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Abstract

In this paper we prove that, for a given set of parametric primary surfaces and parametric clipping
curves, all parametric blending solutions can be expressed as the addition of a particular parametric
solution and a generic linear combination of the basis of a free module of rank 3. As a consequence,
we present an gbrithm that outputs a generic expression for all the parametric solutions for the
blending problem. In addition, we also prove that the set of all polynomial parametric solutions
(i.e. solutions that have polynomial parametrizations) for a parametric blending problem can also be
expressed in terms of the basis of a free module of rank 3, and we prove an algorithmic criterion to
decide whether there exist parametric polynomial solutions. As a consequence we also present an
algorithm that decides the existence of polynomial solutions, and that outputs (if this type of solution
exists) ageneric expression for all polynomial parametric solutions for the problem.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Computing blending and modelling surfaces is one of the central problems in computer
aided geometric design (see elpffmann 1993 Hoschek and Lasset993. In many
applications, objects are modelled as aedion of several surfaces whose pieces join
smoothly. This situation leads directly to the blending problem in the sense that a blending
surface is a surface that provides a smooth transition between distinct geometric features of
an object (see e.¢dartmann 1995 Hoffmann anl Hopcroft 1986 1987 Warren, 1986.

More precisely, if one is given a collection of primary surfa¥gs. . ., V,, (surfaces to
beblended), and a collection of auxiliary surfades . . ., U (clipping surfaces), then the
blending problem deals with the computation of a surfeceontaining the space curves
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Cylinder.

Blending.

Blending.

Fig. 1. Primary surfaces (cylinder, cone, sphere), digpsurfaces (planes parallel to the floor), and blending
suface.

Ci = Ui NV, and seh thatV meets eachV; at C; with “certain” smooth conditions
(GK-continlity, seeDeRose1985 . Intuitively speaking theGK-contintity consists in
requiring that the Taylor expansions @t of the different pieces of the object agree till
certain order with the corresponding Tagkxpansion of the blending surface.HRig. 1,

we illustrate an example of a blending where the primary surfaces are a cylinder, a cone
and a sphere, and the clipping surfaaes planes parallel to the floor.

The blending problem can be approached from two different points of view,
namdy, implicitly (see Hoffmann am Hopcroft 1987 Warren 1989, where & implicit
expression of the solution is computed, or parametrically (S#ip, 1989 Hartmann
2001ab; Pérez-Daz andSendrg 2001 Pottman and Wallner1997 Vida etal., 19949
where parametric outputs are reached.

In addition, one may also consider two different types of statements for the parametric
version of theproblem. On one hand, one may work with global parametrizations of
the geometric objects, i.e. with rational curves and surfaces, and, on the other, one
may deal with local parametrizations, which implies that the set of possible data is
bigger (see e.gdoffmann 1993 Vida etal., 1994. Furthermore, a second consideration,
depending on whether either symbolic or numerical techniques are used, can be made (see
Bajaj @ al., 1993 Hartmann 1998 Hoschek and Lasset993for numerical techniques,
andHoschek and Lasset993 Vida etal., 1994for symbolic techniques).

In this paper, we are interested in the symbolic global parametric version of the problem.
That is, we consider that surfaces and curves are rational and that they are given by global
parametrizations, and we develop symbatiethods to derive global parametrizations
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of the solutions. In the following we will refer to this problem as the parametric blend
problem. As an interesting open problem, one may consider the extension of these ideas
to the case where genetric objects are given by local parametrizations, and therefore an
additional effort has to be done tomtrol the domains of definitions.

For the inplicit blending, Hoffmann and Hopcroft proved that using the potential
method (seeHoffmann aml Hopcroft 1987 one may compute all possible implicit
solutionsof degree 4 for the case of two quadrics and wah geometric continuity.
Afterwards, Warren (se@/arren, 1986 extended Hoffmann and Hopcroft's results to the
general case, stating that all solutions are in the intersection of some polynomial ideals
generated by the implicit equations \¢f, andpowers of the equations &f;. This result
(that we will refer as Hoffmann—Warren'’s theorem) gives a description of the space of
suface solutions (non-necessarilyicmal) for the beénding problem.

For the parametric blending, although there exist algorithmic achievements (see
Filip, 1989 Hartmann 2001a Pérez-Daz andSendrg 2001, Pottman and Wallned 997,

Vida etal., 1994, they only provide partial answers in the sense that only partial families
of rational blending surfaces are computetdniany cases, these approaches can be used
satisfactorily for applied purposes as modelling surfaces. Nevertheless, from a theoretical
point of view there is no “parametric version” of Hoffmann—Warren’s theorem that
algebraically structures the space of all parametric solutions of the blending problem.
Of course, one may try a straightforward approach that first computes the space of
all implicit equations of the blending problem to afterwards apply parametrization
algorithms to derive the parametric solution (elehyankar and Bajaj1989 Schichg

1998. However, parameitzation algorithms are time consuming (dd@uk et al, 1997,

and on the other hand deciding which implicit solutions are rational is a very hard problem
that would require the development of parametrization algorithms for families of surfaces
depending on parameters.

Another interesting open problem in this context is the computation and characterization
of existence of polynomial parametric solutions (note that the generation of polynomial
blendings, i.e. polynomial parametrizations that are blendings, is important in applications;
for instance one avoids the unstable numerical behaviour of the denominators when tracing
the surface), as well as the theoreticaldst of the corresponding set of solutions.

In this paper we deal with these problemsdame give heoretical and algorithmic
answers. We prove that for a given set of pae#ric primary surfaces and parametric
clipping curves the set of all parametric solutions can be directly related to a free module
of rank 3 (seeSection 4. More precisely, we prove that any parametric solution of a
parametric blending problem can be expressed as the addition of a particular parametric
sdution and a generic linear combination of the basis of the module. Furthermore,
since the basis of the module of solutions glcitly computed, this result provides
an algorithm that outputs a generic expression for all the parametric solutions for the
problem (seeSection 7. Moreover, in order to have a complete algorithm one needs to
determine a single particular panatic solution. Therefore, amuxliary algorithm for
computing any particular parametric solution is required. For this purpose, we extend
Hartman’s method inHartmann(20013 to the case ofn sufaces and our method in
Pérez-Daz andSendra(2007) to thecase ofGX geometric continuity (seBection 5. Also
a omparison analysis of these two methods is presented. This comparison analysis focuses
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on different aspects such as: algebraic manipulation required in the algorithms, upper
bounds of the degrees of the output paramations, capability of the methods to provide
polynomial parametrizations as outputs and actual computing times in the implementation;
the particular parametric inputs taken in the real time analysis appear in the Appendix.

In addition, we also prove that the set of all polynomial parametric solutions for a
parametric blending problem can also be expressed in terms of a free module of rank 3, in
this case over a bivariate polynomial ring. More precisely, we prove that any polynomial
parametric solution of a parametric blending problem can be expressed as the addition of
a particular polynomial parametric solution and a generic linear combination of the basis
of the module; which is explicitly obtained. Meover, we state an algorithmic criterion
to decide whether there exist parametric polynomial solutions and we prove that the
extenson of the method inPérez-Daz andSendra (200]) aways reaches a polynomial
parametization if there exists any (seSection §. As a consequence we present an
algorithm that decides the existence of polynomial solutions, and that outputs (if this type
of solution exists) a generic expression for all polynomial parametric solutions for the
problem (se&ection 7.

Throughout this papell is a field of characteristic zero (in practical applicatioHs,
can be taken as a computable subfield of the field of the real numbers). Surfaces and
curves are seen as affine varieties over the algebraic closkréat implicit equations and
parametrizations are taken oW€rAlso, all rational functions are supposed to be expressed
in reducedorm; i.e. where numerators and denominators are coprime.

2. Preéliminarieson blending surfaces

This section is preliminary and we report on the basic definitions and results that will
be used throughout the paper. We start with the concept of blending surface for agamily
of finitely many irreducible surfaces. Intuitively speaking, a blending surface is a surface
meeting the elements i with certain “smoothness” at some prescribed curves.

The precise meaningf 6smoothness” is formatied in the concept oGK-continity
(geometit continuity). The geometric continuity provides information on how smoothly
two irreducible surface¥1, Vo meet at a given space curéz Thus, zero geometric
continuity requires tha€ C V1 N Vo, G!-continuity imposes that tangent planesvat
V> agree along, and fork > 1 theconcept is equivalent to asking that the multiplicity of
intersection ol1, Vo atC is at leask + 1 (seeGarrity and Warren1991). More precisely,
the notion ofGK-continuity can be defined as follows (see &gurity and Warren1991;
Warren 1986.

Definition 1. Let V1, Vo be irreducible surfaces, and IEt c V1 N V> be an irreducible
curve such thaYy, V, are smooth at all but finitely many points @1 Then, we say that
V1 meets Y at C with GK-continuity if there exist two polynomial#\, B € K[x1, X2, X3],
not identically zero alongC, such hat all derivatives ofAF; — B, up to orderk vanish
alongC, whereF;, andF; are the implicit equations df1, andV> respectively.
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For the case of rational surfaces (that is the one we are interested in) the no@n of
continuity can be characterized as follows (EsRose 1985 Garrity and Warren1991;
Liang et al, 1995.

Proposition 1. Let V4, V> be rational surfaces, and let @ V; N Vz be an irreducible
curve such that M V, are smooth at all but finitely many points on C. Then, the following
statenents are equivalent:

(1) V1 meets Y at C with GK-continuity.

(2) There exist rational parametrizatioriBy (t, h), P2(t, h) of Vi, V» respectvely such
that all partial derivatives ofPy(t, h), and Pa(t, h) up to ordet k agreealong
cC. O

In this situation the notion of bteding surfaces is defined as follows.

Definition 2. LetV = (V1,..., Vp), n > 2, be am-tuple of irreducible surfaces, and let
C = (Cy, ..., Cp) be ann-tuple of irreducible curves such thdf c V; andV; is snooth
at all but finitely many points oi€;. Then, we say that a surfac®/ is a GX-blending
surface for(V, C) iffori = 1, ..., nit holds that

(1) W is smooth at all but finitely many points @,
(2) W andV; meet aC; with G¥-continuity.

A pair (V, C) as above is called hlending dataFurthermoreV is called thevector of
primary surfacesandC the vector of clipping curvesWe will refer to the coordinate
sufaces ofV as theprimary surfacesand to the coordinate curves Gf as theclipping
curves

The following theorem is proved iHoffmann am Hopcroft(1986 andWarren (1986,
and states the form of all blending surfaces.

Theorem 1. Let V be avector of primary surfaces, and |& be a vector of disjoint
clipping curves, such that each & the intersection of Mwith an auxiliary surface ¢
Then, the set of all Gblending surfaces fofV, C) is included in the ideal

n
((gi. hi™),
i=1

where g and h are the implicit equations of;\and U, respectively. [

3. Theparametric blending problem

Taking into accouniheorem 1the computation and analysis of blending surfaces can
be approached by means of elimination theory techniques; for instance witim&asis.
Moreover, in Warren (1986, the author shows how to deal with the problem, for special
cases, avoiding @Gbner basis computation.

Lin this paper, whenever we say “derivatives up to ofdewe mean order from O tk, understanding as usual
that the zero order derivative is the rational function whose derivatives are considered.
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Nevertheless, if one is interested in computing a parametric representation of a rational
blending surface, the problem needs to be apphed differently. Note that, even having
a generic implicit expression of a single solution, one still would need to check the
rationality and to apply parametrization algorithms (#d#hyankar and Bajajl988 1989
Schichg 1998 Sendra and Winkler1991, 1997 in order toachieve a parametric solution
for parametric inputs. In this paper we deal with this problem and we provide a method to
generate all the parametric solutions witheamputing the implicit equations. Thus, we
give a parametric counterpart versionidgfeorem 1

More precisely, we will deal here with the problem of finding parametric blending
sufaces for a tuple of rational primary surfacead a tuple of rational clipping curves.
Furthermore, we will assume that we areagivrational parametzations of the primary
sufaces such that under a suitable substitutionhef parameters by wdriate rational
functions, one gets the clipping curves. Thus, our input will be a vector of rational surface
parametrizations of the form

P = (Pa(t, h), ..., Palt, h)),
and a tuple of pairs of univariate rational functions
R = ((M1(t), N1.(1), ..., (Ma(t), Nn (1)),
suchthatfori =1,...,n
Pi(Mi (1), Ni (1))

parametizes the th clipping curve. Therefore?, R and(P; (M (t), N; (t)))1<i<n play the
role of the primary surfaces, the auxiliary sagés and the clipping curves, respectively.

We observe that, for everg, ..., sn—1 € K, wheres # sj if i # j, one can
reparametrizé; (t, h) as

Prt,h) =Pi(Mi), Ni(t) +h —s-1),
and therefore it holds that

Pr(t,s-1) = Pi(Mi (1), Ni (1)).
Hence, one can always assume w.l.0.g. that the auxiliary tuple of a pair of univariate
rational functions is of the form

(t,%0), ..., (t, sn-1)).

This remark motivates the following definitions.

Definition 3. Let (V, C) be a blending data such that ptimary surfaces and clipping
curves are rational. Thenyrational blending datdor (V, C) is a pair(P, 5) suchthat

(1) P = (Pu(t,h), ..., Pa(t,h) e (K, h)3", andP;(t, h) is a rational parametri-
zation of theith primary surfacé/;.

(2) 5= (%0,...,5-1) € K"is a vecor of n different field elements.
(3) Fori =1,...,n,Pi(t,s_1) parametizes the th clipping curveC;.
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Definition 4. Let (P, §) be a rational blending data. Then, we say that a surslde a
rational G¥-blending surfacéor (P, §) if W is rational and it has a rational parametrization
B(t, h) such that fori = 1,...,n all partial derivatives up to ordek of the ith
parametrization component @ and of B(t, h) agree at(t,s_1). We saythat B(t, h)

is aparametric solution fo(P, §).

In this situation, theparametric &-continuity blending probleroan be stated as follows:

Initial statement

¢ Givena ratbnal blending dat&P, ).

o Conputea paametric representation of all ratior@K-blending surfaces fofP, 5);
i.e. a rational parametrizatidfi(t, h) of all rational GK-blending surface fo(P, §),
such ttat fori = 1,...,n all partial derivatives up to ordee of P; (t, h) and of
B(t, h) agree att, 5_1).

In the following, we show that one can give a simpler, but equivalent, formulation of the
problem.

Proposition 2. B(t, h) is aparametric solution fo(P, 5) if and only if

9ip
aJh( S_1) = aJh(ts 1) forj=0,...,kji=1,...,n.

Proof. Clearly if B is a parametric solution, the condition is satisfied. Conversely, the
condition forj = O implies thatB(t, 5_1) paramérizesC;. Thus, itonly remains to prove
that

glitizp glitiep, _ ) )

m( _1) m(t,s_l), J1+]2=1,...,k,|=1,...,n.
However, since

aliB dlp, _ .

ajlh(t,S—l):ath(tS _1), ji=1....ki=1...,n,

and taking into account that M (t, h) € K(t, h) then

glitizm al2 /giim
3ith 92t (t,s-1) = ﬁ ( 3ith (t,s- l))

one concludes the proof.[]

Therefore, thparametric G--continuity blending problernan be reformulated as follows:

! Reduced (but equivalent) stateme%nt

¢ Givena ratbnal blending dat& = (P, 9); i.e. the oordinatesP; (t, h) of P are
rational parametrizationsf the primary surfaces, anB(t, 5_1) parametizes the
clipping curves.
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o Conputeall the parametric solutions; i.e. all rational surface parametrizaigng)

suchthat
B 3P .
Eﬂ—h(t’s_l)_éﬂ—h(t’s_l) forj=0,....k

In the sequel, whenever we speak about the param@lricontinuity blending problem
we will be considering the reduced version of it. Moreover, we will write “a parametric
solution for (P, 5)” meaning “a @rametric solution to the parametr@k-continuity
blending problem for the rational blending d&m, 5)”.

4. Structure of the space of rational solutions

In this section we analyse the algebraic structure of the space of rational solutions for
a ratonal blending dats&. We piove thatthe set of all parametric solutions f6rcan be
directly related to a free module of rank 3. More precisely, we prove that any parametric
solution can be expressed as the addition of a particular parametric solution and a generic
linear combination of the basis of the module.

For this purpose, throughout this section we fix a rational blending data), where
P = (P1(t,h), ..., Pa(t,h)) ands = (S, . .., Sn—1) (note thats # s; if i # ). Also, we
introduce the set

A(t, h)
S { B(t. h)
Note thatAs is a subring ofK(t, h). Furthermorepbserve that ifA/B € K(t, h) and
B(t,s5-1) = 0, by Bézout's theorem (see e.Walker, 1950 the plane curve defined by
B(t, h) and the lineh = 5_1 have infinitely many common points, and theref@re-s_1)
dividesB(t, h). Conversely, ifth — s_1) dividesB(t, h), thenB(t, 5_1) = 0. Therefore,
the commutative ringds can be expressed as

[ At.h s B
As = ! BLh © K(t, h) ‘ gcd(il:!)(h -5s), B) = 1, .

e K(t,h) | B(t,s-1) # O fori =1,...,n}.

Moreover, we consider the freds-module of rank 3.A4s)2, and wedenote it byM:
M = (As)3.
In this situation,one has the following theorem.
Theorem 2. LetB(t, h) be a particular parametric solution faP, ). Then, the set of all

theparametric solutions fotP, 5) can be expressed as

j
{B(t,h)+N(t,h)|/\/eM, and%[(t,s,l)zo,j =0,...,ki =1,...,n}.
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Proof. Let X be the set of all the parametric solutions f@t, 5), and 12 the set in the
staement of the theorem. Le¥1(t, h) = B(t, h) + N(t, h) € £2. Thenone has that
M 3P . .
W(tvsfl)zm(tvsfl)s ]=0,...,k,|=0,...,n.
Thus, byProposition 2 M(t, h) € Y. Conversely, leRR(t, h) € X, and let
N(t, h) =R(t, h) — B(t, h).

Then sinceR, B € Y, it holds that all partial derivatives w.rit.of R(t, h), andB(t, h) up
to orderk agree at the poirt, s_1), and theefore all partial derivatives w.rk of N'(t, h),
up to ordek, vanish athepoint(t, s_1). Herce,R(t,h) = B(t,h) + N(t,h) € 2. O

The geometric interpretation dtheorem Zs as follows. Any parametric solution can
be expressed as the addition of a particular parametric solution and a parametrization of
a varigy in K® of dimension less than or equal to 2, having the origin as a singularity of
multiplicity at leastn(k 4+ 1). Note that we haveot excluded zero dimensional varieties.
In this case the parametrization to add to the particular solution is the origin, and
consequently is not really a parametrization.

Also, one can interprétheorem 2n terms of systemef constraints. For this purpose,
we consider the system of partial differential equation$fin

Al E P
&= {m—h(t,S—l) = aj—h(t,S—l)}

j=0,...,k,
i=1,...,n

Then, byProposition 2one has that the set of all the parametric solutiong/RrS) is the
set of all surface parametrizations (i.e. elementih h)3\K?3) saisfying £.

On the other hand, associated wihone can consider the homogeneous system of
patial differential equations té&, nanely

dE i=0,....Kk
EH:{ajh(t,S—l)zo} i:].,...,n.
In this situation the element§/(t, h) € M, introduced inTheorem 2are the solutions
of &4 in M. Therdore, Theorem Zan be stated as follows:

Theorem 3. A “general” parametric solution foP, 5) can be expressed as the addition
of a particular solution of the non-homogeneous sysfeamd the “gener# solution of
thehomogeneous systefn. O

In the fdlowing we investigate the algebraic structure of the set of solutions of the
homogeneous systefiy. This stidy will allow us to be more precise with the meaning of
“general solution”. We start with the next lemma.

Lemma 1. The set of sations ofé in M is a submodule oM that we denote b .

Proof. Clearly My # @ since it ontains the zero solution. First, we observe that if
N1, N2 € My thenN1 + N2 € My. Now, l[etR = A/B € As, andN e My. Since
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B(t,s_1) # 0, andN € M, R(t, h)N(t, h) is defined aft, 5_1), as well adts partial
derivatives. Furthermore,

Rt,s_1)N(t,s5.1) =0 fori=1,...,n.
Moreover, since

9l . .

%(t,s,l)zo, forj=0,...,k,i=1...,n,
by Leibnitz’s formula on the partial derivative of a product, one deduces that

31 (RV) L /iNaiR IR

- — = i t, 1) Y(—— t, — = 0
sip (S ;(J) o (LSt s )

forj = 1,...,k, andi = 1,...,n. Therdore, RN € My, andMy is a submodule
of M. O

Furthermore, one can be more precise and compute a basis of the subiipdule
Lemma?2. Let A(h) = ]_[{‘;Ol(h — 5)¥1 Then, {e1, e, €3}, where

e1 = (A(h), 0,0, e = (0, A(h), 0), ez = (0,0, A(h)),
is a basis of the submoduldy.

Proof. Clearly {e1, e, €3} is linearly independat. We now see that it generates the
submodule. Let

3
= {Za(t,h)a

i=1

Ri € Ag} .
We have tgprove thatMy = Y. Firstwe observe thag are clearly elements éfly, since
they are saltions oféy. Let R € Y. Then, R can be written as
R= A(h)(R1, Ry, R3) whereR; € As.
By Leibnitz’s formula on the partial derivative of a product, one has that

A(RA) /iR DA
- = — 621,2,3
aih ;(1) ah 9i-ih

Therefore, since partial derivatives w.htof A up to ordeik vanish att, 5_1) one deduces
thatfor¢ =1,2,3

(R A)
alh
Thus, R is a solution off, andhenceR € My. Conversely, leF = (Fq, F2, F3) € My.
We prove thatF,, ¢ = 1, 2, 3, can be written as

(t,s—1) =0, i=0,...,ki=1...,n.

n—-1
Fo=Rt.m[[h—s)*"  with R e As.
i=0
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Let F;, = N¢/M, be the reduced form o, (i.e. gcdNg, My) = 1). SinceF € My,
one has thatN, vanistes at(t,5_1) fori = 1,...,n. Thus, by Bzout’s theorem,
C(t,h) := [['=3(h — s) divides N, and shce F; € As, gcdC, M) = 1. Thus,Fy
can be written as
N
Fe = ML*OC(t, h),  whereNo e K(t, h), and gcdNg o, My) = 1.
¢

Now, sinceF, € My it holds thati)—';‘ (t,s5_.1) =0,fori =1,...,n. Thatis,

N
o (%)
oh
Taking into account tha€ vaniskes at(t, 5_1) butits partial derivative w.r.th does not,
one gets that
Ne,o
Mg
Thus, reasoning as befor€, divides N, o and gcdC, My) = 1. ThereforeF, can be
written as

N¢,o aC .
t,5_1)C{,s5_ ——(t,5_.1) —(t,5_.1) =0, i=1,...,n
(’Sl)(31)+M4(Sl)ah(Sl)

(t,s_1) =0, i=1...,n

Fo = —=C(t,h)?2,  whereN;1 € K(t, h), and gcdN,.1, M¢) = 1.

The same reasoning can be done, using Leibnitz’s formula, up tetthpartial derivative.
Finally, one gets that

N
Fo = ML’kC(t, hyk+1, whereN, k € K(t, h), and gcdNg k., M) = 1.
¢
Therefore, we have proved that
3
Ne k
F=) —e,

and hencd= € ¥. O

Now, we can be more precise on the meaning of “general” solutidiy afayng that a
general slution of &y is a generic linear combination jAs of the basis of the submodule
Mpy; i.e.

n-1

[Jth=s)" (R Rz, Rs)  with R € As.

i=0
In this situation,Theorems Z&nd3 can be written as
Theorem 4. Let Bp(t, h) be a particular solution of the non-homogeneous sysfesnd
let By(t, h) be the general solution of the homogeneous systerithen allthe parametric
solutions for(P, 5) can be expressed as

Bp(t, h) + By(t, h).
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That is, all tre parametric solutions fotP, §) are of the form

n-1
N1 N2 N3
By(t,h) + h—sk+1(—,—,—>,
p(t.h) i]:!)( e Vo M

where N, M; € K[t, h] andged[['=ath —s), Mi) =1. O

5. Determination of a particular rational solution of £

In the previous section we have seen how the problem of computing all ra@nal
blendings for several surfaces is reduced ® dbatermination of a particular solution of
the sssaiated non-homogeneous systémThere are several methods that approach this
problem partially (se€ilip, 1989 Hartmann 2001a Pérez-Daz andSendra 2001]). The
approach inPérez-Daz andSendra(200]) deals withn sufaces but only fok = 1 (i.e.
for the case of51 geometric continuity), the algorithm iHartmann(20013 is given for
n = 2 (i.e. for two primary surfaces) witBX-continuity, and the method iilip (1989 is
also given for the case of two surfaces w@h-continuity, and comments on the extension
to GK-continuity are done. In addition, these apaches provide familied solutions that
depend on parameters. Nevertheless, this characteristic of the methods is not interesting in
this context, since we indeed provide all parametric solutions.

These available procedures to compute particular solutions to the problem may be
classified in two types: those where the particular solution is achieved by means of rational
perturbations of the given primary parametrizations (this is the calsammann20013,
and those where the perturbation is done on the given clipping parametrizations (this is
the case oPérez-Daz andSendrag 2007). The method irFilip (1989 perturbsby means
of Hermite polynomials, the clipping paratnigation and vectors in the tangent spaces
to the clipping curves. Thus, since tangent vectors are linear combinations of the partial
derivatives of the clipping parametrizations, the approackiiip (1989 can also be
considered in the second type of methods.

In this section, we generalize our methodPérez-Daz andSendra(200)) to arhtrary
GK-continuity. In fact, one may check that the methodFiip (1989 can be seen as
a particular case of this generalization. This extension of the method might be done
preserving also the capability of generating families of solutions, but for simplicity and
because we only need to know a single solutiwe do not develop this aspect here.
Moreover, we show how the method ktartmann(20013 can also be extended to the
case ofn primary surfaces. We finish the sectiavith a comparative analysis of the
methods. Examples of these extended methods can be found in the last section of the
paper. Furthermore, both methods have been implemented in Mapl&éstien 5and
Appendix).

For this purpose, as we did in the previous section, we fix throughout this section a
rational blending datéP, §), whereP = (Py(t, h), ..., Pn(t,h)) ands = (o, ..., Sh_1)

(note thats # sj if i # j).

For simplicity in the derivation of the methods that we present, we shall suppose that
at least one clipping curve, s&4, is not planar. Note that this condition can be assumed
without loss of generality, since this siti@n can always be achieved by means of a linear
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change of coordinates. Furthermones will denote the parametrizatioh (t, 5—1) of the
clipping curveC; as

Qi () = (gi.1(), Gi,2(t), 4, 3()) :=Pi(t, S-1).
Note that, sinceC; is not planar, thergyi(t) ¢ K; in paticularqr1 # 0,q12 # O,
03 # 0.

Perturbing the clipping parametrizations

The basic idea of this new method is to construct, from the clipping parametrizations
Qi (1), a pototype of parametrized solution of the form

Pertubation
of Qj(t),i > 2
Pertubation of Q1(t)

n
T(t,h) = (Av1(h)dri(t), Arza(au2®), Arshdis®)+ Y AMQi®),
i—1

where A j(h), Aj(h) are polynomials. The polynomial#\; j(h) contain, initially,
undetermined coefficients. Afterwards, we find explicit values for these undetermined
coefficients that guarantee thatt, h) is a particular solution of the problem.

We start vith the following technical lemma that is the generalizationLeimma 3
in Pérez-Daz andSendra (2007 to the GX-blending problem. It ensures (and describes)
the existence of suitable interpolating polynomialg j, A; guaranteeinds* geometric
continuity.

Lemma3. Let 4 € K&DN Then, there exists a unique polynomial(® e K[h]
satisfying that
(1) deg,(A(h) < (k+Dn—1.
a0 0 K &
) (%Q(So), AR L SR ), %"%(S“l)) y
Proof. LetA = (A1.0,.--,An0,---> ALk, --->Ank), and let
A(h) = ag +ath + - - - + agypn_1h*FO"1,
wherea; are undetermined coefficients. K satisfies (2)then fori = 1,...,n, and
j=0,...,k onegets
(k4 1n — 115 KDL=
(k+DHn—1-j)!
These conditions can be seen as a linear system of equationsaylaesthe unknowns.

By simple computatin, one deduces that the determinant of(th¢ 1)n x (k4 1)n matix
of this linear system is

k—1 n—1
KN l—[(k_ i)2(n+i—l) l—[ (s — S{)(k+1)2 £0.
i=1 ir,i=0

jlaj + (j + Dlsaagn +--- + Ak+Hn—1 = Aij-
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Thus, the system is solvable, and therefore, the result holds.

Remark. It is easy to check that the lemmaitiwthe assumptionfouniqueness, can be
extended to any degree greater than or equalkte- 1)n. However, we hve stéed the
lemma in its simplest form since we are interested in finding a particular solutighdor

small degree. Also, solving the corresponding linear system of equations appearing in the
proof, one deduces that the polynom#gh) can be expressed as

n k k—] m kel
1109 (h—s_1)
=323 5 ot L () |
i=1j=0 mmijtamh \ [Tz (h — s+ -
« [T_i(h—s_pktt
(h—s_pkrii-m’

whered = (A1,0,- -, An,0s -+« s ALk -+ -5 Ank). O

Now, usingLemma 3 we proceed to construct the prototype parametrizafigh h). This
construction will be used for theoretical purposes in the proofs. TherQee#lary 1) we
will deduce a direct expression of the solution. The process consists of two different steps.

| Theoretical construction df |

Step 1. This step will generate the polynomial coefficients of the first clipping
parametization Qi(t) in 7(t,h). We take three different families of elements
A11, A1p, A1z € K&DN where some of their components are left as undetermined
coefficients. More precisely, we take

undetermined coefficients

A1 =40, .., 0,AG,10 - > AL -5 AGLK) s - -5 A,k

In these conditions, foj = 1, 2, 3, we applyLemma 3to 4, j to generate three different
polynomials of degree less than or equafket 1)n — 1 that we @note by

A :
Arj ().

We introduce the indexl; ; to emphasize that each of these polynomials depends on the
undetermined coefficients inj j. These polynomials will be the interpolating coefficient
corresponding to the components of the first clipping curve parametriz8tion

Step 2. In this step the polynomial coefficients of the remaining clipping parametrization
Qit),i = 2,...,n,in 7(t,h) are generated. Far = 2...,n we take elements
A € K& a5 follows:

ith
—_—
4 =(,...,0,°1,0,...,0,0,...,0,...,0,...,0).

Now, we applyLemma 3to each4; to generate polynomials of degree less than or equal
to than(k + 1)n — 1 that we @&note by

Ai (h).
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Each of these polynomials does not depend on any undetermined coefficient (hence, we
omit the corresponding index), and they will be the interpolating coefficient corresponding
to the clipping parametrization@; (t),i = 2, ..., n. Note hat for all but the first, clipping
parametrizations of all the agponents are perturbed equally.

In thi_s situation, ifA = (41,1, 41,2, A1,3), we introduce the pattern parametric solution
for (P, S) (i.e. the prototype parametrization) as

Pertubation
ofthe
remairing

Pertubation of the first clipping clippings

n
T4t h) = (A5 ()aua®). ApSA M2, ALsaus®) + > A Q).
i=1

This expression can be written in matrix form as follows. Let

Q1 i1 O12 Q1.3

Qo 021 O22 Q23
omy =\ . | = . . R

n On,1 On2 On3

M| Ay (A

Ao Ao Ao
HA(h) = Az Az Az

An An An

Then

TAM h) = (1,..., DIQ®) o HA(M)],

where o denotes Hadamard’s product, also often called the Schur product (see, e.qg.
Horn and Johnsgn1989; thatis, if A = (& j)1<ij<r and B = (Ij j)1<i j<r then
Ao B = (a,jbij)i<ij<r-

Note that the undetermined efficients are only at positions (1, 1), (1, 2) and (1, 3)
of the matrixH“. In general, one can introduce the undetermined coefficients at different
positions in the matrix, but it should happen that there is a polynomial with undetermined
coefficients at each column of the matrix.
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Taking into account the construction we have done,ifef 1,...,n, it holds that (in
the first matrix the non-zero row is thi¢h one)
0 0O
0 0O
HAi s =11 1|,
0 0O
0 0O
rain| [fein]| [Faip]
2igA 0 0 0
——(S-1) = ,
alh 0 0 0
0 0 0

where for a given matrixA, 9 A/d1h denotes the matrix obtained by considering the
j-partial derivatives of the entries @f.

Applying the above properties, it is clear that the parametrizafidrt, h) satisfies the
properties stid in the following lemma.

Lemma4. Fori =1,...,n,itholds that

ajTA 91 O; .
1) &It sy =22 M forj=0,... k.

ai A .
@) a;);[h‘(t’ S-1) = (A@i,jphar1(t), A2, jHar2t), Az jharat)) forj=1,... . k. O

Observe thatfione takesj = 0 in Lemma 41), for almost allspecializationsAp of the
undetermined coefficients one has that

Th@t,5.1) = Qi) =Pi(t,5-1), i=1...,n

Thus, 7 %o(t, h) defines a rational surface containing the clipping curves. Therefore, the
parametirzationT/10 (t, h) solves the blending problem with zero geometric continuity.
In order to achiev&X-continuity, one can applproposition 2andLemma 42), and try
to find dgebraic conditions on the undetermined coefficientd o get hat
dlTA alp;
ai—h(t’ S-1) = (A@i, 01,10, A2,i.jH01,2(1), A3, jHdr3d) = ai—h(t’ S-1)
forj=1,...,k,andi =1,...,n.
In the next theorem, we see that the above conditions can always be satisfied and
therefore a particular parametric solution for to B&-continuity blending problem is
deternined.
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Theorem5. Forj=1,...,k,andi=1,...,n,let

—(t S—1) = (M,i jH (1), Mei jH®), mai D),

alh
and letAd = (A1,1, 41,2, 41,3) be such that
Me,i.j)(t
hei gy = D@ g 5 g
da,e(t)

ThenT(t, h) is aparametric solution foxP, §).

Proof. Taking into account the comments done befoheorem 5one just has to observe
that the equidons (whergf = 1,...,k, i =1,...,n)
alp
(A @i, a1, A2, jhHdr,2t), Agi,jd3t) = o (t S-1),
can always be solved iy j j) becausay 1 # 0, q1,2 # 0, 01,3 # 0. Clearlythe solution
is the one in the statement of the theorernl

We havedescribed a theoretical construction of the particular rational solufion

However, taking into account the explicit expression of the polynomifa,/l_%j , Aj obtained
in the remark td.emma 3 one can derive an explicit expression for it. In the next theorem
we deal with this.

Corallary 1 (Direct Conputation ofT). Let (m(g j)(t), Mm@, j)(t), ma,j,j)(t)) be as in
Theorenb. Then, a parametric solution fo¢P, S), is given by

TG = (AL (a0, ALF (DaL0), ALY ()asa) + Z A QD).
i=2
where
A:I_r Xk: l a_ (h So)k+l l—[:'\zl(h _ Sil)k‘H-
e path [TLa(h —s_pktt . (h — so)k+1—¢
My i, J)(t) 1 8_5 (h—g_p)ktl
" ; le ger (D) ;) 2! |:8‘3h (]‘[i”:l(h — 5 )kt .

l_[| ]_(h S l)k+l
(h S_ l)k+l j—¢°

k
1] 8¢ (h—s_pk+? [T (h —s_pk+t
A =D o |:87h (Hinzl(h —§_pktt o, - s-pkF=t .
-1

{=0

and

Theorem 5and Corollary 1 provide the following algorithm to compute a parametric
solution for the blending datéP, 5). The input of the algorithm is as it is described in
the statement of the problem (sBection 3.
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Algorithm 1. Given a raional blending data(P, §), the afjorithm computes a parametric
solution for(P, 5).

(1) Forj =1,...,kandfori =1, ...,ncompute%%(t,s,l).

2

n k k+1
A _ 1 3_13 (h—s-1)
T2, h) = ZZ 2! |:aeh (Hinzl(h _ S_l)k+l)j|sq
-1

i=1¢=0

[T a(h —s_pk+t . n X 3l
XThos it 2O ; ;ai—h(t’ S-1)

-
N S Iy (. B

—uj! h \ [T (h — s_p)k+? -
% Hinzl(h - 3—1)k+1

(h—s_pktl-i=t"

(3) Return74(t, h).

Perturbing the primary parametrizations

In Hartmann(2001g, Hartmann provides a method to generate a family of parametric
solutions witth—continuity for a rational blending data of the for@P1, P2), (S0, S1))
(more preciselyyy = 0,51 = 1), and therefore only two primary surfaces are considered.
In Hartmann(20013, the perturbation is done on the primary parametrizations. So, the
basic idea of Hartmann’s method is to geneefgotdype of parametrized solution of the
form

Uniform perturbation of the
primary parametrizationB; (t, h)

T, hy=fi(h)Pt, h)y + f2(n)Pa(t, h)

where fj (h) are in general rational functions.
More precisely, Hartmann gives the following family of particular solutions that
depends on a paramete(the balanceparameter).

Theorem 6. LetS = ((P1, P2), (S0, S1)) be a rational blending data, let & K\{0, 1},
and let

u(sy — h)k+l
(s1 — h)**1 4+ (1 —uy(h —so)k+t’
Then, theparametrization
T(t,h) = f()PL(t, h) + (1 — f(h)Pat, h)

is aparametric solution fos. O

f(h) = J
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Remark. Let K = R be the field of real numbers, and g, s1 € R, with 59 < s1.
Then, foru € (0, 1) the rational functionf (h) in Theorem @s aC®°-continuous rational
function in[sp, s1]. O

Hartman’s method can be easily generalizedite 2 primary surfaces, thus a solution
of the type

Uniform perturbation of the
primary parametrizatioriB; (t, h)

T(t,h) = fi(Pat,h) + -+ fa(M)Pn(t, h),

is generated. More precisely, one gets the following theorem.

Theorem7. LetS = ((P1,...,Pn), (S0, ...,5-1)) be a rational blending data, let
ug,...,uy € K\{O,1},andfori=1,...,nlet

uj l_[i,-;zl(h —5j _pktt n?=i—l,j £ (Sj-1— hyk+l
Ui T 250 = sj— DM Ty (51 = RF 4+ (L= up(h — skt

Then7 (t, h) = fi(h)P1(t, h) + - -- + fr(h)Pu(t, h), is aparametric solution for the
blending dataS.

Proof. Fori =1, ..., n, the functionsf; (h) satisfy that:
fi(s_1) =1, and fi(se_1) =0 fore e {1,...,n}\{i}.

fi(h) =

Furthemore, forj = 1,...,kandr = 1,...,n one has tha%(s_l) = 0. Thus, the
parametization7 (t, h) satisfies that
T 3P
alh alh
Therefore, taking into accouRtroposition 27 (t, h) is a parametric solution fa§. O

(t,s_1) = (t,s_1), j=0,....,k, andi =1,...,n.

Remark. Note that fom = 2, taking inTheorem 7

f(hy — uz(sp — <+t

YT Ui — T (@ = up)(h — s T
okt

fo(h) = ux(sp — h)

Uuz(so — ¥ 4+ (1 — up)(h — spk+t

with up = 1 — u1, we getTheorem 6 [

We have aleady analysed, aftéfrheorem 6 the @ntinuity of the functionsf; when
n = 2. In the next proposition, we study the continuity for arbitrary

Proposition 3. Let K = R be the field of real numbers, and,s..,si—-1 € R, with
S < -+ < S-1. Thenif y € (0, 1), the rational functions jfh), fori = 2,...,n, in
Theorem7 are C*°-continuous ins_2, S_1], and fi(h) is C*-continuous insp, S1].
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Proof. Letthe denominator ofj (h) vanish ata € [S_2, S_1]. Then,

n

i—2
u[Ja-si0* [] 1-a"'+a-u)@-s**t=0

j=1 j=i—1,j#i
Note that from the above equality it is clear tlha s _1. Thus,
1
Ui = i—2 n k+1-
1— jzl(a—sj—l) Hj:i—l,j#i (Sj—1—a)
a—§-1

Therefore, sincej; < 1 one deduces that

- k1
0~ _ [MA@—s-D[Tj=i 1 6-1—2)
a-s-1 ’

which is impossible becausec [§_2,5-1]. O

Theorem 7providesthe following algorithm to compute a parametric solution for the
blending dataP, 5). The input of the algorithm is as it is described in the statement of the
problem (se&ection 3.

Algorithm 2. Given a rdéional blending data(P, §), the afjorithm computes a parametric
solution for(P, §).

(1) Fori =1,...,ntakeu; € K\{0, 1} and compute
Ui H'J;zl(h —Sj _pktt nT:ifl_j;&i (Sj—1— hyk+1
uj H‘,—;"‘lm =i DTS g i (S — M 4 @ —up(h — 5 _pktl

(2) T(t, h):= fa()Pa(t, h) +--- + fa()Pn(t, h).
(3) Return7 (t, h).

fi(h) :=

Comparison of methods

We finish this section with a comparative discussion of the two methods for computing
particular solutions. We base our discussion on four different aspects:

1. Algebraic manipulation required in the algorithms.
2. Upper bounds of the degrees of the output parametrizations.

3. Capability of the methods tprovide polynomial parametations as outputs (for
more details on the polynomiality see next section).

4. Actual compting times in the implementation.

Concerning algebraic manipulations required to derive the output, extension of
Hartmann’s method is much better since it only involves basic rational function arithmetic.
Thus, it can be considered as a very direct approach. In the casgaithm 1, evaliations
and derivative computations are required, dretéfore it is not as direct. Nevertheless, in
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both cases (clearly foklgorithm 2 the complexity is polynomial, and empirical analysis
shows thaboth are quite efficient.

In order to study the degree of the outputs, fivst recall that the degree of a rational
function R € K(ty,...,t)) w.rt. t; is defined as the maximum of the degrees of the
numerator and denominator & (whereR is given in educed form) w.r.ttj. And, we
define the degree of a rational parametrization as the maximum of the degrees of its rational
components. Therefore, ®(t, h) = (p1(t, h), pa(t, h), ps(t, h)) then

deg(P(t, h)) = maxdeg(pi(t,h)) |i =1,2,3}.

Similarly onedefines deg(P(t, h)). Moreover, tle total degree of the parametrization
P(t, h) is defined as

totaldedP(t, h)) = max{totaldedp; (t, h)) | i =1, 2, 3},

where totaldegp; (t, h)) denotes the total degree of the rational functfprt, h); that is,
the maximum of the totalegrees of the numerator and denominatqu;@f, h) in reduced
form.

In these conditions, lef = (P,5) = ((P1,...,Pn), (S, ...,S—-1)) be a rational
blending data, and let

a =maxdeg(Pi(t,h) [i=1,...,n},
B =maxdeq,(Pi(t,h)) |i=1,...,n},
y = maxtotaldedP;(t,h)) |i =1,...,n}.

Then, a simple analysis of the algorithms shows the following upper bounds for the
degrees:

e Algorithm1. Let7 (t, h) be the output oAlgorithm 1performed orS. Then,

(i) deg (7 (t,h)) <an(k +1).
(i) degy(7(t,h)) <nk+1) -1
(i) totaldeg(7 (t, h)) = O(ynk).

e Algorithm2. Let7 (t, h) be the output oAlgorithm 2performed orS. Then,

() deg (7 (t,h)) < na.
(i) deg,(7(t,h)) =n((n—1((k+1)+p).
(iii) totaldeg(7 (t, h)) = O(n%k + yn).

ComparingAlgorithms 1and 2 in terms of the polynomiality of the output, one sees
that Algorithm 1 is much better tharAlgorithm 2 Algorithm 1 outputs a parametric
polynomial solution for(P, §) if any exists (seeCorollary 2). However,Algorithm 2is
not optimal in this sense. For more details on the polynomiality see the next section.

Algorithms 1and 2 have been implemented in Maple. Trable 1we illustrate the
performance of the implementations, showtitges for the parametrizations appearing
in the Appendix. In the table we also show:
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Table 1

Performance of theniplemenation
Input n k Dp D¢ Algorithm 1 Algorithm 2
| 2 2 [5,18] [2,2] 0.149 0.295
Il 2 8 [2, 2] [2,2] 0.488 0.226
1l 2 5 [2, 6] [2,2] 0.230 0.035
[\ 2 4 [4, 3] [2, 3] 0.510 0.045
\ 3 3 [5,2, 4] [4,2,2] 0.580 0.760
\! 3 1 [2,2,3] [2,2,3] 0.130 0.120
Vi 4 2 [2,2,2,2] [2,2,2,1] 0.300 0.370
VIl 4 1 [3,2,2,1] [2,1,1,1] 0.215 0.215
IX 5 2 [2,2,3,3,2] [2,2,1,2,2] 0.425 1.700
X 5 1 [2,2,2,1,2] [2,2,2,1,1] 0.270 1.150
Xl 6 3 [2,2,1,1,1, 2] [1,1,1,1,1,1] 1.115 4,965

n = number of primary surfaces.

k = order of geometry continuity.

Dp = list with the total degrees of the parametrizations of the primary surfaces.
D¢ = list with the degrees of the parametrizations of the clipping curves.

The degree of the parametrizations of the input primary surfBagsh),
the numben of primary surfaces involved in the blending,

the degree of the parametrizations of the input clipping cugés and
the ordek of geometry continuity.

PwbdPE

Actual computing timesare measured on a PC Pentium Ill Processor 128 MB of
RAM, and times are given in seconds of CPU. We remark that the outputs provided by
Algorithm 2 are in general more complicated, in the sense of density, than the outputs
given byAlgorithm 1(seeSection 7.

The following Table 2summarizes the comparative analysis of the methods in terms of

degrees, required algebraiw@nipulations, polynomiality, computing times and density of
theoutput.

Table 2

Comparative analysis of the Method
Characteristic Algorithm 1 Algorithm 2
Degree int Better
Degree inh Better
Total degree O(ynk) O(n%k + yn)
Pdynomiality of the output

(seeSection 6for details) Better

Required algebraic manipulations Better
Actual computing times Equivalent Equivalent

Density of the output Better
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6. Structure of the space of polynomial solutions

The generation of polynomial blendings (i.e. polynomial parametrizations that are
blendings) is important in applications. For instance one avoids the unstable numerical
behaviour of the denominators when tracing the surface.

In this section, we prove that the set of all polynomial parametric solutions for a
parametric blending problem can also be expressed in terms of a free module of rank 3;
in this case over a bivariate polynomial ring. Moreover we state an algorithmic criterion
to decide whether there exist parametric polynomial solutions and we prove that the
extengon of the method inPérez-Daz andSendra (200]) aways reaches a polynomial
parametization if any exists.

For this purpose, throughout this section we fix a rational blending daia), where
P = (Pu(t,h),...,Pat,h)) ands = (sp, ..., S—1) (note thats # sj if i # j). In this
situation, we consider the fré&ft, h]-module of rank 3K[t, h])3, anddenote it by

MPO = (K[t, h])S.
Also, we tenote by
5P0| and 5ﬁ0|

the g/stems (non-homogenous and homogeneous, respectively) introduSedtion 4
but now overMP? instead of oveM. The fdlowing lemmas are stated similarly as
Lemmas land2.

Lemma5. The set of slations of8ﬁ°' in MP% is a submodule ofVIP that we denote by
MPe. O
Lemma6. Let Ah) = [T=0(h — 5)*L. Then, {e1, e, €3}, where

e1 = (A(h),0,0), e = (0, A(h), 0), ez = (0,0, A(h)),

is a basis of the submoduM}?. O

Similarly, as we did inSection 4 we introduce the notion of “general” solution 5ﬁ°'
saying that it is a generic linear combinatioriit, h] of the basis of the submoduié;-°":
ie.

n-1

[Tth—s)“"(Ri, Re, Re)  with R € Kit, h.

i=0

In this situation, one may state the analogous resultheorem 4for the polynomial

case.
Theorem 8. Let BE’O'(t, h) be a particular polynomial solution of the non-homogeneous
systemEP! and let Bkt h) be a generalsolution of £;°. Then allthe parametric
polynomial solutions fofP, §) can be expressed as

BEot, hy + BEt, hy.
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That is, all the paametric polynomial solutions fafP, §) are of the form

n—-1
BEt, ) + [ [(h — )" (Ry, Ry, Ra),
i—0
where R € K[t, h].
Proof. Let Ath) = [T"Z5(h —s)*L. Let 2P be the set of all the polynomial parametric
solutions for(P, §), and

QPO = (B5!(t, h) + A()(Ry, Rz, Re) | R € KIt, h}.

By Theorem 4 2P ¢ £Pol Now, let M(t, h) € ZP°. Then, by Theorem 4one has that
M(t, h) can be expressed as

Mt, h) = BE(t, hy + Ah) (Ml ,\'\/:2 ,\N/f)
3

whereN;, M; € K[t, h] and gcqj]—[ (h —5), Mj) = 1. SinceM(t, h), andBPO'(t h)
are polynomial parametrizations, it holds that

1 N2 Ng 3
A(h)(M v Mg)eK[t,h].

Furthemore, since go(ﬂ (h —5),Mj) = 1, one deduces tha#l; dividesN;, and
therefore

N1 N> N
12 8 Kt h)R.
|\/|1 |V|2 |V|3

Thus,M(t, h)y € 2P°. O

In Theorem 8 we have ®en the expression of all polynomial solutions for a rational
blending data, if any exists. However, we still do not have a criterion for deciding the
existence of polynomial solutions. In the next theorem we characterize the existence of
polynomial blending by means of the clipping curves. For this purpose, we apply the ideas
in Algorithm 1 More peecisely, we state the following theorem.

Theorem 9. The followingstatenents are equivalent:

(1) There exists a parametrjgolynomial solution foxP, 3).
(2) There exist infinitelynany parametric polynomial solutions foP, S).
(3) The rational functions

3P

W(ts _1) forj=0,...,ki=1...,n,

are polynomial.
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Proof. (1) implies (2) follows from Theorem 8 and (2) impies (3) follows from
Proposition 21n order to pove that (3) imfies (1), we consider theutput parametrization
T(t, h) given byAlgorithm 1 It is of the form

n
TAt h) = (A5 (g, A5 M2, AfEhaLa®) + > A () Q; ).
i=2

>, Ai(h)Qi(t) is polynomial because (s@orollary 1 for the expression of)

n
(h—s_)** " divides | J(h — s )"+,
i=1
Furthemore, forr = 1,2,3 one has thaTAf}*r (h)gar (t) are also polynomial (see
Corollary 1 for the expression oAﬁfr) because

n
(h—s-p** 1= divides ] Jh — s,
i=1

and the components of

3Py

W(t’ S—1) = (M, jH (1), Me,i,j) @), ma;i j )

forj=0,...,k;i=1,...,n

are polynomials. Therefor&;4(t, h) is a parametric polynomial solution faP, 5). O

ComparingAlgorithms 1and 2 in terms of the polynomiality of the output, one sees
that although in Hartmann’s methodlgorithm 2 the ccefficients f; can be taken as
polynomials (seeHartmann 20013, the polynomiality of the output depends on the
polynomiality of the primary paraetrizations. However, adict consequence of the proof
of (3) implies (1) in Theorem 9shows thatAlgorithm 1is optimal in this sense. More
precisely, one has the following corollary.

Corollary 2. Algorithm1 outputs a parametric polynomial solution fgP, 5), if any
exids. [

In the fdlowing example, we show thaflgorithm 2 does not have the property of
Algorithm 1described in the previous corollary.

Example 1. We onsider the problem of blending witB! geometric continuity of two
sufaces. More precisely, |&t; andV, be the primary surfaces parametrized by

Pit.h) 6t%h — 3t>h? — 5h? —30h —45 (h?—h?—6h—9)t 2, 4
e 2h2+h2+6h+9 t?h21h2+6n+9 3  3)°

3(t*h2 — 2t%h + 4t3h — 10t2h + t4 — 4t3 + 8t2 — 20t + 25+ 6t2h2 + 24th)
5(th —t + 2)2 ’

%mm=<

(t?h —t2 42t + 1)(h2 — 1) 2(t2h —t2 + 2t + Dh
th—t+2)(h2+1) ~ (th-t+2(h2+1) /)’
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Fig. 2. Primary surfaces and blending surface generatefddnyithm 1
Now, let

Q) =Pat, ) = G+ &+ 2,0t + ),

be the parametrization of the clipping curn&s Thus, we consider the rational blending
dataS = ((P1, P2), (S0, S1)) Wheresg = 0, ands; = 1. We observe that
0P

- = (2¢2
(1.0 = (3t2.0.0).

3 342 18
B+ 32+ 8- 2

(42 + 4t + 25t t + 3,
- @+ ).

Therefore, the clipping curves satisfy condition (3)Theorem 9 and tlerefore there
exist polynomial solutions. In the following we illustrate ho%gorithm 1deternines a

polynomial solution, buf\lgorithm 2(even taking the rational functions in Theorem 7
to be polynomial) does not reactpalynomial parametrization.

Algorithm1 outputs the polynomial parametrization ($€g. 2).

T(t.h) = (4%0° - 5 525n% 1 1950 4 180i2n2 4 %
799,4:2 _ 20114 20414.5¢2 |, 8115
— 199042 — Dnft 4 208052 4 8n%t
2:2 2:212 3 Kot3 3134 3 +3K3 213
+2t%h — 22h2 4 3053 — 3%n* + 2t3h3, 2ht
134 95 21543 | 24314 _ 2:3K3 2+3K2
— Bh% 4 9n%t —t — Zn%3 + 263h* — 33 4 2th
4 Th5 _ 9pK3 157:21,3 103,13 , 242 , 4
+4n* — In® — 9n3, —1512h3 _ 103n3 4 22 4 4

+ 3h%2 4 13n% — SLpSt2 — 2105 4 2ln3 - B34
+ Zh%t).
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Algorithm?2. We compute a polynomial functiof(h), saisfying that,

f(s0) =1, f(s) =0 and 2—;(50)=2—;(31)=0.

For ingance,
f(h) = 1 —3h% + 2hS.

Then,Algorithm 2outputs the following parametrization that is not polynomial

D1 D2 D3

Ci' Cp’ C_3>

D1 = —£(—900t + 60Ch + 482(h?t + 300th — 42(%h — 4543t + 8523h*
—6243h° + 262a°h3 + 144°h? — 1313%h? + 2252 — 46257
+ 1575* — 352h%t2 4 12260t — 134h*t? — 1440 + 350h° + 900
—6t*h? — 30t*h + 120:3h + 6h7t® — 21n5t8 + 24n5t5 + 24n5t6
—60h°t> — 9t%h* 4+ 192%h® + 420h5t* — 396n“t* + 72h"t* — 264n%t*
+288h°t3 + 86h"t2 + 227h%2 + 344n%t + 36:°h* — 792ht3),

Dy = —18t — 20h%t — 12th — 3t?h — 12h%t — 10t3h* — 4t2h3 + 2t3h?
+ 4t%h? + 9t? — 27h? 4+ 36h* + 55h°t? — 62h*t2 + 106h*t
+2h% — t%h? — 2" — 9h® 4 t*h3 — 9h®t* 4 5h%t* + 4h5t* — 16n7t2
+ 21h®t? — 36h®t — 4h®2 — 8h"t + 8h°t3,

D3 = 2(—2t + 4h’t + 2th + 10h% + 5t3h* — 4t3h3 — 5t%h® + 2t3h?
—4th? 4+ 2t2 — 8h? — t3 — 18h* + 17h® — 2h5t2 — 10h% + 9h*t2
— 2h%* + 4+ 8n° + t3h + 2h5t3 + 4h%t — 5h5t3),

C1 = (t?h? + h? 4 6h 4+ 9)(th — t + 2)2,

Co = (t?h? + h? + 6h + 9)(th — t + 2)(h? + 1),

Cz = (th—t +2)(h? + 1).

Finally, if 7'(t, h) is the polynomial parametric solution obtained Bygorithm 1, we have
that all the polynomial parametric solutions f@», S), are

T(t,h) +h%h — D3Ry, Ry, Ra),
whereR, € K[t,h]. O

T, h)y= f(h)yPut,h)y + Q- f(h)PaAt, h) = (

7. Computation of all parametric blending solutions

Combining the results presented in the po&s section, one can derive an algorithm for
computing all parametric solutions for a given rational blending d&ata&). Furthermore,
we also present angdrithm that decides whether the blending d@as) has a parametric
polynomial solution, and in the affirmative case computes all the polynomial solutions for
the rational bending data.
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Algorithm (General Rational Solution). Given a rational blending damr, S), the
algorithm computes all the parametric solutionsfBt S).

(1) Compute a particular pametic solution for (P, 5) (apply any of the algorithms
described in the previous section). &§(t, h) be the output parametrization.
(2) LetBy(t, h) be the general solution of the homogeneous sysignthat is

n-1

N1 N2> N3
By(t.hy = [J(h—s)*+t <—, —=, —),
i=0 Ml M2 M3

whereN;, M; e K[t, h] and ged[ =3 (h — s), Mj) = 1.
(3) ReturnBp(t, h) + By(t, h).

Algorithm (General Polynomial Solution). Given a rational blending défas), the
algorithm decides whether there exists a parametric polynomial solutiofPf@®), and

in the dfirmative case computes all the parametric polynomial solutions for the blending
data.

(1) If the rational functions
3P
dlh

are not all polynomial, then returrhere is not a polynomial solution”.

Else, applyAlgorithm 1to compute a particular polynomial parametric solution for
(P,S). LetBE’O'(t, h) be the output parametrization.

(2) Let Bgo'(t, h) be the general solution of the homogeneous syﬂﬁ?h that is

(t,s_1) forj=0,...,ki=1...,n,

n—-1
BEOt ) == [(h—s)" (R, Re, Re),  whereR € KIt, h].
i=0
(3) ReturnBblt, hy + BEt, h).

We illustrate Algorithm General Rational Solution by some examples, where the two

possible algorithms istep lare considered. For Algorithm General Polynomial Solution,
seeExample 1

Example 2. We oonsider the typical example of blending two cylinders. YgaandV> be
the cylindes parametrized by

t2—1 8t2+8—15t2h — 150 + 18th + 4t2h3 +4h3 2t
Pl(t,h>=( + 2o+ AT ,

t2+1° 42+ 1) t24+1

t2—1 2t 2(—t2—1+2t—2th+2th+2h
Pz(t’h):( ( + +2t%h + ))

t24+1t24+1° t24+1
and let

Q1(t) = P1(t,0) = -1 ) &
WO =PtO=\ 1> er1)
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Fig. 3. Blending surface bglgorithm 1 (left), and byAlgorithm 2 (right).

Os(t) = Po(t, 1) = -1 2 2
2 - 27 - t2+17t2+17 9

be the parametrization of the clipping cur@&s Thus, we consider the rational blending

dataS = ((P1, P2), (S0, s1)) wheresp = 0, ands; = 1.
We gply Algorithm General Rational Solution to compute all parametric solutions

for S with G2-geometic continuity. InStep 1 we conpute a particular solution. For this
purpose, we may choose eithigorithm 1or 2.

Algorithm1. We computé.ZL(t, s_1) fori = 1,2, andj = 1, 2:

dlh
P = (0 2 o)
0= 20 - 0.00.

Thus, the particular solution generatedAgorithm 1is
Tah = t? —1 8% —15t°h — 3t?h° + 10t>h° + 18th — 28h%t — 6th®
U\ 24 4(t2 + 1)
24h% 4 8 — 15h — 3nh° 4 10n3
4t2+1)
2(t — 2h3t + 2t2h3 + 2h3 + h4t — t2h% — h4))

’

t24+1

In Fig. 3 (left) we plot together the cylinderg;, Vo, and the arface parametrized by
T, h).
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Algorithm?2. We compute the rational function, with= 1/2,
u(l—hy3

u(l—hy3+ 1 —-uhd

Thus, the particular solution generatedAlgorithm 2is

f(h) =

t2 -1 8+ 62h3t + 18th — 3%2h — 18h*t — 54h2t — 4h® — 30h

t241° 4(1—3h+3h2)(t2+1)

N 8t2 + 6%h2 + 3n469h2t2 — 49h3 + 12h5 — 49t2h3 + 3t2n% + 126215 — 4n5t2
(1-3h+3h2)(t2+1) ’

,=3th + 3h2t + h3t +t — t2h3 — h3 — 2h%t + 2t%h% + 2h4)

T(t,h) = (

(1—3h+3h2)t2+1)

In Fig. 3(right) we plot together the cylindekd, Vo, and the srface paramteized by this
particularsolution7 (t, h).
Finally, if 7 (t, h) is any of the parametric solutions alnted above, we have that all the
parametic solutions for(P, ), are
N1 N2 N3
Tt,hy+h3h-13(—, =, —=
(t,h) +h%( ) <M1,M2,M3),

whereN;, M; € K[t, h]and gcdh(h — 1), Mj) = 1. O

Example 3. In this example we apply Algorithm General Rational Solution to obtain
all the parametric solutions for three surfaces with-contindity. Let V; be the sphere
x2 4+ y?2 + (z — 1)2 — 1, V» be the cylinderx? + y? — 4, and V3 be the sphere
x2 + y2 4+ (z+ 1)2 — 1. We consider the following parametrizations\af Vs, Va:

Puith) = h?+t2 -1 2t 2h
S Y IS I I R RV RV ’
t2—1 4
tthy=(20—,——,h-1
Patt. (t2+1’t2+1’ )
Pact.hy — h? —4h+3+t2 2t —5h+7+h?+t2
B T\ hZ-ah+ 5+t h2—4ah+5+12° “5—ah+h2+t2

and the parametrization of the clipping curnégs

t2—1 2t
Q1(t) = P1(t,0) = ( 1) ,

t24+1't24+1°

t2—1 4t
t)y=Pot,) = [2—=, ——,0],
Q(t) = P2(t, 1 <t2+1t2+1)
Q3(t) = Pa(t, 2) = -1 2 2

TR E T\ et
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Fig. 4. Spheres, cylinder (black colyumdblending surface generated Bjgorithm 1.

Thus, we consider the rational blending data
S = ((P1, P2, P3), (0, 1, 2)).

We gply Algorithm General Rational Solution to compute all parametric solutions for
S with G1-geometic continuity. In Step 1 we conpute a particular solution. For this
purpose, we may choose eithigorithm 1or 2.

Algorithm1. We computé9ﬁ (t,s-1)fori =1,2,3andj = 1:

alh
oP1 2 0P2
—t,00=(0,0,—— —2(t,1)=(0,0,1
" 2(t,0 <,,t2+1), " 2(,1)= (0.0,
P3 2
—(t,2)=1{0,0, —— | .
ah(’) < t2+1)

In this situation the parametric solution for the rational blending d&tgrovided by
Algorithm 1is

(t2— 1A +4h2+h*—4h3) 2t(1+4h%2 —4h3 4+ h%
241 ' 241

T, h) = (

42 4+ 4+ 8h — 53h2t2 — 81h2 4+ 99t2h3 + 135h3 — 63t2h* — 83h% + 13t2h° + 17h°
4t2 4 1) '

In Fig. 4we plot together the spher&s, Vs, part of thecylinderV, and part of the blending
surface parametrized by (t, h).
Algorithm?2. We compute the rational functions with = 1/2, up = 3/4,uz = 2/3,

ur(1—h)22 - h)?

fahy = ur(L— 22— h2 + (1— uph?’

) — uz(—h)?(2 — h)?

20 = 22 —h2+ A= uh =12
202

) = uz(1— h)2(h)

usz(1 —h)2(h)2 + (1 — uz)(h — 2)2°
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Thus, the particular solution generatedAlgorithm 2is

T(t,h):(Dl D2 D3>.

D D’ D

D = (4—12h+ 14h%? — 6h® + h*)(h? + t? + 1)(13h? — 12h® + 3n*
+1— 2h)(t? + 1)(3h? — 4h® + 2h* + 4 — 4h)(5 — 4h + h? +t?)

D1 = —80+ 96t%h + 88845h® — 11 968°n” + 73385h* — 10 756°h°
+ 124458 — 100 2546 + 84h*t® — 3352%h° — 96t5h — 28&°h!!
—45945n° + 151h1%° — 3840152 — 672%h18 + 240162 + 48t%0 14
+ 24t + 4310*h'? — 12 1561342 + 2791142 — 16 704*h1?
—82442%° + 43 7301%* — 73 764°h1! + 35450°h12 — 544t*h
+4616h%t* — 20312%h% + 51 763*h* — 89 824%h® + 119 9046t*
— 106 844°h” + 138671h% — 13112@*h” + 1151791%2
—1410340%2 + 80t* + 117 176*h® — 27 1201° 4 54 702° + 544
— 16t2 — 44562 — 250612 + 39413 — 2014 4 990! — 47 57h*
—680h%t2 + 16t° + 19 163 + 79 3761° + 220a%h® — 71t%h*
—18124%h° — 842458 4 102 164" + 58 66h°5t2

D, = 2t(80— 640t°h + 131 873° + 24t*h'? — 5040132 + 36h142 — 28&*h!!
—4594°h° + 1510%%* — 12908°h* + 3268%h'? — 96t*h — 192h1°
+ 12h16 + 84h%t* — 3352%h% + 7335*h* — 10 756*h° + 12 441%t*
—12154@%h" + 102 346%h® — 11 968*h’ + 34 83h1%? — 68 42(h°t?
+ 16t* + 8884*h® + 8335:110 — 122 77M° — 544h + 96t> + 45667
+2007h1% — 644M13 + 14201 — 46 2411 + 51 541* + 5406h?t?
— 199603 — 9303h° — 23312°h3 + 57 346°%h* — 94572%h°
+150 7748 — 1545007 + 118 58 h%t?)

D3 = (h — 1)(—80+ 512%h + 7745%h° + 6t*h1% — 18132 4 12n142
—78t*ht — 1478%h° + 441%* — 5494°h! + 126@°h12 + 80t*h
— 1011+ 6h'® — 16012t — 785%h* — 1923*h® + 280h5t*
—43922°h" 4+ 39686°h% — 2965*h” + 12 95('%? — 48:*h°
+1008%h* — 2579*h° + 3981n%* — 57566°h’ + 52 054°h®
— 423537 + 16 2461%2 — 34 181°%2 — 16t* + 3073*h® + 66 85610
—97366° + 304h — 962 — 256h?% + 14 11512 — 409113
+ 81 — 35420 + 1811h* — 112(h%t? — 3616° — 44 985°
— 432?h° + 8894°h* — 25940°%h° + 112 0988 — 103 825
+ 46 0365t2).
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Finally, if 7(t, h) is one of the parametriotutions obtained above, we have that all the
parametic solutions for(P, 5), are

M1’ Mz’ M3
whereN;, M; € K[t, h]and gcgdh(h — 1)(h—2), M;) =1. O

T(t,h)+h2(h—1)2(h—2)2<Nl N2 N3>,

The previous examples deal with blending involving quadrics. In the following example
we treat a blending where the primary surfaaesnot so simple. Further examples of this
type have been considered in the implementation analysis (see Appendix).

Example 4. In this example we apply Algorithm General Rational Solution to obtain all
the parametric solutions for two surfaces w@h-contindty. Let V; andVs be the primary
sufaces defined by the parametrizatiohsand?P, considered in Input | (see Appendix),
respectively. The parametgtions of the clipping curveS; are given by

Q1(t) = P1(t, 0), Qa(t) = Pa(t, 1).
Thus, we have the rational blending data

§ = ((P1,P2), (0, 1)).

We gply Algorithm General Rational Solution to compute all parametric solutions for
S with G2-geometic continuity. In Step 1 we conpute a particular solution. For this
purpose, we may choose eithigorithm 1lor 2.

Algorithm1. We computé)b)jj—Phi (t,s5-1) fori =1,2andj = 1, 2. The parametric solution
for the rational blending dat8, provided byAlgorithm 1is
T(t.h) = (—g(133°2 + 1333°%" — 23101"2 - 231th** + 1158n°2

+1155°%t% — 89t — 89t* — 267(h® + 462eh* — 231H° + 178
— 26722 — 26Tt + 534n2) /(12 + 1)(2 + t2)), —2/8%
x (266e° + 13332 — 4624* — 231(h*? + 231h° + 115552
— 178 89? — 534% — 26Tt?) /(12 + 1)(2+ t%)), — %3
+1+ 138704 _ 535/80h5 — 2h + 3h2) .
In Fig. 5we plot together the primary surfacés, V- (left) and part of the blending surface

parametrized by (t, h) (right).
Algorithm?2. We compute the rational function, with= 1/2,

u(dl—hyd
ul—h)3+ @ —uwh3
Thus, the particular solution generatedAlgorithm 2is
D1 Dy D3>

rem= (222

D = (3h?—=3h+1)(4—12h +102h? — 6h® + hY(h® + t? + 1)
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Fig. 5. Primary surfaces and blending surface generatedldunyithm 1

x (12h? — 4h3 + h* 4 8 — 16h)(t2 + 1)(90h? — 2h® + h* + 356— 356)
x (5—4h +h? +t?),

558 20% — 672 0041t + 88 12h*&%2 — 910eh'%*? + 75n%%2
+148380%* — 1564h't* + 138th'%* — 1085 9914
+17938430° — 55806 576* — 4024 3847 + 137 050 198°
—277070208°% 4+ 11392% — 113922 — 622447 1388 + 458 753 968"
+171908101° — 3969 85~ — 56 950 24014 — 642 977 63A°

+ 146 858 10h*3 + 9186n'° + 486 967 6341 — 298 989 86812

+ 696 304 718° + 56 960* + 2532 176:1%t2 + 709 184t — 2888 197%t°
+ 7915 440*° + 40 604 60455 + 29706 848°t° — 40192 7261"t°
—160529361%2 + 3813 39811%2 + 5819 38011 4* + 16 559 560:1%°
—2311533n%* — 6647 70416 + 1945 6611%4° — 30 250 812°%°
—17001168°%° — 10252&° + 102 5281t> — 663 616:1°t>
+2432512%2 — 4657 200*t? + 50 867 406142 + 285010 256%*
—159978388'%% + 69438 24h1%* — 122641 8361%2

+ 225792 14842 — 394057 9168%* — 316 691 6881't?

+ 153528 24482 — 122 443 984%* — 558 20t* + 3978 814*t*
—17482750%% + 52548 336** + 423207 596%* + 335831 6241%2
+ 232369 79R%* — 353793 328"t* — 265683 028°%2 + 14078 11452
—61984176't% — 56 960— 41h%1t2 — 74h1%* + 41h?1 — 2h?2 4 2h?%2
+4h%%* 4+ 615h16t% — 33n17t® + 2h'&5 — 650N %0 + 59 6461146

— 407 45h*%° + 6885307 — 89568 — 76?0,

2t(—558208 — 156761t + 13812 — 74h'%2 + 4h?%? + 61N 164
—33n1t* + 2n18t* — 650th1%t* — 17 938 4323 + 55806 576
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+ 4024 384° — 136 993 104° + 276 681 858° + 68 3522
+620201 1168 — 45755096687 — 17 168 4925 + 3966 156116
+56 8513201 + 640442 016° — 146 526 6582 — 485 280 2061
+ 298137 10h'? — 693481 036° + 11 392* 4 56 960— 139 456 67R°t>
—1092 86&11%? + 149 03h0'%2 4 59 646114* — 407 4511 %4

— 660 7361t> + 4688 0001’2 — 20 370 94452 + 60 463 776,12

+ 5882010142 + 16 559 5601%* — 6647 70h't* + 1945 660124
—23538080%2 + 71438 046'%2 — 30250810°%*

— 166763588112 + 464 119528%2 — 17001 168°t* — 102 52%t*
+70918A%* — 2888 192°%* + 7915 440*t* + 40 604 60454
—918Mh'° + 763?04+ 301 822 296 %2 + 29 706 848°t*
—40192720"t* — 424641 528%2 + 89 53h*® + 262 146 01652
—394174918"t2 — 41h?! 4 2h?2 — 688106117,

D3 = (h — 1)(615 168 + 131&h "t2 — 70h182 + 4h1%2 — 31h16t* 4 2nl7t?
+591h'%t* 4+ 21 119808° — 67 214 384* — 4525 63h% + 157 616 288°
— 285436 320° — 683522 — 480514 49h% + 411 357 858
+3462115° — 61829811 — 14533 488 — 360 139 3441°
+ 466649283+ 2290185161 — 116 459 44h'? + 459 601 108°
—11392% 4+ 158912 518%2 + 136 52%2 — 14 464082 — 59514*
+5457%0%* + 729 08%1t? — 5280 384H%t2 + 24 056 44832
—73070880%2 — 977 451142 + 72719 — 30h?0 — 5467 7041%4
+ 1660 420 %* — 361 68h1'%* + 5095 654132 — 19 751 780142
+ 13077 764°%* + 58010 40412 — 306 776 328%2 + 18 909 7925%t*
+113920t* — 800 320%t* + 3437 88&°t* — 9615 984*t*
—22745660%* — 1306788781%% — 27 163 328%* + 28 925 024 t*
+ 227463 288%° — 258 102 62452 + 320 347 648"t> — 56 960+ 2h?!
+8208h!7 — 851518).

Finally, if 7(t, h) is one of the parametriofutions obtained above, we have that all the
parametic solutions for(P, ), are

N1 N2 N3
My" M2" M3/’
whereN;, M; € K[t, h]Jandgcdh(h — 1), M;) =1. O

T(t, h)+h3th—1)3 <
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Appendix. Parametrizationsin Section 5

In this section we show the data parametrizations us&eition 5We assume that the
clipping curve<C; are given by the parametrizations of the form

Qi) =Pi,i -1, fori =1,...,n,
whereP; (t, h) are the parametrizations of the primary surfages
Input I:

(—(tz— 1)(—1 — 3nh2 + 2h3)
P = 5
241

3

—2t(=1—3h2+2h3)

t24+1
P, = (2(193 664 + 1082 464° — 1874 63n* — 56962 — 598 117

—9819681°t2 + 2694 997° — 3183 56M° — 28 480+ 5696a°

+96 864025 — 171 1048 + 333 92&*8 + 22 7088 + 299 3515t6

— 11120015 — 32h?%2 + 2h16t2 4 4h14* + 39on 106 — 56134

— 2408 4+ 2126 — 311h°%t® — 431 408°t® — 34 176nt° + 34 176ht?

— 62562 — 57 76(°%t? + 384 790*? — 1532412 + 116013 — 83nt4

+ 123464 4+ 5050142 + 59 830 1%* — 793ech1t* + 904n1%?

— 483132 + 37 10142 — 328 75%t* — 217 4012 + 3371 7682

—3834960°t* — 193 66ht* + 632416%t* — 1311 32&°%*

+ 2547 784H%* 4+ 1157 014%* + 849 84%'%2 + 3890 24%5t*

—2616224"t* — 56335010+ 28480a* — 2124 6501°%2 + 2150 44M%t°

—3373728t% + 3313056 — 2726 550:% + 1549 6061%)/((4 — 12h

+10212 — 6h3 + h*)(h? + t2 + 1)(12h2 — 4h3 + h* + 8 — 16h)(t2 + 1)

x (902 — 2h® + h* + 356 — 356n)(5 — 4h + h? + t?)), 4t (—19 3664

—1276 640° + 2476 13®1* + 34 1782 + 626 656% — 4112 704°t?

—3818000° + 4595 40M° + 28 480— 227 84Mt> + 723 52h°t?

—1447 744%2 + 2787 280*? + 26 4812 — 301(h'° + 2954

— 172924 + 3h1%2 4 39n1%* — 24n11t4 4 2h12t4 — 420132

+ 721022 — 3110h°%t* — 64660112 + 1110 96852 — 431 40%°t*

—34176t* + 96 864%t* — 171 10h%* + 333 92%*t* + 22 70h8*

+5259h1%2 + 2993514 — 111200 "t* — 304 796:1°t2 + 729 07H1°

+5696* + 4023 2002 — 2601 184 't2 — 4580 864’ + 3570 266:°

—1975990° — 16nh° + h'6)/((4 — 12h + 102h? — 6h° + h*)

x (h? +t2 4+ 1)(12h? — 4h% 4+ h* + 8 — 16h)(t? + 1)(90h? — 2h®

+h?*+ 356— 356h)(5 — 4h + h? + t2)), (h — 1)(216 448 — 212 99h°

,1—2h—|—3h2—2h3),
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+1536 928 — 683522 — 23324472 — 1816 864°t% — 3072 92&°
+ 3995 13R° + 364 54ht? — 854 0842 + 1125 634532 — 80 12*t2
+ 2762012 — 325013 + 3111 — 174 205 + 2h142 + 2510 1%4
— 1304 + h¥%t* — 30h%%? + 5641122 — 210&°%t* — 53411t2
+919 196%2 — 260 736°t* + 56 96(t* — 119 584%t* + 130 816:1%t*
+59616** + 16 89G8t* + 44 37%2 + 224 1885%* — 86 976 't*
—258790%2 + 71737910 — 11392% + 2671 32052 — 2010 35A"t?
— 415608017 + 3351 4188 — 1903 884° — 56 960— 17h'° + h'6)
x((4—12h 4+ 10n? — 6h% + h*) x (h? +t% + 1)(12h® — 4h® + h*
+8— 16h)(90h? — 2h® + h* 4+ 356 — 356n)(5 — 4h + h? + t2))71).
Input I1:

Input I11:

Py = (—2t, 10h — 5, 6h — 6h% + 3/2 — 6/25t2),

P = (4— 3t + 8th — 8th?, 10n — 5, 6h — 6h? + 27/50+ 36/25t — 96/25th
+96/25th? — 27/50t? 4 72/25t%h — 168/25t2h? + 192/25t%h3
—96/25t%h%).

Input |V:

9(1+ 10t — 8h) ’
—2(31+ 1% — 44h)
47t — 193h + 72h — 17t2h2 — 55h2 4 72h3’
42+ 18 — 42h — 27th + 2h? + 74t2 )

> (15+ 35t — 98h + 74th + 15h2 + 4112
l:

90— 81t + 67h — 85th? — 84h2 — 42t2

p, _ (1 90— 10th — 95 — 80n® — 90?4 19t%h
27 \" T 40— 45+ 91h — 7th + 3002 + 372

42+ 39 — 20h
—31t + 71t3 4 47th 4+ 58th2 4 30h3 4 282 |

Input V:
p, _ (5880 —43h? —73n° + 252 + 4t%h
Y= \20- 783 1 624 + 11h% 1 88:3h + th?’

30+ 81t — 5h — 28th + 4h? — 11t?
10+ 57t — 82h ’
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—14/73t + 35/73n% + 14/73n% + 9/73t%h + 51/73t*h + t2h3> ,

= (32— 37t + 930 + 58th + 90n2 + 53t2
69+ 84t — 46h ’
—59
56+ 83t + 91h — 92th + 93h2 — 9112’

18— 10/3t + 77/3h + 21th 4 30h? — 61/3t2) ,

th(20+ 93h2) ’ 34t
—3h(—21h + 8t2) )

» (68— 65t + 43h + 6th + 392 —h(44+ 80t + 5h)
3= s

35t — 67h3 + 19t2h

Input VI:

2t t2-1 4t t2 —
Pr=(h+1, Po=|—-—\ 2" h+2
( th e t2+1) 2 <t2+1 t2+1 + >

. —54— 56t — 93n + 67th — 94nh? 4 84t2
3= 39— 8%h — 22th + 77th? o
76— 63t + 63h + 69th — 8%h2 + 992
43— 8t — 96h + 89t3 + 58th + 81h2
Input VII:
2t t2-1 2t t2-1
= h 31—1— ) = h 47
P1 <+ 2+1 t2+1) P2 ( 2+1 t2+1>
h—3th—5t2+12t+1
Ps=(h—16t+h+t2+1, tia+)
h+t+1
—1024
=(——, —2t+th+h+1 h-2].
Pa (5th+1 +th+h+ )
Input VIII:

6+7t+8n ° —1+4t—8h
Pr= (1, t+h, ht —2), Pz = (—h, =54 9t — 6h + 4th + 6t, —6+ 3t),

(_3& 2h+1 3t—h,35—h—t).
1+ 7t —

—2+4+4ht+t2+1 5t+4h—2t2 48t
( ront+ + + 5+2th2+7t2>,
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Input | X:
P1=(th—t—2, t2+h? -3, 0), Po=(1,t—t2+1, 4+t — 16h —th),

P3=(t+h, h2t —t+2, 2) Ps=(h 2% -1
8= ’ T T\ ey er)

1
=(=————, t+h, —(—=6—2t+8h — 2th? + 9t%h — 52t%h) } .
Pa (7+2t+h’ +h, —( + + )

Input X:
2t t2-1 1 1
=|\h+3 —, 5— =(—" t—_t?41 ——
P1 ( + RYIEL t2+1)’ P2 (th+1—h2’ + ’t—h)’
4t t2-1
=|———,2——, h+2],
Ps (t2+1 t24+1 +)
—3t—-—2h+1
Pa ( o7t _en M-S t)
Ps = (—2t, 10h — 5, h — 6h? + 3/2 — 6/2t).
Input XI:
=(1+10t—81, — = —(2+t—2h—2th
& (+ X8 g @t ”)’
—th
= —(24+1t—2h = h h
P2 (O, i Aroh_¢ 2+1t )>, P3=(t, h, t+h),
1 h )
P4: E7ta ? ) P5:(17 ha t)a Pﬁz(h, t,h —t+1)
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