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Abstract We present an algorithm with the following characteristics: given
a real non-polynomial rational parametrization P(t) of a plane curve and a
tolerance ε > 0, R is decomposed as union of finitely many intervals, and for
each interval I of the partition, with the exception of some isolating intervals,
the algorithm generates a polynomial parametrization PI(t). Moreover, as
an option, one may also input a natural number N and then the algorithm
returns polynomial parametrizations with degrees smaller or equal to N . In
addition, we present an error analysis where we prove that the curve piece
CI = {P(t) | t ∈ I} is in the offset region of C∗I = {PI(t) | t ∈ I} at distance
at most

√
2ε, and conversely.

Keywords Piecewise Polynomial Parametrization · Rational Algebraic
Curves · Error Analysis

1 Introduction

Rational plane algebraic curves are curves accepting a parametric represen-
tation by means of a pair of univariate rational functions. This type of curves
are precisely those having genus zero. There exist algorithmic methods for
deciding whether a given plane curve is rational, and if so, for computing a
rational parametrization (see e.g. [11], [12]). These curves play an important
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role in many practical applications, in particular in computer aided geomet-
ric design, and many authors have addressed multiple problems related to
them (see e.g. [4]).

Within the set of rational curves, one may consider curves parametrizable
by polynomials (i.e. polynomial curves). Polynomial curves have an addi-
tional interest in practical applications, since the non-existence of denomina-
tors avoids the possible unstable behavior of the parametrization, when the
parameter takes values close to the roots of the denominators. Polynomial
curves are characterized as those rational plane curves having only one place
at infinity (see [1]). Therefore, one cannot approach globally the problem of
computing polynomial parametrizations of every genus zero curve. Neverthe-
less, one may try to compute local piecewise polynomial parametrizations.
In this paper, we deal with this problem. More precisely, let ε > 0 be a fixed
tolerance, and let P(t) be a real non-polynomial rational parametrization of
a plane curve C, then the problem consists in:

(i) decomposing the parameter space R as a union of finitely many intervals,
(ii) and for each interval I of the partition, computing a polynomial para-

metrization PI(t) such that the ”curve pieces” CI = {P(t) | t ∈ I} and
C∗I = {PI(t) | t ∈ I} are close (we refer to [9] and [10] for the notion of
closeness).

In order to solve the problem, one may need to approximate real roots
of polynomials. In that case, isolating intervals appear in the partition. To
these intervals none polynomial parametrization is assigned. Alternatively,
one may return a sequence of polynomial parametrizations that converge to
the curve in those regions.

There exist methods to approach the problem. For instance, one may
apply to both rational components of P(t) the well-known Approximation
Theorem of Weierstrass in combination with Bernstein-polynomials (see e.g.
[5]). Also, in [7], the authors present a Bézier-like approach, based on the so
called hybrid polynomials.

In this paper, we present an alternative approach based on polynomial
sequences uniformly converging to the rational functions. An important prop-
erty of our method is that, for a given natural number N satisfying certain
minimal requirements, the algorithm generates polynomial parametrizations
which degrees are bounded by N . We also present an error analysis where we
provide an explicit a priori bound of the closeness of the input and the out-
put. In fact, if PI(t) is the output polynomial parametrization, we prove that
CI ⊂ O√2ε(C?

I ), and C?
I ⊂ O√2ε(CI), where Od denotes the offset region at

distance d. We refer to [2] for the notion of offset.

The structure of this paper is as follows. In Section 2 we describe the
method for polynomially approximating a rational function in a compact
interval. In Section 3 we deal with the same problem, but showing how to
control the degree of the output. In Section 4 we apply these results to derive
the piecewise polynomial parametrization algorithm. In Section 5 we present
the error analysis, and in Section 6 we compare our method with Sederberg-
Kakimoto’s method and Bernstein based method.
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2 Polynomial Approximation of a Rational Function in a
Compact Interval

In this section, we analyze how to polynomially approximate χ(t) ∈ R(t)\R[t]
in a compact interval K ⊂ R, where χ(t) is continuous. The strategy is
as follows. First we define an infinite family of polynomial sequences (see
Definition 1), and we prove that each of these sequences approximates χ(t).
Afterwards, in order to choose the best sequence in the family, we introduce
the notion of order of convergence (see Definition 2). Then, we find a sequence
in the family minimizing the order of convergence. This leads to the notion
of ”approximating polynomial sequence” of χ(t) (see Definition 3). Finally,
under the criterion of minimizing the degree, we compute a polynomial in
that sequence approximating χ(t) under the given tolerance.

Definition 1 Let χ(t) ∈ R(t) \ R[t] be continuous in a compact interval
K ⊂ R. Let χ(t) be expressed as χ(t) = q(t)+r(t)/χ2(t), where q, r, χ2 ∈ R[t],
gcd(r, χ2) = 1, deg(r) < deg(χ2), and χ2(t) > 0 for every t ∈ K. We define
the parametric polynomial sequence {{Hχ(t),K(t, x, n)}n∈N}x∈R associated to
χ(t) in K as

Hχ(t),K(t, x, n) = q(t) + x +
r(t)− xχ2(t)
maxK{χ2(t)}

n∑

k=0

u(t)k,

where u(t) = 1 − χ2(t)
maxK{χ2(t)} . Furthermore, we define the parametric error

sequence {{Rχ(t),K(t, x, n)}n∈N}x∈R as

Rχ(t),K(t, x, n) = χ(t)−Hχ(t),K(t, x, n).

Remark 1 Note that using Euclidean division, and taking into account that
χ2 does not vanish at K, one can always express χ(t) as in Definition 1.

Now, we prove the basic properties of the parametric polynomial se-
quence.

Theorem 1 Let χ(t) and K be as in Definition 1. It holds that:

1. ∀ t ∈ K, 0 ≤ u(t) < 1.
2. ∀ λ ∈ R, Hχ(t)+λ,K = Hχ(t),K + λ, and |Rχ(t)+λ,K | = |Rχ(t),K |.
3. ∀ λ ∈ R, Hλχ(t),K = λHχ(t),K , and |Rλχ(t),K | = |λ| |Rχ(t),K |.
4. ∀ t, x ∈ R, |Rχ(t),K | =

∣∣∣ r(t)
χ2(t)

− x
∣∣∣ u(t)n+1.

5. ∀ x0 ∈ R, {Hχ(t),K(t, x0, n)}n∈N converges uniformly to χ(t) in K.

Proof. (1), (2), and (3) are immediate. In order to prove (4) and (5), let
U :=

∑n
k=0 u(t)k, M := maxK{χ2}, and m := minK{χ2}. Then:

|Rχ(t),K | =
∣∣∣∣χ− q − x− (r − xχ2)U

M

∣∣∣∣ =
∣∣∣∣

r

χ2
− x− (r − xχ2)U

M

∣∣∣∣ =

|r − xχ2|
M

∣∣∣∣
M

χ2
− U

∣∣∣∣ =
|r − xχ2|

M

∣∣∣∣
1

1− u
− U

∣∣∣∣ =
|r − xχ2|

M

∣∣∣∣
un+1

1− u

∣∣∣∣ =
∣∣∣∣

r

χ2
− x

∣∣∣∣ un+1.
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To prove (5) we take x0 ∈ R and we show that {Rχ(t),K(t, x0, n)}n∈N con-
verges uniformly to 0 in K. For t ∈ K it holds that

|Rχ(t),K(t, x0, n)| =
∣∣∣∣

r(t)
χ2(t)

− x0

∣∣∣∣ u(t)n+1 ≤ max
K
{| r

χ2
− x0|}

(
1− m

M

)n+1

.

Now, the result follows taking into account that 0 < 1−m/M < 1.

By Theorem 1 (5), for every x0 ∈ R, {Hχ(t),K(t, x0, n)}n∈N converges
uniformly to χ(t) in K. Therefore, polynomials in this sequence can be used
as polynomial approximation of χ(t). Indeed, for any x0 ∈ R, and for the
given tolerance ε > 0 there exists n0 ∈ N such that if n ≥ n0 and t ∈ K then
|Rχ(t),K(t, x0, n)| ≤ ε. Furthermore, Theorem 1 (2) implies that the polyno-
mial approximation provided by this sequence is invariant under translations,
which is a very intuitive property to be required to any approximation pro-
cess. Nevertheless, statement (3) shows that the approximation is affected by
homotecies, which is not surprising.

Since we have infinitely many different polynomial sequences to be used in
the approximation, namely {{Hχ(t),K(t, x0, n)}n∈N}x0∈R, the natural ques-
tion is how to choose x0 ∈ R such that the convergence is accelerated. In
order to be more precise in our claims, we introduce the following notion.

Definition 2 Let J ⊂ R, let δ > 0, and let {g(t, n)}n∈N be a real functional
sequence uniformly converging to g(t) in J . Then, we define the δ-order of
convergence of {g(t, n)}n∈N in J at the smallest n0 ∈ N such that for all
n ∈ N, with n ≥ n0, and for all t ∈ J , it holds that |g(t, n)− g(t)| ≤ δ.

Note that the convergence accelerates when the order decreases. In our
situation, given the tolerance ε > 0, the question is how to choose x0 ∈ R
such that the ε-order of convergence of {Hχ(t),K(t, x0, n)}n∈N in K is as small
as possible. For this purpose, we minimize the upper bound of the error given
by Theorem 1 (4). Let t ∈ K, then it holds that

|Rχ(t),K(t, x, n)| =
∣∣∣∣

r(t)
χ2(t)

− x

∣∣∣∣ u(t)n+1 ≤ max
K
{| r(t)

χ2(t)
− x|} ·max

K
{u(t)n+1}.

Note that both function, r(t)
χ2(t)

− x and u(t)n+1, are continuous in K, and
hence both maximums exist. In this situation, we observe that the second
maximum does not depend on x while the first does. Thus, we minimize
maxK{| r(t)

χ2(t)
− x|}. This is done in the following lemma.

Lemma 1 Let χ(t) and K be as in Definition 1, and let M : R −→ R be
defined as M(x) = maxK{|r(t)/χ2(t) − x|}. M reaches its minimum value
at x0 = 1

2 (maxK{r/χ2} + minK{r/χ2}), and M(x0) = 1
2 (maxK{r/χ2} −

minK{r/χ2}).
Proof. Let M := maxK{ r

χ2
} and m := minK{ r

χ2
}. Then M(x0) = 1

2 (M−m)
because M(x) = max{|M − x|, |m − x|}. Now, assume that there exists x∗0
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such that M(x∗0) < M(x0). Then, we deduce that: (1) |M − x∗0| < M(x0);
(2) |m − x∗0| < M(x0). From (1) one has that M − x∗0 < M(x0), and hence
1
2 (M + m) < x∗0. From (2) one has that −M(x0) < m − x∗0, and hence
x∗0 < 1

2 (M + m), which is a contradiction. Thus, M reaches the minimum at
x0.

Taking into account Lemma 1, we introduce the following concept.

Definition 3 Let χ(t) and K be as in Definition 1. We define the approxi-
mating polynomial sequence {Pχ(t),K(t, n)}n∈N associated to χ(t) in K as

Pχ(t),K(t, n) = Hχ(t),K(t, x0, n),

where x0 is as in Lemma 1. Furthermore, we define the approximating error
sequence {Rχ(t),K(t, n)}n∈N as Rχ(t),K(t, n) = Rχ(t),K(t, x0, n).

The following theorem follows from Theorem 1 and Lemma 1.

Theorem 2 Let χ(t) and K be as in Definition 1. It holds that:

1. {Pχ(t),K(t, n)}n∈N converges uniformly to χ(t) in K.
2. The error sequence {Rχ(t),K(t, n)}n∈N is preserved under translations.
3. ∀ t ∈ K, |Rχ(t),K(t, n)| ≤ 1

2 (maxK{ r(t)
χ2(t)

}−minK{ r(t)
χ2(t)

})(1−minK{χ2(t)}
maxK{χ2(t)} )

n+1.

Observe that {Pχ(t),K(t, n)}n∈N has been chosen among the sequences
{{Hχ(t),K(t, x, n)}n∈N}x∈R under the criterion of minimizing the ε-orders of
convergence. Now, if n0 is the ε-order of convergence of {Pχ(t),K(t, n)}n∈N
in K, for n ≥ n0, the polynomial Pχ(t),K(t, n) approximates χ(t) under
tolerance ε. Therefore, Pχ(t),K(t, n0) is the polynomial in {Pχ(t),K(t, n)}n∈N
approximating χ(t) in K with smallest degree. In the following algorithm we
estimate n0.

Sub-Algorithm 1. [Estimation of the ε-order of convergence]

INPUT: (ε, χ(t),K) where ε > 0; χ(t) = χ1(t)
χ2(t)

∈ R(t)\R[t] is in reduced form;
and K ⊂ R is a compact interval where χ(t) is continuous.

OUTPUT: an estimation of the ε-order of convergence of {Pχ(t),K(t, n)}n∈N
in K.

Remark: We denote by SAlg1(ε, χ, K) the output.

1. If K is a point, then RETURN 0.
2. Take t0 ∈ K. If χ2(t0) < 0, THEN for i = 1, 2 replace χi by −χi. If

deg(χ1) < deg(χ2) THEN q := 0, r := χ1 ELSE take q, r as the quotient
and remainder of χ1 divided by χ2.

3. M := maxK{ r
χ2
}, m := minK{ r

χ2
}, M∗ := maxK{χ2},m∗ := minK{χ2},

α := M−m
2 , β := M∗−m∗

M∗ . RETURN max{0, dlogβ(ε/α)− 1e}.
Remark 2 Note that C(x) = αβx+1 is decreasing. Hence, if n0 := SAlg1(ε, χ,K),
for every n ∈ N such that n < n0 then C(n) > ε.
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Based on the previous results we can derive an algorithm for approximat-
ing, by a polynomial, a rational function defined in a compact interval.

Algorithm 1: [Polynomial approximation in a compact].

INPUT: (ε, χ(t),K) where ε > 0; χ(t) = χ1(t)
χ2(t)

∈ R(t)\R[t] is in reduced form;
K ⊂ R is a compact interval where χ(t) is continuous.

OUTPUT: a polynomial approximating χ(t) in K under precision ε.

Remark: We denote by Alg1(ε, χ, K) the output.

1. Take t0 ∈ K. If χ2(t0) < 0, THEN for i = 1, 2 replace χi by −χi. If
deg(χ1) < deg(χ2) THEN q := 0, r := χ1 ELSE take q, r as the quotient
and remainder of χ1 divided by χ2.

2. M := maxK{ r
χ2
}, m := minK{ r

χ2
}, M∗ := maxK{χ2}, x0 := M+m

2 ,
n0 := SAlg1(ε, χ,K).

3. RETURN Pχ(t),K(t, n0) := q(t) + x0 + r(t)−x0 χ2(t)
M∗

∑n0
k=0(1− χ2(t)

M∗ )k.

The next theorem follows from Theorem 2.

Theorem 3 Let p(t) = Alg1(ε, χ(t),K). Then |χ(t)− p(t)| ≤ ε, ∀ t ∈ K.

3 Degree Control of the Approximation

In Section 2 we have seen how to polynomially approximate a rational func-
tion in a compact interval where it is continuous. In this section we show
how to decompose the given compact interval such that the degree of the
approximating polynomial is smaller or equal to a given natural number N .

Throughout this section we use the following notation: ε,K and χ(t)
are as in the input of Algorithm 1. N ∈ N is such that N ≥ max{deg(χ1)−
deg(χ2), deg(χ2)}. Associated with N we consider the auxiliary number N1 :=
b−1 + N

deg(χ2)
c. Note that by assumption N ≥ deg(χ2), and hence N1 ∈ N.

Also, we express K as K = [λ1, µ].

The next lemma gives a criterion to ensure that the degree of the approx-
imation is smaller or equal to N .

Lemma 2 Let p = Alg1(ε, χ, K). If SAlg1(ε, χ, K) ≤ N1 then deg(p) ≤ N .

Proof. It follows from deg(p) ≤ max{deg(χ1)−deg(χ2), (SAlg1(ε, χ, K)+
1)deg(χ2)}.

Therefore, we assume w.l.o.g. that SAlg1(ε, χ,K) > N1. In this situation,
the strategy consists in decomposing K as [λ1, µ] = [λ1, λ2]∪ · · · ∪ [λ`, λ`+1],
where λ`+1 = µ, and such that SAlg1(ε, χ, [λi, λi+1]) ≤ N1, which implies by
Lemma 2 that deg(Alg1(ε, χ, [λi, λi+1]) ≤ N. The next lemma shows how to
proceed.
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Lemma 3 Let K ′ = [γ1, γ2] ⊂ K. If SAlg1(ε, χ,K ′) > N1, there exists
a unique γ ∈ (γ1, γ2) such that SAlg1(ε, χ, [γ1, γ]) = N1. Furthermore, if
x ∈ (γ1, γ) then SAlg1(ε, χ, [γ1, x]) ≤ N1.

Proof. For x ∈ K ′ let K ′(x) := [γ1, x], M(x) := maxK′(x){ r
χ2
}, m(x) :=

minK′(x){ r
χ2
},M∗(x) := maxK′(x){χ2}, and m∗(x) := minK′(x){χ2}. Also,

let α(x) = 1
2 (M(x)−m(x)) and β(x) = 1−m∗(x)/M∗(x). Then we introduce

the real function

TK′ : K ′ −→ R : x 7→ TK′(x) = α(x)β(x)N1+1 − ε.

In this situation, we first prove that TK′ is nondecreasing and continuous in
K ′. The continuity of T follows from the continuity of χ(t). To show that
TK′(x) is nondecreasing in K ′, we prove that S(x) := TK′(x) + ε is an
increasing function. For this purpose, let x1, x2 ∈ K ′ such that x1 < x2.
Then K ′(x1) ⊂ K ′(x2). Therefore, m(x2) ≤ m(x1) < M(x1) ≤ M(x2), and
0 < m∗(x2) ≤ m∗(x1) < M∗(x1) ≤ M∗(x2). Thus 0 < M(x1) − m(x1) ≤
M(x2)−m(x2), and 0 < m∗(x2)

M∗(x2)
≤ m∗(x1)

M∗(x1)
, 0 < 1− m∗(x1)

M∗(x1)
≤ 1− m∗(x2)

M∗(x2)
< 1.

Therefore S(x1) ≤ S(x2).
Now, we observe that TK′(γ1) = −ε < 0. Moreover, since SAlg1(ε, χ, K ′) >
N1, by Remark 2 to Sub-Algorithm 1, one has that TK′(γ2) > 0. Therefore,
there exists a unique γ ∈ (γ1, γ2) such that TK′(γ) = 0. Hence, since N1 ∈ N,
one has that SAlg1(ε, χ, [γ1, γ]) = N1. Finally, if x ∈ (γ1, γ) then [γ1, x] ⊂
[γ1, γ]. Thus SAlg1(ε, χ, [γ1, x]) ≤ SAlg1(ε, χ, [γ1, γ]) = N1

Sub-Algorithm 2. [Computation of γ in Lemma 3 ]

INPUT: (ε, χ(t), N1,K
′) where ε > 0; χ(t) ∈ R(t)\R[t] is expressed as χ(t) =

q(t) + r(t)/χ2(t), with q, r, χ2 ∈ R[t], gcd(r, χ2) = 1,deg(r) < deg(χ2); N1 ∈
N is defined as above; and K ′ = [γ1, γ2] ⊂ R is such that χ2(t) > 0 for every
t ∈ K ′, r/χ2, χ2 are monotone in K ′, and SAlg1(ε, χ, K ′) > N1.

OUTPUT: γ ∈ (γ1, γ2) such that SAlg1(ε, χ, [γ1, γ]) ≤ N1.

Remark: We denote by SAlg2(ε, χ, N1,K
′) the output.

1. T (x1, x2, x3, x4) := 1
2 ( r

χ2
(x1)− r

χ2
(x2))

(
1− χ2(x3)

χ2(x4)

)N1+1

− ε.

2. If r
χ2

, χ2 are increasing in K ′, approximate the root γ in K ′ of the nu-
merator of the reduced form of T (x, γ1, γ1, x). RETURN γ.

3. If r
χ2

, χ2 are decreasing in K ′, approximate the root γ in K ′ of the
numerator of the reduced form of T (γ1, x, x, γ1). RETURN γ.

4. If r
χ2

is increasing, and χ2 is decreasing in K ′, approximate the root γ in
K ′ of the numerator of the reduced form of T (x, γ1, x, γ1). RETURN γ.

5. If r
χ2

is decreasing, and χ2 is increasing in K ′, approximate the root γ in
K ′ of the numerator of the reduced form of T (γ1, x, γ1, x). RETURN γ.

In this situation, we approach the problem as follows. We are given
ε, χ(t), N and K = [λ1, µ] such that SAlg1(ε, χ, K) > N1. We assume that
r/χ2, χ2 are monotone in K, otherwise we first decompose K. Then, let
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λ2 := SAlg2(ε, χ, N1,K). Now, we introduce the new compact K1 := [λ2, µ].
If SAlg1(ε, χ,K1) ≤ N1 the process ends, and K decomposes as K = [λ1, λ2]∪
K1. Otherwise, let λ3 := SAlg2(ε, χ, N1,K1). Then, we introduce K2 :=
[λ3, µ]. If SAlg1(ε, χ, K2) ≤ N1 the process ends, and K = [λ1, λ2]∪ [λ2, λ3]∪
K2. Otherwise, Sub-Algorithm 2 is applied to (ε, χ,N1, K2), etc. Finally note
that, by Lemma 2, Algorithm 1 applied to ε, χ, and each of the generated
compacts, provide an approximating polynomial of degree smaller or equal
than N ; which is our goal.

Obviously, in order to derive an algorithm from the previous reasoning
we have to prove that the process ends. This is done in the next theorem.

Theorem 4 The set {λi}, introduced in the above process, is finite.

Proof. Let us assume that the process introduces infinitely many λi. Then,
we get an increasing sequence {λi}i∈N in K, and an infinite sequence of in-
tervals {Ki := [λi+1, µ]}i≥0. Associated to each Ki, we consider the function
TKi

(x) introduced in the proof of Lemma 3. Moreover, {λi}i∈N is conver-
gent because it is increasing and bounded. Note that this implies that the
length of [λi, λi+1] converges to zero. Moreover, by construction, one has that
TKi(λi+2) = 0. Now, taking limits in this last equality one gets that ε = 0
which contradicts the hypothesis that ε > 0.

Applying the previous ideas, we derive an alternative algorithm to Al-
gorithm 1, where the degrees of the output polynomials are bounded by N .
For simplicity, we present the algorithm assuming that the compact interval
satisfies the monotony conditions required in Sub-Algorithm 2.

Algorithm 2: [Polynomial approximation in a compact with degree control].

INPUT: (ε, χ(t), N, K) where ε > 0; χ(t) ∈ R(t) \ R[t] is expressed as χ(t) =
q(t)+r(t)/χ2(t), with q, r, χ2 ∈ R[t], gcd(r, χ2) = 1,deg(r) < deg(χ2); N ∈ N
is such that N ≥ max{deg(χ1)− deg(χ2),deg(χ2)}; and K := [λ1, µ] ⊂ R is
a compact interval such that χ2 is positive in K, and r/χ2, χ2 are monotone.

OUTPUT: a finite decomposition of K in compact intervals, and for each
interval a polynomial of degree at most N that approximates χ(t) with pre-
cision ε.

Remark: We denote by Alg2(ε, χ, N, K) the output.

1. F := ∅, N1 := b N
deg(χ2)

− 1c.
2. While SAlg1(ε, χ, [λ1, µ]) > N1 do ¿ λ2 := SAlg2(ε, χ, N1, [λ1, µ]), p(t) :=

Alg1(ε, χ, [λ1, λ2]), append [[λ1, λ2], p(t)] to F , replace λ1 by λ2. À
3. p(t) := Alg1(ε, χ, [λ1, µ]). Append [[λ1, µ], p(t)] to F . RETURN F .

The next theorem follows from the previous results and from Theorem 2.

Theorem 5 Let F = Alg2(ε, χ(t), N, K), and [K ′, p(t)] ∈ F . Then |χ(t) −
p(t)| ≤ ε for every t ∈ K ′ and deg(p(t)) ≤ N .
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4 Finite Piecewise Polynomial Parametrization

In this section we apply the preceding results to derive a piecewise polynomial
parametrization algorithm for real rational affine plane curves. Throughout
this section, C is a non-polynomial rational real affine curve, and ε > 0 is the
tolerance used in the process. Moreover, P(t) is a real rational parametriza-
tion of C. We assume w.l.o.g. that none of the components of P(t) is polyno-
mial. In addition, we assume that P(t) is expressed as

P(t) = (χ(t), ξ(t)) =
(

χ1(t)
χ2(t)

,
ξ1(t)
ξ2(t)

)
=

(
q1(t) +

r1(t)
χ2(t)

, q2(t) +
r2(t)
ξ2(t)

)
,

where qi, ri, χi, ξi ∈ R[t], gcd(r1, χ2) = gcd(r2, ξ2) = 1, deg(r1) < deg(χ2),
and deg(r2) < deg(ξ2).

In this situation, we proceed as follows. First we show how to decompose
the parameter space. Secondly we assign polynomials to each subset of the
decomposition. Finally, we derive the algorithm, and we illustrate it by an
example.

In order to decompose R we start determining the unbounded part of the
partition. Since limt→∞ r1(t)/χ2(t) = 0, there exists Bχ,ε ∈ R+ such that for
every t ∈ R with |t| > Bχ,ε it holds that | r1(t)

χ2(t)
| ≤ ε. Similarly for r2(t)/ξ2(t).

Then, if B = max{Bχ,ε, Bξ,ε}, the unbounded part of the decomposition is
taken as I0 = (−∞,−B) ∪ (B,∞). For the actual computation of I0, we
observe that B can be taken as an upper bounds of the roots, in module, of
r1(t)± εχ2(t) and r2(t)± ε ξ2(t).

The decomposition of the compact interval R \ I0 = [−B, B] is done
depending on whether h(t) := lcm(χ2, ξ2) has real roots or not. If h(t) has no
real roots, we decompose R as R = I0 ∪K1, where K1 := [−B, B]. Now, let
h(t) have real roots. Before discussing the details we first ensure that these
roots belong to (−B,B).

Lemma 4 The real roots of h(t) belong to the interval (−B, B).

Proof. Let θ ∈ R be a root of h(t). Then limt→θ+ r1(t)/χ2(t) = ∞ and
limt→θ− r1(t)/χ2(t) = ∞; similarly for r2/ξ2. By the construction of B, for
t ∈ R with |t| > B, |r1(t)/χ2(t)| ≤ ε, |r2(t)/ξ2(t)| ≤ ε. Thus, θ ∈ (−B,B).

In this situation, since in general the roots cannot be computed exactly,
we isolate them (see e.g. [6]). Therefore, R is decomposed as R = I0 ∪m+1

i=0
Ki ∪i=m

i=1 Ji, where I0 is as above, Ki are compact intervals, and Ji are open
intervals isolating the real roots of h(t). The length of Ji can be taken as
small as the particular problem requires. Here this length is taken smaller or
equal to ε.

In addition to the decomposition process described above, in both cases,
one might have to consider a further decomposition of the compacts Ki. This
is due to the degree control of the polynomial approximations (see Section
3). More precisely, each Ki is decomposed such that r1/χ2, r2/ξ2, χ2, ξ2 are
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monotone. In this process, similarly as it has happened with the real roots of
h(t), one might also need to isolate real roots. Therefore, new isolating open
intervals might appear. Moreover, during the applications of Algorithm 2,
the compacts intervals might be also decomposed as union of new compact
intervals. All these details are clarified in Algorithm 3.

Now, let us see how to assign the polynomial approximations. Let us
consider that R has been decomposed as R = I0 ∪`1

i=0 Ki ∪`2
i=0 Ji, where

I0 = (−B, B), Ki are compact intervals and Ji are open intervals, of length
smaller or equal to ε. Ji are introduced either when isolating real roots of h(t)
or when decomposing the compacts for guaranteing the monotony property.
Then, the polynomial assignment is as follows: we assign (q1, q2) to I0. For
each Ki, we apply Algorithm 1 to (ε, χ, Ki) and to (ε, ξ, Ki). Let p1(t) and
p2(t) the outputs. Then, we assign (p1, p2) to Ki.

All these ideas are summarized in the following algorithm.

Algorithm 3: [Piecewise polynomial parametrization].

INPUT: (ε,P(t), N) where ε > 0; P(t) = (χ(t), ξ(t)) = (χ1(t)
χ2(t)

, ξ1(t)
ξ2(t)

) is a
rational parametrization in reduced form where χ, ξ ∈ R(t)\R[t], and N ∈ N∪
{∞} is such that N ≥ max{deg(χ1)−deg(χ2), deg(ξ1)−deg(ξ2), deg(χ2), deg(ξ2)}.
OUTPUT: a list F . Each element of F is of the form [A, Q(t)] where Q(t)
is a polynomial parametrization (that eventually may be a point), and A is
a subset of R where t takes values. Moreover, if N ∈ N then deg(Q(t)) ≤ N
else there is no degree control.

Remark: We denote by Alg3(ε,P(t), N) the output.

1. If deg(χ1) < deg(χ2) THEN q1 := 0 and r1 := χ1, ELSE take q1, r1 as the
quotient and remainder of χ1 divided by χ2. Similarly with ξ generating
q2, r2.

2. [Non-Bounded Part] Compute an upper bound B of the roots in module
of r1(t) ± εχ2(t) and r2(t) ± εξ2(t). I0 := (−∞,−B) ∪ (B,∞). Append
[I0, (q1, q2)] to F .

3. Decide whether h(t) := lcm(χ2(t), ξ2(t)) has real roots or not. K := ∅.
4. [Absence of Real Roots: Partition Step] If h(t) does not have real roots do

If N = ∞ THEN append [−B, B] to K ELSE decompose [−B,B] in com-
pact intervals such that r1/χ2, r2/ξ2, χ2, ξ2 are monotone, and append
them to K.

5. [Existence of Real Roots: Partition Step] If h(t) has real roots, isolate them.
Let [−B,B] = ∪m+1

i=0 Ki ∪m
i=1 Ji, with Ki compacts and Ji the isolating

open intervals.
If N = ∞ THEN append K1, . . . , Km+1 to K ELSE decompose each Ki in
compact intervals such that r1/χ2, r2/ξ2, χ2, ξ2 are monotone, and append
them to K.

6. [Degree Control] If N = ∞ THEN K′ := K ELSE
6.1. K′ := ∅, N1 := b−1 + N/deg(χ2)c, N∗

1 := b−1 + N/deg(ξ2)c.
6.2. For every K := [λ1, µ] ∈ K do

6.2.1. n := SAlg1(ε, χ, [λ1, µ]), n∗ := SAlg1(ε, ξ, [λ1, µ]).
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6.2.2. If n ≤ N1, n
∗ > N∗

1 do ¿ λ2 := SAlg2(ε, ξ,N∗
1 ,K), append

[λ1, λ2] to K′, replace K by [λ2, µ] and go to step 6.2.1. À
6.2.3. If n > N1, n

∗ ≤ N∗
1 do ¿ λ2 := SAlg2(ε, χ, N1,K), append

[λ1, λ2] to K′, replace K by [λ2, µ] and go to step 6.2.1. À
6.2.4. If n > N1, n

∗ > N∗
1 do

¿ λ2 := min{SAlg2(ε, χ,N1,K), SAlg2(ε, ξ, N∗
1 ,K)}, append [λ1, λ2]

to K′, replace K by [λ2, µ] and go to step 6.2.1. À
7. [Polynomial Assignment] For every K ∈ K′ do ¿ p1(t) := Alg1(ε, χ, K),

p2(t) := Alg1(ε, ξ, K), append [K, (p1, p2)] to F . À
8. RETURN F .

Remark 3 In general the output polynomial parametrizations of the algo-
rithm may not join smoothly. This phenomenon can be solved by using poly-
nomial parametric blending. For this purpose, we refer to [8].

We illustrate Algorithm 3 by an example. The example has been per-
formed with Maple 8, using floating point arithmetic of 5 digits.

Example 1 We consider the curve C given by the parametrization

P(t) =

(
t3

t2 + 0.3
,

(
t2 + 0.1

)
t

t− 0.1

)
.

Let ε = 0.2. We apply Algorithm 3 first to (ε,P(t),∞), and afterwards to
(ε,P(t), 10). We start with (ε,P(t),∞). Applying Steps 1 and 2 one gets B :=
1.2623, and therefore I0 := (−∞,−1.2623) ∪ (1.2623,∞). In addition, we
assign to I0 the parametrization PI0(t) = (q1(t), q2(t)) := (t, t2 +0.1t+0.11).
In Step 3 one gets h(t) := (t2 + 0.3)(t − 0.1). Since h(t) has real roots, we
apply Step 5, and [−B, B] is decomposed as

[−B, B] := K1 ∪K2 ∪ J, where

K1 := [−1.2623, 0.086667],K2 := [0.11333, 1.2623], J := (0.086667, 0.11333).
Note that J isolates the real root of h(t). Since N = ∞ we go to Step 7,
where Algorithm 1 provides the following polynomial parametrizations (see
Figure 1). For K1 and K2, we get, respectively,

PK1(t) = (0.84156t + 0.079658− 0.049993t2,

t2 + 0.1t− 0.30655 + 0.73405(0.03065− 0.41655t)(
72∑

k=0

(0.9266 + 0.73405t)k),

PK2(t) = (0.84156t− 0.16096 + 0.10102t2,

t2 + 0.1t + 0.52733 + 0.86036(0.05273− 0.41733t)(
61∑

k=0

(1.086− 0.86036t)k).

Observe that the degree of the polynomials approximations are 2, 73, 62. Now,
we apply Algorithm 3 to (ε,P(t), 10). Steps 1,2,3 are as above, and hence B,
I0 and PI0(t) states the same. In Step 5, beside the decomposition generated
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Fig. 1 P(t), PK1 , PK2 and offset region of tolerance

by the real roots of h(t), we decompose [−B, B] taking care of the monotony.
We get [−B,B] = K1,1 ∪K1,2 ∪K1,3 ∪K2,1 ∪K2,2 ∪ J1 ∪ J2 ∪ J3 ∪ J4, where

K1,1 = [−1.2623,−0.56105],K1,2 = [−0.53439,−0.013333],
K1,3 = [0.01333, 0.086667],K2,1 = [0.11333, 0.53439],K2,2 = [0.56105, 1.2623],

J1 = (−0.56105,−0.53439), J2 = (−0.01333, 0.01333),
J3 = (0.086667, 0.11333), J4 = (0.53439, 0.56105).

Note that the compacts K1,K2, introduced in the first part of the example,
are now decomposed as K1 := K1,1 ∪ J1 ∪ K1,2 ∪ J2 ∪ K1,3 and K2 :=
K2,1 ∪ J4 ∪ K2,2. In Step 6 the compacts are decomposed again such that
the degree inequality holds. In this case, K1,1,K1,2, K1,3 and K2,2 do not
decompose while K2,1 is expressed as K2,1 = K2,1,1 ∪K2,1,2 where K2,1,1 :=
[0.11333, 0.30920] and K2,1,2 := [0.30920, 0.53439]. Therefore, the parameter
space is decomposed as

R = I0 ∪K1,1 ∪K1,2 ∪K1,3 ∪K2,1,1 ∪K2,1,2 ∪K2,2 ∪4
i=1 Ji.
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Applying Step 7 one gets the following polynomial parametrizations.

PK1,1(t) = (0.19936 + 0.84156t− 0.12511t2, 0.090476 + 0.090929t + t2)
PK1,2(t) = (0.070008 + 0.48769t− 0.24514t2, 0.044477 + 0.009836t + t2)
PK1,3(t) = (−0.001195 + 0.02443t + 0.15913t2,

−0.0002− 0.93770t− 17.092t2 + 254.84t3 − 8435.9t4)
PK2,1,1(t) = (−0.04146 + 0.24166t + 0.43372t2,

27.306− 829.34t + 11620t2 − 97418t3 + 539430t4 − 2056600t5+
5462200t6 − 9970300t7 + 11965000t8 − 8520100t9 + 2733400t10)

PK2,1,2(t) = (−0.12394 + 0.48769t + 0.43398t2, 0.18324 + 0.010329t + t2)
PK2,2(t) = (−0.19936 + 0.84156t + 0.12511t2, 0.13756 + 0.085665t + t2).

Note that all parametrizations have degree 2 with the exception of PK1,3(t)
that has degree 4 and PK2,1,1(t) that has degree 10.

5 Error Analysis

In the previous example we have seen that the output polynomial pieces are
close to the input curve. In this section, we state properly this behavior ana-
lyzing the error. Indeed, we prove that the generated portions of polynomial
curves lie within the offset region of the input curve at distance at most

√
2 ε,

and conversely

For this purpose, let ε, C and P(t) be as in Section 4. Furthermore, let
F := Alg3(ε,P(t), N). Therefore, F is a list, and each element of F is a
pair of the form [ I, Q(t) ] where Q(t) is a polynomial parametrization (that
eventually may be a constant point), and I is a subset of R where t takes
values. In addition, for [ I, Q(t) ] ∈ F , we use the notation C∗I := {Q(t) | t ∈ I}
and CI := {P(t) | t ∈ I}. In this situation, we prove the following theorem.

Theorem 6 Let [ I, Q(t) ] ∈ F . Then, it holds that:
(1) For every P ∈ CI there exists P ? ∈ C?

I such that ‖P − P ?‖2 ≤
√

2 ε.

(2) For every P ? ∈ C?
I , there exists P ∈ CI such that ‖P − P ?‖2 ≤

√
2 ε.

Proof. We prove statement (1). Statement (2) follows similarly. [ I, Q(t) ]
has been generated in either Step 2 or Step 7 of Algorithm 3. We treat each
situation separately.
[Case of Step 2.] In this case, I := (−∞,−B)∪(B,∞) andQ(t) := (q1(t), q2(t)).
Let ∆1(t) = |χ(t)−q1(t)| and ∆2(t) = |ξ(t)−q2(t)|. Taking into account how
B is computed, for t ∈ I it holds that ∆1(t) ≤ ε, and ∆2(t) ≤ ε. Therefore,
for every P := P(t0) ∈ CI , we take P ? := Q(t0) ∈ C?

I and

‖P − P ?‖2 =
√

∆1(t0)2 + ∆2(t0)2 ≤
√

2 ε.

[Case of Step 7.] In this case I is a compact interval, and Q(t) = (p1(t), p2(t))
where p1(t) := Alg1(ε, χ(t), I) and p2 := Alg1(ε, ξ(t), I). Let ∆1(t) = |χ(t) −
p1(t)| and ∆2(t) = |ξ(t) − p2(t)|. Then, by Theorem 3 one gets ∆1(t) ≤ ε,
and ∆2(t) ≤ ε for t ∈ I. Now, for every P := P(t0) ∈ CI , we take P ? :=
Q(t0) ∈ C? and the result follows as in the previous case.
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Now we prove, in terms of offsets, that the piecewise parametrization gener-
ated by Algorithm 3 is close to the original curve. For this purpose, if D is a
piece of a plane curve, we denote by Od(D) the classical offset region of D at
distance d; i.e. it is the union of all close disks of radius d centered at points
of D.

Corollary 1 Let [ I, Q(t) ] ∈ F . Then, CI ⊂ O√2ε(C?
I ) and C?

I ⊂ O√2ε(CI).

Proof. We prove the first inclusion; the second follows similarly. Let P =
P(t0) ∈ CI where t0 ∈ I. By Theorem 6, there exists P ? = Q(t0) ∈ C?

I such
that ‖P − P ?‖2 ≤

√
2ε. Thus P ∈ O√2ε(C?

I ).

6 Comparison of Methods

In the introduction we have mentioned Sederberg–Kakimoto’s method (see
[3], [7]), and Bernstein based method (see [5], pp.127). In this section, we
briefly compare our method with them analyzing their main advantages and
disadvantages.

The first method is based on the combination of Bernstein-polynomials
with the Approximation Theorem of Weierstrass. In this case, an error bound
of the approximation is given in terms of the modulus of continuity of the
rational functions in the compact interval. This standard method has the ad-
vantage of representing the solution in terms of Bézier polynomial. However,
it has two main computational difficulties when the denominators of P(t)
have real roots. The first one is that the degree of the polynomials can be
very high if the real roots are near the extremes of the interval. The second
difficulty is that, in order to guarantee a good distance bound in the error
analysis, the compact intervals have to be taken sufficiently far from the real
roots.

In [7] the authors present an alternative Bézier-like approach, based on the
so called hybrid polynomials, that solves partially the difficulties remarked
in the previous paragraph. The approach in [7] is based on the observation
that any rational function can be written as a Bézier rational function, and
any Bézier rational function can be expressed as a Bézier polynomial with
one rational function moving control point, which is itself a Bézier rational
function. The polynomials with a rational function moving control point are
called hybrid polynomial. The approach presented in [7] provides very low
degree in the polynomials. Nevertheless, the main disadvantage of Sederberg-
Kakimoto’s approach is the control of the error and the convergence of the
method. In [3] the convergence is analyzed and necessary conditions are given.
However, the error analysis of the method does not provide a priori bound
easily computable from the input. This implies that each time the resulting
bound is not satisfactory, the process needs to be repeated either changing
the interval or increasing the degree of the polynomials.

The direct application of our approach (i.e. when N is taken as infinity
in Algorithm 3) may also generate high degree polynomials. Nevertheless,
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the method allows to control the degree of the output. Indeed, if N in Al-
gorithm 3 is taken as a natural number, then the degree of the polynomials
are bounded by N . Another important advantage of our method is its good
behavior in terms of error analysis. We provide an explicit bound for the
error that depends only on the tolerance. Therefore, in our method, bounds
for the degrees and for the error are known in advance. This implies that
none iteration of the process is required.
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