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Abstract

In this paper we analyze the problem of deciding the normality (i.e. the
surjectivity) of a rational parametrization of a surface S. The problem can
be approached by means of elimination theory techniques, providing a proper
close subset Z ⊂ S where surjectivity needs to be analyzed. In general, these
direct approaches are unfeasible because Z is very complicated and its ele-
ments computationally hard to manipulate. Motivated by this fact, we study
ad hoc computational alternative methods that simplifies Z. For this goal,
we introduce the notion of pseudo-normality, a concept that provides neces-
sary conditions for a parametrization for being normal. Also, we provide an
algorithm for deciding the pseudo-normality. Finally, we state necessary and
sufficient conditions on a pseudo-normal parametrization to be normal. As a
consequence, certain types of parametrizations are shown to be always nor-
mal. For instance, pseudo-normal polynomial parametrizations are normal.
Moreover, for certain class of parametrizations, we derive an algorithm for
deciding the normality.

2010 Mathematics Subject Classification: 68W30, 14Q10, 13P15.

1 Introduction

Let Q(t̄), where t̄ = (t1, . . . , tr), be a rational parametrization of an r-dimensional
variety H in Kn, where K is an algebraically closed field of characteristic zero. Q(t̄)

∗This work is partially supported by the Spanish “Ministerio de Ciencia e Innovación” under
the project MTM2008-04699-C03-01.
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defines a rational parametrization between the r-dimensional affine space and H:

Q : Kr −→ H ⊂ Kn; (a1, . . . , ar) 7−→ Q(a1, . . . , ar).

A natural question is to ask whether Q is injective over its domain of definition and
whether it is surjective. Both questions are important in many applications, and
usually appear quoted in the literature as the properness problem and the normality
problem. More precisely, a normal parametrization is defined as follows:

Definition 1.1. The rational affine parametrization Q(t̄) is called normal if the
induced rational mapping Q is surjective, or equivalently if for all P ∈ H there
exists (a1, . . . , ar) ∈ Kr such that Q(a1, . . . , ar) = P .

For the case of curves (either plane or spatial), both problems have been suc-
cessfully addressed (see e.g. [1], [12] and [13]). Nevertheless, the case of surfaces
have not been treated so extensively. Some exceptions are [6], where the proper-
ness problem is analyzed for some special types of surfaces, and [2], [3] where the
normality question is studied. In [3] the case of algebraic varieties of arbitrary di-
mension is approached using Ritt-Wu’s decomposition algorithm, providing normal
parametrizations for some quadrics. In [2] normal parametrizations for the remain-
ing quadrics are presented.

In this paper, we focus on the case of surfaces (i.e. n = 3, r = 2, H is a surface
S, and Q(t̄) is a parametrization P(s, t)), and we consider the problem of deciding
whether P(s, t) is normal, leaving for further research the problem of finding normal
parametrizations. The problem for surfaces is already much complicated than for
curves, for instance polynomial curve parametrizations are always normal, while
polynomial surface parametrizations are not necessarily normal. For instance, the
polynomial parametrization (s3, s(s + t), s(s − t)), that corresponds to the surface
defined by 8 x1

2−x3
3−3 x3

2x2−3 x3x2
2−x2

3, does not reach the points (0, λ,−λ) ∈ S
where λ 6= 0.

General elimination techniques can be applied to solve the problem as it has
been remarked in [3]. Nevertheless, this type of methods is not feasible in practice
because of the complexity of the proper close subset of S that one needs to analyze.
Motivated by this fact, we propose an alternative approach. In this approach, we
first find necessary conditions for a parametrization to be normal. This yields to the
notion of pseudo-normal parametrization (see Def. 3.2). Furthermore, we provide an
algorithmic method to check the pseudo-normality. The proper close subset of S to
be analyzed is computed intersecting S with three polynomials directly derived from
three univariate resultants; namely their leading coefficients. Moreover, under some
hypothesis, the reduces the analysis to a close subset of S that is either empty or
zero dimensional or consists of plane rational curves (see Section 3). As a remarkable
corollary we get conditions on a polynomial parametrization to be pseudo-normal.
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In a second step, we analyze conditions on a pseudo-normal parametrization
to be normal. In particular, we show that in order to decide whether a pseudo-
normal parametrization is normal one only needs to analyze the parameter values
corresponding to the intersection points of the numerator and denominator of each
component of the parametrization (see Theorem 4.2). As a consequence, we prove
that every pseudo-normal polynomial parametrization is normal (see Corollary 4.4).
In addition (see Section 4), we present an algorithm to decide the normality of
certain class of parametrizations; namely, those where the algebraic sets (i.e. the
empty set or a plane curve) defined by each numerator and denominator of the
parametrization do not have a common affine intersection. In this algorithm, once
the pseudo-normality have been checked, one only needs to analyze the behavior of
the points in a close subset of S that is either empty or zero-dimensional or consists
of plane curves.

To finish this introduction, we need to mention a couple of further details. In
our analysis, we exclude rational cylinders over any coordinate plane. This is not a
lose of generality as Section 2 shows. On the other hand, in the performance of the
algorithmic methods, derived in Sections 3 and 4, we use the implicit equation of
S. The reason is somehow inherent to the problem, since we need to compute the
intersection of certain varieties (in general planes) with S and, although we have
a parametrization of S, we cannot ensure that it provides all intersection points
because we do not know whether the parametrization is normal. In order to compute
the implicit equation we use the univariate resultant based method in [10].

2 Notation and General Assumptions

Throughout this paper, we will use the following notation. K is an algebraically
closed field of zero characteristic. P(s, t) is a rational affine parametrization, non
necessarily proper, in reduced form, of an algebraic surface S over K. We write the
components of P(s, t) as

P(s, t) =

(
p1(s, t)

q1(s, t)
,
p2(s, t)

q2(s, t)
,
p3(s, t)

q3(s, t)

)
,

where pi, qi ∈ K[s, t] and gcd(pi, qi) = 1, i = 1, 2, 3. F (x1, x2, x3) is the defining
polynomial of S. Also, we consider the rational map P : K2 −→ S : (s, t) 7−→
P(s, t). Note that P(s, t) is normal iff P(K2) = S.

For a polynomial ideal J , we denote by V(J ) the algebraic variety defined by
J in the corresponding affine space over K. Moreover, we denote by A∗ the Zariski
closure of a set A, and by A the projective closure of an affine variety A.

Moreover for a polynomial f(x), with coefficient in a unique factorization domain,
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we denote by lcx(f) its leading coefficient and by coeff(f, xi) the coefficient of xi in
f(x).

In addition, we associate to P(s, t) the polynomials

Gi(xi, s, t) = pi(s, t)− xiqi(s, t), i = 1, 2, 3,

as well as the algebraic varieties Ci = V(pi) ⊂ K2, and Di = V(qi) ⊂ K2, i = 1, 2, 3.
Note that each of these varieties is either the empty set or a plane curve.

We will approach the problem using elimination theory. For this purpose, we
consider the ideal

I =< G1(x1, s, t), G2(x2, s, t), G3(x3, s, t), wq(s, t)− 1 >⊂ K[w, s, t, x1, x2, x3],

where q = lcm(q1, q2, q3) as well as the algebraic variety V = V(I) ⊂ K6, as well as
the ideal

Ĩ =< G1(x1, s, t), G2(x2, s, t), G3(x3, s, t) >⊂ K[s, t, x1, x2, x3],

and the variety Ṽ = V(Ĩ) ⊂ K5. Furthermore, we introduce the elimination ideals
(say x̄ = (x1, x2, x3))

I1 = I ∩K[s, t, x̄], I2 = I ∩K[t, x̄] I3 = I ∩K[x̄].

Finally, we consider the projection

Π1 Π2 Π3

Π : K6 −→ K5 −→ K4 −→ K3

(w, s, t, x̄) 7−→ (s, t, x̄) 7−→ (t, x̄) 7−→ x̄

In this situation, because of the Closure Theorem (see [4]), on has that

V(I1) = Π1(V)∗,V(I2) = Π2(Π1(V))∗, S = V(I3) = Π(V)∗ = Π3(Π2(Π1(V)))∗.

In the paper we assume w.l.o.g. that:

1. in case Ci (resp. Di) is a curve, (1 : 0 : 0) 6∈ Ci (resp. (1 : 0 : 0) 6∈ Di); which
implies that the leading coefficients w.r.t. s of numerators and denominators
are constant. Note that this condition can be achieved by composing P(s, t)
with a suitable affine linear transformation, and hence the normality character
of P(s, t) is preserved. Therefore, it is not a loss of generality. We observe
that a similar reasoning can be done imposing the condition w.r.t. (0 : 1 : 0).

2. We will assume that P(s, t) is not a cylinder over a coordinate plane. This is
not a loss of generality because we know how to decide whether P(s, t) defines
or not such a cylinder (see Theorem 5 in [10]), and Theorem 2.1 (below) solves
the normality question for this type of surfaces.
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The Case of Cylinders

Let S be a cylinder over the x1x2-coordinate plane; we exclude the trivial case
of planes of the type xi = λ. Theorem 8, in [10], implies that if a ∈ K is such that
p1(a, t)/q1(a, t), and p2(a, t)/q2(a, t) (similarly when substituting the parameter t)
are not constant, then

Q(t) =

(
p1(a, t)

q1(a, t)
,
p2(a, t)

q2(a, t)

)

parametrizes the plane curve S ∩ V(x3). Let Q(t) be proper, otherwise we apply
a reparametrization algorithm. Then, from the results in [12], or in Section 6.3.
in [13], one may check whether Q(t) is normal and, if not, computing a normal
reparametrization of it. So, say that Q(t) is normal. Then, (Q(t), s) is a normal
parametrization of S. Therefore, we have proved the following theorem.

Theorem 2.1. Every rational cylinder over a coordinate plane can always be nor-
mally parametrized.

3 Pseudo-Normal Parametrizations

In this section, we study necessary conditions on a parametrization to be normal.
This will yield to the notion of pseudo-normality (see Definition 3.2).

We start observing that Π(V) = P(K2), and therefore P(s, t) is normal iff Π(V) =
S. Or equivalently iff V(I3) = Π(V). In order to analyze necessary conditions, we
study the set Π3(Π2(V(I1))); i.e. we analyze Π3(Π2(V(I1))) = Π3(Π2(Π1(V)∗))
instead of Π(V) = Π3(Π2(Π1(V)))∗.

Lemma 3.1. If S * Π3(Π2(V(I1))), then P(s, t) is not normal.

Proof. Let P ∈ S \ Π3(Π2(V(I1))). Then, ∀s0, t0 ∈ K, (s0, t0, P ) 6∈ V(I1). In
particular, ∀s0, t0 ∈ K, (s0, t0, P ) 6∈ Π1(V). Thus, P 6∈ Π(V), and hence S 6= Π(V).
So, P(s, t) is not normal.

The previous lemma, although providing a necessary condition for the normality,
requires the first elimination ideal of I. To avoid this, we consider a bigger set,
namely Π3(Π2(Ṽ)). Note that Ĩ ⊆ I1, so V(I1) ⊆ Ṽ , and hence Π3(Π2(V(I1))) ⊆
Π3(Π2(Ṽ)). This motivates the following definition.

Definition 3.2. P(s, t) is called pseudo-normal if S ⊆ Π3(Π2(Ṽ)).

Next example shows that not all pseudo-normal parametrizations are normal

Example 3.3. Let P(s, t) = (s, (t + s)/s, 0). Then I1 =< x3, t − x2x1 + x1, s −
x1 >. It is clear that S ⊂ Π3(Π2(V(I1))) ⊂ Π3(Π2(Ṽ)) and hence is pseudo-normal.
However, P(s, t) is not normal because (0, λ, 0) ∈ S \ P(K2) where λ ∈ K. In fact,
in this case I1 = Ĩ, and therefore Π3(Π2(V(I1))) = Π3(Π2(Ṽ)).
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Next lemma follows from Lemma 3.1.

Lemma 3.4. If P(s, t) is normal then it is pseudo-normal.

If P(s, t) is pseudo-normal, and P ∈ S, then there exist s0, t0 ∈ K such that
(s0, t0, P ) ∈ Ṽ . Now, there are two possibilities: either q(s0, t0) 6= 0, in which case
P ∈ P(K2), or q(s0, t0) = 0 and we cannot ensure that P ∈ P(K2); compare to
Example 3.3. In the sequel we will find sufficient conditions on P(s, t) to ensure
that it is pseudo-normal and, if so, to exclude the second case above. For this
purpose, we consider the following two varieties:

1. Z1 = V(lct(R1,2), lct(R1,3), lct(R2,3), F ), where Ri,j = Ress(Gi, Gj) for i 6= j.
Observe that since ∀k, gcd(pk, qk) = 1, then Ri,j 6= 0 for i 6= j.

2. For each P ∈ K3, Z2(P ) = V(G1(s, t, P ), G2(s, t, P ), G3(s, t, P )).

Note that lct(Ri,j) ∈ K[xi, xj], and hence Z1 is either empty or it is the inter-
section of three cylinders (each over each coordinate plane) and S. Moreover, for
each P , Z2(P ) is the intersection of three plane curves. We start showing that Z1

is contained in a 1-dimension variety.

Lemma 3.5. Every non-empty component of V(lct(Ri,j))∩S, for i 6= j, has dimen-
sion 1.

Proof. Let Z be a non-empty component of V(lct(Ri,j))∩S. By Theorem 6, pp. 76,
in [11], dim(Z) ≥ 1. But dim(Z) 6= 2 because S is irreducible, it is not a cylinder
over the xixj-coordinate plane, while lct(Ri,j) defines either the empty variety or a
cylinder of that type.

Therefore, the following theorem holds.

Theorem 3.6. If Z1 6= ∅ then it is a proper close subset of S.

Then, we have the next theorem.

Theorem 3.7. It holds that:

1. If degs(pi) > degs(qi), for some i = 1, 2, 3, then S \ Z1 ⊂ Π3(Π2(V(I1))).
Moreover, P(s, t) is pseudo-normal iff ∀P ∈ Z1,Z2(P ) 6= ∅.

2. If degs(pi) ≤ degs(qi), for i = 1, 2, 3, and A = (a1, a2, a3), where

ai =
coeff(pi, s

degs(qi))

lcs(qi)
,

then S \ (Z1 ∪ {A}) ⊂ Π3(Π2(V(I1))). Moreover, P(s, t) is pseudo-normal iff
∀P ∈ Z1 ∪ {A},Z2(P ) 6= ∅.
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Proof. (1) We assume w.l.o.g. that degs(p1) > degs(q1). Since (1 : 0 : 0) 6∈ C1, then
lcs(G1) ∈ K \ {0}. Thus, by the Extension Theorem (see [4]), for every (t0, P ) ∈
V(I2), there exists s0 ∈ K such that (s0, t0, P ) ∈ V(I1). Therefore, if (t0, P ) ∈ V(I2),
then P ∈ Π3(Π2(V(I1))) ⊂ Π3(Π2(Ṽ)). Since Ri,j ∈ I2, there exists f1, . . . , fr ∈
K[t, x̄] such that I2 = (R1,2, R1,3, R2,3, f1, . . . , fr). Let P ∈ S \ Z1. Then P ∈ V(I3)
and, by the Extension Theorem, there exists t0 ∈ K such that (t0, P ) ∈ V(I2). So,
P ∈ Π3(Π2(V(I1))).

Now, let P(s, t) be pseudo-normal and P ∈ Z1. Then, P ∈ Z1 ⊂ S ⊂ Π3(Π2(Ṽ)).
So, there exist s0, t0 ∈ K such that (s0, t0, P ) ∈ Ṽ , and hence (s0, t0) ∈ Z2(P ).
Conversely, let P ∈ Z1, and (s0, t0) ∈ Z2(P ). Then, (s0, t0, P ) ∈ Ṽ . So, Z1 ⊂
Π3(Π2(Ṽ)), and hence P(s, t) is pseudo-normal.
(2) We first observe that, because of the general condition imposed to Ci and Di in
Section 2, A is a point in K3. Moreover, depending on whether degs(pi) = degs(qi)
or degs(pi) < degs(qi), lcs(Gi) = lcs(pi)− xilcs(qi) or lcs(Gi) = xilcs(qi). So, lcs(Gi)
only vanishes at A. Now, the proof follows as in (1).

Theorem 3.7 shows how to computationally check whether a given surface
parametrization is pseudo-normal. More precisely, the algorithm works as follows.
We assume that the coefficients of P(s, t) belong to a computable field L and that
K is its algebraic closure.

1. We decompose Z1 into irreducible components over K; for instance, applying
Gröbner basis.

2. Then, for each irreducible component Z1j of Z1 we consider the field F :=
K(Z1j) of rational functions over Z1j. Observe that the arithmetic and zero-
test in F can be carried out using Gröbner basis to decide the membership to
the ideal of Z1j.

3. Now, we see a generic point in Z1j as a point P = (x1, x2, x3) ∈ F3. We
need to check whether the Z2(P ) is empty or not. That is, whether the
curves Gi(s, t, P ), defined over the algebraic closure of F, have a common
intersection or not. This can be done by performing generalized resultants in
F[t][s] and gcds in F[t]. Of course, when performing all these steps the zero-
test application will provide zero-dimensional sets of points that will need to
be treated separately, but this is not a problem computationally.

4. Additionally, the point A in Theorem 3.7 (2) might need to be checked, but
this is again no restriction.

Remark 3.8. We have emphasized (see Theorem 3.6) the fact that Z1 is either
empty or proper in S. An alternative possibility would be to work with a bigger
close set containing Z1; for instance S. This would avoid to decompose Z1 into
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irreducible components since S is already irreducible. Moreover, the field of rational
functions over S is simpler to manage since the ideal is principal. So, where is
the disadvantage? The difficulties appear in Step 3, when the zero-test generates
particular cases. These particular cases would be, in general, of dimension 1 and
this would imply to decompose into irreducible components, etc, this new set. In our
examples, this 1-dimensional set was much more complicated than Z1, and indeed
we were unable to compute its irreducible decomposition.

Let us illustrate this process with two examples.

Example 3.9. Let P(s, t) = (s2, (t4 + s4)/(s3 +2t), 1/(t+ s2)). Then, lct(R1,2) = 1,
one has that Z1 = ∅. Thus, by Theorem 3.7 (1), P(s, t) is pseudo-normal.

Example 3.10. Let

P(s, t) =

(
s2 − t + 1

s2 + t
,
s2 + 2t− s− 1

s2 − t
,
s2 + t + s

s2 + 2t

)
.

Then,

lct(R1,2) = (2 x1x2 + x1 − 3)2 , lct(R1,3) = (x3x1 − 3 x3 + 2)2 , lct(R2,3) = (3 x3x2 − 2 x2 − 1)2 .

Moreover, the defining polynomial of the surface is

F = 11− 7 x1 + x2− 22 x3 + x2x3x1− 2 x2
2x1 + 6 x2x3

2x1− 18 x2x3
2− x3x1

2 + x1
2−

5 x1x2+4 x2
2+2 x2x1

2+15 x3
2−8 x3

2x1+9 x3x1+x3
2x1

2+9 x3
2x2

2+15 x3x2−12 x3x2
2.

The set Z1 only has one component one-dimensional

{g1 := 2 x1x2 + x1 − 3, g2 := x3x1 − 3 x3 + 2, g3 := 3 x3x2 − 2 x2 − 1}.

Note that {g1, g2, g3} is the Gröbner basis w.r.t. the pure lexicographic order with
x1 > x2 > x3 of the ideal of Z1. Since we are in the conditions of Theorem 3.7 (2),
we analyze whether for P ∈ Z1 ∪ {A := (1, 1, 1)} it holds that Z2(P ) 6= ∅.
(1) G1(s, t, A) = 2t−1, G2(s, t, A) = −3t+s+1, G3(s, t, A) = t−s, so (1/2, 1/2) ∈

Z2(A) 6= ∅.
(2) Now, we analyze the problem for a generic element of P ∈ Z1. For this

purpose, let F = K(Z1), and P = (x1, x2, x3) ∈ F3. We analyze Z2(P ). We
distinguish two cases

(2.1) Let x1 = 1 or x2 = 1 or x3 = 1. Using that P ∈ Z1, one gets that P = A and
this is done in (1).
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(2.2) Let x1 6= 1, x2 6= 1, and x3 6= 1. Then,

G1 = (x1 − 1)s2 + (x1t + t− 1),
G2 = (x2 − 1)s2 + s + (1− 2t− x2t),
G3 = (x3 − 1)s2 − s + (2x3t− t),

and NormF(xi−1) = xi−1, where NormF denotes the normal form w.r.t. the
Gröbner basis {g1, g2, g3}. Therefore degs(Gi) = 2 as polynomials in F[t][s].
In order to analyze the intersection, over the algebraic closure of F, of the
curves defined by G1, G2, G3 we determine the generalized resultant w.r.t. s of
G1, G2, G3. That is, we compute the content w.r.t. t of Ress(G1, G2 + wG3)
where w is a new variable. We get, after computing the normal form of the
coefficients,

Ress(G1, G2 + wG3) = a0(t) + a1(t)w + a2w
2

where
a0 = (x2

1 − 1)t + (8− 4x2 + x2
2 − 6x1 + x2

1)
a1 = (2− 2x2

1)t + (−4
3
− 2

3
x2 + 2x3)

a2 = (x2
1 − 1)t + (−2x3 + x2

3 − x1 + 2).

Moreover, gcdF[t](a1, a2, a3) = 1, since gcdF[t](a1, a3) = 1 because

NormF((8− 4x2 + x2
2 − 6x1 + x2

1)− (−2x3 + x2
3 − x1 + 2)) =

−79

4
− 8 x3

2 − 13/2 x1 + 4 x2 + 28 x3 + x1
4 +

29

4
x1

2 − x2
2 − 5 x1

3 6= 0.

Therefore G1, G2, G3 do not intersect. Thus, Z2(P ) = ∅. So P(s, t) is not
pseudo-normal, and hence neither normal.

The efficiency of the previous algorithmic process depends on how complicated
Z1 is. In the sequel we show that, under certain conditions, the variety Z1 is either
empty or decomposes as union of zero-dimensional components and plane rational
curves; note that in this last case F = K(h) where h is transcendental over K.

Lemma 3.11. Let Gk(xk, s, t, u) be the homogenization of Gk w.r.t. {s, t}. If

gcd(Gi(xi, s, t, 0), Gj(xj, s, t, 0)) = 1, for i 6= j,

then lct(Ri,j)(xi, xj) = Ress(Gi(xi, s, 1, 0), Gj(xj, s, 1, 0)).

Proof. Let nk = deg{s,t,u}(Gk), then degt,u(Ri,j) = ninj. The gcd condition implies

that the projective curves defined, over the algebraic closure ofK(x̄), by Gi and Gj do
not have common points on the line at infinity u = 0. Therefore, coeff(Ri,j, t

ninj) 6=
0. So, if R(xi, xj, t, u) = Ress(Gi, Gj), then lct(Ri,j) = R(xi, xj, 1, 0). By hypothesis
(1 : 0 : 0) 6∈ Ck and (1 : 0 : 0) 6∈ Dk, so degs(Gk) = degs(Gk(xk, s, 1, 0)). Now,
the proof follows from the behavior of the resultant under specialization; see e.g.
Lemma 4.3.1 in [14].
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The next theorem extend Lemma 3.5, when the gcd condition in Lemma 3.11 is
satisfied.

Theorem 3.12. Let Gk be as in Lemma 3.11 and let Gi(xi, s, t, 0), Gj(xj, s, t, 0) be
coprime, where i 6= j.

1. If degs(pi) = degs(qi), degs(pj) = degs(qj), V(lct(Ri,j)) ∩ S is the union of
curves.

2. If degs(pi) > degs(qi), degs(pj) > degs(qj), V(lct(Ri,j)) ∩ S = ∅.
3. If degs(pi) < degs(qi), degs(pj) < degs(qj), V(lct(Ri,j)) ∩ S is the union of

plane curves. Moreover, V(lct(Ri,j)) ∩ S = (V(xi) ∩ S) ∪ (V(xj) ∩ S).

4. If degs(pi) > degs(qi), degs(pj) = degs(qj), V(lct(Ri,j)) ∩ S is the union of
plane curves, of the form V(αxj − β) ∩ S, where α, β ∈ K.

5. If degs(pi) > degs(qi), degs(pj) < degs(qj), V(lct(Ri,j)) ∩ S is the union of
plane curves. Moreover, V(lct(Ri,j)) ∩ S = V(xj) ∩ S.

6. If degs(pi) < degs(qi), degs(pj) = degs(qj), V(lct(Ri,j)) ∩ S is the union of
plane curves, of the form V(αxj − β) ∩ S, where α, β ∈ K.

7. If degs(pk) = degs(qk), for k = 1, 2, 3, and G1(x1, s, t, 0), G2(x2, s, t, 0),
G3(x3, s, t, 0) are pairwise coprime, Z1 is either empty or zero-dimensional
or a line or the rational curve parametrized by

(
ph

1(s, 1, 0)

qh
1 (s, 1, 0)

,
ph

2(s, 1, 0)

qh
2 (s, 1, 0)

,
ph

3(s, 1, 0)

qh
3 (s, 1, 0)

)
,

where ph
k(s, t, u) and qh

k (s, t, u) are the homogenization of pk(s, t) and qk(s, t)
respectively.

Proof. Let gk(xk, s) = Gk(xk, s, 1, 0), and let ph
k(s, t, u), qh

k (s, t, u) as in statement
(7).

1. It follows from Theorem 3.5.

2. gi(xi, s) = ph
i (s, 1, 0), gj(xj, s) = ph

j (s, 1, 0). So, by Lemma 3.11, lct(Ri,j) ∈
K \ {0}.

3. gi(xi, s) = qh
i (s, 1, 0)xi, gj(xj, s) = qh

j (s, 1, 0)xj. So, by Lemma 3.11, up to
multiplication by constant,

lct(Ri,j) = Ress(xiq
h
i (s, 1, 0), xjq

h
j (s, 1, 0)) = xa

i x
b
j, a, b ∈ N.

Note that a = degs(q
h
j (s, 1, 0)) = degs(qj) > degs(pj) ≥ 0, and b =

degs(q
h
i (s, 1, 0)) = degs(qi) > degs(pi) ≥ 0.
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4. gi(xi, s) = ph
i (s, 1, 0), gj(xj, s) = qh

j (s, 1, 0)xj − ph
j (s, 1, 0). Now the result

follows from Lemma 3.11, and using that degs(p
h
i (s, 1, 0)) = degs(pi) >

degs(qi) ≥ 0 and that degs(q
h
j (s, 1, 0)) = degs(qj) > 0; the last inequality

is due to the fact that degs(qj) = degs(pj) and that S is not a cylinder over a
coordinate plane.

5. gi(xi, s) = ph
i (s, 1, 0), gj(xj, s) = qh

j (s, 1, 0)xj. So, by Lemma 3.11, up to mul-
tiplication by constant,

lct(Ri,j) = Ress(p
h
i (s, 1, 0), xjq

h
j (s, 1, 0)) = xa

j , a ∈ N.

Note that, reasoning as in the previous case, degs(q
h
j ) > 0. Moreover, it holds

that a = degs(p
h
i (s, 1, 0)) = degs(pi) > degs(qi) ≥ 0.

6. gi(xi, s) = qh
i (s, 1, 0)xi, gj(xj, s) = qh

j (s, 1, 0)xj − ph
j (s, 1, 0). So, by Lemma

3.11, up to multiplication by constant,

lct(Ri,j) = Ress(xiq
h
i (s, 1, 0), qh

j (s, 1, 0)xj − ph
j (s, 1, 0)).

Note that degs(q
h
i (s, 1, 0)) = degs(qi) > degs(pi) ≥ 0, and degs(q

h
j (s, 1, 0)) =

degs(qj) > 0 because S is not a cylinder.

7. Let Ck(s) = Contentxk
(gk) and Bk(xk, s) = Primpartxk

(gk). Then, by Lemma
3.11, and up to multiplication by constants, it holds:

lct(Ri,j) = Ress(Bi(xi, s), Bj(xj, s))

Ress(Bi(xi, s), Cj(s))Ress(Ci(s), Bj(xj, s)).

All the factors above factorize into linear polynomials (i.e. when cutting
S, they define plane curves) with the possible exception of the polynomial
Si,j(xi, xj) = Ress(Bi(xi, s), Bj(xj, s)). If both Bi, Bj do not depend on s, Si,j

is constant. If either Bi or Bj does not depend on s, Si,j only depends on
either xj or xi, and hence factors into linear factors too. Let Bi, Bj depend on
s, and let αi(s), αj(s) be the root of Bi, Bj, seen as polynomials in xi and xj,
respectively. Then the square-free part of Si,j, say S∗i,j, is the implicit equation
of the curve defined by (αi(s), αj(s)) (see Lemma 4.6. in [13]). We observe
that αk(s) = ph

k(s, 1, 0)/qh
k (s, 1, 0) for k ∈ {i, j}. Now, applying this reasoning

to each of the leading coefficients lct(R1,2), lct(R1,3), lct(R2,3), and considering
the intersection of the three of them with S one gets the result.

Corollary 3.13. Let Gk be as in Lemma 3.11 and let G1(x1, s, t, 0), G2(x2, s, t, 0),
and G3(x3, s, t, 0) be pairwise coprime. Then, Z1 is either empty or zero-
dimensional or is union of a zero-dimensional set and several rational curves.

11



Proof. Since the three polynomials are pairwise coprime, Theorem 3.12 is applica-
ble to the leading coefficients of R1,2, R1,3, R2,3. Now, the result follows from the
structure of V(lct(Ri,j)) ∩ S in Theorem 3.12.

Corollary 3.14. If there exist i, j ∈ {1, 2, 3}, i 6= j, such that

1. degs(pi) > degs(qi), and degs(pj) > degs(qj),

2. Ci and Cj do not have common points at infinity (recall that Ci = V(pi)),

then P(s, t) is pseudo-normal.

Proof. By hypothesis (1) gi(xk, s) = ph
i (s, 1, 0), gj(xk, s) = ph

j (s, 1, 0) where gk, p
h
k, q

h
k

are as in the proof of Theorem 3.12. Thus, by hypothesis (2), gcd(gi, gj) = 1. Now,
the result follows from Theorem 3.12 (2) and Theorem 3.7.

Corollary 3.15. Let P(s, t) be a polynomial parametrization. If there exist i, j ∈
{1, 2, 3}, i 6= j, such that Ci and Cj do not have common points at infinity, then
P(s, t) is pseudo-normal.

Proof. It follows from Corollary 3.14.

Example 3.16. We consider the surface S parametrized by

P(s, t) =

(
s2 − 1

1 + st + s2
,
s + t + 3

4 + t− s
,

t + s

t2 + 2 s2

)
.

We observe that P(s, t) satisfies the conditions in Section 2. Since G1, G2, G3 satisfy
the conditions in Corollary 3.13, we expect a simple set Z1. In order to compute Z1,
we first compute V(lct(R1,2), lct(R1,3), lct(R2,3)) to afterwards intersect with S.

lct(R1,2) = (x2 − 1) (2 x1x2 − x2 + 1) , lct(R1,3) = x3
2
(
1 + 3 x1

2 − 2 x1

)
,

lct(R2,3) = x3

(
3− 2 x2 + 3 x2

2
)
.

So, V(lct(R1,2), lct(R1,3), lct(R2,3)) is

{(h, 1, 0)}∪ {((h− 1)/(2h), h, 0)}∪ {(1/3 + 1/3 i
√

2, 1, h)}∪ {(1/3− 1/3 i
√

2, 1, h)}.

Now, for computing the intersection with S, we use its implicit equation (previously
computed with the resultant-based algorithm in [10]) to get:

Z1 = {(h, 1, 0)} ∪ {((h− 1)/(2h), h, 0)}∪

{(1/3 + 1/3 i
√

2, 1, 0), (1/3 + 1/3 i
√

2, 1,− 1

72

5 + 17 i
√

2

1 + i
√

2
),
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(1/3− 1/3 i
√

2, 1, 0), (1/3− 1/3 i
√

2, 1,− 1

72

−5 + 17 i
√

2

−1 + i
√

2
)}.

Thus, the first line and the second rational curve are contained in the surface, while
the third an fourth cut S into 4 points; 2 points each one. Now, we study Z2(P ) for
P ∈ Z1. For P = (h, 1, 0) we get

Z2(P ) = V(h + hts + hs2 − s2 + 1,−1 + 2 s,−t− s)

which is empty unless h = −3/4. So, by Theorem 3.7 (1), P(s, t) is not pseudo-
normal.

4 Normal Parametrizations

In this last section, we state necessary and sufficient conditions on a pseudo-normal
parametrization to be normal. As a consequence, certain types of parametrizations
are shown to be always normal. Finally, we derive an algorithm for certain type of
surfaces. We start with the next theorem.

Theorem 4.1. P(s, t) is normal iff ∀P ∈ S, Z2(P ) * V(lcm(q1, q2, q3)).

Proof. If P(s, t) is normal, then S = P(K2). So, for every P ∈ S, there exist
s0, t0 ∈ K such that (s0, t0) ∈ Z2(P ) and q(s0, t0) 6= 0. Conversely, let P ∈ S. Since
Z2(P ) * V(q), then there exists (s0, t0) ∈ Z2(P ) \ V(q). Thus, P = P(s0, t0) and
hence P(s, t) is normal.

The next theorem introduces a new characterization for the normality. Differ-
ently to Theorem 4.1, it requires pseudo-normality but instead the subset of S,
that may need a further analysis, is simplified. We recall that Ci = V(pi) and that
Di = V(qi). Moreover, the curve intersections below are afin.

Theorem 4.2. Let P(s, t) be pseudo-normal and G =
⋃3

k=1(Ck ∩ Dk). The
parametrization P(s, t) is normal iff

∀P ∈
⋃

(s0,t0)∈G
(V(G1(x1, s0, t0), G2(x2, s0, t0), G3(x3, s0, t0)) ∩ S),

Z2(P ) * V(lcm(q1, q2, q3)).

Proof. If P(s, t) is normal, by Theorem 4.1, ∀P ∈ S, Z2(P ) * V(q). Therefore, the
statement holds. Conversely, let P ∈ S. Since P(s, t) is pseudo-normal, Z2(P ) 6= ∅.
Let (s0, t0) ∈ Z2(P ). If q(s0, t0) 6= 0, then P ∈ P(K2). If q(s0, t0) = 0, there
exists i ∈ {1, 2, 3} such that qi(s0, t0) = 0 and pi(s0, t0) = Gi(P, s0, t0) = 0. So,
(s0, t0) ∈ Ci ∩ Di ⊂ G and, by hypothesis, there exists (s1, t1) ∈ Z2(P ) such that
q(s1, t1) 6= 0. Thus, P ∈ P(K2).
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Corollary 4.3. If P(s, t) is pseudo-normal, and
⋃3

k=1(Ck ∩ Dk) = ∅, then it is
normal.

Proof. It follows from Theorem 4.2.

Corollary 4.4. Every pseudo-normal polynomial parametrization is normal.

Proof. It follows from Corollary 4.3.

Let G∗ =
⋂3

k=1(Ck ∩ Dk) and G =
⋃3

k=1(Ck ∩ Dk). In the sequel, we show that if
G∗ = ∅, Theorem 4.2 provides an algorithm to decide the normality of P(s, t); note
that parametrizations with base points do not satisfy the above requirement (see [5]
for the notion of base points). For this purpose, we assume w.l.o.g. that S is not a
plane. Then, we proceed as follows:

1. Check whether P(s, t) is pseudo-normal (see Section 3). If it is not pseudo-
normal, return that it is not normal.

2. Observe that, because gcd(pi, qi) = 1, G is either empty or zero-dimensional.
If G = ∅ return that P(s, t) is normal.

3. For each (s0, t0) ∈ G, since S is irreducible of degree at least 2 and G∗ = ∅,

Z(s0, t0) := (V(G1(x1, s0, t0), G2(x2, s0, t0), G3(x3, s0, t0)) ∩ S

is either empty or a proper close subset of S; indeed it is either empty or
zero-dimensional or a plane curve. Decompose Z(s0, t0) into irreducible com-
ponents.

4. For each irreducible Z∗ component of Z(s0, t0), consider a generic element (i.e.
take P = (x1, x2, x3) ∈ F3 where F is the field of rational functions of Z∗) and
check whether Z2(P ) * V(lcm(q1, q2, q3)). In order to do this one simply has
to proceed as in the pseudo-normality test algorithm presented in Section 3.

Remark 4.5. If G∗ 6= ∅ we still can apply Theorem 4.2. Nevertheless this implies
that, for some (s0, t0), the Z(s0, t0) = S and the difficulties commented in Remark
3.8 are also applicable here.

Let see some examples.

Example 4.6. We consider the surface parametrization

P(s, t) =

(
s2 − 1, s + t + 3,

t2 + s2

t + 2s

)
.
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We observe that P(s, t) does satisfy the conditions in Section 2. Moreover, by Corol-
lary 3.14, P(s, t) is pseudo-normal. The set G is G = {(0, 0)}, and

V(G1(x1, 0, 0), G2(x2, 0, 0), G3(x3, 0, 0)) ∩ S = {(−1, 3, h) |h ∈ C}.
Moreover, Z2(−1, 3, h) = V(−s2,−s− t, ht + 2hs− t2 − s2) = {(0, 0)} ⊆ V(t + 2s).
Therefore, P(s, t) is not normal. In fact, P(C2) is all S minus the line of equation
{x1 = −1, x2 = 3}.
Example 4.7. We consider the surface parametrization

P(s, t) =

(
s2 − 1

t + 2 s
,
s + t + 3

t + 2 s
,
t2 + s2

t + 2 s

)
.

We observe that P(s, t) does satisfy the conditions in Section 2. Moreover, by Corol-
lary 3.14, P(s, t) is pseudo-normal. G = {(0, 0), (1,−2), (−1, 2), (3,−6)}, and for
(s0, t0) ∈ G one has V(G1(x1, s0, t0), G2(x2, s0, t0), G3(x3, s0, t0)) = ∅. So P(s, t) is
normal.
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[8] Pérez-Dı́az S., Sendra J.R. (2004). Computation of the Degree of Rational Sur-
face Parametrizations. Journal of Pure and Applied Algebra. Vol. 193/1-3. pp.
99-121.
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