ V2 ∩ · · · ∩ Vn) \
(V1 ∩ V2 ∩ · · · ∩ Vn ∩ Vn+1)] ∩Kn−1.

Furthermore, if (2) holds, then A is the inverse of P .

Proof.

(1)⇒(2) Let x = (x1, . . . , xn), and M = (M1(x),M2(x), . . . , Mn−1(x)) be the inverse

of the rational proper parametrization P(t1, . . . , tn−1). Then,

P(M) = x mod I(V )

Therefore, crossing out denominators one gets that

M ∈ V1 ∩ V2 ∩ · · · ∩ Vn ∩Kn−1

Furthermore, since M is the inverse of the parametrization one has that qi(M) is not
zero ∀i ∈ {1, . . ., n}, and then M 6∈ Vn+1. Hence, M ∈ [(V1 ∩ V2 ∩ · · · ∩ Vn) \ (V1 ∩ V2 ∩
· · · ∩ Vn ∩ Vn+1)] ∩Kn−1.
Finally, let us see that M is unique. Let M∗ ∈ Kn−1 ∩ [(V1 ∩ V2 ∩ · · · ∩ Vn) \ (V1 ∩ V2 ∩
· · · ∩ Vn ∩ Vn+1)]. Taking into account that M∗ 6∈ Vn+1, one obtains that qi(M

∗) is not
zero ∀i ∈ {1, . . ., n}. Therefore the equalities Gi(M

∗) = 0 ∀i ∈ {1, . . ., n} imply that

P(M∗) = x mod I(V )

Thus, P ◦M∗ = idV . Hence, left composing by P−1, one concludes that M∗ = P−1 =
M .

(2)⇒(1) Since there exists a unique point in [(V1∩V2∩ · · · ∩Vn) \ (V1∩V2∩ · · · ∩Vn∩
Vn+1)]∩Kn−1, A is fixed under the action of the Galois group. Therefore, A ∈ K(V )n−1.
Reasoning as we did for the uniqueness in the previous implication, one gets that
P ◦ A = idV . Now applying Lemma 1 one gets (1). 2

Example 1. Let V be the hypersurface in C4 defined by the irreducible polynomial

F (x, y, z, w) = −8 x y + 2 y2 + 4 y2z − 3 y2w + 16 x y2 − 24 x2 y + 16 x2 y2 + 16 x3 +
16 x2 z − 14 x2 w + 12 x y w − 16 x y z + 8 x2 + 42 x y2 w + 16 x y2 z − 4 y3 − 3 y2z w −
8 x z2 y+12 x y z w+8 x2 z2+3 w2x2−14 w x2 z−16 x3 y+16 x3 z+36 x3 w−76 x2 y w−
24 x2 y z + 8 x4 + 2 y2z2 + 2 y4 − 4 y3 z − 8 y3 x− 6 y3 w,
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and the rational parametrization

P(t1, t2, t3) =

(
t1 − 1

t3 + t21 + 1
,

2 t1 − t2
t3 + t21 + 1

,
2 t2 − t3

t3 + t21 + 1
,

t22
t3 + t21 + 1

)

Let us check whether P(t1, t2, t3) is a proper parametrization.
Taking into account Theorem 1, we have to analyze the intersection points of the four
curves V1, V2, V3, V4, defined respectively over C(V ) by the polynomials





G1(t1, t2, t3) = x t3 + x t21 + x− t1 + 1,
G2(t1, t2, t3) = y t3 + y t21 + y − 2 t1 + t2,
G3(t1, t2, t3) = z t3 + z t21 + z − 2 t2 + t3,
G4(t1, t2, t3) = w t3 + w t21 + w − t22.

Let us consider the point A = (A1,A2,A3) ∈ C(V ) where

A1 =
−2 x + 3 y2 − 2 x2 − 4 x y + 3 xw − 2 x z

10 x2 + 3 y2 − 12 x y
,

A2 =
−2 y2 + 2 y + 4 x y − 3 y w + 2 z y + 6 xw − 4 x− 4 x2 − 4 x z

10 x2 + 3 y2 − 12 x y
,

A3 =
−4 y2 − 6 y w − 4 z y + 8 x y + 4 y − 8 x− 8 x2 − 3 z w + 12 xw + 4 x z + 2 z + 2 z2

10 x2 + 3 y2 − 12 x y
.

It holds that ( this can be check, for instance using Gröbner Basis)

A = (A1,A2,A3) ∈ V1 ∩ V2 ∩ V3 ∩ V4,

and that
A(P(t1, t2, t3)) = (t1, t2, t3).

Thus, applying Theorem 1, we deduce that P is proper and the inverse mapping is
A = (A1,A2,A3). 2

2 Application to Surfaces

In this section, we show how to apply Theorem 1 to the special case of surfaces. The
particular case of planes curves can be treated similarly, but we do not deal with
it in this paper. For surfaces, Theorem 1 can be improved such that algorithmic
characterizations based on resultants can be stated. As a consequence of these results
an algorithm for deciding the properness and for computing the inverse, if it exists, is
derived.
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In this situation, the notation introduced in Section 1 is adapted as follows: F ∈
K[x, y, z] is an irreducible polynomial defining a rational surface V , and

P(t1, t2) =

(
p1(t1, t2)

q1(t1, t2)
,
p2(t1, t2)

q2(t1, t2)
,
p3(t1, t2)

q3(t1, t2)

)
∈ K(t1, t2)

3

is a rational parametrization of V , where gcd(pi, qi) = 1, ∀i ∈ {1, 2, 3}. Furthermore,
V1, V2, V3 are the plane curves defining, respectively, over K by the polynomials

G1(t1, t2) = xq1(t1, t2)− p1(t1, t2),
G2(t1, t2) = yq2(t1, t2)− p2(t1, t2),
G3(t1, t2) = zq3(t1, t2)− p3(t1, t2).

Moreover, we introduce a new curve V4 that is defined over K by the polynomial

G4(t1, t2) = lcm(q1(t1, t2), q2(t1, t2), q3(t1, t2)).

Note that V4 is empty if P(t1, t2) is a polynomial parametrization, and otherwise it is
a plane curve. For simplicity, we assume w.l.o.g. that P(t1, t2) does not parametrize
a plane. Note that the problem for the case of planes is trivial. Moreover, one can
check whether P(t1, t2) corresponds to a plane by introducing undermined coefficients
a, b, c, d and solving the linear system of equations generated by the equality

a
p1(t1, t2)

q1(t1, t2)
+ b

p2(t1, t2)

q2(t1, t2)
+ c

p3(t1, t2)

q3(t1, t2)
= d.

In the next lemma we analyze the intersection points of the auxiliary curves V1, V2,
V3, V4.

Lemma 2. The intersection points of the curves V1, V2, V3, V4, are in K2.

Proof. Let (α, β) ∈ V1 ∩ V2 ∩ V3 ∩ V4. Then, G4(α, β) = 0. Thus, there exists a
denominator qi that vanishes on (α, β); let us say w.l.o.g that it is q1. Therefore, since
(α, β) ∈ V1 it holds that

p1(α, β) = q1(α, β) = 0 mod I(V ).

Now, since gcd(p1, q1) = 1, it holds that the resultant of p1, and q1 w.r.t. t2 is not iden-
tically zero. Furthermore, this resultant is in K[t1], and its roots are the t1-coordinates
of the intersection points of the curves given by p1 and q1 over K. Hence, since K is
algebraically closed one has that α is in K; similarly for the t2-coordinate. 2

Now, we apply Lemma 2, to show how Theorem 1 can be improved for the case of
surfaces.
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Theorem 2. The following statements are equivalent:

(1.) The parametrization P(t1, t2) is proper.

(2.) There exists exactly one point A = (A1, A2) ∈ (V1 ∩ V2 ∩ V3) ∩ (K2 \ K2).

(3.) There exists exactly one point A = (A1, A2) ∈ (V1 ∩ V2 ∩ V3) ∩ (K \ K)2.

(4.) There exists exactly one point A = (A1, A2) ∈ (V1∩V2∩V3)\ (V1∩V2∩V3∩V4).

Furthermore, if either (2) or (3) or (4) holds then A is the inverse of P .

Proof. (1) ⇔ (4) follows from Theorem 1. In order to prove that (1) ⇔ (2) ⇔ (3) we
see that S1 = S2 = S3 where

S1 = (V1 ∩ V2 ∩ V3) ∩ (K2 \ K2)

S2 = (V1 ∩ V2 ∩ V3) \ (V1 ∩ V2 ∩ V3 ∩ V4)

S3 = (V1 ∩ V2 ∩ V3) ∩ (K \ K)2.

From Lemma 2 one has that S1 ⊂ S2. Now, take A ∈ S2. Then, reasoning as the in
proof of the uniqueness of in the implication (1) ⇒ (2) of Theorem 1, one gets that
A is a right inverse of P . Thus, no component of A can be constant, and therefore
A ∈ S3. Finally, it is clear that S3 ⊂ S1. 2

In the following we show statement (2), (3) and (4) of Theorem 2, can be decided
computationally. We start with a technical result where we state a one to one re-
lation between the intersection points of any three planes curves, without common
components, and the roots of a univariate polynomial computed by a resultant.

For this purpose, in the next proposition we assume w.l.o.g. that the gcd of each
two of the leading coefficients of the defining polynomials of the curves, w.r.t. one the
variables, is trivial. Note that this condition can always be achieved by a linear change
of coordinates.

Proposition 1. Let L be a subfield of an algebraically closed field F of characteristic
zero, and let C1, C2, C3 be plane algebraic curves over F, with no common components,
defined by the polynomials F1, F2, F3 ∈ L[t1, t2], respectively. Let F1, F2, F3 be such
that each two of their leading coefficients, w.r.t. one of the variables, have trivial
gcd. Let F1 do not have a factor in L[t1]. Then, the t1-coordinates of the intersection
points of C1, C2, C3 are the roots of the content w.r.t Z of the resultant w.r.t. t2 of the
polynomials F1, F2 + ZF3.

Proof. Let R(t1, Z) be the resultant w.r.t. t2 of F1, and F2 + ZF3, and let S(t1) be
the content of R(t1, Z) w.r.t Z. First of all note that, since C1, C2, C3 do not have
common components, then R(t1, Z) is not identically zero. Now we prove that the
t1-coordinates of the points in C1 ∩ C2 ∩ C3 are the roots of S(t1). Indeed: let α be a
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root of S(t1) (note that α does not depend on Z). Then R(α,Z) = 0. Thus, since we
have assume that the gcd of each two of the leading coefficients of F1, F2, F3, w.r.t. t2
is trivial, one has that there exists β ∈ F such that F1(α, β) = FZ(α, β) = 0. Let us
see that β does not depend on Z. If β = β(Z) depends on Z, there exists infinitely
many values of Z in F such that F1(α, β(Z)) = 0. This implies that m(t1) divides F1,
where m(t1) is the minimal polynomial of α over L, which is impossible by hypothesis.
Therefore, β does not depend on Z, and hence. F1(α, β) = F2(α, β) = F3(α, β) = 0.

Reciprocally, if one assume that (α, β) is a common point of C1, C2, C3, one obtains
that F1(α, β) = FZ(α, β) = 0. Thus R(α,Z) = 0. Furthermore, since (α, β) does not
depend on Z, one has that S(α) = 0. 2

In the next propositions, we prove that our auxiliary curves V1, V2, V3 are in the
conditions of Proposition 1.

Proposition 2. The curves V1, V2, V3, do not have common components.

Proof. Let us assume that G1, G2, G3 have a common component. Then, there exist
M, Ni ∈ K(V )[t1, t2] such that

Gi(t1, t2) = M(t1, t2)Ni(t1, t2), for i = 1, 2, 3

The coefficients of M and Ni are rational functions over V . Thus, taking common
denominators, the equality above can be written in K[t1, t2] as

Ti(x, y, z)Gi = M∗N∗
i + Ai(x, y, z)F (x, y, z)

where Ai, Ti ∈ K[x, y, z],M∗, N∗
i ∈ K[x, y, z][t1, t2] and F is the implicit equation of V .

Now we consider the set Ω consisting in all P ∈ V such that Ti(P ) 6= 0, and M∗(P, t1, t2)
is not constant, and N∗

i (P, t1, t2) is not zero. Note that Ω is a non-empty open subset
of V since Ti represents a denominator of an element in K(V ), M∗ corresponds to a
numerator of a non constant polynomial over K(V ), and N∗

i corresponds to a numerator
of a non zero polynomial over K(V ).
In this situation, for i = 1, 2, 3 and for all P = (a1, a2, a3) ∈ Ω it holds that

Ti(P )(qi(t1, t2)ai − pi(t1, t2)) = M∗(P, t1, t2)N
∗
i (P, t1, t2)

Observe that gcd(qi(t1, t2),M
∗(P, t1, t2)) = 1 for i = 1, 2, 3, since otherwise it would

imply that gcd(qi, pi) 6= 1 for some i. For each P ∈ Ω we consider the set

ΣP = {Q ∈ K2 /M∗(P, Q) = 0, qi(Q) 6= 0 for i = 1, 2, 3}.

Note that since gcd(qi(t1, t2),M
∗(P, t1, t2)) = 1 one has that ΣP is a non-empty open

of the curve M∗(P, t1, t2). Hence Card(ΣP ) = ∞. Finally, using the Theorem of the
dimension of fibres (see [24], pp.76) there exists an open set Ω′ of V such that for
every P ∈ Ω′ the fibres P−1(P ) are zero dimensional. Now take P ∈ Ω ∩ Ω′ (note
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that Ω ∩ Ω′ 6= ∅ because V is irreducible). Then one has that ΣP ⊂ P−1(P ) which is
impossible since Card(ΣP ) = ∞, and P−1(P ) is zero dimensional. 2

Proposition 3. At least one of the polynomials G1, G2, G3 does not have factors in
K(V )[t1] neither in K(V )[t2].

Proof. We distinguish two cases depending on whether there exists or not one com-
ponent of P depending simultaneously on both parameters. If none component of
P depends simultaneously on t1, t2, we may assume w.l.o.g. that P is of the form
(p1(t1)

q1(t1)
, p2(t2)

q2(t2)
, p3(t2)

q3(t2)
). Therefore, the implicit equation of V depends only on y, z, and

hence it is a cylinder. Thus, the subfield of K(V ) generated by the class of x is al-
gebraically closed in K(V ). Let us see that irreducibility over K(x) is equivalent to
irreducibility over K(V ). Indeed, if G1 does not factor over K(x), but it factors over
the algebraic closure, the coefficients of the factors are algebraic over K(x), and hence
they do not belong to K(V ). Thus, it suffices to prove that G1 is irreducible over K(x),
but this is obvious since G1 is irreducible over K.

Let us assume at least one component of P depends on t1, t2. Let us say that it is
the first one. Observe that G1 has a factor in K(V )[t1] (similarly in K(V )[t2]) if and only
if the content w.r.t. t2 is not trivial; i.e. the content depends on t1. Since the euclidian
algorithm does not extend the ground field, one deduces that the above condition is
equivalent to ask G1 not to have a trivial content w.r.t. t2 in K(x)[t1], where x can be
seen as a transcendental element over K, since we have assumed that V is not a plane.
Let us now assume that there exists a non–trivial content. It implies that there exists
polynomials A(x, t1), B(x), D(x, t1, t2) ∈ K[x, t1, t2] such that degt1(A) ≥ 1 and

B(x)G1(x, t1, t2) = A(x, t1)D(x, t1, t2).

Obviously, we may assume that A is primitive w.r.t. x. Thus, A divides G1 as polyno-
mials in K[x, t1, t2]. Therefore, degx(A) ≤ 1. If degx(A) = 0 one gets that gcd(q1, p1) 6=
1 which is impossible by hypothesis. If degx(A) = 1, then the cofactor of A in G1 does
not depend on x. Therefore, it must be constant because gcd(q1, p1) = 1. Thus, G1

does not depend on t2, which is impossible. 2

From Propositions 1, 2, 3, one can derive an algorithmic method to compute the
t1 and the t2 coordinates of the points in V1 ∩ V2 ∩ V3. We state the result for the
t1–coordinates, and we assume w.l.o.g. that G1 is the polynomial without factors in
K(V )[t1] (see Proposition 3). A similar result holds for the t2–coordinates. For this
purpose, if A is a u.f.d we denote by

contZ(H),

the content of the polynomial H ∈ A[x̄, Z] w.r.t. Z, and we denote by

res(H1, H2, t) or resA[t](H1, H2, t)
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the resultant of H1, H2 ∈ A[t] w.r.t. t.

Corollary 1. If each two of the leading coefficients of G1, G2, G3, w.r.t. t2 has triv-
ial gcd, the t1-coordinates of the intersection points of V1, V2, V3 are the roots of the
polynomial

S(t1) = contZ(res(G1, G2 + ZG3, t2)) ∈ K(V )[t1]

Remark. In the following, we will refer to the polynomial S(t1), introduced in Corollary
1, as the polynomial defining the t1-coordinates of the intersection points of the curves
V1, V2, V3. 2

The next proposition states that the defining polynomial of the t1-coordinates of
V1 ∩ V2 ∩ V3 does not have non-constant multiple roots; similarly for the polynomial
defining of the t2–coordinates.

Proposition 4. Let P proper, and let S(t1) be the polynomial

S(t1) = contZ(res(G1, G2 + ZG3, t2)).

If S(t1) has a multiple root, then it is constant.

Proof. Let M(x, y, z) = (A(x, y, z), B(x, y, z)) be the inverse of P(t1, t2). Now, we
observe that, from Theorem 2, one has that M(x, y) is the unique non-constant point
in V1 ∩V2 ∩V3. We claim that for generic Z, M is a point of transversal intersection of
the two plane curves with equation G1 = 0 (i.e. V1) and G2 + ZG3 = 0. To show this,
we have to show that M is a simple point of both curves, and that the two tangents
at M are distinct.

Note that V1 is a generic curve of the pencil of plane curves spanned by p1(t1, t2) = 0
and q1(t1, t2) = 0. By Bertini’s theorem (see [6], p 137), V1 is smooth outside the
common zero set of p1 and q1. Since M is not in this zero set, M is a smooth point of
V1. Similarly, M is a smooth point of V2 and V3. Therefore, the gradients of G2 and
G3 are not zero at M , and therefore the gradient of G2 + ZG3 at M also is not zero
for generic Z.

Now, assume indirectly that the gradients at M of G1 and of G2 +ZG3 are parallel
for all Z. This is only possible if all three curves V1, V2, V3 have common tangent.
Because M is not in the zero set of qi, the gradient of Gi is parallel to the gradient
of the rational function pi(t1, t2)/qi(t1, t2). Therefore the common tangent assumption
implies that the Jacobi matrix of P is rank deficient at M . Now, let Ω be the non–
empty open subset of K2 where the parametrization P is defined and moreover the
inverse M is defined on the image of P . Then, for every (a, b) ∈ Ω one has that the
rank of the jacobian matrix of P at M(P(a, b)) = (a, b) is rank deficient. But then the
image of the parametrization is only a curve, contradicting our assumption. Therefore,
we have proved that M is a transversal intersection of G1 and G2 + ZG3.
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By well-known properties of resultants, it follows that res(G1, G2 + ZG3, t2) has
only a simple root at M(x, y, z). Since S is a divisor of res(G1, G2 + ZG3, t2), M is a
simple root of S. 2

From Theorem 2 and Proposition 4 one deduces the following characterization.

Theorem 3. Let S(t1) and S∗(t2) be the defining polynomials of the t1-coordinates
and the t2-coordinates of the points in (V1 ∩ V2 ∩ V3) ∩ (K \ K)2, respectively. The
following statements are equivalent:

(1.) P is proper.

(2.) S(t1) is linear. Furthermore, if A1 ∈ K is the root of S(t1), then the polynomial

M(t2) =
gcdK(V )[t2](G1(A1, t2), G2(A1, t2), G3(A1, t2))

gcdK(V )[t2](G1(A1, t2), G2(A1, t2), G3(A1, t2), G4(A1, t2))
,

only has one distinct root.

(3.) S(t1) and S
∗
(t2) are linear.

Proof.

1⇒2 If P is proper, taking into account Theorem 2, one has that (V1∩V2∩V3)\ (V1∩
V2∩V3∩V4) only has one point (α, β) in K2. Since the roots of S(t1) correspond to the
t1-coordinates of (V1 ∩ V2 ∩ V3) \ (V1 ∩ V2 ∩ V3 ∩ V4), one deduces that α is the unique
root of the polynomial S(t1). Furthermore, taking into account that M(t2) defines the
t2-coordinates of (V1 ∩ V2 ∩ V3) \ (V1 ∩ V2 ∩ V3 ∩ V4), one also has that β is the only
different root of M(t2).

2⇒3 If follows from the fact that M(t2) corresponds to the t2-coordinate in (V1∩V2∩
V3) \ (V1 ∩ V2 ∩ V3 ∩ V4) over K.

3⇒1 Using that S(t1) and S
∗
(t2) define the t1-coordinates and t2-coordinates of the

points in (V1 ∩ V2 ∩ V3) \ (V1 ∩ V2 ∩ V3 ∩ V4) respectively, one deduces that (V1 ∩ V2 ∩
V3) \ (V1 ∩ V2 ∩ V3 ∩ V4) only has one different point (A1, A2) ∈ K. Therefore, from
Theorem 2 one concludes that P is proper. 2

3 Algorithm and Examples

The results in Section 2 can be applied to derive an algorithm that decides the proper-
ness of a given rational parametrization of a surface, and that (in the affirmative case)
determines the inverse. In this section, we outline the algorithm and we illustrate it
by examples.
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Algorithm Inversion(P , F )

• Input: F ∈ K[x, y, z] irreducible and defining a surface (not being a plane)
V over K, and P(t1, t2) = (p1

q1
, p2

q2
, p3

q3
) a rational parametrization of V , where

gcd(pi, qi) = 1 ∀i ∈ {1, 2, 3}.
• Output: the message “P is not proper” or the inverse of P .

(1) Compute the polynomials

G1(t1, t2) = xq1(t1, t2)− p1(t1, t2),
G2(t1, t2) = yq2(t1, t2)− p2(t1, t2),
G3(t1, t2) = zq3(t1, t2)− p3(t1, t2),

that define the curves V1, V2, V3, respectively.

(2) Check whether each two of the leading coefficients of G1, G2, G3, w.r.t. t2 is
trivial, (resp. w.r.t. t1). If not, do a suitable change of coordinates.

(3) Compute the polynomial S(t1) defining the t1-coordinates of the intersection
points of V1, V2, V3 (see Corollary 1).

(4) Compute the polynomial S(t1) obtained by crossing out the constant roots of the
polynomial S(t1).

(5) If S̄(t1) is not linear then return “P is not proper”. Else let α the root of
S̄(t1)

(6) Compute the polynomial S∗(t2) defining the t2-coordinates of the intersection
points of V1, V2, V3 (see Corollary 1).

(7) Compute the polynomial S
∗
(t2) obtained by crossing out the constant roots of

the polynomial S∗(t2).

(8) If S̄∗(t2) is not linear then return “P is not proper”. Else let β the root of
S̄∗(t2).

(9) Return “(α, β) is the inverse of P”.

Correctness. The algorithm follows essentially from Theorem 3. In addition note that,
taking into account Proposition 1, when computing S and S∗ in steps (2) and (6)
respectively, the correspondent resultant can not be identically zero. 2

Remark. The computation of the polynomial S(t1) (and similarly S
∗
(t2)), can be

performed as follows: substitute P(s1, s2) in S(x, y, z). The new variables s1, s2 are
necessary to avoid coincidences with t1, t2. Then clear denominators by multiplying
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with a polynomial in K[s1, s2] and compute the content with respect to (s1, s2). The
resulting polynomial C(t1) corresponds to the constant roots. Now, S(t1) is obtained
as the quotient of S by C. 2

Finally we illustrate the algorithm by three examples. In examples 2 and 4 the
parametrizations turn to be proper and their inverse is determine. However in example
3 the algorithm shows that the given parametrization is not proper. The surfaces in
examples 3 and 4, correspond the offset surfaces and pipe surfaces, respectively.

Example 2. Let V be the surface defined by the irreducible polynomial F = 1− 2x +
y + 2x2 + x2z2 − 2xy + yx2 − 2xz − yzx + 2zx2 + zyx2 ∈ C[x, y, z]. We consider the
rational parametrization of V:

P(t1, t2) =

(
t1

t2 + t1
,
t21 + 1

t2
,
1 + t2

t1

)
.

Let us check whether P(t1, t2) is a proper parametrization. For this purpose, we apply
the algorithm. First we consider the polynomials

G1(t1, t2) = x(t1 + t2)− t1, G2(t1, t2) = yt2 − (t21 + 1),

G3(t1, t2) = zt1 − (1 + t2), G4(t1, t2) = t1t2(t1 + t2).

Doing the computation one has that

R = resC(V )[t1,Z][t2](G1, G2 + ZG3, t2) = (−t1yx−x+yt1−t1
2x)+(−x+xzt1−t1+xt1)Z

In addition, S = contZ(R) = t1zx− t1 − x + t1x. Note that S does not have constant
roots, hence S(t1) = S(t1). Moreover, since S̄(t1) is linear we obtain the first coordinate
of the inverse

α(x, y, z) =
−x

−xz + 1− x
.

Reasoning similarly with the variable t2, we obtain

R∗ = resC(V )[t2,Z][t1](G1, G2 + ZG3, t1) = (−x2t22 − 1 + 2x− x2 + yt2 − 2yt2x + yt2x
2)+

+(xt2z − x2t2z − t2 + 2xt2 − t2x
2 − 1 + 2x− x2)Z

In addition, S∗ = contZ(R∗) = xt2z − x2t2z − t2 + 2xt2 − t2x
2 − 1 + 2x − x2. Note

that S∗ does not have constant roots, hence S
∗
(t2) = S∗(t2). Moreover, since S̄∗(t2) is

linear we obtain the second coordinate of the inverse

β(x, y, z) =
−x + 1

xz − 1 + x
.

Thus, applying the algorithm, we deduce that P is proper and its inverse mapping is:

P−1(t1, t2) = (α, β) = (
−x

−xz + 1− x
,

−x + 1

xz − 1 + x
)
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Now, let us compute the inverse applying statement (2) of Theorem 3. Reasoning as
above, we compute the first coordinate α of the inverse. Then, we substitute α in
{G1, G2, G3}, and we compute the gcds

gcdC(V )[t2](G1(α, t2), G2(α, t2), G3(α, t2))

gcdC(V )[t2](G1(α, t2), G2(α, t2), G3(α, t2), G4(α, t2))
=

x(−1 + x− t2 + xt2 + t2zx)

−1 + x + zx
.

Hence we get

β(x, y, z) =
1− x

xz − 1 + x
.

Thus, applying Corollary 1, we deduce that P is proper and its inverse mapping is:

P−1(t1, t2) =
( −x

−xz + 1− x
,

1− x

xz − 1 + x

)
. 2

Example 3. Let V be the offset to the elliptic paraboloid −x + y2 + z2 = 0, defined by
the irreducible polynomial

F = −25 + 40x + 9x2− 40x3 + 16x4 + 28y2 + 6xy2− 32y2x3− 47y4− 40xy4 + 16x2y4 +
16y6 + 28z2 + 6xz2− 32x3z2− 94y2z2− 80y2xz2 + 32z2x2y2 + 48z2y4− 47z4− 40xz4 +
16x2z4 + 48z4y2 + 16z6.

We consider the rational parametrization of V (see [19], Theorem 2):

P(t1, t2) =
(

1−2t22−6t21−4t42t41+8t42t21+4t22t21+2t22t41+4t42+15t41+4t42t121 −4t42t81+8t42t101 −16t42t61
(t22+2t22t21+2t21−t41+t22t41−1)2(1−2t21+t41+t22+2t22t21+t22t41)

+

+
−8t22t61+2t22t81−20t61+15t81+t121 −6t101 −t62−6t62t21−15t62t41−20t62t61−15t62t81−6t62t101 −t62t121 +4t101 t22−2t112t22

(t22+2t22t21+2t21−t41+t22t41−1)2(1−2t21+t41+t22+2t22t21+t22t41)
,

−(−1+t21)2t2(−1+2t21−t41+3t22+6t22t21+3t22t41)

(t22+2t22t21+2t21−t41+t22t41−1)(1−2t21+t41+t22+2t22t21+t22t41)
, −2(−1+t12)t1t2(−1+2t12−t14+3t22+6t22t12+3t22t14)

(t22+2t22t21+2t21−t41+t22t41−1)(1−2t21+t41+t22+2t22t21+t22t41)

)
.

Let us analyze whether P(t1, t2) is a proper parametrization. For this purpose, we
apply the algorithm. First we consider the polynomials

G1(t1, t2) = −1 + x− xt12
1 t22 + 2xt10

1 t22 + xt62t
12
1 + 6xt62t

10
1 + 15xt62t

8
1 + 20xt62t

6
1 + 15xt62t

4
1 +

xt62t
2
1 + t62 + xt22t

8
1− 4xt22t

6
1 + 4xt42t

6
1− 2xt42t

10
1 −xt42t

12
1 + 2t22 + 6t21 + 4t42t

4
1− 8t42t

2
1− 4t22t

2
1−

2t22t
4
1 − 4t42 − 15t41 − 4t42t

12
1 + 4t42t

8
1 − 8t42t

10
1 + 16t42t

6
1 + 8t22t

6
1 − 2t22t

8
1 + 20t61 − 15t81 − t12

1 +
6t10

1 + 6t62t
2
1 + 15t62t

4
1 + 20t62t

6
1 + 15t62t

8
1 + 6t62t

10
1 + t62t

12
1 − 2xt42t

2
1 − 4t10

1 t22 + 2t12
1 t22 − xt42 +

2xt22t
2
1 + xt22t

4
1 − t22x + xt42t

8
1 + xt42t

4
1 + xt62 − 20xt61 + 15xt41 − 6xt21 + 15xt81 + xt12

1 − 6xt10
1 ,

G2(t1, t2) = −y + 4yt21 + 6yt42t
4
1 + 4yt42t

2
1 + yt42− 6yt41 + yt42t

8
1 + 4yt42t

6
1 + 4yt61− yt81− t2 +

4t2t
2
1 − 6t2t

4
1 + 3t32 − 6t32t

4
1 + 4t61t2 − t81t2 + 3t32t

8
1,

G3(t1, t2) = −z +4zt21 +6zt42t
4
1 +4zt42t

2
1 +zt42−6zt41 +zt42t

8
1 +4zt42t

6
1 +4zt61−zt81 +2t1t2−

6t31t2 + 6t51t2 − 6t1t
3
2 − 6t31t

3
2 + 6t32t

5
1 − 2t71t2 + 6t71t

3
2.
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Doing the computation one has

R = resC(V )[t1,Z][t2](G1, G2 + ZG3, t2) =

= (64(t1− 1)16(t1 + 1)16(t21 + 1)18)((−z2(t21 + 1)2(2t1y− zt21 + z)4) + Z(4t1(t1− 1)2(t1 +
1)2(2t1y−zt21+z)3(2t41xz2+z2t41−18t21−18xt21+4t21xz2+2z2t21+2xz2+z2))+Z2(−(t1−
1)4(t1 + 1)4(2t1y − zt21 + z)2(3z4t81 − 59z2t61 + 16t61z

2x2 − 16t61xz2 + 12z4t61 + 32t41z
2x2 +

384t41 − 118z2t41 − 336x2t41 − 32t41xz2 + 48xt41 + 18z4t41 − 59z2t21 + 16t21z
2x2 − 16t21xz2 +

12z4t21 +3z4))+Z3(−2t1(t1−1)6(t1 +1)6(4t81xz4 +7z4t81−16t61z
2x2 +16t61xz4−8t61xz2−

73z2t61 + 28z4t61 − 16t41xz2 + 24t41xz4 − 32t41z
2x2 − 146z2t41 − 252xt41 + 42z4t41 + 340t41 +

256t41x
3− 16t21z

2x2 +16t21xz4− 8t21xz2− 73z2t21 +28z4t21 +4z4x+7z4)(2t1y− zt21 + z))+
Z4((t1− 1)8(t1 +1)8(24t41xz2 +112z2t41− 47z4t10

1 − 47z4t21− 188z4t81− 282z4t61− 400t61 +
24z6t21 + 48t61xz2 + 60z6t81 + 4z6 + 16t21z

4x2 + 64t41z
4x2 + 80z6t61 + 64t81z

4x2 + 16t10
1 z4x2 +

96t61z
4x2 − 40t10

1 z4x − 128t81z
2x3 + 24t81z

2x − 128t41z
2x3 + 24z6t10

1 + 4z6t12
1 − 188z4t41 −

640t61x
3+640xt61+144t61x

2+60z6t41+256t61x
4+112z2t81+224z2t61−256t61z

2x3−40t21xz4−
160t81xz4 − 240t61xz4 − 160t41xz4)))

In addition

S(t1) = contZ(R) = 64(t1 − 1)16(t1 + 1)16(t21 + 1)18(2t1y − zt21 + z).

Note that S has the constant roots corresponding to the polynomial 64(t1 − 1)16(t1 +
1)16(t21 + 1)18. We cross out these roots, and we obtain the polynomial S̄:

S̄(t1) = 2t1y − zt21 + z.

Moreover, since S̄(t1) is not linear, one deduces that P is not proper. 2

Example 4. Let V be the pipe surface (with rational spine (t, t2− 1, 0)) defined by the
irreducible polynomial

F = 2y+56x2yz2 +32x2z2y2 +16x6 +48x2z4−32x2y3 +2x2−8x4y+16x4y2 +48x4z2 +
z2− 90x2y− 52x2z2− 24z2y− 71x4− 15y2− 96x2y2 +72y2z2−−8z4 +24y3 +16y2z4 +
32y3z2 + 64z4y + 16z6 + 16y4.

We consider the rational parametrization of V (see [13]):

P(t1, t2) =

(
t1(4t2 + 4t21t

2
2 + 1 + t22)

4t21t
2
2 + 1 + t22

,
−2t2 + 4t41t

2
2 + t21 − 3t21t

2
2 − 1− t22

4t21t
2
2 + 1 + t22

,
4t21t

2
2 − 1 + t22

4t21t
2
2 + 1 + t22

)
.

Let us check whether P(t1, t2) is a proper parametrization. For this purpose, we apply
the algorithm. First we consider the polynomials

G1(t1, t2) = 4xt21t
2
2 + x + xt22 − 4t1t2 − 4t31t

2
2 − t1 − t1t

2
2,

G2(t1, t2) = 4yt21t
2
2 + y + yt22 + 2t2 − 4t41t

2
2 − t21 + 3t21t

2
2 + 1 + t22,

G3(t1, t2) = 4zt21t
2
2 + z + zt22 − 4t21t

2
2 + 1− t22.
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Doing the computation one has

R = resC(V )[t1,Z][t2](G3, G2 + ZG1, t2) =

= (2y + 16yt41 + 16y2t41 − 32yt61 + y2 + 14yt21 + t41 + z2 + 4z2t21 + 2t21 + 16t81 + 8y2t21 −
24t61) + (−16t31z

2 − 2yt1 − 16yt31 + 2t31 − 16t51 − 32t61x + 2yx + 32t71 − 32yt51 + 14xt21 −
4t1z

2 + 2t1 + 32yt41x + 16yxt21 + 16t41x + 2x)Z + (8x2t21− 2xt1 + 4z2t21 + 16z2t41− 32t51x +
x2 − 16t31x− 8t41 + 16x2t41 − 3t21 + 16t61)Z

2.

In addition, one obtains that

S = contZ(R) = (4t21+1)((−8x4−16x2z2+12yx2+27x2−8z4+6z2−12z2y+5y−1−4y2)t1+

+4yx3 + 5x3 − 4xz2 + 4xz2y − 4xy2 − 13yx− x).

S(t1) has the constant roots corresponding to the polynomial 4t21 + 1 in C. We cross
out this roots of the polynomial S, and we obtain the polynomial S(t1):

S(t1) = (−8x4− 16x2z2 + 12yx2 + 27x2− 8z4 + 6z2− 12z2y + 5y− 1− 4y2)t1 + 4yx3 +
5x3 − 4xz2 + 4xz2y − 4xy2 − 13yx− x.

Moreover, since S̄(t1) is linear we obtain the first coordinate of the inverse

α(x, y, z) =
(4yx2 + 5x2 − 4z2 + 4z2y − 4y2 − 13y − 1)x

8x4 + 16x2z2 − 12yx2 − 27x2 + 8z4 − 6z2 + 12z2y − 5y + 1 + 4y2
.

Reasoning similarly with the variable t2, we obtain

R∗ = resC(V )[t2,Z][t1](G1, G2 + ZG3, t1) =

= 64t42(−48zt52 + 96t62z
2 + 16t52 + 16t62− 16t32− 64t62z− 64t62z

3 + 4z2t22 + 16zt32− 16z3t32 +
48z2t52 + 16t62z

4 − 4t22 + 16z2t32 − 16z3t52 − 32x2t42z + 24t42z − 12t42 − 32t42z
3 + 16t42z

4 +
16x2t42z

2 + 16x2t42 + 4z2t42)Z
2 + 64t42(−96xt52z − 64yt42zx − 8xt22 + 32yt42x − 80xt42z +

8z2t22x+32xt52 +32yt42z
2x+40xt42 +40xt42z

2 +96xt52z
2− 32xt52z

3)Z +64t42(1+40yt42z
2 +

96yt52z
2− 32yt52z

3− 80yt42z + 8z2t22y− 32y2t42z− 96yt52z− 16y2t42z
2 + 16y2t42 + 2z + z2 +

25t42 + 16t62 + 40t52 − 8t32 − 10t22 + 25z2t42 + 8zt32 − 64t62z
3 − 64t62z + 96t62z

2 + 16t62z
4 +

32yt52 − 8yt22 + 40yt42 − 50t42z + 10z2t22 + 8z2t32 − 120zt52 + 120z2t52 − 8z3t32 − 40z3t52).

In addition, one obtains that

S∗ = contZ(R∗) =

= t42(−16−848y+128yzx2+256y2zx2−16z−384z2−896y2−624x2+128yx2+320z2y+
512x2z2+256x4+256z4−384z3−624zx2−256y3+256z5−256y3z−896y2z+256y2x2+
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256y2z3 + 256y2z2− 848yz + 320yz3 + 256x4z + 512x2z3 + (2816y2z2 + 1024y3z2− 16−
2816y2−688z2+1024yz4+448z2y−1024yx2+1280x2z2−1024y3+1024yx2z2−1280x2+
704z4 − 1472y)t2).

S∗(t2) has the constant roots corresponding to the polynomial t42 in C. We cross out
this roots of the polynomial S∗, and we obtain the polynomial S

∗
:

S
∗
(t2) = −16− 848y + 128yzx2 + 256y2zx2 − 16z − 384z2 − 896y2 − 624x2 + 128yx2 +

320z2y+512x2z2 +256x4 +256z4−384z3−624zx2−256y3 +256z5−256y3z−896y2z +
256y2x2+256y2z3+256y2z2−848yz+320yz3+256x4z+512x2z3+(2816y2z2+1024y3z2−
16− 2816y2− 688z2 + 1024yz4 + 448z2y− 1024yx2 + 1280x2z2− 1024y3 + 1024yx2z2−
1280x2 + 704z4 − 1472y)t2.

Moreover, since S̄∗ is linear we obtain the second coordinate of the inverse β(x, y, z):

− 16z4+16y2z2+20z2y−24z2+32x2z2−1−53y+8x2y+16x2y2−39x2−56y2−16y3+16x4

64z3y+44z3−44z2−64z2y+176y2z+64y3z+80x2z+64yx2z+92zy+z−1−92y−176y2−80x2−64x2y−64y3 .

Thus, applying the algorithm, we deduce that P is proper and its inverse mapping is:

P−1(t1, t2) = (α, β).

2

4 Practical Implementation

This section is devoted to the experimental computing times of the previous algorithm.
It focuses on the implementation in Maple of two prototypes of the algorithm. Actual
computing times, running on a PC INTEL PENTIUM 350 MHz and 64 MB of RAM,
are given in seconds of CPU.

The first implementation assumes that the implicit equation of the surface is known.
We use the implicit equation of the surface to carry out the arithmetic over K(V ). Note
that, since I(V ) = (F ), basic arithmetic on K[V ] can be carried out by computing poly-
nomial remainders. Therefore the quotient field K(V ) is computable. In addition, we
remark that we compute resultants of polynomials in K(V )[t1, t2] that is a UFD, and we
also calculate gcds of univariate polynomials over K(V ), and hence in an euclidean do-
main. It can be seen clearly that the algorithm outperforms implizitization by Gröbner
bases in most cases. However, we note that this comparison is not really fair because
the Gröbner bases method allows to compute the implicitization rather than assuming
it.

The second implementation avoids the requirement on the implicit equation. For
this purpose, elements are represented (not uniquely) as function of polynomials in
the variables x, y, z. In order to check zero equality one may use the parametrization.
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However, this can be too time consuming. Instead, we test zero-equality by substituting
a random point on the surface. The result of this zero test is correct with probability
almost one. In addition, if the output is a rational inverse, we also test its correctness
by checking it on a randomly chosen point on the surface. It can be seen that the
run-time behavior of this algorithm is similar to the deterministic one. Hence we can
avoid computing the implicit equation if we accept a probabilistic answer.

In the following table we illustrate the performance of our two implementations,
showing times for some parametrizations. In the table we also show the degree of each
parametrization. In the appendix, we give the parametrizations considered in this
analysis.

Parametrization Degree
Time of the

Deterministic
implentation

Time of the
Probabilistic
implentation

Time using
Gröbner basis

P1 2 0.92 0.74 > 3000
P2 2 0.11 0.95 > 3000
P3 2 1.62 1.98 > 2000
P4 4 0.23 0.17 4.24
P5 2 6.89 22.68 0.14
P6 2 10.69 5.85 0.58
P7 2 0.56 0.58 0.51
P8 3 0.51 0.36 2.26
P9 3 0.09 0.14 0.72
P10 3 0.20 0.14 > 3000
P11 3 0.04 0.09 0.59
P12 2 1.50 0.64 > 4000
P13 3 3.50 3.95 > 3000
P14 3 11.23 43.86 > 3000
P15 3 1.21 2.07 6.22
P16 2 1.91 2.50 > 3000
P17 2 21.49 56.92 > 4000
P18 7 0.41 0.40 4.53
P19 8 0.52 0.55 7.44
P20 8 0.43 0.38 6.65
P21 7 0.4 0.52 > 4000
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5 Appendix: Parametrizations in Section 4

P1 =
(

t1
t1+t2

, t12−t1+1
t2+1

, t1
2 + t2

)

P2 =
(

t21+t2
t1+t2

,
t21−t1+1

t22+1
,

t21+t2
t1

)

P3 =
(

2t22−3t21
−2t21−t1t2

, −2t1t2
2t1−t22

,
t22+2t1t2
3t2+3t1

)

P4 =
(−3−3t31t2

t2
,

3t1t2−2t21
2t2

, −2+3t1
3t2

)

P5 = (3− t2 − t1 − 3t1t2 + 2t22 + 3t21,−1− 2t2 + t1 − 3t1t2 + 2t22 + 3t21,−2− 2t2 − 3t21)

P6 = (t2 + 2t1t2 − 3t21 − t22, 3 + t2 + 2t1 + 2t1t2 + 3t21, 1 + 2t2 + 2t1 − 2t1t2 − 2t21)

P7 =
(
t1 + t2t

2
1 − 1,

t22
t2+t1t2+1

, t1 + t2t
2
1 − t2

)

P8 =
(

t1t2+1+t1
t22+t21

, 1
t22+t21

,
t22+t21+1

(t22+t21)t2

)

P9 =
(

t1(t1+t1t2−1)
t1−t21+t2

, −t1+t2
t1−t21+t2

, t1+t2
t1−t21+t2

)

P10 =
(

t1t2+1
t1+1

, t2
t1−1

, t1+t2
(t21−1)t2

)

P11 =
(

t1
t21+t1t2−3

,
t1+t32
t1+t2

, 1
t1+t2

)

P12 =
(

t1+t22
t1+t2−1

,
t21+t2+3t1

t1
, t1

t2+t1t2+1

)

P13 =
(

t21+t22+t31
t21

, t2 + t31,
t1

t22+1

)

P14 =
(

t21+t22+t31
t21

,
t2+t31

t1+t2−4
, t1

t22+1

)

P15 = (3t2 + 3t2t
2
1 − t32, 3t1 + 3t22t1 − t31, 3t

2
2 − 3t21)

P16 =
(
−3−t1t2+t2−2t1

2
,

1−2t2−3t22+t21
−1+2t1

,
−3−3t1t2−2t1+3t22−t21

3

)

P17 =
(

2t1t2+2t22−3t21
t1(t2+1)

,− t1(2t2+1)
t2+3t1

,
2+t1t2+3t22
t2(−2t1+t2)

)
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P18 =
( −t1(2+t1(24t52−113t42+15t32−133t22−110t2+42))

t1(−19t52−47t42+68t32−72t22−87t2+79)+1+t21(80t52+72t42+66t32−29t22−91t2−53)
,

−1−t1(43t52−66t42− 53t32−61t22−23t2−37)+t21(80t52+72t42+66t32−29t22−91t2−53)

t1(−19t52−47t42+68t32−72t22−87t2+79)+1+t21(80t52+72t42+66t32− 29t22−91t2−53)
, t2

)

P19 = (
(−18t62−58t42−54t32+98t22−191t2+18−45t52)t21−2t1

t1(−59t62+45t52−8t42−93t22+92t2+43)+1+t21(97t62+50t52+79t42+56t32+49t22+63t2)
,

t21(97t62+50t52+79t42+56t32+49t22+63t2)+(5t22−77t62−66t42−54t32−99t2+61)t1−1

t1(−59t62+45t52−8t42−93t22+92t2+43)+1+t21(97t62+50t52+79t42+56t32+49t22+63t2)
, t2

)

P20 =
( −t1(2+t1(−31t62+70t52−85t32−104t22−79t2+126))

t1(−4t62+38t52−61t32−58t22−91t2+45)+1+t21(58t62−92t52−8t32+36t22−90t2+96)
,

t21(58t62−92t52−8t32+36t22−90t2+96)−t1(−27t62+32t52−24t32−46t22+12t2+81)−1

t1(−4t62+38t52−61t32−58t22−91t2+45)+1+t21(58t62−92t52−8t32+36t22−90t2+96)
, t2

)

P21 =
( −t1(t1(−37+155t52+100t42−121t32+122t22+58t2)+2)

t1(63t52+57t42−59t32+45t22−8t2−91)+1+t21(28t52+154t42−9t32+124t22+48t2−43)
,

t21(−6−127t52+54t42+112t32+2t22−10t2)−1+t1(−56−92t52−43t42+62t32−77t22−66t2)

t1(63t52+57t42−59t32+45t22−8t2−91)+1+t21(28t52+154t42−9t32+124t22+48t2−43)
, t2

)
.

References

[1] Andradas C., Recio T., Sendra J.R., (1999). Base Field Restriction Techniques for
Parametric Curves. Proc. of ISSAC’99 pp. 17-22 ACM Press.

[2] Arrondo E., Sendra J., Sendra J.R., (1997). Parametric Generalized Offsets to
Hypersurfaces. J. of Simbolic Computation vol. 23, pp 267-285.

[3] Gutierrez J., Recio T. (1992). Rational Function Decomposition and Gröbner Basis
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