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Universidad de Alcalá
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Abstract

ε–points were introduced by the authors (see [26], [27], [28]) as a generalization
of the notion of approximate root of a univariate polynomial. The notion of ε–
point of an algebraic hypersurface is quite intuitive. It essentially consists in a
point such that when substituted in the implicit equation of the hypersurface
gives values of small module. Intuition says that an ε-point of a hypersurface is a
point close to it. In this paper, we formally analyze this assertion giving bounds
of the distance of the ε-point to the hypersurface. For this purpose, we introduce
the notions of height, depth and weight of an ε-point. The height and the depth
control when the distance bounds are valid, while the weight is involved in the
bounds.

1 Introduction

From the early beginnings of computer algebra, the achievements in symbolic com-
putation have been related to many mathematical disciplines like linear algebra (e.g.
homomorphic methods, fraction free techniques, etc), non-linear algebra (e.g. resul-
tants, gcd, polynomial factorizations, Gröbner bases, etc), analysis (e.g. integration,

∗Authors partially supported by the Spanish “ Ministerio de Educación y Ciencia” under the
Project MTM2005-08690-C02-01 and by the “Dirección General de Universidades de la Consejeŕıa de
Educación de la CAM y la Universidad de Alcalá” under the project CAM-UAH2005/053.
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computing with transcendental functions, solving differential equations, etc), algebraic
geometry (e.g. singularities computation, implicitization and parametrization tech-
niques, etc), etc.

In consequence of this development, symbolic algorithms have been used in some
applications like, for instance in computer aided geometric design (see [19], [20]), pro-
viding exact answers when dealing with algorithmic questions on mathematical entities
exactly given. This type of contributions have been, and are, important since they of-
fer effective algorithmic solutions to applied problem, and indeed investigations in this
direction constitute an active research branch of symbolic computation.

Nevertheless, in many practical applications, these symbolic approaches tend to be
insufficient, since in practice most of data objects are given or become approximate.
This fact implies that intrinsic mathematical properties of the original object may fail.
This phenomenon has motivated an increasing interest of the research community,
working on computational algebra and computational algebraic geometry, for the de-
velopment of approximate algorithms; that is, algorithms that deal symbolically with
mathematical inputs, that have suffered a modification. For instance, let us assume
that we are dealing with an applied problem where one needs to factorize a polynomial,
and in fact, because of the theory behind the experiment or the application, one knows
that the output polynomial must be reducible. Now, say that because of errors in the
measures, the data is perturbed and instead of getting the polynomial f := x2 − y2,
which factors as (x−y)(x+y), one gets f := 1.00001x2+0.00002xy−1.00001y2+0.00001
that is irreducible. Every symbolic factorization algorithm will answer that f is irre-
ducible, however f can be expressed as

f = (1.00001x− y)(x + 1.00001y) + 0.00001,

which is “almost” reducible. An approximate factorization algorithm (see e.g. [7])
may recognize the above decomposition, and outputs that f factors approximately as
(1.00001x− y)(x + 1.00001y).

In algebra, approximate algorithms have been developed for computing polynomial
greatest common divisors (see e.g. [6], [11], [25]), for finding zeros of multivariate
systems (see e.g. [6], [12], [14]), for factoring polynomials (see e.g. [7], [16], [24], [29]),
for the computation of Gröbner basis (see e.g. [23], [31] ), etc. In algebraic geometry,
approximate algorithms for computing singularities can be found in [2], [3], [9]; for
implicitizating rational parametrizations in [8], [10]; for implicitization methods in [4],
[15], [18], [26], [27], etc.

In this field an important, and usually hard, step is the error analysis of the al-
gorithms. This analysis mostly consists in estimating how “close” the input and the
output of the algorithm are. If one is working from an algebraic point of view, for in-
stance with polynomial factorizations, this question may be approached by measuring
relative errors of polynomials. However, when the objects are studied from the geo-
metric point of view, the Euclidean metric has to be taken into account, for instance,
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by requiring that each geometric entity lies in the offset region of the other at some
small distance (see Section 5 for further details).

A technique to guarantee that an algebraic hypersurface (in practice, an algebraic
curve or surface) is within the offset region of another, is the use of ε–points (see De-
finition 1), and more precisely, metric properties of this type of points. ε–points were
introduced by the authors (see [26], [27]) as a generalization of the notion of approxi-
mate root of a univariate polynomial. The notion of ε–point of an algebraic hypersur-
face is quite intuitive. It essentially consists in a point such that when substituted in
the implicit equation of the hypersurface gives values of small module. This type of
points play an important role in some algorithmic processes in algebraic geometry as
the approximate parametrization (see [26], [27]).

Theoretical properties and algorithmic questions of ε–points have been studied by
several authors for the univariate case. For instance, bound analysis of roots of univari-
ate polynomials can be found in [5], [22], [24], formulae for separating small roots of
univariate polynomials are given in [30], the problem of constructing univariate polyno-
mials with exact roots at some specific ε–roots (see Section 2 for the notion of ε–root)
is analyzed in [21], condition numbers of ε–roots are studied in [32], etc.

Intuition says that an ε-point of a hypersurface is a point close to it. To state
formally this assertion, one need to estimate the distance of an ε-point to the hyper-
surface, for instance by giving bounds. In [28] bounds for the case of plane curves are
provided. In this paper, beside the obvious advances from curves to hypersurfaces, we
improve the bounds given in [28]. The particularization to curves of the bounds given
here are sharper than those in [28], and describes better the phenomenon showing how
the multiplicity is involved in the number of points being close to the ε-singularity. The
main ideas allowing us to improve and to extend the bounds in [28] to hypersurfaces
are the notions of height, depth and (local and global) weight of an ε-point.

The paper is structured as follows. In Section 2, we introduce the basic notions of
the paper. Section 3 is devoted to the study of distance properties between ε–roots
and exact roots of univariate polynomials over C. Section 4 focuses on the general case
of hypersurfaces. In this study we distinguish the cases of ε-singularities and simple
ε-points. In addition in Sections 4 a joint experimental analysis, of the bounds given in
Sections 3 and 4, is included. In Section 5 we show the connection of the problem with
the use of offsets to error analysis of approximate algorithms in algebraic geometry. We
finish with a section on conclusions and open questions. We also include an appendix
with the input polynomials used in the experimental analysis presented in Section 4.

Notation: Throughout this paper, we use the notation x = (x1, . . . , xn). We fix a
tolerance 0 < ε < 1, and for polynomials in C[x] we use the ∞–norm;

‖ ∑

i1,...,in∈I

ci1,...,inxi1
1 · · · xin

n ‖ = max{|ci1,...,in|; i1, . . . , in ∈ I}.

We also use the Euclidean norm ‖ · ‖2 for points in the usual unitary space Cn. In
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addition, we denote the partial derivatives of p(x) ∈ C[x] as:

p
−→v (x) :=

∂i1+···+inp

∂i1x1 · · · ∂inxn

(x)

with −→v = (i1, . . . , in) ∈ Nn. Note that, if
−→
0 denotes the zero vector, then p

−→
0 (x) =

p(x). Moreover, note that, if −→ei is the i-th canonical vector in Cn and p(x) ∈ C[x], then

pr·−→ei (x) := ∂rp
∂rxi

(x). Finally, for −→v = (i1, . . . , in) ∈ Nn we write |−→v | = i1 + · · ·+ in.

2 ε–Points on Hypersurfaces

In this section, we introduce the basic notions of the paper; namely, the concepts of ε-
point, multiplicity, height and depth of an ε-point, and proper degree of a hypersurface.
In addition, we also introduce the notion of weight.

We have already seen the intuitive meaning of ε–point of an algebraic hypersurface.
The following definition states formally the concept.

Definition 1 We say that P ? ∈ Cn is an ε–(affine) point of an algebraic hypersurface
V, defined over C by a polynomial f ∈ C[x], if it holds that

|f(P ?)|
‖f‖ < ε.

Note that in Definition 1, in order to control that the implicit equation is unique
up to multiplication by non-zero constants, relative errors are taken. The next step,
in this theoretical development, is the introduction of the notion of multiplicity of an
ε-point. In (exact) algebraic geometry, the notion of multiplicity is usually introduced
by considering the first order of derivation where the derivative does not vanish at the
point. Therefore, it seems reasonable to define the multiplicity of an ε-point as the first
order of derivation where the module of the evaluation of the derivative at the point,
divided by the norm of the implicit equation, is greater or equal to ε. Nevertheless, if
the notion of multiplicity is defined as above, it may happen that the order of derivation
does not exist, and hence the multiplicity might not be well defined. For instance, let
0 < ε < 1, and let L be the line of equation f = ε

2
x + ε

2
y− 1. Now, P ? = (0, 2/ε) is an

exact simple point of L, and therefore it is an ε-point of L. However, for every −→v ∈ N2

one has that
|f−→v (P ?)|
‖f‖ < ε.

This phenomenon does not occur in (exact) algebraic geometry, because the total
degree of the defining polynomial bounds the multiplicity of every point. However,
when working with ε-points, it may happen that all the coefficients of the homogeneous

4



form, of maximum degree, of the defining polynomial are smaller than the tolerance
(see example above), and hence they are essentially considered as zero. In order to
avoid this situation, we introduce the notion of proper degree.

Definition 2 We say that a polynomial f ∈ C[x] has proper degree d if the total degree
of f is d, and there exists −→v = (i1, . . . , in) ∈ Nn, with i1 + · · ·+ in = d, such that

∣∣∣f
−→v ∣∣∣
‖f‖ > ε.

We say that an algebraic hypersurface has proper degree d if its defining polynomial has
proper degree d.

We observe that, if f(x) has proper degree d and fd(x) is its homogeneous form of
degree d, then d! ‖fd‖ > ε · ‖f‖. Therefore, the proper degree does not depend on the
Taylor representation of f(x).

In the sequel, we always assume that the polynomials have proper degree. More-
over, we assume that V is a hypersurface over C of proper degree d > 0, defined by
f ∈ C[x]. In this situation, we are ready to introduce the notion of multiplicity of an
ε-point.

Definition 3 Let P ? ∈ Cn be an ε–point of V. Then, we define the multiplicity of P ?

as the smallest natural number r ∈ N satisfying that

1. for every −→v ∈ Nn, such that 0 ≤ |−→v | ≤ r − 1, it holds that |f
−→v (P ?)|
‖f‖ < ε.

2. there exists −→v ∈ Nn, with |−→v | = r, such that |f
−→v (P ?)|
‖f‖ ≥ ε.

If r = 1 we say that P ? is an ε–(affine) simple point of V. Otherwise, we say that P ? is
an ε–(affine) singularity of multiplicity r of V.

Remark 1 Note that the multiplicity of an ε-point is well defined, and bounded by the
proper degree.

When dealing with multivariate polynomials, we will use a particular case of ε–
singularities, that are defined as follows:

Definition 4 Let P ? ∈ Cn be an ε–singularity of multiplicity r of V. We say that P ?

is a k-pure ε–singularity of multiplicity r if

∣∣∣f r·−→ek (P ?)
∣∣∣

‖f‖ ≥ ε.

Remark 2 Note that every ε-simple point is pure.
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In Definition 3, the k-order partial derivatives, with k < r, are required to be
smaller than ε ‖f‖. The closeness of these values to zero plays an important role in the
metric analysis. This fact motivates the next two definitions.

Definition 5 Let P ? ∈ Cn be an ε-point of V of multiplicity r, and let DP ? be the set
of all partial derivatives of f , of order strictly smaller than r, non-vanishing at P ?.
Then, we define the depth of P ? as

depth(P ?) =





∞ if DP ? = ∅

min

{
logε

( |g(P ?)|
‖f‖

) ∣∣∣∣∣ g ∈ DP ?

}
if DP ? 6= ∅

Remark 3 We observe that:

(i) If P ? ∈ Cn is an ε-point of multiplicity r of V, from Definition 5, one has that

depth(P ?) ≤ logε

( |g(P ?)|
‖f‖

)

for every g in DP ?. Thus, since 0 < ε < 1, one gets that logε(x) is a decreasing
function and then,

|g(P ?)|
‖f‖ ≤ εdepth(P ?).

In addition, there exists h ∈ DP ? such that

|h(P ?)|
‖f‖ = εdepth(P ?).

Therefore, for every g ∈ DP ?, one has that

depth(P ?) ≥ min

{
logε

( |g(P ?)|
‖f‖

)}
> min{logε(ε)} > 1.

Thus, εdepth(P ?) < ε.

(ii) P ? is an exact singularity of multiplicity r of V iff depth(P ?) = ∞. Moreover, the
depth measures how close the ε–point of multiplicity r is to be an exact singularity
of multiplicity r.

Definition 6 Let P ? ∈ Cn be an ε-point of V of multiplicity r, and let DP ?,r be the set
of all r-order partial derivatives of f which value at P ? is greater or equal to ε · ‖f‖.
Then, we define the height of P ? as

height(P ?) = max

{
logε

( |g(P ?)|
‖f‖

) ∣∣∣∣∣ g ∈ DP ?,r

}
.
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Remark 4 We observe that

(i) If P ? ∈ Cn is an ε-point of multiplicity r of V, there exists −→v ∈ Nn, with |−→v | = r,

such that f
−→v ∈ DP ?,r. Hence

height(P ?) ≥ logε




∣∣∣f
−→v (P ?)

∣∣∣
‖f‖


 ,

which implies that ∣∣∣f
−→v (P ?)

∣∣∣
‖f‖ ≥ εheight(P ?).

In addition, for every g ∈ DP ?, one has that

height(P ?) = max

{
logε

( |g(P ?)|
‖f‖

) ∣∣∣∣∣ g ∈ DP ?,r

}
≤ max{logε(ε)} = 1.

(ii) ε–points on algebraic hypersurfaces, as well as their multiplicity, depth and height,
can be computed applying similar techniques to those used on [26] and [27], for
the case of algebraic curves and surfaces, respectively.

Finally, we introduce the notions of local and global weight, which apply to pure
ε-singularities. The notion is not so intuitive as the concepts of height and depth, but
it can be seen as a mean of the ratio of the pure partial derivatives at the ε-point till
the order equals the multiplicity. The underline motivation of this concept follows from
the algebraic manipulations required in the proofs of Theorem 1 (see Section 3) and
Theorem 2 (see Section 4), where the distance bounds are derived.

Definition 7 Let P ? ∈ Cn be a k–pure ε–singularity of V of multiplicity r. Then, we
define the local weight of P ?, and we represent it as weightL(P ?), as

weightL(P ?) = min
j=1,...,r

{Mj(P
?)},

where for j = 1, . . . , r,




Mj(P
?) = maxi=0,...,j−1





∣∣∣∣∣∣
j! · f i·−→ek (P ?)

i! · f j·−→ek (P ?)

∣∣∣∣∣∣

1
j−i





if f j·−→ek (P ?) 6= 0

Mj(P
?) = ∞ if f j·−→ek (P ?) = 0.

We define the global weight of P ?, and we represent it as weightG(P ?) as

weightG(P ?) = Mr(P
?) = maxi=0,...,r−1





∣∣∣∣∣∣
r! · f i·−→ek (P ?)

i! · f r·−→ek (P ?)

∣∣∣∣∣∣

1
r−i





.
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Remark 5 If P ? ∈ Cn is an ε–simple point of V, taking into account Remark 2, it
holds weightG(P ?) = weightL(P ?) = M1(P

?).

The Univariate Case

We finish this section, showing how the preceding notions can be straightforwardly
adapted to the univariate case, in terms of their roots. More precisely:

(i) We say that a? ∈ C is an ε–root of a polynomial h(x) ∈ C[x] if |h(a?)|
‖h‖ < ε.

(ii) We say that h(x) = adx
d + · · · + a0 ∈ C[x], where ad 6= 0, has proper degree d if

|ad|d! > ε · ‖h‖.
Now, let h(x) ∈ C[x] have proper degree, and let a? ∈ C be an ε-root of h(x). Then:

(iii) We define the multiplicity a? as the smallest r ∈ N such that
∣∣∣h(i)(a?)

∣∣∣
‖h‖ < ε for 0 ≤ i ≤ r − 1, and

∣∣∣h(r)(a?)
∣∣∣

‖h‖ ≥ ε.

If r = 1 we say that a? is an ε–simple root of h(x); otherwise, we say that a? is
an ε–multiple root of h(x).

(iv) Note that in the univariate case, every ε–root is pure in the sense of Definition 4.

(v) Let a? have multiplicity r, and let Da? be the set of all derivatives of h, of order
strictly smaller than r, non-vanishing at a?. Then, we define the depth of a? as

depth(a?) =





∞ if Da? = ∅

min

{
logε

( |g(a?)|
‖h‖

) ∣∣∣∣∣ g ∈ Da?

}
if Da? 6= ∅

.

(vi) Let a? have multiplicity r. We define the height of a? as

height(a?) = logε




∣∣∣h(r)(a?)
∣∣∣

‖h‖


 .

(vii) Let a? have multiplicity r. We define the local weight of a? as weightL(a?) =
min

j=1,...,r
{Mj(a

?)}, where for j = 1, . . . , r,





Mj(a
?) = maxi=0,...,j−1





∣∣∣∣∣
j! · h(i)(a?)

i! · h(j)(a?)

∣∣∣∣∣

1
j−i



 if h(j)(a?) 6= 0

Mj(a
?) = ∞ if h(j)(a?) = 0.
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We define the global weight of a? as

weightG(a?) = Mr(a
?) = maxi=0,...,r−1





∣∣∣∣∣
r! · h(i)(a?)

i! · h(r)(a?)

∣∣∣∣∣

1
r−i



.

(viii) Note that if a? is simple, then weightG(a?) = weightL(a?) = M1(a
?).

3 Metric Properties of ε–Points of Univariate Poly-

nomials

Intuition says that an ε–root might be close to a root of a polynomial. In this section
we analyze this question, and we see that this assertion holds. Afterwards we extend
the results to the general case. We start recalling two lemmas that can be found in
[30]. For this purpose, we first introduce the following two rational functions that play
an important role in this development:

Rin(x) = 2x

(
1

1 + 3x
+

16x

(1 + 3x)3

)
, Rout(x) =

1

2
− x(1− 9x)

2(1 + 3x)
− 32x2

(1 + 3x)3
.

We observe that for x ∈ [0, 1/9], Rin(x) and Rout(x) are increasing and decreasing
functions, respectively (see Fig. 1). We also note that in this interval, it holds that

1/9

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

y

0.2 0.4 0.6 0.8
x

1/9

–6

–5

–4

–3

–2

–1

0

y

x

Figure 1: Left: The rational function Rin(x). Right: The rational function Rout(x).

Rin(x) ≤ 6x, and Rout(x) ≥ 1
2
− x

2
− 32x2.

The next two lemmas appear in [30].
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Lemma 1 Let

P (x) = cnxn + · · ·+ cm+1x
m+1 + xm + `m−1x

m−1 + · · ·+ `0 ∈ C[x],

where n ≥ m. Let

max{|cn|, . . . , |cm+1|} ≤ 1, and µ = max{|`m−1|, |`m−2|1/2, . . . , |`0|1/m} < 1/9.

Then, P (x) has m roots inside a disc Din of radius Rin, and n−m roots outside a disc
Dout of radius Rout, both located at the origin, where Rin < Rin(µ), Rout > Rout(µ).

Lemma 2 Let

P (x) = cnxn + · · ·+ cm+1x
m+1 + cmxm + `m−1x

m−1 + · · ·+ `0 ∈ C[x],

where n ≥ m. Let µ =
β

γ
< 1/9, where

β = max{|`m−1/cm|, |`m−2/cm|1/2, . . . , |`0/cm|1/m},
γ = max{|cm+1/cm|, |cm+2/cm|1/2, . . . , |cn/cm|1/(n−m)}.

Then, P (x) has m small roots inside a disc Din of radius Rin, and n−m roots outside a
disc Dout of radius Rout, both located at the origin, where Rin < Rin(µ), Rout > Rout(µ).

In the sequel, in order to apply Lemmas 1 and 2 to our analysis, whenever we
consider an ε-root a? of multiplicity r of a univariate polynomial h(x) ∈ C[x] of degree
d, we assume that ε is taken such that

εdepth(a?)−height(a?) <
1

9d · d!
.

Observe that this means that

maxi=0,...,r−1

{∣∣∣h(i)(a?)
∣∣∣
}

∣∣∣h(r)(a?)
∣∣∣

<
1

9d · d!
.

Remark 6 We observe that

1. Taking into account Remarks 3 and 4, one has that depth(a?)− height(a?) > 0.

2. εdepth(a?)−height(a?) decreases when the exponent increases. Moreover, if depth(a?)
increases, then the derivatives till order r−1, evaluated at a?, tend to zero, and if
height(a?) decreases, the r–order derivative, evaluated at a?, increases its distance
to zero.

In this situation, we are ready to start the analysis of distance properties of ε–roots.
In the following results we assume that h(x) ∈ C[x] has proper degree d > 0.
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Lemma 3 Let a? ∈ C be an ε-root of multiplicity r of h(x). It holds that

weightL(a?) ≤ weightG(a?) ≤
(
r! · εdepth(a?)−height(a?)

)1/r
<

1

9
.

Proof. First of all, note that weightL(a?) ≤ weightG(a?), and that (see Section 2):

|h(i)(a?)| ≤ εdepth(a?) · ‖h‖, for i = 0, . . . , r − 1, and |h(r)(a?)| = εheight(a?) · ‖h‖.

Therefore,

|r! · h(i)(a?)|
|i! · h(r)(a?)| ≤

r! · εdepth(a?) · ‖h‖
i! · εheight(a?) · ‖h‖ ≤ r! · εdepth(a?)−height(a?), i = 0, . . . , r − 1.

Moreover, since we have assumed that εdepth(a?)−height(a?) <
1

9d · d!
, we deduce that

r! · εdepth(a?)−height(a?) <
1

9d
< 1,

from where the results follows.

Remark 7 Taking into account Lemma 3 one has that

(i) Rin(weightL(a?)) ≤ Rin(weightG(a?)) ≤

Rin

((
r! · εdepth(a?)−height(a?)

)1/r
)
≤ 6

(
r! · εdepth(a?)−height(a?)

)1/r
.

(ii) Rout(weightL(a?)) ≥ Rout(weightG(a?)) ≥ Rout

((
r! · εdepth(a?)−height(a?)

) 1
r

)
≥

1−
(
r!εdepth(a?)−height(a?)

) 1
r

2
− 32

(
r! · εdepth(a?)−height(a?)

) 2
r .

In these conditions, and using the terminology introduced in the subsection on univari-
ate polynomials of Section 2, we present the following theorem, where distance bounds
for ε–roots are given.
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Theorem 1 Let a? ∈ C be an ε-root of multiplicity r of h(x), and let s = min{j ∈
{1, . . . , r} | weightL(a?) = Mj(a

?)} (see item (vii) in subsection on univariate polyno-
mials of Section 2 for the definition on Mj(a

?)). Then, it holds that:

1. There exist r roots a1, . . . , ar ∈ C of h(x) satisfying that:

|aj − a?| < Rin(weightG(a?)).

2. There exist d− r roots b1, . . . , bd−r ∈ C of h(x) satisfying that:

|bj − a?| > Rout(weightG(a?)).

3. There exist s roots a1, . . . , as ∈ C of h(x) satisfying that:

|aj − a?| < Rin(weightL(a?)) ≤ Rin(weightG(a?)).

4. There exist d− s roots b1, . . . , bd−s ∈ C of h(x) satisfying that:

|bj − a?| > Rout(weightL(a?)) ≥ Rout(weightG(a?)).

Proof. Let us prove Statements 1 and 2. For this purpose, let g(x) be the polynomial

g(x) = h(x + a?) =
d∑

i=0

h(i)(a?)

i!
xi =

d∑

i=r

h(i)(a?)

i!
xi +

r−1∑

i=0

hi)(a?)

i!
xi,

and let

q(x) =
d∑

i=r

h(i)(a?)

i!
xi, and δ =

h(r)(a?)

r!
.

Note that, since a? has multiplicity r then |δ| > ε‖h‖
r!

> 0. Now, we distinguish two
different cases depending on either ‖q‖ = |δ| or ‖q‖ 6= |δ|.

(a.) Let us assume that ‖q‖ = |δ|. Then, we consider the polynomial P (x) :=
g(x)

δ
,

and let us write it as

P (x) = cdx
d + · · ·+ cr+1x

r+1 + xr + `r−1x
r−1 + · · ·+ `0,

where

ci =
h(i)(a?)

i!δ
, i = r + 1, . . . , d, and `i =

h(i)(a?)

i!δ
, i = 0, . . . , r − 1.

Observe that r ≤ d, because the polynomial h(x) has proper degree d. In these
conditions, the quantity µ introduced in Lemma 1 is equal to weightG(a?), and by
Lemma 3 it holds that weightG(a?) < 1

9
. On the other hand, using that ‖q‖ = |δ|,

one also has that max{|cd|, . . . , |cr+1|} ≤ 1. Therefore, hypotheses in Lemma 1
are satisfied, and hence one gets that

12



(a.1.) there exist r roots x1
0, . . . , x

r
0 ∈ C of P (x) (and therefore of g(x)) such that

for j ∈ {1, . . . , r}, it holds that

|xj
0| < Rin(weightG(a?)).

(a.2.) there exist d− r roots y1
0, . . . , y

d−r
0 ∈ C of P (x) (and therefore of g(x)) such

that for j ∈ {1, . . . , d− r}, it holds that

|yj
0| > Rout(weightG(a?)).

(b.) Now, we assume that ||q|| 6= |δ|. In this case, we express the polynomial g(x) as

g(x) = cdx
d + · · ·+ cr+1x

r+1 + crx
r + `r−1x

r−1 + · · ·+ `0,

where ci = h(i)(a?)
i!

, i = r, . . . , d, and `i = h(i)(a?)
i!

, i = 0, . . . , r−1. Now, we compute
the quantity µ = β/γ of Lemma 2; i.e:

β = max{|`r−1/cr|, |`r−2/cr|1/2, . . . , |`0/cr|1/r},

and
γ = max{|cr+1/cr|, |cr+2/cr|1/2, . . . , |cd/cr|1/(d−r)}.

Observe that β = weightG(a?). Moreover, we note that since ||q|| 6= |δ| then there
exists j ∈ {r + 1, . . . , d} such that |cj| > |cr|; note that δ = |cr|. Therefore,

γ = max{|cr+1/cr|, |cr+2/cr|1/2, . . . , |cd/cr|1/(d−r)} > 1.

Hence, we deduce that µ = β/γ ≤ β = weightG(a?). Thus, by Lemma 3, it holds
that µ < 1/9, and therefore Lemma 2 can be applied. In this situation, we get
that

(b.1.) there exist r roots x1
0, . . . , x

r
0 ∈ C of g(x) such that for j ∈ {1, . . . , r}, it

holds that
|xj

0| < Rin(µ) ≤ Rin(weightG(a?)).

(b.2.) there exist d−r roots y1
0, . . . , y

d−r
0 ∈ C of g(x) such that for j ∈ {1, . . . , d−r},

it holds that
|yj

0| > Rout(µ) ≥ Rout(weightG(a?)).

Finally since, in cases (a.1) and (b.1) xj
0 ∈ C are roots of g(x) satisfying that

|xj
0| < Rin(weightG(a?)), j = 1, . . . , r,

one has that aj = xj
0 + a? ∈ C for j = 1, . . . , r, are r roots of h(x), and

|aj − a?| = |xj
0| < Rin(weightG(a?)), j = 1, . . . , r.

13



Similarly since, in cases (a.2) and (b.2) yj
0 ∈ C are roots of g(x) satisfying that

|yj
0| > Rout(weightG(a?)), j = 1, . . . , d− r,

then bj = yj
0 + a? ∈ C for j = 1, . . . , d− r, are d− r roots of h(x), and

|bj − a?| = |yj
0| > Rout(weightG(a?)), j = 1, . . . , d− r.

Similarly, taking into account Lemma 3 and Remark 7, one gets statements 3 and 4.

Example 1 We take ε as ε = 10−7, and we consider the polynomial

h(x) = x5 + 0.5x4 + x2 + 10−7x + 10−21.

Observe that a? = 0 is an ε-root of h(x) of multiplicity r = 2. Moreover,

depth(a?) = logε (ε) = 1, height(a?) = logε(2) = −0.043,

and it holds that

εdepth(a?)−height(a?) = ε <
1

95 · 5!
.

In addition, since weightL(a?) = min
j=1,2

{Mj(a
?)}, where

M1(a
?) =

∣∣∣∣∣
h(a?)

h(1)(a?)

∣∣∣∣∣ , M2(a
?) = maxi=0,1





∣∣∣∣∣
2! · h(i)(a?)

i! · h(2)(a?)

∣∣∣∣∣

1
2−i



,

we deduce that weightL(a?) = M1(a
?) = ε2 = 10−14, and therefore s = 1 (see Theorem

1). Thus, by Theorem 1 (3), one has that there exists a root of h(x), say a ∈ C, such
that

|a| = |a− a?| < Rin(weightL(a?)) = 2ε2 = 2 · 10−14.

In fact, using numerical methods, one sees that a = −0.10000001 · 10−13. On the other
hand, we also have that

weightG(a?) = M2(a
?) = ε = 10−7.

Thus, applying Theorem 1 (1), there exist two roots a1, a2 ∈ C of h(x), satisfying

|ai| = |ai − a?| < Rin(weightG(a?)) = 2ε = 2 · 10−7.

In fact, using numerical methods (see e.g. [14], [24]), one sees that a1 = −0.10000001 ·
10−13, a2 = −0.9999999 · 10−7.

From Theorem 1, and taking into account that for ε–simple roots it holds that
weightL(a?) = weightG(a?), we deduce the following corollary.
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Corollary 1 Let a? ∈ C be an ε-root of multiplicity r of h(x). Then, it holds that

1. There exists a root a ∈ C of h(x) such that:

|a− a?| < Rin(weightL(a?)) = Rin(weightG(a?)).

2. There exist d− 1 roots b1, . . . , bd−1 ∈ C of h(x) such that for j ∈ {1, . . . , d− 1} it
holds that:

|bj − a?| > Rin(weightL(a?)) = Rin(weightG(a?)).

Example 2 Let ε = 10−7. We consider the polynomial

h(x) = x5 + 0.5x4 + 0.25x2 + x + 10−7.

Observe that a? = 0 is an ε-simple root. Moreover,

depth(a?) = logε (ε) = 1, height(a?) = logε(1),

and εdepth(a?)−height(a?) = ε ≤ 1
95·5!

. In these conditions, we have that

weightL(a?) = weightG(a?) = M1(a
?) =

∣∣∣∣∣
h(a?)

h(1)(a?)

∣∣∣∣∣ = ε = 10−7.

Thus, applying Corollary 1, one has that there exists a root of h(x) such that

|a| = |a− a?| < Rin(ε) = 2.0000026 · 10−7.

In fact, using numerical methods one obtains that a = −0.1000000025 · 10−6.

4 Metric Properties of ε–Points on Hypersurfaces

In Section 3, we have seen that ε–roots of univariate polynomials are complex numbers
close to the roots of the given polynomial. In this section, we focus on the general
case of arbitrary hypersurfaces. In order to approach the general situation, we will
reduce it to the univariate case. More precisely, when deriving distance bounds for
ε–singularities, we will intersect the hypersurface with a line passing through the ε–
singularity. Moreover, these lines will be taken parallel to one of the axes in Cn. This
is the reason why pure ε–singularities play an important role.

In our analysis Lemmas 1 and 2 will be applied. For this purpose, similarly as we
did for the univariate case, in the sequel, whenever we consider an ε-singularity P ? of
a polynomial f(x) of degree d, we assume that ε is taken such that

εdepth(P ?)−height(P ?) <
1

9d · d!
.
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Note that, by Remarks 3 and 4, one deduces that depth(P ?) − height(P ?) > 0. Also,
throughout this section, we assume that V is an algebraic hypersurface of proper
degree d > 0 over C defined by f(x) ∈ C[x].

In this situation, we analyze separately the case of pure ε-singularities, non-pure
ε-singularities, and the case of ε-simple points.

Case of Pure ε–Singularities

We start with the following lemma that generalizes Lemma 3.

Lemma 4 Let P ? ∈ Cn be a k–pure ε–singularity of V of multiplicity r. Then it holds
that

weightL(P ?) ≤ weightG(P ?) ≤
(
r! · εdepth(P ?)−height(P ?)

)1/r
<

1

9
.

Proof. Let α := depth(P ?), and β := height(P ?). Since weightL(P ?) ≤ weightG(P ?),
we proceed to prove the two last inequalities. For this purpose, we assume w.l.o.g that

|f r·−→e1 (P ?)| ≥ ε·‖f(x)‖. Now, by the results presented in Section 2, for i ∈ {0, . . . , r−1}
it holds that |f i·−→e1 (P ?)| ≤ εα · ‖f‖, and that |f r·−→e1 (P ?)| ≥ εβ · ‖f‖. Therefore,

|r! · f i·−→e1 (P ?)|
|i! · f r·−→e1 (P ?)|

≤ r! · εα · ‖f‖
i! · εβ · ‖f‖ ≤ r! · εα−β, i = 0, . . . , r − 1.

Moreover, since εα−β < 1/(9d · d!), we deduce that r! · εα−β < 1/9d < 1, which implies
that weightG(P ?) ≤ (r! · εα−β)1/r. In addition note that, since εα−β < 1/(9d · d!), one
gets that

weightG(P ?) ≤
(
r! · εα−β

)1/r
<

1

9d/r
≤ 1

9
.

Remark 8 Note that by Lemma 4, one has that

(i) Rin(weightL(P ?)) ≤ Rin(weightG(P ?)) ≤ Rin((r! · εdepth(P ?)−height(P ?))1/r) ≤

6(r! · εdepth(P ?)−height(P ?))1/r.

(ii) Rout(weightL(P ?)) ≥ Rout(weightG(P ?)) ≥ Rout

((
r! · εdepth(P ?)−height(P ?)

) 1
r

)
≥

1−(r!εdepth(P?)−height(P?))
1
r

2
− 32

(
r!εdepth(P ?)−height(P ?)

) 2
r .

The following theorem generalizes Theorem 1 for the case of pure ε–singularities.

Theorem 2 Let P ? ∈ Cn be a pure ε–singularity of V of multiplicity r, and let (see
Definition 7 for the notion of Mj(P

?))

s = min{j ∈ {1, . . . , r} | weightL(P ?) = Mj(P
?)}.

Then, it holds that
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1. There exist at least r points P1, . . . , Pr ∈ V such that, for j = 1, . . . , r,

‖P ? − Pj‖2 < Rin(weightG(P ?)).

2. There exist at least d− r points Q1, . . . , Qd−r ∈ V such that, for j = 1, . . . , d− r,

‖P ? −Qj‖2 > Rout(weightG(P ?)).

3. There exists at least s points P1, . . . , Ps ∈ V such that, for j = 1, . . . , s,

‖P ? − Pj‖2 < Rin(weightL(P ?)) ≤ Rin(weightG(P ?)).

4. There exists at least d−s points Q1, . . . , Qd−s ∈ V such that, for j = 1, . . . , d−s,

‖P ? −Qj‖2 > Rout(weightL(P ?)) ≥ Rout(weightG(P ?)).

Proof. First, let us prove Statements (1) and (2). For this purpose, we assume w.l.o.g

that |f r·−→e1 (P ?)| ≥ ε · ‖f(x)‖. In these conditions, we express the polynomial f(x) as

f(x) =
d∑

i1+···+in=0

f
−→v (P ?)

i1! · · · in!
(x1 − a?

1)
i1 · · · (xn − a?

n)in ,

where −→v = (i1, . . . , in) ∈ Nn, and P ? = (a?
1, . . . , a

?
n). Furthermore, let g(t) be the

univariate polynomial

g(t) = f(t + a?
1, a

?
2, . . . , a

?
n) =

d∑

i=0

f i·−→e1 (P ?)

i!
ti ∈ C[t],

and let

q(t) =
d∑

i=r

f i·−→e1 (P ?)

i!
ti and δ =

f r·−→e1 (P ?)

r!
.

Note that, |δ| > ε‖f‖
r!

> 0. Then, we distinguish two different cases depending on either
‖q‖ = |δ| or ‖q‖ 6= |δ|.
(a.) Let us assume that ‖q‖ = |δ|. Then, we consider the polynomial P (t) := 1

δ
g(t),

and let us write it as (note that r ≤ d; see Remark 1)

P (t) = cdt
d + · · ·+ cr+1t

r+1 + tr + `r−1t
r−1 + · · ·+ `0,

where

ci =
f i·−→e1 (P ?)

i!δ
, i = r + 1, . . . , d, and `i =

f i·−→e1 (P ?)

i!δ
, i = 0, . . . , r − 1.

In these conditions, the quantity µ introduced in Lemma 1 is equal to
weightG(P ?), and by Lemma 4 it holds that weightG(P ?) < 1

9
. On the other

hand, using that ‖q‖ = |δ|, one also has that max{|cd|, . . . , |cr+1|} ≤ 1. There-
fore, by Lemma 1, one gets that:

17



(a.1.) there exist r roots a1
1, . . . , a

r
1 ∈ C of P (t) (and therefore of g(t)) such that

for j ∈ {1, . . . , r}, it holds that |aj
1| < Rin(weightG(P ?)).

(a.2.) there exist d − r roots b1
1, . . . , b

d−r
1 ∈ C of P (t) (and therefore of g(t)) such

that for j ∈ {1, . . . , d− r}, it holds that |bj
1| > Rout(weightG(P ?)).

(b.) Now, we assume that ||q|| 6= |δ|. In this case, we express the polynomial g(t) as

g(t) = cdt
d + · · ·+ cr+1t

r+1 + crt
r + `r−1t

r−1 + · · ·+ `0,

where

ci =
f i·−→e1 (P ?)

i!
, i = r, . . . , d, and `i =

f i·−→e1 (P ?)

i!
, i = 0, . . . , r − 1.

We compute the quantity µ =
β

γ
of Lemma 2; i.e:

β = max{|`r−1/cr|, |`r−2/cr|1/2, . . . , |`0/cr|1/r},
γ = max{|cr+1/cr|, |cr+2/cr|1/2, . . . , |cd/cr|1/(d−r)}.

Observe that β = weightG(P ?). Moreover, since ‖q‖ 6= |δ|, there exists j ∈
{r + 1, . . . , d} such that |cj| > |cr|; note that δ = |cr|. Therefore, γ > 1. Hence,
we deduce that µ = β

γ
≤ β = weightG(P ?). Thus, by Lemma 3, it holds that

µ < 1/9, and therefore Lemma 2 can be applied. Furthermore, one gets that

(b.1.) there exist r roots a1
1, . . . , a

r
1 ∈ C of g(t) such that, for j ∈ {1, . . . , r}, it

holds that |aj
1| < Rin(µ) ≤ Rin(weightG(P ?)).

(b.2.) there exist d−r roots b1
1, . . . , b

d−r
1 ∈ C of g(t) such that, for j ∈ {1, . . . , d−r},

it holds that |bj
1| > Rout(µ) ≥ Rout(weightG(P ?)).

Finally, since in cases (a.1) and (b.1), aj
1 ∈ C are roots of g(t) such that

|aj
1| < Rin(weightG(P ?)), j = 1, . . . , r,

one has that Pj = (aj
1 + a?

1, a
?
2, . . . , a

?
n) ∈ V , and

‖P ? − Pj‖2 = |aj
1| < Rin(weightG(P ?)), j = 1, . . . , r.

Similarly, since in cases (a.2) and (b.2), bj
1 ∈ C are roots of g(t) such that

|bj
1| > Rout(weightG(P ?)), j = 1, . . . , d− r,

then Qj = (bj
1 + a?

1, a
?
2, . . . , a

?
n) ∈ V , and

‖P ? −Qj‖2 = |bj
1| > Rout(weightG(P ?)), j = 1, . . . , d− r.
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Figure 2: Left: The curve V and the ε–point P ? (red color); Right: The ε–point P ?

(red color), and the exact points P1 (blue color) and P2 (black color) on the curve V

In addition, taking into account that weightG(P ?) < 1/9 and Lemma 4, one gets the
statements (1) and (2). Similarly, taking into account Lemma 4 and Remark 8, one
gets Statements (3) and (4).

In the following, we illustrate Theorem 2 by means of two examples. The first one
deals with a plane curve, and the second with a surface.

Example 3 We consider the curve V defined by the polynomial

f(x1, x2) = 5x4
1 − x4

2 + 5x3
2x1 − x2

2x1 − 5x2
2 − 0.00001 + 0.000045x2 ∈ C[x1, x2],

and let ε = 0.0001. Note that P ? = (0, 0) is an ε–singularity of multiplicity 2 of V
(see Fig. 2, Left). The actual computation of this type of points can be approach, for
instance applying the techniques presented in Section 2 in [26]. Moreover, it holds that

P ? is a 2–pure singularity since |f 2·−→e2 (P ?)| ≥ ε · ‖f(x)‖. In addition depth(P ?) =
1.261439373, height(P ?) = 0.07525749892. Thus

εdepth(P ?)−height(P ?) <
1

94 · 4!
.

Now, in order to apply Theorem 2, we compute

weightL(P ?) = weightG(P ?) = maxi=0,1





∣∣∣∣∣∣
2! · f i·−→e2 (P ?)

i! · f 2·−→e2 (P ?)

∣∣∣∣∣∣

1
2−i





= 0.001414213562.

Thus, by statement (1), one has that there exist at least two exact points P1, P2 ∈ C2

of V such that for j = 1, 2, it holds that

‖P ? − Pj‖2 < Rin(weightG(P ?)) = 0.002879670098.
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Figure 3: Left: The surface V and the ε–point P ? (red color); Right: The ε–point P ?

(red color), and the exact points P1 and P2 (blue color) on the surface V

In fact, applying numerical techniques (see e.g. [6], [13], [14], [17], [19], [29]), one
may approximate points in the intersection of V, and the axes x2 = 0 (see Fig. 2,
right.)

Example 4 We consider the surface V defined by the polynomial

f(x1, x2, x3) = x4
1 + 2x2

1x
2
2 + x4

2 + 9x1x
2
3x

2
2 − 3x3

1x
2
3+

0.0001x1 + 0.0001x2 + 0.0001x2
1 + 0.0001x2

3 − 10−7 ∈ C[x1, x2, x3],

and let ε = 0.0001. Note that P ? = (0, 0, 0) is an ε–singularity of multiplicity 4 of V
(see Fig. 3, left). The actual computation of this type of points can be approach, for
instance applying the techniques presented in Section 3 in [27]. Moreover, it holds that

P ? is a 2–pure singularity since |f 4·−→e2 (P ?)| ≥ ε · ‖f(x)‖. In addition, depth(P ?) =
1.744954692, height(P ?) = 0.01278813061. Thus

εdepth(P ?)−height(P ?) <
1

95 · 5!
.

Now, in order to apply Theorem 2,

weightL(P ?) = M1(P
?) =

∣∣∣∣∣
f(P ?)

f
−→e2 (P ?)

∣∣∣∣∣ = 0.001,

and

weightG(P ?) = M4(P
?) = maxi=0,1,2,3





∣∣∣∣∣∣
4! · f i·−→e2 (P ?)

i! · f 4i·−→e2 (P ?)

∣∣∣∣∣∣

1
2−i





= 0.0177827941.
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Hence, by Statement (1), one has that there exist at least 4 exact points P1, P2, P3, P4 ∈
C3 of V such that for j = 1, 2, 3, 4, it holds that

‖P ? − Pj‖2 < Rin(weightG(P ?)) = 0.04242264150.

Now, applying Statement (3), one has that there exist at least one exact point P ∈ C3

of V such that

‖P ? − P‖2 < Rin(weightL(P ?)) = 0.002025731666.

In fact, one may approximate points in the intersection of V, and the axe x1 = x3 = 0
(see Fig. 3, right.)

Case of Non-Pure ε-Singularities

Let P ? ∈ Cn be a non-pure ε–singularity of V of multiplicity r. Then, the strategy
consists in performing a linear change of coordinates such that P ? is transformed into a
pure ε-singularity of the new hypersurface. For this purpose, we first apply a translation
mapping P ? into the origin, and afterwards we apply an isometry in the Euclidean space
Cn such that the origin is a pure ε–singularity. In this way, Euclidean distances are
preserved, and therefore bounds in the previous subsection are valid. However, we
recall that we work with two different norms, namely the Euclidean and the ∞–norm.
The Euclidean norm is used to measure distances between points, while the ∞–norm
is involved in the concept of ε-point. With the isometry performance, one controls
the Euclidean norm, however the ∞–norm may behave improperly under these affine
movements, and therefore it might happen that the new point is not anymore an ε-
singularity of the new hypersurface (see Example 5). In order to avoid this difficulty
we proceed as follows. Let T be the translation mapping P ? into the origin, and let
O be an isometry guaranteeing such that ‖g‖ ≥ ‖f‖, where g(x) ∈ C[x] is the defining
polynomial of the transformed hypersurface W of V by O ◦ T . Then, we get that

|g(0)| = |f(P ?)| ≤ ε‖f‖ ≤ ε‖g‖,

and therefore 0 is a pure ε–singularity of W . In order to choose the isometry satisfying
the above requirement, we take O generic. Note that the set of isometries satisfying the
above condition forms a semi-algebraic set in the variety of isometries. More precisely,
we identify set of isometries {A := (ai,j)1≤i,j≤n|A · AT = I} as the algebraic set Σ of
C2n defined by the equations

∑n
i=1 aj,iak,i = 0 for j 6= k, and

∑n
j=1 a2

1,j = 1. Now, let
g(x) = f(O(T (x))), where O is taken generic. Then, if b(a1,1, . . . , an,n) is a non-zero
coefficient of g(x), all isometries in Σ ∩ {A ∈ Σ/b(a1,1, . . . , an,n) ≥ ‖f‖} are valid in
our process.

Example 5 We consider the curve V defined by the polynomial

f(x1, x2) = −x5
1+x5

2−x3
2+x2

1x2+0.9x4
2+0.5x2

1x
2
2−x1x2+0.0001x1+0.00001x2−0.00099,
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Figure 4: Left: Curve V . Right: Curve W .

and let ε = 0.001. The point P ? = (0, 0) is a non–pure ε–singularity of multiplicity 2
of V (see Fig. 4, left). We apply to V a rotation of center P ?, and angle π/4. We get
the curve W defined by the polynomial (see Fig. 4, right)

g(x1, x2) = −1.414213562x2
1x2 − 3.535533905x3

1x
2
2 − 1.767766953x1x

4
2 − 0.00099 +

0.375x4
2 + 0.375x4

1 + 0.5x2
1 − 0.5x2

2 − x3
1x2 + 1.25x2

1x
2
2 − x1x

3
2 − 0.3535533905x5

1 +
0.00006363961029x1 + 0.00007778174591x2 + 1.414213562x1x

2
2.

It holds that P ? is 1–pure ε–singularity of multiplicity 2 of W. Note that ‖f‖ = 1, and
‖g‖ = 3.535533905. Therefore, we may apply Theorem 2 (Statement 3) to deduce that
there exist at least two points P1, P2 ∈ W such that ‖P ? − Pi‖2 < Rin(weightL(P ?)) =
0.1220206068. Hence, there exist at least two points Q1, Q2 ∈ V such that

‖P ? −Qi‖2 < 0.1220206068.

However, if we apply a rotation of center P ?, and angle 5π/9, we get the surface
W defined by the polynomial

g(x1, x2) = −0.9264698986x5
2−0.9261541212x5

1+0.1710100717x2
2+0.5027170459x2x

3
1+

0.9254165784x3
1 + 0.8368240892x2x

2
1 − 0.8066342291x1x

2
2 − 0.1631759112x3

2 +
0.95522409x4

1 − 0.171010072x2
1 + 0.587733334x2

1x
2
2 + 0.01553146731x4

2 +
0.181323241x3

2x1 + 0.9396926208x2x1 − 0.8211461571x2x
4
1 − 0.2372191128x2

2x
3
1 −

0.3387840032x3
2x

2
1 + 0.00009674429352x2 − 0.00002721289530x1 − 0.00099 +

0.8121918419x4
2x1.

Now, P ? is not an ε–point of W. Note that ‖f‖ = 1, ‖g‖ = 0.955224088, and

|g(P ?)| = |f(P ?)| = 0.00099 > ε · ‖g‖ = 0.000955224088.
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Case of ε–Simple Points

We start observing that ε–simple points are always pure (see Remark 2). In addi-
tion, by Remark 5, if P ? is an ε-simple point then weightL(P ?) = weightG(P ?). Thus,
from Theorem 2, we get the following corollary.

Corollary 2 Let P ? ∈ Cn be an ε–simple point of V. Then, it holds that

1. There exist at least one point P ∈ V such that:

‖P ? − P‖2 < Rin(weightL(P ?)) = Rin(weightG(P ?)).

2. There exist at least d− 1 points Q1, . . . , Qd−1 ∈ V such that:

‖P ? −Qj‖2 > Rout(weightL(P ?)) = Rout(weightG(P ?)).

Example 6 We consider the curve V defined by the polynomial

f(x1, x2) = 2.00009x3
1 − x2

2x1 + 2.000005x2
2 + 2.9999x2 − 200− 0.00001x2

1,

and let the tolerance ε = 0.0001. Note that P ? = (0, 9.27814782) is an ε–simple point
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–30 –20 –10 10 20 30
x

9.26

9.27

9.28

9.29

y
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Figure 5: Left: The curve V and the ε–point P ? (red color). Right: The curve V plotted
in a neighborhood of the ε–point P ? (red color).

of V (see Fig. 5). Moreover depth(P ?) = 1.874995929, height(P ?) = 0.1744373389.
Thus

εdepth(P ?)−height(P ?) <
1

93 · 3!
.
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Figure 6: The ε–point P ? (red color), and the exact point P of V (blue color)

In this case, we get that

weightL(P ?) = weightG(P ?) = M1(P
?) =

∣∣∣∣∣
f(P ?)

f
−→e2 (P ?)

∣∣∣∣∣ = 0.00004985974793.

Therefore, by Corollary 2, we deduce that there exists at least one point P ∈ V such
that

‖P ? − Pj‖2 < Rin(weightG(P ?)) = 0.00009978409824.

In fact, applying numerical techniques one may approximate points in V ∩ {x1 = 0}
(see Fig. 6).

Experimental Analysis

In the following table we illustrate the results obtained in Theorems 1 (Statement
3) and 2 (Statement 3). The polynomials have been taken randomly but ensuring that
the degree is proper and that P ? = (0, . . . , 0) ∈ Rκ is an ε-point of the hypersurface
defined by the polynomial. The polynomials used in the table appear in the Appendix.
Important properties of the polynomials, that might affect to the experiment, vary in
the inputs. For instance, different value for the ∞-norm of the polynomials have been
considered (see column 6 in Table 1), the degree varies from 3 to 30 (see column 2),
the order of multiplicity of the ε-point varies from 1 to 20 (see column 3), and the
dimension of the hypersurface (i.e. the number of variables of the polynomial) varies
from 1 to 7 (see column 4). Also, in column 5, we have written the number of points
of the hypersurface lying within the disk centered at P ∗ and radius the bound (see
Statement 3 in Theorems 1 and 2). In addition, we have considered a fixed tolerance
ε = 10−3. We have repeated the experiment taking the same polynomials and different
values of ε, and no significant difference has been detected.
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Input d r κ s ||f || B `

I 3 2 5 2 1 0.02288854288 0.01022113068

II 5 4 5 1 1 0.03317076276 0.01424281458
III 7 6 2 6 1 0.5746730482 0.2040285094
IV 9 6 7 6 8 0.7639038282 0.3216218617
V 28 10 7 10 32 0.9149384356 0.4729876659
VI 9 5 3 5 1 0.6085878356 0.2149485609
VII 9 5 6 5 7 0.6028871304 0.2182010583
VIII 8 6 5 6 5 0.5419193264 0.1779080163
IX 9 3 7 3 8 0.1167031511 0.04272819426
X 20 12 6 12 32 0.9726209592 0.5785706591
XI 3 1 1 1 1 0.00008703593936 0.00004349343199
XII 5 3 1 3 6 0.05935119610 0.02376382352
XIII 10 7 1 1 1 0.3244798282 0.1103038339
XIV 10 7 1 7 20 0.5878797718 0.2083571007
XV 15 9 1 2 1 0.6892482506 0.2517971845
XVI 20 1 1 1 18 0.00005517544520 0.00002757786468
XVII 20 10 1 10 1 0.7708109636 0.3128446102
XVIII 20 10 1 2 40 0.5390290592 0.1896647505
XIX 30 5 1 5 1 0.5423311092 0.1905043473
XX 30 20 1 1 1 0.9143898198 0.5323385708

Table 1: d =degree of the polynomial; r =multiplicity of P ∗; κ =dimension
of the hypersurface; s = min{j ∈ {1, . . . , r} | weightL(P ?) = Mj(P

?)}
(see Theorem 1 or 2); B = Rin(weightL(P ?)) (see Theorem 1 (3) and 2
(3); ` =approximation of the module of the closest exact point.

In the above table, one notes that the degree, dimension, multiplicity, and ∞-norm
do not seem to affect significantly to the bound. Moreover, observing the column
seven and eight one sees that the ratio `/B is essentially 0.5, which is consistent with
the numerical test of the sharpness of the bound formula provided in [30] by means
of the Smith’s disk (see Section 3 in [30]). This is not surprising, since the ultimate
corner stone in our reasoning is Sasaki-Terui’s bound. Another interesting phenomenon,
remarkable from the experiment, is that when the number s of close points to P ∗ was
not 1, all of them are very close together, and therefore it corresponds to the intuitive
idea that P ∗ explodes in different points when the multiplicity is not 1.

5 Application to Error Analysis of Geometric Ap-

proximate Algorithms

In the error analysis of approximate algorithms one estimates the “closeness” of the
input and the output. The precise notion of “closeness” depends on the problem that
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Figure 7: Left: C1 and C2; Right: C1 (in continuous trace) and C3 (in dot trace)

one is dealing with. For instance, when computing gcds, resultants or factorizations the
“closeness” is measured in terms of relative errors of the polynomials. Nevertheless, it
may happen that even though the relative errors are small the algebraic varieties defined
by the polynomials are not close in terms of the Euclidean distance. For example, let
us consider three real plane algebraic curves C1, C2 and C3 given, respectively, be the
polynomials

f1(x, y) = x2 + y2 − 200,
f2(x, y) = 0.9995x2 + y2 − 200− 0.001x5,
f3(x, y) = 0.9995x2 + 0.999y2 − 200.0005.

The relative errors of the polynomials are small:

‖f1 − f2‖∞
‖f2‖∞ = 0.0000049999875,

‖f1 − f3‖∞
‖f3‖∞ = 0.0000049999875.

However, when plotting the curves (see Fig. 7) one realizes that C1, C2 are not close,
but C1, C3 are close. In order to deal with this problem, the error is measured in terms
of offsets.

Offsets to hypersurfaces play an important role in many practical applications in
computer aided geometric design, and have been extensively studied both from the
theoretical and algorithmic point of view. Let V be a hypersurface in Cn, then the offset
to V at distance d ∈ C is essentially the envelope of all the spheres centered at the points
of V with fixed radius d; i.e. the envelope of the spheres

∑n
i=1(xi−yi)

2 = d2 where x ∈ V
(for a formal definition of offset we refer to [1]). The offset to V is again a hypersurface
with at most two algebraic components that correspond to the intuitive idea of internal
an external offset. The region between these two parts of the offset (i.e. the external
and internal analytic components) is called the offset region. More formally, the offset
region to V is defined as the union of the sets {ȳ ∈ Cn | ∑n

i=1(xi − yi)
2 ≤ d2}, where

x ∈ V . Similarly, one introduces the offset region to a subset of V .
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In this situation, and coming back to the discussion on error analysis, the notion
of “closeness” between two hypersurfaces is introduced by requiring that each hyper-
surface lies in the offset region to the other at an small distance that depends on the
tolerance. The metric properties on ε-point developed in the previous sections can be
applied to this problem. More precisely, the next corollary shows how two hypersur-
faces are locally related, in terms of their offsets when ε–points appear.

Corollary 3 Let V and V? be two algebraic hypersurfaces in Cn of proper degree, and
let Q ∈ V. If Q is an ε–simple point of V?, then in an Euclidean neighborhood of Q, V
is contained in the offset region of V? at distance d where

d ≤ n · Rin(weightG(Q)) ≤ n · Rin(ε
depth(Q)−height(Q)).

Proof. Let Q = (a?
1, . . . , a

?
n). Since Q is an ε–simple point of V?, by Corollary 2, one

deduces that there exists P = (a1, . . . , an) ∈ V? such that

‖Q− P‖2 ≤ Rin(weightG(Q)) ≤ Rin(ε
depth(Q)−height(Q)).

In this situation, we consider the tangent hyperplane to V? at P ; i.e T ?(x1, . . . , xn) =
nx1(x1 − a1) + · · ·+ nxn(xn − an), where (nx1 , . . . , nxn) is the unitary normal vector to
V? at P . Then, we bound the value ‖T ?(Q)‖2 by

‖T ?(Q)‖2 ≤ |nx1| · |a1 − a?
1|+ · · ·+ |nxn| · |an − a?

n| ≤

‖Q− P‖2(|nx1|+ · · ·+ |nxn |) ≤ n · Rin(weightG(Q)) ≤ n · Rin(ε
depth(Q)−height(Q)).

Therefore, reasoning as in Subsection 2.2 of [13] one deduces that, V is contained in
the offset region of V? at distance at most

n · Rin(weightG(Q)) ≤ n · Rin(ε
depth(Q)−height(Q)).

6 Conclusions

Given an ε-point P of a hypersurface V , we have proved the existence of points on V at
small distance of P , and bounds for this distance have been presented. These bounds,
beside the obvious extension to hypersurfaces, generalize and improve those bounds
given in [28] by means of the notions of height, depth and weight of an ε-point. Also
we have seen how to apply these results to estimate the offset-region-measure when
analyzing the error in approximate geometric algorithms. In addition, examples and
experimental analysis show that the bounds are quite satisfactory.

Nevertheless, there are open problems to address. For instance, the distance analy-
sis for non-pure ε-singularities is based on the application of a generic isometry. This
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isometry has to be taken such that the ∞-norm is controlled. The problem on how
linear changes of coordinates transform ε-point needs a deeper study. Also, although
the implementation of our method is quite efficient, an asymptotic complexity analysis
is still required. Finally, one can also mention as an open problem the corresponding
analysis of these concepts and bounds for the case of algebraic varieties of arbitrary
dimension, as for instance space curves.

7 Appendix

INPUT I: f(x1, . . . , x5) = x2
1 + 0.00002742221911x1 + 0.00001619118552x2 +

0.00001619118552x3 +0.00001619118552x4 +0.00001619118552x5 +0.0001044795612+
0.5x1x2 + x3

1 + x2x
2
3,

INPUT II: f(x1, . . . , x5) = x4
1 + 0.0008547008547x1 + 0.004273504274x2 +

0.0008547008547x3x2x1 + 0.0008547008547x3
4 + 0.0008547008547x5 +

0.00001179968849x2
1x5 − 0.0000221508318 + 0.00001176373710x2

2x4 + 0.5x1x2 +
x5

1 + x2x1x3x4x5 + x2x
4
3x

4
1 + 0.0008547008547x1 − 0.00001221508318 + x5

1,

INPUT III: f(x1, x2) = x6
1 + 0.0001431050212x5

1 + 0.00008944063825x2 +
0.00001788812765x3

2x1 + 0.0000337397564x3
2 + 0.00001788812765x1 +

0.00001733462765x2
1x2 − 0.00007583513442 + 0.5x1x2 + x2

2x
2
1 + x3

2x
4
1,

INPUT IV: f(x1, . . . , x7) = x6
1 + 0.00009134401297x5

1 + 0.00005709000811x2 +
0.00001141800162x2

5x2x7 + 0.00001141800162x3
6 + 0.00001141800162x1 +

0.00001141800162x4
7 + 0.00005709000811x6x

3
5 + 0.00001312611572x2

1x3 +
0.00001083963839x1x2x3 + 5x1x2 − 6x5x

2
1x6 + x3

2x
4
1x

2
6 + x9

7 + 8x6x
2
3x7 + x1x

5
3x5 +

6x9
3 + 0.001109717799 − x3

2 + 5x6x1x
3
7x

6
1 + 0.00009134401297x5

1 + 0.001109717799 +
0.00001141800162x1,

INPUT V: f(x1, . . . , x7) = 0.00003371885221x1 + 0.0001685942611x2 + 5x1x2 −
x3

2 + 0.00003371885221x6
2x3x7 + 0.00009991008093x2

1x3 + 5.x5x6x7 − 6x2
7x3x

6
1 +

x10
1 + 0.00003371885221x9

1 + x15
6 + 9x13

1 + 0.0002697508177x5
1 + x3

2x
10
1 x15

6 + x4x3x
9
2 +

x12
4 + 0.001093290476 + x1x

5
3x5 + 0.00004120822516x1x2x3 + 0.00003371885221x3

6 +
0.00003371885221x4

7 + x9
7 + 6x9

3 + 0.0001685942611x6x
3
5 + 5x6x1x

3
7 + 32x6x

2
3x7 −

6x5x
2
1x6 + 0.00003371885221x2

5x2x7 + 0.00003371885221x1 + 0.001093290476 + x10
1 +

0.00003371885221x9
1 + 9x13

1 + 0.0002697508177x5
1,

INPUT VI: f(x1, x2, x3) = x5
1 + 0.0003985662386x1 + 0.00001111951252x2 +

0.00001111951252x2
1x

3
2x3 + 0.00001111951252x9

2 + 0.00001111951252x3x
6
2 +

0.00001111951252x3
1 + 0.00002223902504x2

1x3 + 0.0000555975626x4
1x

3
2 −

0.0005456132693 + x2
1x

3
2x

3
3 + 0.5x1x

8
2 + x9

1 + x8
2x3,
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INPUT VII: f(x1, . . . , x6) = x9
1 + 0.00006920255588x1 + 0.0001153375931x2 +

0.00002306751863x3x2x1 − 0.00002306751863x2x
3
4 − 0.00009227007451x5 +

0.00001561938678x2
1x5 + 0.0005108556833 + 0.00001529145513x2

2x4 + 0.5x1x2 +
x5

1 + x2x
2
1x3x4x5 + x2x

4
3 − 4x2

1x
3
2x

4
3 − 7x2

1x
3
2x3x6 + x2

6x
3
2x3 + 2x2

1x
3
2x3 −

0.00000001478902079x3
6x1x2x4x5x3 +3x6x1x

4
2−0.8x3

4x5x2x6x
9
1 +0.00006920255588x1 +

0.0005108556833 + x5
1,

INPUT VIII: f(x1, . . . , x5) = x6
1 + 0.0008967604529x5

1 + 0.0005604752830x2 +
0.1120950566x2

5x2x1 +0.0001120950566x3
2 +0.0001120950566x4 +0.0001120950566x1−

x7
5 + 0.00002110684284x2

1x2 + 0.0000479631312 + 0.0000212553404x2
2x3 + 0.5x1x2 +

x2
2x

2
1 − x5x

3
2x

4
1 + x7

3 + x6
3x2 − 5x5x2x

5
4,

INPUT IX: f(x1, . . . , x7) = x3
1 + 0.0000883372717x5

2 + 0.00005521079481x2 +
0.00001104215896x2

5x2x7 + 0.00001104215896x3
6 + 0.00001104215896x1 +

0.00001104215896x4
7 + .5521079481x6x

3
5 + 0.0001894657067x2

1x3 +
0.00001040528589x1x2x3 + 5x1x2 − 6x5x

2
1x6 + x3

2x
4
1x

2
6 + x9

7 + 8x6x
2
3x7 + x1x

5
3x5 +

6x9
3 − 0.00007848061529− x3

2 + 5x6x1x
3
7x

3
1 − 0.00007848061529 + 0.00001104215896x1,

INPUT X: f(x1, . . . , x6) = 0.00004398697985x1+0.0002199348993x2+9x13
1 +x3

2x
10
1 x7

6+
5.x1x2 + 0.0003518958388x5

1 + 0.00004398697985x9
1 + x15

6 + 0.00004398697985x3
6 −

6.x5x
2
1x6 + 0.00002230251126x1x2x3 + 0.00001022097753x2

1x3 + x1x
5
3x5 + 6.x9

3 +
0.00004398697985x2

5x2x4 +32x6x
2
3x4 +5x6x1x

3
4− 6x2

4x3x
6
1 +0.00004398697985x6

2x3x4 +
5x5x6x4 + x12

1 + 0.4398697985x4
4 + 0.008665511265 + x9

4 + 0.0002199348993x6x
3
5 −

x3
2 + 0.00004398697985x1 + 9x13

1 + 0.0003518958388x5
1 + 0.00004398697985x9

1 +
0.008665511265 + x12

1 ,

INPUT XI: f(x1) = 0.1136363637x2
1 − 0.1190476191x3

1 + 0.000217466945 + x1,

INPUT XII: f(x1) = −0.0909090909x4
1 + 0.2x5

1 − 0.00008154943932 +
0.0000651989655x1 − 0.000861821316x2

1 − 6x3
1,

INPUT XIII: f(x1) = 0.01123595506x8
1 − 0.01369863014x9

1 + .1428571429x10
1 +

0.00001432172319−0.0001323977228x1 +0.00001199918406x2
1−0.00004831151263x3

1 +
0.00001569316720x4

1 − 0.00001043373016x5
1 + 0.00001221687395x6

1 + x7
1,

INPUT XIV: f(x1) = 2.222222222x8
1 − 0.350877193x9

1 + 0.2352941176x10
1 +

0.0003865481252 − 0.0002516862982x1 + 0.0003549119818x2
1 − 0.0005534340584x3

1 +
0.0003536755734x4

1 − 0.0003309121594x5
1 + 0.00020908036x6

1 + 20x7
1,

INPUT XV: f(x1) = 0.02941176471x10
1 − 0.01315789474x11

1 + 0.01075268817x12
1 −

0.03703703704x13
1 + 0.05882352941x14

1 − 0.01351351351x15
1 + 0.00001191213608 −
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0.00001204993493x1 + 0.0001653439153x2
1 − 0.00001899876508x3

1 +
0.00002998590662x4

1 − 0.00001444460494x5
1 + 0.00002989089822x6

1 −
0.00001248891609x7

1 + 0.0001653986107x8
1 + x9

1,

INPUT XVI: f(x1) = −0.6206896552x2
1 + 1.1250x3

1 − 0.3214285715x4
1 +

2.25x5
1 − 0.3461538461x6

1 + 0.2857142857x7
1 − 0.1836734693x8

1 + 0.2022471911x9
1 −

0.4186046511x10
1 + 0.1836734693x11

1 − 0.1818181818x12
1 + 0.6428571428x13

1 −
0.6428571428x14

1 + 0.2399999999x15
1 − 0.6923076923x16

1 + 2.250x17
1 − 0.2168674699x18

1 +
0.5999999999x19

1 − 0.3396226415x20
1 − 0.0004964010921− 18x1,

INPUT XVII: f(x1) = −0.01075268817x11
1 + 0.02380952381x12

1 − 0.01136363636x13
1 +

0.01754385965x14
1 − 0.09090909091x15

1 + 0.01204819277x16
1 − 0.0625x17

1 +
0.01818181818x18

1 − 0.01886792453x19
1 + 0.01086956522x20

1 + 0.00001417012654 −
0.00001992666985x1 + 0.00001174094773x2

1 − 0.00001880936706x3
1 +

0.00001120586291x4
1 − 0.00003301201637x5

1 + 0.00002951506744x6
1 −

0.00002135383301x7
1 + 0.00005931198102x8

1 − 0.00001876243011x9
1 + x10

1 ,

INPUT XVIII: f(x1) = −2.666666667x11
1 + 0.4878048780x12

1 − 0.5970149252x13
1 +

0.9523809524x14
1 − 0.8695652172x15

1 + 2.222222222x16
1 − 0.8888888888x17

1 +
0.9756097560x18

1 − 0.4651162792x19
1 + 0.8333333332x20

1 + 0.001004722194 −
0.001236705417x1 + 0.02803083392x2

1 − 0.002983738624x3
1 + 0.0006585012512x4

1 −
0.000443739392x5

1 + 0.002176752286x6
1 − 0.0009497352612x7

1 + 0.003305785124x8
1 −

0.0006363853312x9
1 + 40x10

1 ,

INPUT XIX: f(x1) = −x29
1 + 0.1x26

1 − 0.02941176471x27
1 + 0.07142857143x28

1 +
0.01724137931x24

1 − 0.02173913043x21
1 + 0.01724137931x22

1 − .625x23
1 −

0.00001151861408x1 + 0.01639344262x30
1 − 0.015625x25

1 + x5
1 + 0.00002830215379x2

1 +
0.00003690309248x4

1 + 0.0625x14
1 − 0.05555555556x15

1 − 0.08333333333x11
1 +

0.01694915254x12
1 − .1250000000x13

1 + 0.0002528445006 − 0.00001455159267x3
1 +

0.02439024390x16
1 − 0.05x17

1 + 0.01851851852x18
1 − 0.03125x19

1 + 0.01724137931x20
1 +

0.01098901099x8
1 − 0.02040816327x9

1 + 0.04x10
1 − 0.05555555556x7

1 + 0.01612903226x6
1,

INPUT XX: f(x1) = −0.09090909091x29
1 + 0.01351351351x26

1 − 0.01162790698x27
1 +

0.01136363636x28
1 + 0.01204819277x24

1 − 0.03225806452x21
1 + 0.01470588235x22

1 −
0.08333333333x23

1 − 0.00002411265432x1 + 0.02777777778x30
1 − 0.05x25

1 −
0.00001336362421x5

1 + 0.00003751782096x2
1 + 0.0000457582136x4

1 +
0.00005596597269x14

1 − 0.00001267121986x15
1 − 0.0000127995085x11

1 +
0.00003225390272x12

1 − 0.00004152306606x13
1 − 0.000029563058x3

1 +
0.0001011736139x16

1 − 0.00001643574446x17
1 + 0.00003368364322x18

1 −
0.00001679514956x19

1 + x20
1 + 0.0000301295571x8

1 − 0.00002055751994x9
1 +

0.00001020929045x10
1 − 0.00002059859518x7

1 + 0.00003032692424x6
1 + 0.0000121673744.
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