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Abstract

It is well known that irreducible algebraic plane curves having a singularity of
maximum multiplicity are rational and can be parametrized by lines. In this paper,
given a tolerance ε > 0 and an ε–irreducible algebraic plane curve C of degree d
having an ε-singularity of multiplicity d−1, we provide an algorithm that computes
a proper parametrization of a rational curve that is exactly parametrizable by lines.
Furthermore, the error analysis shows that under certain initial conditions that
ensures that points are projectively well defined, the output curve lies within the
offset region of C at distance at most 2

√
2ε1/(2d) exp(2).

Key words: Approximate Algebraic Curves, Rational Parametrization, Hibrid
Symbolic-Numeric Methods.

1 Introduction

Over the past several years, many authors have approached computer alge-
bra problems by means of symbolic-numeric techniques. For instance, among
others, methods for computing greatest common divisors of approximate poly-
nomials (see (6), (9), (15), (29)), for determining functional decomposition (see
(11)), for testing primality (see (20)), for finding zeros of multivariate systems
(see (9), (16), (18)), for factoring approximate polynomials (see (10),(21), (30),
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(31)), or for numerical computation of Gröbner basis (see (28), (36)) have been
developed.

Similarly, hybrid (i.e. symbolic and numeric) methods for the algorithmic
treatment of algebraic curves and surfaces have been presented. For instance,
computation of singularities have been treated in (3), (5), (13), (22), (26), im-
plicitization methods have been proposed in (12) and (14), and the numerical
condition of implicitly given algebraic curves and surfaces have been analyzed
(see (17)). Also, piecewise parametrizations are provided (see (10), (23), (19))
by means of combination of both algebraic and numerical techniques for solv-
ing differential equations and rational B-spline manipulations.

However, although many authors have addressed the problem of globally and
symbolically parametrizing algebraic curves and surfaces (see, (1), (24), (25),
(32), (33), (34)), only few results have been achieved for the case of approx-
imate algebraic varieties. The statement of the problem for the approximate
case is slightly different than the classical symbolic parametrization question.
Intuitively speaking, one is given an irreducible affine algebraic plane curve C,
that may or not be rational, and a tolerance ε > 0, and the problem consists
in computing a rational curve C, and its parametrization, such that almost
all points of the rational curve C are in the “vicinity” of C. The notion of
vicinity may be introduced as the offset region limited by the external and
internal offset to C at distance ε (see Section 4 for more details, and (2) for
basic concept on offsets), and therefore the problem consists in finding, if it is
possible, a rational curve C lying within the offset region of C. For instance,
let us suppose that we are given a tolerance ε = 0.001, and that we are given
the quartic C defined by

16.001+24.001x+8y−2y2 +12yx+14.001x2 +2y2x+x2y+x4−y3 +6.001x3.

Note that C has genus 3, and therefore the input curve is not rational. Our
method provides as an answer the quartic C defined by

16.008+24.012x+8y−2y2 +12yx+14.006x2 +2y2x+x2y+x4−y3 +6.001x3.

Now, it is easy to check that the new curve C has an affine triple point at
(−2,−2), and hence it is rational. Furthermore, it can be parametrized by

P(t) = (t3 − 0.001− t− 2t2, t4 + 1.999t− t2 − 2t3 − 2).

In Fig. 1 one may check that C and C are close (see Example 2 in Section 3
for more details).

The notion of vicinity is geometric and in general may be difficult to deduce
it directly from the coefficients of the implicit equations; in the sense that two
implicit equations f1 and f2 may satisfy that ||f1 − f2|| is small, and however
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Fig. 1. Curve C (left), curve C (right)

they may define algebraic curves that are not close; i.e none of them lie in the
vicinity of the other. For example, if we consider the line f1 = x + y and the
conic f2 = x + y + 1

1000
x2 + 1

1000
y2 − 1

1000
, we have that ||f1 − f2||∞ = 1

1000
.

Nevertheless, the curves defined by f1 and f2 are not close.

The problem of relating the tolerance with the vicinity notion, may be ap-
proached either analyzing locally the condition number of the implicit equa-
tions (see (17)) or studying whether for almost every point P on the original
curve, there exists a point Q on the output curve such that the euclidean
distance of P and Q is significantly smaller than the tolerance. In this paper
our error analysis will be based on the second approach. From this fact, and
using (17), one may derive upper bounds for the distance of the offset region.

In (4), the problem described above is studied for the case of approximate
irreducible conics, rational cubics and quadrics, and the error analysis for the
conic case is presented. In this paper, although we do not give an answer for
the general case, we extend the results in (4) by showing how to solve the
question for the special case of curves parametrizable by lines. More precisely,
we provide an algorithm that parametrizes approximate irreducible algebraic
curves of degree d having an ε–singularity of multiplicity d−1 (see Section 2).
We illustrate the results by some examples (see Section 3), and we analyze the
numerical error showing that the output rational curve lies within the offset
region of the input perturbated curve at distance at most 2

√
2ε1/(2d) exp(2)

(see Section 4).
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2 Numerical Parametrization by Lines.

It is well known that irreducible algebraic curves having a singularity of max-
imum multiplicity are rational, and that they can be parametrized by lines.
Examples of curves parametrizable by lines are irreducible conics, irreducible
cubics with a double point, irreducible quartics with a triple point, etc. In
this section, we show that this property is also true if one considers approxi-
mate irreducible algebraic curves that “almost” have a singularity of maximum
multiplicity.

Before describing the method for the approximate case, and for reasons of
completeness, we briefly recall here the algorithmic approach for symbolically
parametrize curves having a singularity of maximum multiplicity. The geo-
metric idea for these type of curves is to consider a pencil of lines passing
through the singular point if the curve has degree bigger than 2, or through a
simple point if the curve is a conic. In this situation, all but finitely many lines
in the pencil intersect the original curve exactly at two different points: the
base point of the pencil and a free point on the curve. The free intersection
point depends rationally on the parameter defining the line, and it yields a
rational parametrization of the curve. More precisely, the symbolic algorithm
for parametrizing curves by lines (where the trivial case of lines is excluded)
can be outlined as follows (see (33), (34) for details):

Symbolic Parametrization By Lines

• Given an irreducible polynomial f(x, y) ∈ K[x, y] (K is an algebraically
closed field of characteristic zero), defining an irreducible affine algebraic
plane curve C of degree d > 1, with a (d− 1)–fold point if d ≥ 3.
• Compute a rational parametrization P(t) = (p1(t), p2(t)) of C.
1. If d = 2 take a point P on C, else determine the (d − 1)–fold point P of
C.

2. If P is at infinity, consider a linear change of variables such that P is
transformed into an affine point. Let P = (a, b).

3. Compute

A(x, y, t) =

∂(d−1)f

∂(d−1)x

1

(d− 1)!
+

∂(d−1)f

∂(d−2)x∂y

t

(d− 2)!
+ · · ·+ t(d−1)

(d− 1)!

∂(d−1)f

∂(d−1)y

∂df

∂dx

1

d!
+

∂df

∂(d−1)x∂y

t

(d− 1)!
+ · · ·+ td

d!

∂df

∂dy

.

and return
P(t) = (−A(P, t) + a,−tA(P, t) + b) .
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Remark. The parametrization can also be obtained as

P(t) =

(
−gd−1(1, t)
gd(1, t)

+ a,
−tgd−1(1, t)
gd(1, t)

+ b

)
,

where gd(x, y) and gd−1(x, y) are the homogeneous components of g(x, y) =
f(x+a, y+b) of degree d and d−1, respectively. Observe that both components
of P(t) have the same denominator.

Now, we proceed to describe the method to parametrize by lines approximate
algebraic curves. For this purpose, we distinguish between the conic case and
the general case. The main difference between these two cases is that in the case
of conics, if the approximate curve is irreducible, the rationality is preserved.
As we will see, the results obtained for conics are similar to those presented
in (4). Afterwards, the ideas for the 2 degree case will be generalized to any
degree an therefore results in (4) will be extended. Throughout this section, we
fix a tolerance ε > 0 and we will use the polynomial ∞–norm; i.e if p(x, y) =∑
i,j∈I ai,jx

iyj ∈ C[x, y] then ||p(x, y)|| is defined as max{|ai,j| / i, j ∈ I}. In
particular if p(x, y) is a constant coefficient ||p(x, y)|| will denote its module.

Parametrization of Approximate Conics

Let C be a conic defined by an ε–irreducible (over C) polynomial f(x, y) ∈
C[x, y]; that is f(x, y) can not be expressed as f(x, y) = g(x, y)h(x, y)+E(x, y)
where g, h, E ∈ C[x, y] and ‖E(x, y)‖ < ε‖f(x, y)‖ (see for instance (10)). In
particular, this implies that f(x, y) is irreducible and therefore C is rational.
Thus, one may try to apply the symbolic parametrization algorithm to C. In
order to do that one has to compute a simple point on C. Furthermore, one
may check whether the simple point can be taken over R and, if possible,
compute it. This can be done either symbolically, for instance introducing
algebraic numbers with the techniques presented in (35), or numerically by
root finding methods. If one works symbolically then the direct application
of the algorithm will provide an exact answer. Let us assume that the simple
point is approximated. For this purpose, we introduce the notion of ε–point.

Definition 1. We say that P = (a, b) ∈ C2 is an ε–affine point of an algebraic
plane curve C defined by a polynomial f(x, y) ∈ C[x, y] if it holds that

|f(P )|
‖f(x, y)‖

< ε;

that is, P is a simple point on C computed under fixed precision ε‖f(x, y)‖.

Note that we required the relative error w.r.t ‖f(x, y)‖ because for any non-
zero complex number λ the polynomial λf(x, y) also defines C.
In this situation, let P = (a, b) be an ε–affine point of C, and let us consider
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the conic C defined by the polynomial

f(x, y) = f(x, y)− f(P ).

Now, P is really a point on C. Furthermore, C is irreducible. Indeed, if f factors
as f = gh then f = gh + f(P ) and |f(P )| < ε‖f(x, y)‖, that is f is not ε–
irreducible, which is impossible. Therefore, we have constructed a rational
conic, namely C on which we know a simple point, namely P . Hence, we may
directly apply the symbolic algorithm to C to get the rational parametrization

P(t) =
(
−A(P , t) + a,−tA(P , t) + b

)
,

where

A(x, y, t) =

∂f

∂x
+ t

∂f

∂y
∂2f

∂2x

1

2!
+ t

∂2f

∂x∂y
+
t2

2!

∂2f

∂2y

.

Parametrization of Approximate Curves

In this subsection we deal with approximate curves of degree bigger than 2. In
this case, the main difficulty is that the given approximate algebraic curve is, in
general, non–rational even though it might correspond to the perturbation of a
rational curve. The idea to solve the problem is to generalize the construction
done for conics. For this purpose, we observe that the output curve in the 2-
degree case is the original polynomial minus its Taylor expansion up to order
1 at the ε–point, i.e. the evaluation of the polynomial at the point. We will see
that for curves of degree d having “almost” a singularity of multiplicity d− 1
one may subtract to the original polynomial its Taylor expansion up to order
d− 1 at the quasi singularity to get a rational curve close to the given one.

To be more precise, we first introduce the notion of ε–singularity.

Definition 2. We say that P = (a, b) ∈ C2 is an ε–affine singularity of
multiplicity r of an algebraic plane curve defined by a polynomial f(x, y) ∈
C[x, y] if, for 0 ≤ i+ j ≤ r − 1, it holds that∥∥∥∥∥ ∂i+jf∂ix∂jy

(P )

∥∥∥∥∥
‖f(x, y)‖

< ε.

Note that an ε–singularity of multiplicity 1 is an ε–point on the curve. Sim-
ilarly, one may introduce the corresponding notion for ε–singularities at in-
finity. However, here we will work only with ε–affine singularities taking into
account that the user can always prepare the input, by means of a suitable
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linear change of coordinates, in order to be in the affine case. Alternatively,
one may also use the method described in (9).

In this situation, we denote by Ldε the set of all ε–irreducible (over C) real
algebraic curves of degree d having an ε–singularity of multiplicity d− 1, that
we assume is real. In the previous subsection we have seen how to parametrize
by lines elements in L2

ε . In the following, we assume that d > 2 and we show
that also elements in Ldε can be parametrized by lines.

In order to check whether a given curve C of degree d, defined by a polynomial
f(x, y), belongs to Ldε , one has to check the ε–irreducibility of f(x, y) as well
as the existence of an ε–singularity of multiplicity d− 1. For this purpose, to
analyze the ε–irreducibility, one may use any of the existing algorithms (e.g.
(10), (20), (21), (31)). The algorithm given in (10) has polynomial complexity.
However, although the algorithm given in (20) has exponential complexity, in
practice has very good performance. Furthermore, algorithms in (21), (31)
provide improvements to the methods described in (20).

For checking the existence and computation of ε-singularities of multiplicity
d− 1 one has to solve the system of algebraic equations

∂i+jf

∂ix∂jy
(x, y) = 0, i+ j = 0, . . . , d− 2,

under fixed precision ε · ‖f(x, y)‖, by applying root finding techniques (see
(9), (22), (26), (27)). Nevertheless, one may accelerate the computation by
reducing the number of equations and degrees involved in the system. More
precisely, for some i0, j0, i1, j1, such that i0+j0 = i1+j1 = d−2, one computes
the solutions of the system

∂i0+j0f

∂i0x∂j0y
(x, y) =

∂i1+j1f

∂i1x∂j1y
(x, y) = 0,

under fixed precision ε‖f(x, y)‖. Note that the two equations involved are
quadratic. For this purpose, one may use well known methods (see for instance
(9), (22), (26), (27)). Once these solutions have been approximated, one may
proceed as follows: if any of the roots obtained above, say P , satisfies that∥∥∥∥∥ ∂i+jf∂ix∂jy

(P )

∥∥∥∥∥ ≤ ε‖f(x, y)‖, i+ j = 0, . . . d− 3,

then P is an ε–singularity of multiplicity d − 1; otherwise, C does not have
ε–singularities of multiplicity d− 1.

As an example (see Example 3 in Section 3), let ε = 0.001, and let C be the
real ε–irreducible quartic defined by

f(x, y) = x4+2y4+1.001x3+3x2y−y2x−3y3+0.00001y2−0.001x−0.001y−0.001.
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Applying the process described above one gets that C has a 3-fold ε–singularity
at P = (−.1248595915 10−6, .1249844199 10−6). In Fig. 2 appears the plot of
the real part of C, and one sees that P is “almost” a triple point of the curve.

Alternatively to the approach described above one may use the techniques
presented in (5) in combination with the Gap Theorem (see (8)), and the Test
Criterion.

–2

–1

0

1

2

y

–2 –1 1 2
x

Fig. 2. Real part of the curve C

Now, in order to parametrize the approximate algebraic curve C ∈ Ldε we
consider a pencil of lines Ht passing through the ε–singularity P = (a, b) of
multiplicity d− 1. That is, Ht is defined by the polynomial

Ht(x, y, t) = y − tx− b+ at.

If P had been really a singularity, then the above symbolic algorithm would
have output the parametrization (p1(t), p2(t)) ∈ R(t)2, where p1(t) is the root
in R(t) of the polynomial

f(x, tx+ b− at)
(x− a)d−1

and p2(t) = tp1(t) + b − ta. However, in our case P is not a singularity but
an ε–singularity. Then, the idea consists in computing the root in R(t) of the
quotient of f(x, tx+ b− at) and (x− a)d−1 w.r.t. x (note that degx(f(x, tx+
b−at)) = d, and therefore the quotient has degree 1 in x), say p1(t), to finally
consider P(t) = (p1(t), tp1(t)+b− ta) as approximate parametrization of C. In
the next lemma we prove that P(t) is really a rational parametrization, and
in Section 4, we will see that the error analysis shows that this construction
generates a rational curve close to the original one.

Lemma 1. Let f(x, y) be the implicit equation of a curve C ∈ Ldε and let
P = (a, b) be the ε–singularity of multiplicity d− 1 of C. Let p1(t) be the root
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in R(t) of the quotient of f(x, tx + b − at) and (x − a)d−1, and let p2(t) =
tp1(t) + b− ta. Then P (t) = (p1(t), p2(t)) is a rational parametrization.

Proof. To prove the lemma one has to show that at least one of the compo-
nents of P (t) is not a constant. Let g(x, t) = f(x, tx + b − at). We see that
p1(t) 6= a. Indeed, if p1(t) = a, since p1(t) is the root of quotient of g(x, t)
and (x − a)d−1, one has that g(x, t) = λ(x − a)d + R(t), where λ ∈ R?, and
R(t) ∈ R(t). Moreover, since R(t) is the remainder and (x− a)d−1 is monic in
x, one has that R(t) is a polynomial. Let us say that R(t) = ast

s + · · · + a0,
with as 6= 0. Thus,

f(x, y) = g

(
x,
y − b
x− a

)
=

λ(x− a)d +
as(y − b)s + as−1(y − b)s−1(x− a) + · · ·+ a0(x− a)s

(x− a)s
.

However, if s > 0 this implies that (x−a) divides as(y−b)s which is impossible
because as 6= 0. Hence s = 0; i.e. R(t) is a constant µ. That is, f(x, y) = λ(x−
a)d + µ. Therefore, since f(x, y) is a univariate of polynomial of degree bigger
than 1, it is reducible and hence it is not ε-irreducible which is impossible.

Lemma 2. The parametrization P (t) = (p1(t), p2(t)) in Lemma 1 is proper.

Proof. Note that t =
p2 − b
p1 − a

. Thus, P(t) is proper and its inverse is
y − b
x− a

.

In the next lemma, for P ∈ R2 and δ > 0, we denote by D(P, δ) the Euclidean
disk

D(P, δ) = {(x, y) ∈ R2 | ‖(x, y)− P‖2 ≤ δ}.

Lemma 3. Let C be an affine algebraic curve, defined by a polynomial f(x, y) ∈
R[x, y], having a real ε–singularity P of multiplicity r. Then, there exists δ > 0
such that any point Q ∈ D(P , δ) is also an ε–singularity of multiplicity r of
C.

Proof. We denote by fi,j the partial derivative ∂i+jf
∂ix∂jy

. Since P is an ε–

singularity of multiplicity r, for i + j = 1, . . . , r − 1, it holds that |fi,j(P )| <
ε‖f(x, y)‖. Let us denote |fi,j(P )| = εi,j for i+ j = 1, . . . , r−1. Then, for each
εi,j there exist λi,j > 0 such that

εi,j = ε‖f(x, y)‖ − λi,j < ε‖f(x, y)‖.

We consider λ = min{λi,j, i + j = 1, . . . , r − 1} (note that λ > 0). On
the other hand, since all partial derivatives are continuous, let M bound all
partial derivatives up to order r in the compact set D(P , ε), and let δ be

9



strictly smaller than min{λ/(2M), ε}; note that M > 0 since otherwise it
would imply that C contains a disk of points which is impossible. Now, take
Q ∈ D(P , δ). Then, by applying the Mean Value Theorem, we have that for
i+ j = 1, . . . , r − 1

|fi,j(Q)| ≤ |fi,j(P )|+ |fi,j(P )− fi,j(Q)| ≤ εi,j + |∇(fi,j(ξi,j)) · (P −Q)T |,

where ξi,j is on the segment joining Q and P . Then, one concludes that

|fi,j(Q)| ≤ ε‖f(x, y)‖ − λi,j + 2δM ≤ ε‖f(x, y)‖ − λ+ 2δM < ε‖f(x, y)‖.

Therefore, Q is an ε–singularity of multiplicity r of C.

Now, let C ∈ Ldε be defined by the polynomial f(x, y). Then by Lemma 3,
one deduces that C has infinitely many (d − 1)–fold ε–singularities. For our
purposes, we are interested in choosing the singularity appropriately. More
precisely, we say that P = (a, b) is a proper (d − 1)–fold ε–singularity of C if
the polynomial

d∑
j1+j2=d−1

∂j1+j2f

∂j1x∂j2y
(P )(x− ā)j1(y − b)j2 1

j1!j2!
,

is irreducible over C. Note that this is always possible because an small per-
turbation of the coefficients of a polynomial transforms it onto an irreducible
polynomial.

The following theorem shows that the implicit equation of the rational curve
defined by the parametrization generated by the above process can be obtained
also, as in the conic case, by Taylor expansions at the ε–singularity. In fact,
the theorem includes as a particular case the result for conics. This result will
avoid quotient computations and will be used to analyze the error.

Theorem 1. Let f(x, y) be the implicit equation of a curve C ∈ Ldε and let
P = (a, b) be a proper ε–singularity of multiplicity d − 1 of C. Let p1(t) be
the root in R(t) of the quotient of f(x, tx + b − at) and (x − a)d−1, and let
p2(t) = tp1(t) + b − ta. Then the implicit equation of the rational curve C
defined by the parametrization P (t) = (p1(t), p2(t)) is

f(x, y) = f(x, y)− T (x, y)

where T (x, y) is the Taylor expansion up to order d− 1 of f(x, y) at P .

Proof. Let

f(x, y) = f(P ) +
d∑

j1+j2=1

∂j1+j2f

∂j1x∂j2y
(P )(x− ā)j1(y − b̄)j2 1

j1!j2!
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be the Taylor expansion of f(x, y) at P . Thus,

f(x, tx+ b̄− tā) = f(P ) +
d∑

j1+j2=1

∂j1+j2f

∂j1x∂j2y
(P )(x− ā)j1+j2tj2

1

j1!j2!
=

(x− ā)d−1

 d∑
j1+j2=d−1

∂j1+j2f

∂j1x∂j2y
(P )(x− ā)j1+j2−d+1tj2

1

j1!j2!

+

f(P ) +
d−2∑

j1+j2=1

∂j1+j2f

∂j1x∂j2y
(P )(x− ā)j1+j2tj2

1

j1!j2!

 = (x−ā)d−1M(x, t)+N(x, t)

where

N(x, t) = T (x, tx+ b̄− tā), M(x, t) =
S(x, tx+ b̄− tā)

(x− ā)d−1
,

and S(x, y) is the Taylor expansion from order d− 1 up to order d at P . We
observe that degx(M) = 1, and degx(N) ≤ d − 2. On the other hand, let
U(x, t) and V (x, t) be the quotient and the remainder of f(x, tx+ b̄− tā) and
(x− ā)d−1 w.r.t. x, respectively. Then,

f(x, tx+ b̄− tā) = (x− ā)d−1U(x, t) + V (x, t)

with degx(V ) ≤ d− 2. Therefore,

(x− ā)d−1(M(x, t)− U(x, t)) = V (x, t)−N(x, t).

Thus, since the degree w.r.t. x of V −N is smaller or equal d−2, and (x−ā)d−1

divides V −N , one gets that M = U and V = N . In this situation,

f(P(t)) = f(P(t))− T (P(t)) = f(p1(t), tp1(t) + b− ta)− T (P(t)) =

= (p1(t)− a)d−1U(p1(t), t) +N(p1(t), t)− T (P(t)) = T (P(t))− T (P(t)) = 0.

Moreover, since P is a proper ε–singularity of multiplicity d− 1 of C, one has
that f is irreducible, and thus P(t) parametrizes C.

This result can be applied to derive a similar algorithm for parametrizing
approximate algebraic curves by lines similar to the symbolic algorithm.

11



Numerical Parametrization By Lines

• Given the defining polynomial f(x, y) of C ∈ Ldε , d ≥ 2.
• Compute a rational parametrization P(t) of a rational curve C close to C.
1. If d = 2 compute an affine ε–point P of C, else compute a proper ε–

singularity P of C of multiplicity d− 1.
2. Compute f(x, y) = f(x, y)−T (x, y) where T (x, y) is the Taylor expansion

of f(x, y) up to order d− 1 at P .
3. Apply step 3 of the symbolic algorithm to f and P .

12



3 Examples

In this section, we illustrate the numerical parametrization algorithm devel-
oped in Section 2 by some examples where one can check that the output
rational curve C is close to the original curve C. This behavior will be clarified
in the error analysis section.

We give an example in detail, where we explain how the algorithm is per-
formed, and we summarize seven other examples in different tables. In these
tables we show the input curve C, the tolerance ε considered, the ε–singularity,
the output curve C, the output parametrization P(t) defining the curve C, and
a figure representing C and C.

Example 1. We consider ε = 0.001 and the curve C of degree 6 defined by
the polynomial

f(x, y) = y6 + x6 + 2.yx4 − 2.y4x+ 10−3x+ .10−3y + 2 · 10−3 + 10−3x4.

First of all, by applying the algorithm developed in (10), we observe that the
polynomial f(x, y) is ε–irreducible. Now, we apply the first step of the Algo-
rithm Numerical Parametrization by Lines, and we compute the ε–singularity.
For this purpose, we determine the solutions of the system (see (9), (27))

∂4f

∂4x
(x, y) =

∂4f

∂4y
(x, y) = 0,

under fixed precision ε‖f(x, y)‖ = 0.002. We get four solutions

P 1 = (−.06650062380 + .1157587268I, .06683312414 + .1154704132I),

P 2 = (−.06650062380− .1157587268I, .06683312414− .1154704132I),

P 3 = (.1875000000·10−5,−.50000002·10−3), P 4 = (.1329993725,−.1331662483).

Only the root P 3, satisfies that∥∥∥∥∥ ∂i+jf∂ix∂jy
(P 3)

∥∥∥∥∥ ≤ 0.002, i+ j = 0, . . . 3.

Then P = P 3 = (.1875000000 · 10−5,−.50000002 · 10−3) is an ε–singularity of
multiplicity 5, and therefore C ∈ L6

0.001.

Applying the second step of the Algorithm Numerical Parametrization by

13
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Fig. 3. Input curve C (left), output curve C (right)

Lines, we compute

f(x, y) = f(x, y)− T (x, y),

where T (x, y) is the Taylor expansion of f(x, y) up to order 5 at P ,

T (x, y) = .001000000000x+.0010000000000y+.1000000173·10−8yx+.1300000000·
10−10x4+ .7500000034 ·10−8x3− .2499999700 ·10−8y3+ .4000000160 ·10−2xy3+
.1500000000·10−4x3y−.2109375027·10−13x2+.3000000000·10−12y4−.2812500001·
10−11y2− .4218750000 · 10−10yx2 + .3000000240 · 10−5y2x+ .2000000000 · 10−2.

One gets the curve C defined by

f(x, y) = −.1250000464·10−12x+ .1125000100·10−14y+ .9999999873·10−3x4+
2.yx4 − 2.y4x − .1000000173 · 10−8yx + y6 + x6 − .7500000036 · 10−8x3 +
.2499999700·10−8y3+.2109375029·10−13x2−.3000000180·10−12y4+.2812500000·
10−11y2−.1500000000·10−4x3y−.4000000160·10−2xy3−.3000000240·10−5y2x+
.4218750000 · 10−10yx2 + .1562500311 · 10−18.

Now, we apply step 3 of the symbolic algorithm to f and P . Thus, we compute

A(x, y, t) =

∂5f

∂5x

1

5!
+

∂5f

∂4x∂y

t

4!
+ · · ·+ t5

5!

∂5f

∂5y

∂6f

∂6x

1

6!
+

∂6f

∂5x∂y

t

5!
+ · · ·+ t6

6!

∂6f

∂6y

=

6x+ 2.000000000t− 2.000000000t4 + 6yt5

1 + t6
.

14



and we return

P(t) =
(
−A(P , t) + .1875000000 · 10−5,−tA(P , t)− .50000002 · 10−3

)
= (p1(t), p2(t)),

where

p̄1(t) =
−2.000000000t+ .3000000120 · 10−2t5 + .1875000000 · 10−5t6

1 + t6
+

2.000000000t4 − .9375000000 · 10−5

1 + t6
,

and

p̄2(t) =
−.4887500200 · 10−3 − 2.000000000t4 − .3000000120 · 10−2t5

1 + t6
+

2.000000000t− .5000000200 · 10−3t6

1 + t6
.

See Fig. 3 to compare the input curve and the rational output curve.

Example 2.

Input Curve C
16.001 + 24.001x+ 8y − 2y2 + 12yx+ 14.001x2+

2y2x+ x2y + x4 − y3 + 6.001x3

Tolerance ε 0.001

ε–Singularity (−2, −2)

Output Curve C
16.008 + 24.012x+ 8y − 2y2 + 12yx+

14.006x2 + 2y2x+ x2y + x4 − y3 + 6.001x3

Parametrization

P(t) = (p1(t), p2(t))
p̄1 = t3 − 0.001− t− 2t2, p̄2 = t4 + 1.999t− t2 − 2t3 − 2.

Figures

Curve C(left)

Curve C(right)
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2

4

y
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Example 3.

Input Curve C
x4 + 2y4 + 1.001x3 + 3x2y − y2x− 3y3 + 0.00001y2

−0.001x− 0.001y − 0.001

Tolerance ε 0.001

ε–Singularity (−.1248595915 10−6, .1249844199 10−6)

Output Curve C

x4 + 2.y4 + 1.001x3 + 3.x2y − y2x− 3.y3 + 10−6y2−

.6243761996 · 10−13x− .6260915576 · 10−13y+

.9744187291 · 10−23 − .3522924910 · 10−16x2+

.9991263887 · 10−6xy

Parametrization

P(t) = (p1(t), p2(t))

p̄1 = −.487671 · 2.0526−2.05055t2+6.15167t+.512063·10−6t4−6.15167t3
1.+2.t4

,

p̄2 = .487671 · −2.05260t+2.05055t3−6.15167t2+6.15167t4+.256287·10−6

1.+2.t4
.

Figures

Curve C(left)

Curve C(right)

–2

–1

0

1

2

y

–2 –1 1 2
x

–2

–1

0

1

2

y

–2 –1 1 2
x

Example 4.

Input Curve C y5 + x5 + x4 + .001x+ .001y + .002 + .001x2 + .005y2 + .001x3

Tolerance ε 0.01

ε–Singularity (−0.0002501, 0)

Output Curve C
y5 + x5 + x4 + .6255863298 · 10−10x+ .9999998183 · 10−3x3+

.3912115701 · 10−14 + .3751562603 · 10−6x2

Parametrization

P(t) = (p1(t), p2(t))
p̄1 = −41902244 · 10−6 · 2384119+597t5

1+t5
, p̄2 = −.9987492180 t

1+t5
.

Figures

Curve C(left)

Curve C(right)
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Example 5.

Input Curve C

−10.x+ 2.y + xy4 + 862.x4y − 359.x3y2 + 3.099.−

859.967x3y + 39.x2y3 + 299.011x2y2+

52.x2y − 3.xy3 + 5.xy2 − 7.901xy + 687.x4−

642.x5 − 67.989x3 + 14.x2 − 9.989y4 + y5 − 4.y3 − y2

Tolerance ε 0.1

ε–Singularity (.999067678, 1.99734)

Output Curve C

10.12701492x+ 1.548607302y + xy4 + 862.x4y−

359.x3y2 − 859.9670000x3y + 39.x2y3+

299.0110000x2y2 + 52.18519488x2y − 3.xy3+

4.626307400xy2 − 7.063248589xy − 642.x5−

67.98172465x3 + 13.33333837x2 − 9.989000000y4 + y5−

3.999974822y3 − .9012712980y2 + 687.x4 + 3.247948193

Parametrization

P(t) = (p1(t), p2(t))

p̄1 = .22545229 · .69592866·103−.128422685·104t+0.0102.t4+4.4313t5

t5+t4+862.t+39.t3−642.−359.t2

+.22545229 · .81893515·103t2−.19495476·103t3
t5+t4+862.t+39.t3−642.−359.t2 ,

p̄2 = .22545229 · .111775629·105t−.82845609·104t2+4.4380666t5

t5+t4+862.t+39.t3−642.−359.t2

+.22545229 · .27553162·104t3−.35891982·103t4−.56876434·104
t5+t4+862.t+39.t3−642.−359.t2 .

Figures

Curve C(left)

Curve C(right)
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Example 6.

Input Curve C
x3 + x2y + x2 + xy2 + y3 + y2−

.999990x− .999980y − .9999600

Tolerance ε 0.01

ε–Singularity (−.99000000, 0)

Output Curve C
x3 + x2y + x2 + xy2 + y3 + y2−

.9603000x− .9801000y − .9604980,

Parametrization

P(t) = (p1(t), p2(t))
p̄1 = 0.99t+0.98−t2−0.99t3

1+t+t2+t3
, p̄2 = t(1.98t+1.97−0.01t2)

1+t+t2+t3
.

Figures

Curve C(left)

Curve C(right)
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Example 7.

Input Curve C
y5 + x5 + x4 − 2.y4 + 10−3x+ 10−3y + 10−3+

10−3x2 + 10−3x3 + 2 · 10−3y2x+ 10−3y3

Tolerance ε 0.01

ε–Singularity (−.2501564001 · 10−3, .1250195 · 10−3)

Output Curve C

.6255863298 · 10−10x+ .1562864926 · 10−10y+

y5 + x5 + x4 − 2.y4 + .9999998183 · 10−3x3+

.3751562603 · 10−6x2 + .9999997015 · 10−3y3−

.1875194239 · 10−6y2 + .3423651857 · 10−14

Parametrization

P(t) = (p1(t), p2(t))

p̄1 = −.114881528 · 8.695909548−.1740379799·102t4+.2177516307·10−2t5

1+t5

p̄2 = .2297630556 · 8.702443119t5−4.346866016t+.544123596·10−3

1+t5
.

Figures

Curve C(left)

Curve C(right)

–2

–1

0

1

2

y

–2 –1 1 2
x

–2

–1

0

1

2

y

–2 –1 1 2
x

18



Example 8.

Input Curve C

291.9690000x− 17.00300000y − 100.9940000y2+

20.y4x− 511.9760000x2 + x7 − 14.x6+

82.x5 − 259.9990000x4 + 479.9920000x3 + 29.y5−

74.99900000y4 − 40.y3x+ 40.y2x− 160.x2y+

140.xy + 2.x5y − 20.x4y + 80.x3y + y7 − 7.y6+

114.9960000y3 − 72.98400000− 4.y5x.

Tolerance ε 0.001

ε–Singularity (2, 1)

Output Curve C

−73.+ 292.x− 17.y − 101.y2 − 512.x2 + x7 − 14.x6−

260.x4 + 480.x3 + 29.y5 − 75.y4 − 40.y3x−

160.x2y + 140.xy + 2.x5y − 20.x4y + 80.x3y + y7−

7.y6 + 115.y3 − 4.y5x+ 20.y4x+ 82.x5 + 40.y2x.

Parametrization

P(t) = (p1(t), p2(t))
p̄1 = 2(t7+1+2t5−t)

t7+1
, p̄2 = 4t6−2t2+t7+1.

t7+1
.

Figures

Curve C(left)

Curve C(right)
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4 Error Analysis

Examples in Section 3 show that, in practice, the output curve of our algorithm
is quite close to the input one. In this section we analyze how far these two
affine curves are.

To be more precise let C ∈ Ldε be defined by f(x, y). In addition, we will denote
by

P(t) =

(
p1(t)

q(t)
,
p2(t)

q(t)

)
,
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where gcd(pi, q) = 1, the generated parametrization of the output curve
C. Moreover, since we will measure distances, we may assume that the ε–
singularity of C is the origin, otherwise one can apply a translation such that
it is moved to the origin and distances are preserved. Also we assume that
‖f(x, y)‖ = 1, otherwise we consider f(x,y)

‖f(x,y)‖ . If one does not normalize the in-

put polynomial f(x, y), a similar treatment with relative errors can be done.

In this situation, the general strategy we will follow is to show that almost any
affine real point on C is at small distance of an affine real point on C. For this
purpose, we observe that P(t) is an exact parametrization of C obtained by
lines, and therefore all affine real points on C are obtained as the intersection
of a line of the form y = tx, for t real, with C. Then, if one intersects the curve
C with the same line one gets d points on C, counted properly, and we show
that at least one of these intersection points on C is close to the initial point
on C. Also, we observe that it is enough to reason with slope parameter values
of t in the interval [−1, 1] because if |t| > 1 one may apply a similar strategy
intersecting with lines of the form x = ty. Therefore, let t0 ∈ R be such that
|t0| ≤ 1 and q(t0) 6= 0. Then, the corresponding point Q on C is Q = P(t0).
Let us expressed Q as

Q =
(
a, b

)
=

(
a1
c
,
b1
c

)
where a1 = p1(t0), a2 = p2(t0) and c = q(t0). Observe that, since we are cutting
with the line y = t0x, it holds that b = t0a. Thus, if we write the affine point
Q projectively one has that (a1 : t0a1 : c). Now, observe that if |a1| and |c|
are simultaneously very small, i.e very close to ε, this point is not well defined
as an element in P2(R). For this reason, we will assume that either |a1| or |c|
is bigger than a certain bound that depends on the tolerance. In fact, for our
error analysis, we fix that

|a1| > ε1/d or |c| > ε1/d.

Furthermore, we observe that the defining polynomials of C and C have the
same homogeneous form of maximum degree, and hence both curves have the
same points at infinity.

Now, let Q = (a, b) be any affine point in C ∩ {y = t0x}; note that here it also
holds that b = t0a. We want to compute the Euclidean distance between Q
and Q. In order to do that, we observe that

‖Q−Q‖2 =
√

( a− a)2 + ( b− b)2 =
√

( a− a)2(1 + t20) ≤
√

2| a− a|.

Therefore, we focus on the problem of computing a good bound for | a−a|. For
this purpose we first prove two different lemmas that will be used as general
strategies in our reasonings.

20



Lemma 2. It holds that
|a− a| ≤ ε · C,

where

C =

d−2∑
j1+j2=0

|a|j1+j2|t0|j2
1

j1!j2!

|a|d−1|c|
.

Proof. First of all, we note that a is a root of the univariate polynomial
f(x, t0x) = xd−1(cx− a1), and that a is a root of the univariate polynomial

f(x, t0x) = xd−1(cx− a1) +
d−2∑

j1+j2=0

∂j1+j2f

∂j1x∂j2y
(0, 0)xj1(t0x)j2

1

j1!j2!
,

Since (0, 0) is the (d− 1)-fold ε–singularity of C it holds that

‖f(x, t0x)− f(x, t0x)‖ = max
j1+j2=0,...d−2

{∣∣∣∣∣ ∂j1+j2f∂j1x∂j2y
(0, 0)

∣∣∣∣∣ |t0|j2 1

j1!j2!

}
≤

max
j1+j2=0,...d−2

{∣∣∣∣∣ ∂j1+j2f∂j1x∂j2y
(0, 0)

∣∣∣∣∣
}
< ε‖f(x, y)‖ = ε,

and thus f(x, t0x) can be written as

f(x, t0x) = f(x, t0x) +R(x) where R ∈ R[x] and ‖R(x)‖ < ε.

Therefore, by applying standard numerical techniques to measure |a − a| by
means of the condition number (see for instance (7), pg. 303), one deduces
that

|a− a| ≤ ε · C,
where

C =

d−2∑
j1+j2=0

|a|j1+j2|t0|j2
1

j1!j2!∣∣∣∣∣∂f∂x (a, t0a)

∣∣∣∣∣
=

d−2∑
j1+j2=0

|a|j1+j2|t0|j2
1

j1!j2!

|a|d−1|c|
.

Lemma 3. Let

h(x) = c
n∏
i=1

(x− ci) ∈ C[x] with deg(h) = n,

and let λ ∈ C be such that |h(λ)| ≤ δ. Then, there exists a root ci0 of h(x)
such that

|λ− ci0| ≤
(
δ

|c|

) 1
n

.
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Proof. Let us assume that for i = 1, . . . , n, |λ− ci| >
(
δ

|c|

) 1
n

. Then,

|h(λ)| = |c|
n∏
i=1

|λ− ci| > δ,

which contradicts that |h(λ)| ≤ δ.

Now, we proceed to analyze |a − a| by using the previous lemmas. For this
purpose, we distinguish different cases depending on the values of |a1| and |c|:

Lemma 4. Let |c| ≥ 1. Then, it holds that:

1. If |a| > 1, then |a− a| ≤ ε · exp(2).

2. If |a| ≤ 1, then |a− a| ≤ (ε · exp(2))
1
d .

Proof.

1. If |a| > 1, we have that the constant C in Lemma 2 can be bounded as

C =

∑d−2
j1+j2=0 |a|j1+j2 |t0|j2 1

j1!j2!

|a|d−1|c|
=

∑d−2
k=0

(|a|+|a||t0|)k
k!

|a|d−1|c|
≤

d−2∑
k=0

(1 + |t0|)k

k!|a|d−1−k
≤

d−2∑
k=0

(1 + |t0|)k

k!
≤ exp(1 + |t0|) ≤ exp(2).

Therefore, by Lemma 2 we deduce that

|a− a| ≤ ε · exp(2).

2. If |a| ≤ 1, we have that

|f(a, at0)| =

∣∣∣∣∣∣f(a, at0) +
d−2∑

j1+j2=0

∂j1+j2f

∂j1x∂j2y
(0, 0)aj1(t0a)j2

1

j1!j2!

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
d−2∑

j1+j2=0

∂j1+j2f

∂j1x∂j2y
(0, 0)aj1(t0a)j2

1

j1!j2!

∣∣∣∣∣∣ ≤
d−2∑

j1+j2=0

∣∣∣∣∣ ∂j1+j2f∂j1x∂j2y
(0, 0)

∣∣∣∣∣ |a|j1|t0|j2|a|j2 1

j1!j2!
≤ ε · exp(|a|(1 + |t0|)) ≤ ε · exp(2).

In this situation, by Lemma 3 we deduce that there exists a root of the
univariate polynomial f(x, t0x), that we can assume w.l.o.g. that is a, such
that

|a− a| ≤
(
ε · exp(2)

|c|

) 1
d

≤ (ε · exp(2))
1
d .
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Lemma 5. Let |c| < 1 and |a1| ≥ 1. Then, it holds that |a− a| ≤ ε · exp(2).

Proof. Since |c| < 1 and |a1| ≥ 1, we have that the constant C in Lemma 2
can be bounded as

C =

∑d−2
j1+j2=0 |a|j1+j2|t0|j2 1

j1!j2!

|a|d−1|c|
=

∑d−2
k=0

(|a1|+|a1||t0|)k|c|(d−2−k)

k!

|a1|d−1
≤

d−2∑
k=0

(1 + |t0|)k

k!|a1|d−1−k
≤

d−2∑
k=0

(1 + |t0|)k

k!
≤ exp(1 + |t0|) ≤ exp(2).

Therefore, by Lemma 2 we deduce that

|a− a| ≤ ε · exp(2).

Finally, it only remains to analyze the case where |c| < 1 and |a1| < 1. In order
to do that, we recall that we have assumed that either |a1| or |c| is bigger than
ε1/d. In the next lemma, we study these cases.

Lemma 6. It holds that:

1. If |c| < 1 and ε
1
d < |a1| < 1, then |a− a| ≤ ε

1
d · exp(2).

2. If |a1| < 1 and ε
1
d < |c| < 1, then |a− a| ≤ (ε1/2 · exp(2))

1
d .

Proof.

1. If |c| < 1 and |a1| > ε1/d, we have that the constant C in Lemma 2 can be
bounded as

C =

∑d−2
j1+j2=0 |a|j1+j2|t0|j2 1

j1!j2!

|a|d−1|c|
=

∑d−2
j1+j2=0 |a1|j1+j2−d+1|t0|j2 1

j1!j2!

|c|j1+j2−d+2
=

∑d−2
j1+j2=0 |c|d−j1−j2−2|t0|j2 1

j1!j2!

|a1|d−j1−j2−1
≤∑d−2

j1+j2=0 |t0|j2 1
j1!j2!

|a1|d−1
≤ exp(2)

|a1|d−1
≤ exp(2) · ε−1+1/d

Therefore, by Lemma 2 we deduce that

|a− a| ≤ ε
1
d · exp(2).

2. Let ε1/d < |c| < 1 and |a1| < 1. First we assume that |a1| ≤ ε1/d. Otherwise
we would reason as in (1). Thus, one has that |a1| ≤ ε1/d < |c| < 1. In these
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conditions, we deduce that

|f(a, at0)| =

∣∣∣∣∣∣f(a, at0) +
d−2∑

j1+j2=0

∂j1+j2f

∂j1x∂j2y
(0, 0)aj1(t0a)j2

1

j1!j2!

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
d−2∑

j1+j2=0

∂j1+j2f

∂j1x∂j2y
(0, 0)aj1(t0a)j2

1

j1!j2!

∣∣∣∣∣∣ ≤
d−2∑

j1+j2=0

∣∣∣∣∣ ∂j1+j2f∂j1x∂j2y
(0, 0)

∣∣∣∣∣ |a|j1|t0|j2|a|j2 1

j1!j2!
≤ ε · exp(|a|(1 + |t0|)) ≤ ε · exp(2).

Now, by Lemma 3 we deduce that there exists a root of the univariate
polynomial f(x, t0x), that we can assume w.l.o.g. that is a, such that

|a− a| ≤
(
ε · exp(2)

|c|

) 1
d

= (ε · exp(2))
1
d

1

|c|1/d
≤ (ε · exp(2))

1
d

1

ε1/d2
≤

(ε · exp(2))
1
d

1

ε
1
2d

= (ε1/2 · exp(2))
1
d .

From the previous lemmas, one deduces the following theorem.

Theorem 2. For almost all affine real point Q ∈ C there exists an affine real
point Q ∈ C such that

‖Q−Q‖2 ≤
√

2ε
1
2d exp(2).

Proof. Applying Lemmas 4, 5 and 6 one deduces that

‖Q−Q‖2 =
√

( a− a)2 + ( b− b)2 =
√

( a− a)2(1 + t20) ≤
√

2| a− a| ≤
√

2ε
1
2d exp(2).

Now, letQ = (a, b) be a regular point on C such that there existsQ = (a, b) ∈ C
with ‖Q−Q‖2 ≤

√
2ε

1
2d exp(2) (see Theorem 2). In this situation, we consider

the tangent line to C at Q; i.e T (x, y) = nx(x− a) + ny(y − b), where (nx, ny)
is the unitary normal vector to C at Q. Then, we bound the value ‖T (Q)‖:

‖T (Q)‖ ≤ ‖nx‖·|a−a|+‖ny‖·|b−b| ≤ ‖Q−Q‖2(‖nx‖+‖ny‖) ≤ 2
√

2ε
1
2d exp(2).

Therefore, reasoning as in Subsection 2.2 of (17) one deduces the following
theorem.

Theorem 3. C is contained in the offset region of C at distance 2
√

2ε
1
2d exp(2).
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