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Abstract

The ruled surface is a typical modeling surface in computer aided geometric design.
It is usually given in the standard parametric form. However, it can also be in the
forms than the standard one. For these forms, it is necessary to determine and find
the standard form. In this paper, we present algorithms to determine whether a given
implicit surface is a rational ruled surface. A parametrization of the surface is computed
for the affirmative case. We also consider the parametric situation. More precisely, after
a given rational parametric surface is determined as a ruled one, we reparameterize it
to the standard form.

Key words: ruled surface, parametrization, reparametrization, birational
transformation

1. Introduction

Parametric and implicit forms are two main representations of geometrical objects.
In computer aided geometric design and computer graphics, people prefer the rational
parametric form for modeling design [12]. On the other hand, in algebraic consideration
of computer algebra and algebraic geometry; people usually use the algebraic form.
Since there are different advantages of parametric and implicit forms, a nature problem
is to convert the forms from one to another. Converting from the implicit form to
the parametric one is the parametrization problem. On the converse direction, it is
the implicitization problem. There were lots of papers focused on the implicitization
problem. Some typical methods were proposed using Gröbner bases [4, 9], characteristic
sets [13, 30], resultants [10, 19] and mu-bases [5, 7, 11]. However, there still lacks of a
method having both completeness in theory and high efficiency in computation.

In general, the parametrization problem is more difficult than the implicitization
problem. Only some of the algebraic curves and surfaces have rational paramet-
ric representations. For the curves, people have proposed different methods such as
parametrization based on resolvents [14], by lines or adjoint curves [23] (see Chapter
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4) or using canonical divisor [27]. For a general surface, an efficient parametrization
algorithm has not been given yet. However, to meet the practical demands, people had
to design the parametrization algorithms for some commonly used surfaces. Sederberg
and Snively [21] proposed four parametrization methods for cubic algebraic surfaces.
One of them was based on finding two skew lines lying on the surface. Sederberg [22]
and Bajaj et al. [2] expanded this method. In [28], a method to parameterize a quadric
was given using a stereographic projection. Berry et al. [3] unified the implicitization
and parametrization of a nonsingular cubic surface with Hilbert-Burch matrices. These
methods were designed for some special surfaces. In [20], Schicho provided a general
algorithm that solved the parametrization problem. However, his contributions on the-
oretical analysis are more than those of practicable computations. Therefore, it is still
necessary to find the efficient parametrization algorithm for certain commonly used
surfaces.

The ruled surface is an important surface widely used in computer aided geometric
design and geometric modeling (see [1, 5, 6, 7, 8, 11, 15, 17, 16, 19, 24, 25]). Using
the µ-bases method, Chen et al. [7] gave an implicitization algorithm for the rational
ruled surface. The univariate resultant was also used to compute the implicit equations
efficiently [19, 24]. For a given rational ruled surface, people could find a simplified
reparametrization which did not contain any non-generic base point and had a pair of
directrices with the lowest possible degree [6]. Busé and Dohm studied the ruled surface
using µ-bases [5, 11] respectively. Li et al. [16] computed a proper reparametrization
of an improper parametric ruled surface. Andradas et al. presented an algorithm to
decide whether a proper rational parametrization of a ruled surface could be properly
reparametrized over a real field [1]. The ruled surfaces had been used for geometric
modeling of architectural freeform design in [17]. The collision and intersection of the
ruled surfaces were discussed in [8, 25]. And S. Izumiya [15] studied the cylindrical
helices and Bertrand curves on ruled surfaces. In these papers, the ruled surface was
given in standard parametric form Q(t1, t2) =M(t1) + t2N (t1) ∈ K(t1, t2)

3. It means
the rational ruled surface was preassigned in the discussions. But in general modeling
design, such as data fitting, the type of approximate surface may be not known. Then
a problem is, for a given parametric surface not being standard form of the ruled
surface, how to determine whether it is a ruled surface. If the answer is affirmative,
the successive problem is then to find a standard parametric form. In this paper, we
would like to consider the determination and reparametrization of the parametric ruled
surface.

Go back to parametrization, the implicit surfaces are often introduced in the al-
gebraic analysis. And they can also come directly from modeling design since they
have more geometrical features and topologies than those of the parametric surfaces
(see [12, 26]). As we know, there was no paper discussing the parametrization of an
implicit rational ruled surface. Here, we would like to consider the parametrization
problem of the ruled surface. Precisely, for a given algebraic surface, we first deter-
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mine whether it is a rational ruled surface, and in the affirmative case, we compute a
rational parametrization in standard form. Our discussion is benefited from the stan-
dard presentation of the rational ruled surface. Since the parameter t2 is linear, we
can construct a birational transformation to simply the given parametrization. By the
linearity again, t2 is always solvable such that we can project the surface to the rational
parametric curve. And these two principal techniques help us to give the determination
and (re)parametrization algorithms. The main theorems are all proved constructively,
and the algorithms are then presented naturally.

The paper is organized as follows. First, some necessary preliminaries are presented
in Section 2. In Section 3, we determine whether a given implicit surface is a rational
ruled surface, and in the affirmative case, we compute a rational parametrization in
standard form for it. In Section 4, we focus on the parametric surface, including
determination and reparametrization. Finally, we conclude with Section 5, where we
propose topics for further study.

2. Preliminaries on Ruled Surfaces

Let V be a ruled surface defined by the polynomial f(x ) ∈ K[x ], x = (x1, x2, x3)
where K is an algebraically closed field of characteristic zero.

A standard parametrization of a rational ruled surface V is given by a parametrization
of the form

Q( t ) = (m1(t1) + t2n1(t1),m2(t1) + t2n2(t1),m3(t1) + t2n3(t1)) ∈ K( t )3, t = (t1, t2)
(1)

where there exists at least one i ∈ {1, 2, 3} such that ni 6= 0 (otherwise, V degenerates
to a space curve). We refer to Q as the standard form parametrization of V .

Note that if n3 6= 0, the surface V admits a parametrization of the form

P3( t ) = (p13(t1) + t2q13(t1), p23(t1) + t2q23(t1), t2) ∈ K( t )3, (2)

where qk3 = nk/n3 6= 0, for some k = 1, 2. Such a parametrization is p obtained by

performing the birational transformation (t1, t2)→
(
t1,

t2−m3(t1)
n3(t1)

)
.

One may reason similarly as above, if n1 6= 0 or n2 6= 0. Thus, in the following, we
refer to parametrization P i as the standard reduced form parametrization of V .

Under these conditions, and taking into account that P3 parametrizes the surface V
implicitly defined by the polynomial f(x ), we distinguish two different cases:

• If n1n2n3 6= 0, then q13q23 6= 0, and

P3(t1, 0) = (p13, p23, 0), P3

(
t1,−

p13
q13

)
=

(
0, p23 −

p13
q13

q23,−
p13
q13

)
,
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P3

(
t1,−

p23
q23

)
=

(
p13 −

p23
q23

q13, 0,−
p23
q23

)
.

parametrize three rational planar curves with implicit equations as factors of the
polynomials

f 12
0 (x1, x2) = f(x1, x2, 0), f 23

0 (x2, x3) = f(0, x2, x3), f 13
0 (x1, x3) = f(x1, 0, x3),

respectively. We denote by Cij these rational curves, where ij ∈ {12, 23, 13}.

• Let us assume that n2 = 0, and n1n3 6= 0. Then,

Q( t ) = (m1(t1) + t2n1(t1),m2(t1),m3(t1) + t2n3(t1)) ∈ K( t )3.

Since n3 6= 0,

P3( t ) = (p13(t1) + t2q13(t1),m2(t1), t2), q13 = n1/n3 6= 0,

and P3(t1, 0), P3
(
t1,−p13

q13

)
parametrize two rational planar curves with implicit

equations as factors of the polynomials

f 12
0 (x1, x2) = f(x1, x2, 0), f 23

0 (x2, x3) = f(0, x2, x3)

respectively. We denote by Cij these rational curves, where ij ∈ {12, 23}.

3. Implicitly Rational Ruled Surfaces

In this section, for a surface V by defined by a polynomial f(x ) ∈ K[x ] implicitly,
we analyze whether V is a rational ruled surface. In the affirmative case, we compute
a rational proper parametrization of V in the standard reduced form given by the
equation (2). For this purpose, we denote by numer(R), the numerator of a rational
function R ∈ K(x1, x2, . . . , xn).

Theorem 1. A surface V defined by a polynomial f(x ) ∈ K[x ] is a rational ruled
surface if and only if the following statements hold:

1. At least one of the three plane algebraic curves Cij, ij ∈ {12, 13, 23}, is rational
(see Section 2). Let ij = 12, and let P12 = (p1, p2) ∈ K(t1)

2 be a rational proper
parametrization of the rational plane curve C12 defined by the factor of f 12

0 .

2. Let g(x1, x2, x3, t2) = numer(f(p1(x3) + t2x1, p2(x3) + t2x2, t2)). There exist
(q1, q2) ∈ K(t1)

2 and S ∈ K(t1) \ K such that

P( t ) = (p1(S(t1)) + t2q1(t1), p2(S(t1)) + t2q2(t1), t2)

is a rational proper parametrization of V, where M(t1) := (q1(t1), q2(t1), S(t1))
is proper and g(M(t1), t2) = 0.
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Proof. It is clear that if statements 1 and 2 hold, then V is a rational ruled surface.
Reciprocally, let V be a rational ruled surface. Then a parametrization of V is given
by the standard form parametrization (1). That is,

Q( t ) = (m1(t1) + t2n1(t1),m2(t1) + t2n2(t1),m3(t1) + t2n3(t1)) ∈ K( t )3.

We assume that n3 6= 0 (see Section 2 and Remark 1). Thus, Q(t1,−m3/n3)
parametrizes C12, and statement 1 holds. Let us prove that statement 2 holds. For this
purpose, we consider P12 = (p1, p2) ∈ K(t1)

2 a rational proper parametrization of C12.
In addition, since n3 6= 0, V admits a standard reduced form parametrization given in
the equation (2) (see Section 2). That is,

P3( t ) = (p13(t1) + t2q13(t1), p23(t1) + t2q23(t1), t2) ∈ K( t )3.

We assume w.l.o.g. that P3 is proper (otherwise, it can be easily reparametrized
using the results in [16]). Observe that P3(t1, 0) = (p13, p23) ∈ K(t1)

2 is a rational
parametrization of C12. Then, since P12 is a proper parametrization of C12, there
exists S ∈ K(t1) \ K such that P12(S) = (p1(S), p2(S)) = (p13, p23). Thus, since P3

parametrizes properly V , we have that

P( t ) := (p1(S(t1))+t2q1(t1), p2(S(t1))+t2q2(t1), t2) ∈ K( t )3, where (q1, q2) = (q13, q23)

is a proper parametrization of V (note that P = P3), and (q1, q2) ∈ K(t1)
2, S ∈

K(t1)\K satisfy that g(q1(t1), q2(t1), S(t1), t2) = numer(f(p1(S(t1))+t2q1(t1), p2(S(t1))+
t2q2(t1), t2)) = 0. Observe that since P is proper, thenM is proper. Indeed: ifM is not
proper, there exists α(s1) ∈ K(s1), α(s1) 6= s1 such that M(α(s1)) =M(s1) (K(s1) is
the algebraic closure of K(s1), and s1 is a new variable). Then, P(α(s1), s2) = P(s1, s2)
and α(s1) 6= s1, which is impossible since P is proper

Geometrically speaking, conditions in Theorem 1 involve to determine a rational
planar base curve of the ruled surface with parameterization (p1, p2, 0) (see statement
1), and to compute the ruling direction of the ruled surface with parameterization
(q1, q2, 1) (see statement 2). The function S is for coordinating the parameterization
of the base curve and the ruling direction so that the parameterization of the ruled
surface is in the required reduced form.

Remark 1. Note that in Theorem 1, we assume that C12 is the rational plane curve
satisfying statement 1. In addition, in the proof of theorem, when a rational ruled
surface is given, we consider a parametrization Q in standard form (1) such that
n3 6= 0 (from this assumption, we have that Q(t1,−m3/n3) parametrizes C12).
Theorem 1 can be proved similarly if a different rational plane curve Cij is considered
in statement 1, and a different polynomial ni satisfies that ni 6= 0 (see Section 2). In
addition, if n1 6= 0, we get that g(x , t2) = numer(f(t2, p1(x3) + t2x1, p2(x3) + t2x2)),
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and if n2 6= 0, we get that g(x , t2) = numer(f(p1(x3) + t2x1, t2, p2(x3) + t2x2)).

In the following, we assume that n3 6= 0, and then we are in the conditions of The-
orem 1. This requirement can always be achieved by applying a linear transformation
to V, and therefore it is not a loss of generality for our purposes since one can always
undo the linear transformation once P has been computed.

In Corollary 1, we prove that statement 2 in Theorem 1 is equivalent to check the
rationality of a space curve D, and to compute, in the affirmative case, a rational
proper parametrization of D.

Corollary 1. Let V be a surface defined by a polynomial f(x ) ∈ K[x ] and such that
statement 1 in Theorem 1 holds. V is a rational ruled surface if and only if the coeffi-
cients of the polynomial g(x , t2) w.r.t. the variable t2 define a rational space curve D.
In this case, M(t1) := (q1(t1), q2(t1), S(t1)) ∈ K(t1)

3, where S 6∈ K, is a rational proper
parametrization of D.

Proof. First, we write

g(x , t2) = h0(x ) + h1(x )t2 + · · ·+ hn(x )tn2 ,

and we prove that h0 = 0, the only factor in K[t2] dividing g is tr2 for some r ∈ N, and
there exist at least two different nonzero polynomials hi and hj. Indeed:

a. h0 = 0: since g(x , t2) = numer(f(p1(x3) + t2x1, p2(x3) + t2x2, t2)), and
f(p1(x3), p2(x3), 0) = 0, we deduce that t2 divides g.

b. The only factor in K[t2] dividing g is tr2, r ∈ N: let c ∈ K \ {0} be such that
g(x , c) = 0. Since g(x , t2) = numer(f(p1(x3) + t2x1, p2(x3) + t2x2, t2)), we
deduce that f(p1(x3) + cx1, p2(x3) + cx2, c) = 0, for every x1, x2. Then, V is the
plane defined by the equation x3 − c = 0 which is impossible because we have
assumed that n3 6= 0.

c. There exist at least two different nonzero polynomials hi and hj. Let us assume
that this statement does not hold. From statement b, this implies that g(x , t2) =
tr2h(x ). In addition, reasoning as in statement b, we have that h 6= 0. From the
equality

g(x , t2) = numer(f(p1(x3) + t2x1, p2(x3) + t2x2, t2)) = tr2h(x ),

and deriving w.r.t. x1, x2, x3, we get that, up to factors in K[x3] \ {0},

fx1(p1(x3) + t2x1, p2(x3) + t2x2, t2)t2 = tr2hx1(x ),

fx2(p1(x3) + t2x1, p2(x3) + t2x2, t2)t2 = tr2hx2(x ),

fx1(p1(x3)+t2x1, p2(x3)+t2x2, t2)p
′
1+fx2(p1(x3)+t2x1, p2(x3)+t2x2, t2)p

′
2 = tr2hx3(x ),
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where fvar represents the partial derivative of a polynomial f w.r.t. the variable
var. Thus, up to factors in K[x3] \ {0},

hx1(x )p′1(x3) + hx2(x )p′2(x3) = t2hx3(x )

which implies that hx3 = 0, and then h ∈ K[x1, x2]. Hence,

g(x , t2) = numer(f(p1(x3) + t2x1, p2(x3) + t2x2, t2)) = tr2h(x1, x2).

Let ηi = (ai, bi) ∈ K2 be such that h(ηi) = 0, i = 1, 2, and η1 6= η2. Then,
g(ai, bi, x3, t2) = numer(f(p1(x3) + t2ai, p2(x3) + t2bi, t2)) = 0, and thus Qi =
(p1(x3)+ t2ai, p2(x3)+ t2bi, t2) parametrizes V which implies that Q1(U, V ) = Q2,
where (U, V ) ∈ (K(t1) \ K)2. Thus, V = t2 and η1 = η2 which is impossible.
Therefore, there are not two different points on the curve defined by h. Hence,
h ∈ K \ {0} and then, up to constants in K \ {0},

g(x , t2) = numer(f(p1(x3) + t2x1, p2(x3) + t2x2, t2)) = tr2.

This is impossible, because if we consider η := (a1, a2, a3) ∈ K3, a3 6= 0, with
f(η) = 0 (observe that this point exists because n3 6= 0, and then V is not
the plane x3 = 0), we have that f(p1(x3) + a3x

0
1, p2(x3) + a3x

0
2, a3) = 0, where

x0j = (aj − pj(x3))/a3, j = 1, 2. Thus, g(x01, x
0
2, x3, a3) = ar3 = 0 which is a

contradiction.

Now, we are ready to prove the corollary. First, if V is a rational ruled surface, s-
tatement 2 in Theorem 2 holds, and then g(M(t1), t2) = 0 and M is proper. Since
M(t1) ∈ K(t1)

3 does not depend on t2, we get hi(M) = 0, i ∈ {0, . . . , n} which im-
plies that M is a rational proper parametrization of the space curve D defined by
the polynomials hi, i ∈ {0, . . . , n} (see statements a, b, c above). That is, the co-
efficients of the polynomial g(x , t2) w.r.t. t2 define a rational space curve D, and
M(t1) = (q1(t1), q2(t1), S(t1)) ∈ K(t1)

3, where S 6∈ K, is a rational proper parametriza-
tion of D.
Reciprocally, let (U(t1), V (t1),W (t1)) ∈ K(t1)

3 be a rational proper parametriza-
tion of D. Then, hi(U, V,W ) = 0, i ∈ {0, . . . , n} which implies that
g(U(t1), V (t1),W (t1), t2) = 0. Hence, f(P) = 0, where

P( t ) = (p1(W (t1)) + t2U(t1), p2(W (t1)) + t2V (t1), t2) .

Remark 2. From the proof in Corollary 1, we have that

g(x , t2) = tr2(h1(x ) + · · ·+ hm+1(x )tm+1
2 ), r,m ∈ N,

and there exist at least two polynomials, hi, hj, such that hi 6= hj. Under these condi-
tions, the space curve D is defined at least by the polynomials hi and hj. Taking into
account that any space curve can be birationally projected onto a plane curve, one may
apply the results in Chapter 6 in [23] to compute the rational proper parametrization
of D, M(t1) = (q1(t1), q2(t1), S(t1)).
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In the following corollary, we prove that the properness of the output parametriza-
tion in Theorem 1 is equivalent to the properness of the parametrization of the space
curve in Corollary 1.

Corollary 2. Let V be a ruled surface defined by a polynomial f(x ) ∈ K[x ]. Let P∗
be the output parametrization of Theorem 2, and M∗(t1) := (q∗1(t1), q

∗
2(t1), S

∗(t1)) a
parametrization of the space curve D (see Corollary 1). It holds that P∗ is proper if
and only if (R∗, S∗) is proper.

Proof. Since V is a ruled surface, we have that Theorem 1 and Corollary 1 hold. In
particular, P( t ) = (p1(S(t1)) + t2q1(t1), p2(S(t1)) + t2q2(t1), t2) is a rational proper
parametrization of V , and M(t1) := (q1(t1), q2(t1), S(t1)) is a proper parametrization
of D. Since M∗ is a parametrization of D, there exists L ∈ K(t1) \ K such that
M∗(t1) = M(L(t1)) and then, P(L(t1), t2) = P∗(t1, t2), where P∗( t ) = (p1(S

∗(t1)) +
t2q
∗
1(t1), p2(S

∗(t1)) + t2q
∗
2(t1), t2). Using this facts and that P is proper, we get that P∗

is proper if and only if (L(t1), t2) is proper which is equivalent to L(t1) is linear (see
Lemma 4.32 in [23]). Taking into account that M∗ = M(L) and that M is proper,
we get that L is linear if and only ifM∗ is proper. Therefore, P∗ is proper if and only
if M∗ is proper.

Taking into account Theorem 1 and Corollaries 1 and 2, one may check whether
V is a rational ruled surface, and in the affirmative case to compute a rational proper
parametrization in standard reduced form (2).

Algorithm 1: Parametrization of a Rational Ruled Surface

• Input: A surface V defined by an irreducible polynomial f(x ) ∈ K[x ].

• Output: the message “V is not a rational ruled surface” or a prop-
er parametrization P of “the rational ruled surface V in the reduced

standard form”.

1. Check whether any component of the curve defined by the polynomial f ij
0 , for

ij ∈ {12, 13, 23}, is rational. In the affirmative case, assume that ij = 12 (see
Remark 1), and go to Step 2. Otherwise, Return “V is not a rational

ruled surface”.

2. Compute P12 = (p1, p2) ∈ K(t1)
2 a rational proper parametrization of C12 (see

Remark 4).

3. Let g(x , t2) = numer(f(p1(x3) + t2x1, p2(x3) + t2x2, t2)). Check whether the
coefficients of g(x , t2) w.r.t. the variable t2 define a rational space curve D.
In the affirmative case, compute M = (q1, q2, S) ∈ K(t1)

3 a rational proper
parametrization of D (see Remark 2), and Return

P = (p1(S(t1)) + t2q1(t1), p2(S(t1)) + t2q2(t1), t2) ∈ K( t )3
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“is a proper parametrization”. Otherwise, go to Step 1, and consider a dif-
ferent rational component, and apply again the algorithm. If there have no more
rational components, Return “V is not a rational ruled surface”.

Remark 3. If P12 and M have coefficients in a field L, then the output parametriza-
tion P also has coefficients in L. Then, in particular, if we compute the proper
parametrizations, P12 and M, in the smallest possible field extension of the ground
field (see Chapter 5 in [23]), the output parametrization P belongs to this smallest
possible field extension. For practical applications, we may consider a surface over the
real field R and to compute P with real coefficients, if it is possible. For this purpose,
we may apply the results in [23] (see Chapter 7), and compute P12 and M over the
reals (if it is possible). In this sense, we observe that we get a proper parametrization
in the standard reduced form over R (if it exists). Compare with the results in [1],
where an algorithm to decide whether a proper rational parametrization of a ruled
surface can be properly reparametrized over R is presented. The output in this paper is
not necessarily given in the standard form.

Finally we observe that if P12 and M are polynomials (see Section 6.2 in [23]), then
P is also polynomial.

Remark 4. Finding the rational parameterization of a plane algebraic curve or a space
curve is frequently involved in the main algorithms of the paper. In most of cases, we
are using the algorithms presented in [23] (see Chapters 4, 5 and 6). We explicitly
refer the algorithm used in each computation. However, alternative parametrization
algorithms can be constructed from different methods (see e.g. [14] and [27]). Some
references as well as a brief comparison of the existing methods can be found in [23].

In the following, we illustrate Algorithm 1 with two examples.

Example 1. Consider the surface V over the complex field C defined by the polynomial
f(x ) = x21 + x22 + x23 − 1. Let us apply Algorithm 1. For this purpose, we first observe
that f(x1, x2, 0) = x21 + x22 − 1 is a rational plane curve, and we compute a rational
proper parametrization of this curve

P12(t1) = (p1(t1), p2(t1)) =

(
2t1
t21 + 1

,
t21 − 1

t21 + 1

)
∈ R(t1)

2.

Now, we compute the polynomial g(x , t2) = numer(f(p1(x3) + t2x1, p2(x3) + t2x2, t2)),
and we get

g(x , t2) = t2(2x
2
3x2 + t2x

2
2x

2
3 + t2x

2
3 + t2x

2
1x

2
3 + 4x3x1 + t2 + t2x

2
1 + t2x

2
2 − 2x2).
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The coefficients of the polynomial g(x , t2) w.r.t. the variable t2, are

h1(x ) = 2x2x
2
3 + 4x3x1 − 2x2, h2(x ) = x21x

2
3 + x22x

2
3 + x23 + x21 + x22 + 1.

Note that gcd(h1, h2) = 1. These polynomials define implicitly the rational space curve
D. We compute a rational proper parametrization of D:

M(t1) = (q1(t1), q2(t1), S(t1)) =

(
I(1 + t21)

2t1
,
−1 + t21

2t1
,−I(−1 + t1)

1 + t1

)
∈ C(t1)

3.

Thus, P = (p1(S(t1)) + t2q1(t2), p2(S(t1)) + t2q2(t2), t2) =(
I(1− t21 + t2 + t2t

2
1)

2t1
,
−1− t21 − t2 + t2t

2
1

2t1
, t2

)
∈ C( t )3

“is a proper parametrization”. Taking into account Remark 3, we conclude that
V has not a parametrization over R in standard reduced form. However, one may apply
results in [1] to decide whether V can be parametrized over the reals and to compute,
in the affirmative case, a real parametrization.

Example 2. Let V be a surface defined by the polynomial

f(x ) = −49x2x
3
1 − 799x3x2x

2
1 + 20x2x

2
1 + 2x22x

2
1 + 980x3x

2
1 − 2205x23x

2
1 + x32x1 −

33750x33x1− 400x3x1 + 606x3x2x1− 5x22x1− 68x3x
2
2x1− 1747x23x2x1− 25x23x1 + x32x3−

25x22x
2
3 + 1396x2x

2
3 − 1120x23 − 48915x43 − 5190x33 − 4237x2x

3
3 − 14x22x3 ∈ C[x ].

Let us apply Algorithm 1. We observe that f 12
0 (x1, x2) = −x1x2(49x21 − 20x1 − 2x1x2 −

x22 + 5x2). The curve defined by the equation 49x21 − 20x1 − 2x1x2 − x22 + 5x2 = 0 is
rational. We compute a rational proper parametrization of this curve,

P12(t1) = (p1(t1), p2(t1)) =

(
−
√

2t1(−5 + t1)

5(4t1 − 10 + 5
√

2)
,
(50 + 5

√
2)t1(−20 + 100

√
2 + 49t)

1225(4t1 − 10 + 5
√

2)

)
.

Now, we determine the polynomial g(x , t2) = numer(f(p1(x3)+t2x1, p2(x3)+t2x2, t2)),
and consider the space curve D defined by the coefficients of g w.r.t. t2. By Remark 2,
D is rational and then, we compute a rational proper parametrization of D:

M(t1) = (q1(t1), q2(t1), S(t1)) =

(
25− 6t1 − 25

√
2 + 5

√
2t1

t1
,
−9t1(1 +

√
2)

−5 + t1
, t1

)
.

Thus, P( t ) = (p1(t1) + t2q1(t2), p2(t1) + t2q2(t2), t2) =(
−5
√

2t21 +
√

2t31 − 1050t2t1 + 120t2t
2
1 + 900t2t1

√
2− 100t2t

2
1

√
2 + 2500t2 − 1875t2

√
2

5t1(−4t1 + 10− 5
√

2)
,

t1(15
√

2t1 − 100
√

2− 50t1 + 10t21 +
√

2t21 − 180t2t1 − 180t2t1
√

2 + 225t2
√

2)

5(−5 + t1)(4t1 − 10 + 5
√

2)
, t2

)
“is a proper parametrization over R”.
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3.1. Implicitly Rational Ruled Surfaces: A New Approach

In this section, we present a new result that characterizes rational ruled surfaces
defined implicitly. From this result, we obtain a new algorithm that allows to analyze
whether V is a rational ruled surface and in the affirmative case, to compute a rational
parametrization of V . In this new approach, instead to decide whether the polynomial
g defines a rational space curve D, we only need to decide whether a new polynomial,
constructed directly from two rational parametrizations of two plane curves, defines
a rational plane curve. That is, we do not need to work on the space. This new ap-
proach plays an important role to deal with surfaces defined parametrically in Section 4.

In the following new approach, we need to assume that V is not the plane xi − c =
0, c ∈ C for i = 1, 2, 3, and V is not a cylinder over any of the coordinate planes of
K3. That is, degxi

(f) > 0, for i = 1, 2, 3. If degx3
(f) = 0 (similarly if degx1

(f) = 0
or degx2

(f) = 0), we may compute a proper parametrization (p(t1), q(t1)) of the plane
curve defined by the polynomial f(x1, x2) = 0. Then, P( t ) = (p(t1), q(t1), t2) ∈ K( t )3

is a proper parametrization of V .

Under these conditions, and taking into account Section 2, we get that a proper
parametrization of a rational ruled surface V , that is not a cylinder neither a plane, is
given by the standard form parametrization given in the equation (1), where at least
there exist i, j ∈ {1, 2, 3}, i 6= j, such that ninj 6= 0. We note that if we do not assume
that V is not a plane xi − c = 0, c ∈ C for i = 1, 2, 3, and V is not a cylinder over any
of the coordinate planes, we only can ensure that there exists i ∈ {1, 2, 3} such that
ni 6= 0 (if n1 = n2 = n3 = 0, then Q parametrizes a space curve).

In Theorem 2, we characterize whether a surface defined implicitly is a rational
ruled surface by analyzing the rationality of two plane curves defined directly from
the input surface. In addition, from the parametrization of these plane curves, we can
compute a rational proper parametrization of the ruled surface.

Theorem 2. A surface V defined by a polynomial f(x ) ∈ K[x ] is a rational ruled
surface if and only if the following statements hold:

1. At least two of the plane algebraic curves Cij, ij ∈ {12, 13, 23}, are rational (see
Section 2). Let us assume that C12 and C23 are rational, and let P12 = (p1, p2) ∈
K(t1)

2, P23 = (p̃1, p̃2) ∈ K(t1)
2 be rational proper parametrizations of C12 and C23,

respectively.

2. If p1 6= 0, there exist (R(t1), S(t1)) ∈ (K(t1) \ K)2 such that one of the following
statements holds:

2.1. f(P) = 0, where

P( t ) =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)) + t2

p̃1(R(t1))− p2(S(t1))

p̃2(R(t1))
, t2

)
11



is a rational proper parametrization of V, and (R, S) is proper.

2.2. f (P) = 0, where

P( t ) =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)), t2

)
is a rational proper parametrization of V, and (R, S) is proper.

3. If p1 = 0, there exist R(t1) ∈ K(t1) \ {0}, and S(t1) ∈ K(t1) \ K such that one of
the following statements holds:

3.1. f(P) = 0, where
P( t ) =

(
t2

q1(S(t1))
q2(S(t1))

, R(t1)− t2 R(t1)
q2(S(t1))

, t2

)
,

if P13 = (q1, q2), q2 6= 0 is a
proper parametrization of C13

P( t ) = (t2S(t1), t2R(t1), t2), R 6∈ K
if P13 = (t1, 0) is a
parametrization of C13

is a rational proper parametrization of V, and (R, S) is proper.

3.2. f(P) = 0, where

P( t ) = (t2S(t1), R(t1), t2) ∈ K( t )3, R 6∈ K

is a rational proper parametrization of V, and (R, S) is proper.

Proof. It is clear that if statements 1 and 2 (or 3) hold, then V is a rational ruled
surface. Reciprocally, let V be a rational ruled surface. Then, a parametrization of V
in the standard form is

Q( t ) = (m1(t1) + t2n1(t1),m2(t1) + t2n2(t1),m3(t1) + t2n3(t1)) ∈ K( t )3.

We assume that n1n3 6= 0 (see Section 2, and Remark 5). Thus, Q(t1,−m1/n1)
parametrizes C23, and Q(t1,−m3/n3) parametrizes C12. Hence, statement 1 holds. Let
us prove that statement 2 holds. For this purpose, we consider P12 = (p1, p2) ∈ K(t1)

2,
P23 = (p̃1, p̃2) ∈ K(t1)

2 two rational proper parametrizations of C12 and C23, respec-
tively. We distinguish two different cases depending on whether p1 6= 0 or p1 = 0.

1. Let p1 6= 0. Thus, again we distinguish two cases:

a. Let n2 6= 0. From the results in Section 2, the surface V admits a
parametrization in standard reduced form

P3( t ) = (p13(t1) + t2q13(t1), p23(t1) + t2q23(t1), t2) ∈ K( t )3,

12



such that qj3 = nj/n3 6= 0, j = 1, 2 (note that n1n2n3 6= 0). We assume that
P3 is proper (otherwise, it can be easily reparametrized using the results in
[16]). Observe that P3(t1, 0) = (p13, p23) ∈ K(t1)

2 is a rational parametriza-
tion of C12. Then, since P12 is a rational proper parametrization of C12,
there exits S ∈ K(t1) \ K such that P12(S) = (p1(S), p2(S)) = (p13, p23). In
addition, since P23 = (p̃1, p̃2) ∈ K(t1)

2 is a rational proper parametrization
of C23 and

P3(t1,−p13/q13) = P3(t1,−p1(S)/q13) = (p2(S)− q23p1(S)/q13,−p1(S)/q13)

is a rational parametrization of C23, there exists R ∈ K(t1) \ K such that

p̃1(R) = p2(S)− q23p1(S)/q13, and p̃2(R) = −p1(S)/q13.

Note that since p1 6= 0 and S,R ∈ K(t1) \ K, then p̃2(R) 6= 0. Then

q13 =
−p1(S)

p̃2(R)
, and q23 =

p̃1(R)− p2(S)

p̃2(R)
.

Since P3 parametrizes properly V , we have that f(P) = 0, where P is the
proper parametrization (note that P = P3)

P( t ) =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)) + t2

p̃1(R(t1))− p2(S(t1))

p̃2(R(t1))
, t2

)
.

We observe that since P is proper, then (R, S) is proper. Indeed: if
(R, S) is not proper, there exists α(s1) ∈ K(s1), α(s1) 6= s1 such that
(R(α(s1)), S(α(s1))) = (R(s1), S(s1)) (K(s1) is the algebraic closure of K(s1),
and s1 is a new variable). Then, P(α(s1), s2) = P(s1, s2) and α(s1) 6= s1,
which is impossible since P is proper.

b. Let n2 = 0. From the results in Section 2, the surface V admits a
parametrization

P3( t ) = (p13(t1) + t2q13(t1),m2(t1), t2),

such that q13 = n1/n3 6= 0 (note that n1n3 6= 0). We assume that P3 is prop-
er. Observe that P3(t1, 0) = (p13,m2) ∈ K(t1)

2 is a rational parametrization
of C12. Then, since P12 is a rational proper parametrization of C12, there ex-
ists S ∈ K(t1)\K such that P12(S) = (p1(S), p2(S)) = (p13,m2). In addition,
since P23 = (p̃1, p̃2) ∈ K(t1)

2 is a rational parametrization of C23 and

P3(t1,−p13/q13) = P3(t1,−p1(S)/q13) = (p2(S),−p1(S)/q13)

is a rational parametrization of C23, there exists R ∈ K(t1) \ K such that

p̃1(R) = p2(S), and p̃2(R) = −p1(S)/q13.
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Note that since p1 6= 0 and S,R ∈ K(t1) \ K, then p̃2(R) 6= 0. Hence,

p2(S) = p̃1(R), and q13 =
−p1(S)

p̃2(R)
.

Since P3 parametrizes properly V , we have that f (P) = 0, where P is the
proper parametrization (P = P3)

P( t ) =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)), t2

)
.

Finally, reasoning as in statement a above, we prove that (R, S) is proper.

2. Let p1 = 0. From the above proof, we have p̃2 = p13 = 0, and the surface V
admits a proper parametrization

P3( t ) = (t2q13(t1), p23(t1) + t2q23(t1), t2) ∈ K( t )3, qi3 =
ni

n3

, i = 1, 2, q13 6= 0.

We assume that P3 is proper. Under these conditions, we distinguish two different
cases.

a. Let n2 6= 0. Then q23 = n2/n3 6= 0, and P3(t1,−p23/q23) =
(−q13p23/q23,−p23/q23) ∈ K(t1)

2 is a rational parametrization of C13. Let
P13 = (q1, q2) be a rational proper parametrization of C13. Thus, there
exists S ∈ K(t1) \ K such that

P13(S) = (q1(S), q2(S)) = (−q13p23/q23,−p23/q23).

a.1. If q2 6= 0, since S 6∈ K we get that q2(S) 6= 0, and then

q13 =
q1(S)

q2(S)
, and q23 = − p23

q2(S)
.

Since P3 parametrizes properly V , we have that f(P) = 0, where P is
the proper parametrization (P = P3)

P( t ) =

(
t2
q1(S(t1))

q2(S(t1))
, R(t1)− t2

R(t1)

q2(S(t1))
, t2

)
, R(t1) := p23(t1).

Note that R 6= 0 because V is not the plane x2 = 0 (see Section 2).
Finally, reasoning as in statement 1, we prove that (R, S) is proper.

a.2. If q2 = 0, then p23 = 0 and since P3 parametrizes properly V , we have
that f(P) = 0, where P is the proper parametrization

P( t ) = (t2S(t1), t2R(t1), t2) ∈ K( t )3, S := q13, R := q23.

Note that S,R 6∈ K since V is not a cylinder over the coordinate planes
(see Section 2). Finally, reasoning as in statement 1, we prove that
(R, S) is proper.
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b. If n2 = 0. Then q23 = n2/n3 = 0, and since P3 parametrizes properly V , we
have that f(P) = 0, where P is the proper parametrization

P( t ) = (t2S(t1), R(t1), t2) ∈ K( t )3, S := q13, R := p23.

Note that S,R 6∈ K since V is not a cylinder over the coordinate planes, and
V is not the plane x2− c = 0, c ∈ K (see Section 2). Finally, reasoning as in
statement 1, we prove that (R, S) is proper.

Geometrically speaking and similarly to Theorem 1, conditions in Theorem 2 in-
volve to compute two planar parametrizations (see statement 1) that will be used to
determine a rational planar base curve of the ruled surface and to compute the ruling
direction of the ruled surface (see statement 2). The functions S,R are for coordi-
nating the parameterization of the base curve and the ruling direction so that the
parameterization of the ruled surface is in the required reduced form.

Remark 5. Theorem 2 can be proved similarly if a different pair of rational plane
curves Cij are considered in statement 1, and if a different pair of polynomials ni, nj

satisfies that ninj 6= 0 (see Section 2).

In the following, we assume that n1n3 6= 0, and that C12 and C23 are the two rational
plane curves satisfying statement 1 in Theorem 2. This requirement can always be
achieved by applying a linear transformation to V without loss of generality.

In Corollary 3, we prove that statements 2 and 3 in Theorem 2 are equivalent to
check the rationality of a plane curve, and to compute, in the affirmative case, a rational
parametrization. For this purpose, we use the notion of content and primitive part of a
polynomial. More precisely, given a nonzero polynomial a(x1, . . . , xn) ∈ I[x1, . . . , xn],
where I is a unique factorization domain, the content of a w.r.t. x := (x1, . . . , xj), j ≤
n is the gcd of all the coefficients of a(x ) w.r.t. x . We denote it by Contentx (a).
Observe that Contentx (a) divides the polynomial a. In addition, we denote by ppx (a)
the primitive part of a w.r.t. x . We have that a(x ) = Contentx (a) ppx (a), and it
holds that the gcd of all coefficients of ppx (a) is 1 (see [29]).

Finally, using the notation introduced in Theorem 2, we consider the polynomials
Ni(x1, x2) = Contentt2(gi), i ∈ {1, . . . , 5}, where

g1(x1, x2, t2) = numer

(
f

(
p1(x2)− t2

p1(x2)

p̃2(x1)
, p2(x2) + t2

p̃1(x1)− p2(x2)
p̃2(x1)

, t2

))
,

g2(x1, x2, t2) = numer

(
f

(
p1(x2)− t2

p1(x2)

p̃2(x1)
, p2(x2), t2

))
,
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g3(x1, x2, t2) = numer

(
f

(
t2
q1(x2)

q2(x2)
, x1 − t2

x1
q2(x2)

, t2

))
,

g4(x1, x2, t2) = f (t2x2, t2x1, t2) , and g5(x1, x2, t2) = f (t2x2, x1, t2) .

Under these conditions, we prove the following corollary.

Corollary 3. Let V be a surface defined by a polynomial f(x ) ∈ K[x ] and such that
statement 1 in Theorem 2 holds. V is a rational ruled surface if and only if for some
i ∈ {1, . . . , 5}, there exists a factor of Ni defining a rational plane curve CNi

. In this
case, (R(t1), S(t1)) ∈ K(t1)

2, where S 6∈ K, is a rational proper parametrization of CNi
.

Proof. Let us prove that statement 2.1 in Theorem 2 is equivalent to the existence of
a factor of N1 defining a rational plane curve CN1 . For this purpose, we write

g1(x1, x2, t2) = h0(x1, x2) + h1(x1, x2)t2 + · · ·+ hn(x1, x2)t
n
2 .

Observe that since

g1(x1, x2, t2) = numer

(
f

(
p1(x2)− t2

p1(x2)

p̃2(x1)
, p2(x2) + t2

p̃1(x1)− p2(x2)
p̃2(x1)

, t2

))
,

and f(p1(x2), p2(x2), 0) = 0, then t2 divides g1. Thus, h0 = 0.
First, we note that if f(P) = 0, where

P( t ) =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)) + t2

p̃1(R(t1))− p2(S(t1))

p̃2(R(t1))
, t2

)
,

then there exists (R(t1), S(t1)) ∈ (K(t1) \ K)2 proper such that g1(R(t1), S(t1), t2) = 0.
Since (R(t1), S(t1)) does not depend on t2, we get that hj(R, S) = 0, j = 1, . . . , n.
Then, h(x1, x2) divides N1(x1, x2) = gcd(h1, . . . , hn), where h is the implicit polynomial
defining the curve parametrized by (R, S). Therefore, N1(R, S) = 0 and (R, S) is
a rational proper parametrization of the plane curve CN1 defined by a factor of the
polynomial N1.
Reciprocally, let Q(t1) = (U(t1), V (t1)) ∈ K(t1)

2 be such that N1(Q) = 0 and Q is
proper. Since N1 divides g1, we deduce that g1(U(t1), V (t1), t2) = 0. Hence, f(P) = 0,
where

P( t ) =

(
p1(V (t1))− t2

p1(V (t1))

p̃2(U(t1))
, p2(V (t1)) + t2

p̃1(U(t1))− p2(V (t1))

p̃2(U(t1))
, t2

)
.

One reasons similarly to prove that statement 2.2 in Theorem 2 is equivalent to the
existence of a factor of N2 defining a rational plane curve CN2 , that statement 3.1 in
Theorem 2 is equivalent to the existence of a factor of N3 or N4 defining a rational plane
curve CN3 or CN4 , and that statement 3.2 in Theorem 2 is equivalent to the existence
of a factor of N5 defining a rational plane curve CN5 .
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In the following corollary, we prove that the properness of the output parametriza-
tion in Theorem 2 is equivalent to the properness of the parametrization of the plane
curve in Corollary 3.

Corollary 4. Let V be a ruled surface defined by a polynomial f(x ) ∈ K[x ]. Let P∗
be the output parametrization of Theorem 2, and (R∗, S∗) ∈ K(t1)

2 a parametrization
of the corresponding plane curve CNi

, i ∈ {1, . . . , 5} (see Corollary 3). It holds that P∗
is proper if and only if (R∗, S∗) is proper.

Proof. Since V is a ruled surface, we have that Theorem 2 and Corollary 3 hold. We
assume, that statement 2.1 in Theorem 2 holds (we reason similarly for the other cases).

Thus, in particular, P( t ) =
(
p1(S(t1))− t2 p1(S(t1))

p̃2(R(t1))
, p2(S(t1)) + t2

p̃1(R(t1))−p2(S(t1))
p̃2(R(t1))

, t2

)
is a rational proper parametrization of V , and (R, S) is a proper parametrization
of CN1 . Since (R∗, S∗) is a parametrization of CN1 , there exists L ∈ K(t1) \ K
such that (R∗(t1), S

∗(t1)) = (R, S)(L(t1)) and then, P(L(t1), t2) = P∗(t1, t2), where

P∗( t ) =
(
p1(S

∗(t1))− t2 p1(S∗(t1))
p̃2(R∗(t1))

, p2(S
∗(t1)) + t2

p̃1(R∗(t1))−p2(S∗(t1))
p̃2(R∗(t1))

, t2

)
. Using this fac-

t and that P is proper, we get that P∗ is proper if and only if (L(t1), t2) is proper
which is equivalent to L(t1) is linear (see Lemma 4.32 in [23]). Taking into account
that (R∗, S∗) = (R, S)(L) and that (R, S) is proper, we get that L is linear if and only
if (R∗, S∗) is proper. Hence, P∗ is proper if and only if (R∗, S∗) is proper.

From Theorem 2 and Corollaries 3 and 4, we derive the following algorithm that
decides whether V is a rational ruled surface and in the affirmative case, it computes
a rational proper parametrization of V .

Algorithm 2: Parametrization of a Rational Ruled Surface

• Input: A surface V defined by an irreducible polynomial f(x ) ∈ K[x ].

• Output: the message “V is not a rational ruled surface” or a prop-
er parametrization P of “the rational ruled surface V in the standard

reduced form”.

1. If degx3
(f) = 0 (similarly if degx1

(f) = 0 or degx2
(f) = 0), compute (p(t1), q(t1))

a parametrization of the curve defined by the polynomial f(x1, x2) = 0, and
Return P( t ) = (p(t1), q(t1), t2) ∈ K( t )3 “is a proper parametrization”.

2. Compute the polynomials f ij
0 (xi, xj), and check whether there exist two rational

plane curves Cij and Ck` defined by a factor of f ij
0 and fk`

0 , respectively, for
ij 6= k`, and ij, k` ∈ {12, 23, 13} . In the affirmative case, assume that ij = 12,
and k` = 23 (see Remark 5) and go to Step 3. Otherwise, Return “V is not

a rational ruled surface”.
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3. Compute P12 = (p1, p2) ∈ K(t1)
2, and P23 = (p̃1, p̃2) ∈ K(t1)

2 rational proper
parametrizations of C12 and C23, respectively (see Remark 4). If p1 6= 0 go to
Step 4. Otherwise, go to Step 6.

4. Check whether there exists a rational plane curve CN1 defined by a factor of the
polynomial N1(x1, x2) = Contentt2(g1), where

g1(x1, x2, t2) = numer

(
f

(
p1(x2)− t2

p1(x2)

p̃2(x1)
, p2(x2) + t2

p̃1(x1)− p2(x2)
p̃2(x1)

, t2

))
.

In the affirmative case, compute (R(t1), S(t1)) ∈ (K(t1) \ K)2 a rational proper
parametrization of CN1 , and Return

P( t ) =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)) + t2

p̃1(R(t1))− p2(S(t1))

p̃2(R(t1))
, t2

)
,

“is a proper parametrization”. Otherwise, go to Step 5.

5. Check whether there exists a rational plane curve CN2 defined by a factor of the
polynomial N2(x1, x2) = Contentt2(g2), where

g2(x1, x2, t2) = numer

(
f

(
p1(x2)− t2

p1(x2)

p̃2(x1)
, p2(x2), t2

))
.

In the affirmative case, compute (R(t1), S(t1)) ∈ (K(t1) \ K)2 a rational proper
parametrization of CN2 , and Return

P( t ) =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)), t2

)
“is a proper parametrization”. Otherwise, go to Step 2, and consider differ-
ent rational components and apply again the algorithm. If there have no more
rational components, Return “V is not a rational ruled surface”.

6. Check whether the plane curve C13 is rational. In the affirmative case, compute
P13 = (q1, q2) ∈ K(t1)

2 a rational proper parametrization of C13 (see Remark 4)
and go to Step 7. Otherwise, go to Step 8.

7. 7.1. If q2 6= 0, check whether there exists a rational plane curve CN3 defined by
a factor of the polynomial N3(x1, x2) = Contentt2(g3), where

g3(x1, x2, t2) = numer

(
f

(
t2
q1(x2)

q2(x2)
, x1 − t2

x1
q2(x2)

, t2

))
.

In the affirmative case, compute (R(t1), S(t1)) ∈ K(t1)
2,R 6= 0, S 6∈ K, a

rational proper parametrization of CN3 and Return

P( t ) =

(
t2
q1(S(t1))

q2(S(t1))
, R(t1)− t2

R(t1)

q2(S(t1))
, t2

)
,
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“is a proper parametrization”. Otherwise, go to Step 2, and con-
sider different rational components and apply again the algorithm. If
there have no more rational components, Return “V is not a rational

ruled surface”.

7.2. If q2 = 0, check whether there exists a rational plane curve CN4 defined by
a factor of the polynomial N4(x1, x2) = Contentt2(g4), where

g4(x1, x2, t2) = f (t2x2, t2x1, t2) .

In the affirmative case, compute (R(t1), S(t1)) ∈ (K(t1) \ K)2 a rational
proper parametrization of CN4 and Return

P( t ) = (t2S(t1), t2R(t1), t2) ,

“is a proper parametrization”. Otherwise, go to Step 2, and con-
sider different rational components and apply again the algorithm. If
there have no more rational components, Return “V is not a rational

ruled surface”.

8. Check whether there exists a rational plane curve CN5 defined by a factor of the
polynomial N5(x1, x2) = Contentt2(g5), where

g5(x1, x2, t2) = f (t2x2, x1, t2) .

In the affirmative case, compute (R(t1), S(t1)) ∈ (K(t1) \ K)2 a rational proper
parametrization of CN5 and Return

P( t ) = (t2S(t1), R(t1), t2) ,

“is a proper parametrization”. Otherwise, go to Step 2, and consider differ-
ent rational components and apply again the algorithm. If there have no more
rational components, Return “V is not a rational ruled surface”.

Remark 6. Remark 3 can be stated similarly in this new situation to the rational
parametrizations P12,P23,P13, (R, S), and the output parametrization P.

In the following example, we illustrate the performance of Algorithm 2.

Example 3. Consider the surface V over C introduced in Example 2, and defined by
the polynomial

f(x ) = −49x2x
3
1 − 799x3x2x

2
1 + 20x2x

2
1 + 2x22x

2
1 + 980x3x

2
1 − 2205x23x

2
1 + x32x1 −

33750x33x1− 400x3x1 + 606x3x2x1− 5x22x1− 68x3x
2
2x1− 1747x23x2x1− 25x23x1 + x32x3−

25x22x
2
3 + 1396x2x

2
3 − 1120x23 − 48915x43 − 5190x33 − 4237x2x

3
3 − 14x22x3 ∈ C[x ].
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Let us apply Algorithm 2. For this purpose, we first observe degxi
(f) > 0, for i = 1, 2, 3.

Then, in Step 2 of the algorithm, we compute

f 12
0 (x1, x2) = −x1x2(49x21 − 20x1 − 2x1x2 − x22 + 5x2),

f 23
0 (x2, x3) = (14x22 +5190x23 +1120x3 +48915x33−1396x2x3 +25x22x3 +4237x2x

2
3−x32).

The plane curves defined by the equations 49x21 − 20x1 − 2x1x2 − x22 + 5x2 = 0, and
14x22 + 5190x23 + 1120x3 + 48915x33 − 1396x2x3 + 25x22x3 + 4237x2x

2
3 − x32 = 0 are

rational. These curves are denoted as C12 and C23, respectively.

In Step 3 of the algorithm, we compute a rational proper parametrization of C12,

P12(t1) = (p1, p2) =

(
−
√

2t1(−5 + t1)

5(4t1 − 10 + 5
√

2)
,
(50 + 5

√
2)t1(−20 + 100

√
2 + 49t1)

1225(4t1 − 10 + 5
√

2)

)
∈ R(t1)

2.

and C23,

P23(t1) = (p̃1(t1), p̃2(t1)) =

(
2(−378367t21 + 10410900t1 − 142098075 + 4102t31)

1241(t31 − 25t21 − 4237t1 − 48915)
,

2(20322550− 513355t1 − 28t21 + 49t31)

1241(t31 − 25t21 − 4237t1 − 48915)

)
∈ R(t1)

2.

Since p1 6= 0 we go to Step 4 of the algorithm, and we check whether there exists a ra-
tional plane curve CN1 defined by a factor of the polynomial N1(x1, x2) = Contentt2(g1),
where

g1(x1, x2, t2) = numer

(
f

(
p1(x2)− t2

p1(x2)

p̃2(x1)
, p2(x2) + t2

p̃1(x1)− p2(x2)
p̃2(x1)

, t2

))
.

We have that

N1(x1, x2) = (73x2x1−2555x2 +2482x2
√

2+18675−4150
√

2−315x1 +70
√

2x1)(4x2−
10 + 5

√
2)(x1 − 35 + 34

√
2)3(−x1 + 35 + 34

√
2)3(x1 + 45)3.

To find (R, S) ∈ (C(t1) \ C)2, we consider the plane curve defined by the irreducible
polynomial 73x2x1 − 2555x2 + 2482x2

√
2 + 18675− 4150

√
2− 315x1 + 70

√
2x1, and it

defines a rational plane curve CN1. Then, we compute a rational proper parametrization
of CN1 as

(R(t1), S(t1)) =

(
t1,−

5(−9 + 2
√

2)(−415 + 7t1)

73(t1 − 35 + 34
√

2)

)
∈ (R(t1) \ R)2.

Then,

P =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)) + t2

p̃1(R(t1))− p2(S(t1))

p̃2(R(t1))
, t2

)
=

(
q11
q12

,
q21
q22

, t2

)
,
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where

q11 = (−9+2
√

2)
√

2(−490t31+280t21+5133550t1−203225500+392t21
√

2+7186970
√

2t1−
284515700

√
2 − 686t31

√
2 + 6205t2t

3
1 + 8687t2

√
2t31 − 155125t2t

2
1 − 217175t2t

2
1

√
2 −

26290585t2t1 − 36806819t2
√

2t1 − 303517575t2 − 424924605t2
√

2),

q12 = 73(−415 + 7t1)(−4866 + 106t1 − 4199
√

2 + 17
√

2t1)(t1 − 35 + 34
√

2),

q21 = 2068272t21−544956812t1 + 331704t21
√

2−87398734
√

2t1 + 63812t31 + 10234t31
√

2 +
11741634840 + 1883092380

√
2 + 78183t2

√
2t31 − 10107945t2t

2
1

√
2 + 239474529t2

√
2t1 +

487494t2t
3
1 − 63026010t2t

2
1 + 1493194122t2t1 + 5038391745t2

√
2 + 31415854410t2,

q22 = 146(t1 + 118)(−4866 + 106t1 − 4199
√

2 + 17
√

2t1)(t1 − 35 + 34
√

2)

“is a proper parametrization of the rational ruled surface V in

standard reduced form”.

Observe that since P12, P23 and R, S have coefficients in R, then P also has coefficients
in R (see Remark 6).

4. Parametrically Ruled Surfaces

In the following, we consider a surface V defined by a parametrization (not neces-
sarily proper) over K,

M( t ) = (m1( t ),m2( t ),m3( t )) ∈ K( t )3.

In this section, we analyze whether V is a ruled surface, and in the affirmative case
we compute a proper reparametrization in standard reduced form. More precisely, the
idea is to check whether there exists a proper parametrization of the form

P( t ) = (p1(t1) + t2q1(t1), p2(t1) + t2q2(t1), t2) ∈ K( t )3,

(where pj, qj are given in Theorem 2), and (U, V ) ∈ (K( t )\K)2 such that P(U, V ) =M.
Observe that from this equality, we get that V = m3.

A direct approach to this problem could consist in implicitizating the parametriza-
tion (see e.g. [19]) to apply afterwards the algorithms developed in Section 3 to the
implicit equation. This solution might be too time consuming and then, we would
like to approach the problem by means of rational reparametrizations which involves
more satisfactory running times (compare Theorem 4, with Theorem 10 in [19]).
With rational reparametrization we basically mean without implicitizating, or more
formally, by finding a linear parameter transformation to reparameterized the given
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parametrization. Note that any reparametrization of a rational parametrization is
again a parametrization of the same variety.

To start with the problem, we first assume that V is not a plane. Note that
this assumption is not a loss of generality, because one can easily deduce whether
a parametrically given surface is a plane.

Now, we deal with the cylinder case. In order to analyze whether V is a cylinder
over any of the coordinate planes of K3, we apply the following result presented in [19]
(Theorem 5).

Theorem 3. (Cylinder criterion) Let Hi( t , h ) = numer(mi( t ) −mi(h )), where h =
(h1, h2) are new variables, and i ∈ {1, 2, 3}. Then, V is a cylinder over the xixj–plane
if and only if gcd(Hi, Hj) 6= 1.

If V is a cylinder over the x1x2-plane and f(x1, x2) ∈ K[x1, x2] is the implicit
equation defining V , we consider a ∈ K such that (m1,m2)(a, t2) 6∈ K2, and we get
that, up to multiplication by non-zero constants,

f(x1, x2)
r = Rest2(G1(a, t2, x2), G2(a, t2, x2)), where r ∈ K and

Gi( t , xi) = numer(mi( t )−xi), i = 1, 2 (see Theorem 8 in [19]). Then, one computes a
proper parametrization (p(t1), q(t1)) ∈ K(t1)

2 of the plane curve defined by the equation
f(x1, x2) = 0, and we get that P( t ) = (p(t1), q(t1), t2) is a proper parametrization of V .
One reasons similarly if V is a cylinder over a different plane.

Once the plane case and the cylinder case are analyzed, we assume that V is neither
a cylinder nor a plane. As we stated above, we are interested in applying Theorem 2.
For this purpose, first we need to compute a rational proper parametrization of C12
and C23 (see statement 1 of Theorem 2). We also need to determine a rational proper
parametrization of C13, if we are in statement 3 of Theorem 2.

Since we do not have the implicit equation defining the surface V , we have to
compute the polynomial f ij

0 (xi, xj) defining implicitly the plane curve Cij, i < j, i, j ∈
{1, 2, 3}, using the input parametrization M. For this purpose, we use Theorem 10
in [19], and the fact that if t 0 ∈ K2 is such that mi( t 0)−x1 = mj( t 0)−x2 = mk( t 0) =
0, for k ∈ {1, 2, 3}, k 6= i, k 6= j, then (x1, x2) ∈ Cij. For this purpose, in order to
apply Theorem 10 in [19], we need assume that none of the projective curves defined
by each numerator and denominator of mi, i = 1, 2, 3 passes through the points at
infinity (0 : 1 : 0) and (1 : 0 : 0), where the homogeneous variables are (t1, t2, w).
Note that this requirement can always be achieved by applying a linear change of
variables toM. This assumption implies that each numerator and denominator of mi

has positive degree w.r.t. ti, and then its leading coefficient w.r.t. ti does not depend
on tj, i 6= j, i, j ∈ 1, 2. Thus, for k = 1, 2, 3, and i 6= j, i, j ∈ 1, 2, degti

(Gk( t , xk)) >
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0, and the leading coefficient of Gk( t , xk) w.r.t. ti does not depend of tj, where
Gk( t , xi) = numer(mk( t )− xk). Finally, since V is neither a cylinder nor a plane, we
may assume that for every i, j ∈ {1, 2, 3}, with i < j, the gradients {∇mi( t ), ∇mj( t )}
are linearly independent.

Under these conditions, Theorem 4 shows how to compute the polynomials
f ij
0 (xi, xj). The theorem is obtained from Lemmas 12, 13, 14, 15, and Theorem 10

in [19].

Theorem 4. It holds that for j < k, i 6= j, i 6= k, and i, j, k ∈ {1, 2, 3},

(f ij
0 (xj, xk))r = ppxk

(Content{Z,W}(Rest2(T (t2, xj), K(t2, Z,W, xj, xk)))) ∈ K[xj, xk],

where r ∈ K, and

1. K(t2, Z,W, xj, xk) = Rest1(S(t1, xj), GZ,W ( t , Z,W, xj, xk)),

2. GZ,W ( t , Z,W, xj, xk) = Gk( t , xk) + ZGi( t , 0) +WGj( t , xj),

3. S(t1, xj) = ppxj
(Rest2(Gi( t , 0), Gj( t , xj))),

4. T (t2, xj) = ppxj
(Rest1(Gi( t , 0), Gj( t , xj))).

Under these conditions, we apply Theorem 2, and we obtain a procedure that
computes a proper reparametrization of a given parametrization M, if it is a ruled
surface. More precisely, if V is a rational ruled surface, then there exists a proper
parametrization given in standard reduced form

P( t ) = (p1(t1) + t2q1(t1), p2(t1) + t2q2(t1), t2) ∈ K( t )3

(see equation given in 2), where pj, qj are given in Theorem 2. Thus, we only have to
check whether there exists (U, V ) ∈ (K( t ) \K)2 such that P(U, V ) =M. Observe that
from this equality, we get that V = m3.

To start with, we prove the following theorem that is equivalent to Theorem 2
and Corollary 3, but for the parametric case. Similarly as in Theorem 2, Theorem 5
involves to compute two planar parametrizations (see statement 1) that will be used
to determine a rational planar base curve of the ruled surface V , and to compute the
ruling direction of V (see statement 2). The functions S and R are for coordinating the
parameterization of the base curve and the ruling direction so that the parameterization
of V is in the required reduced form.

Theorem 5. A surface V defined by the parametrization

M( t ) = (m1( t ),m2( t ),m3( t )) ∈ K( t )3

is a rational ruled surface if and only if the following statements hold:
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1. At least two of the three plane algebraic curves Cij, ij ∈ {12, 13, 23}, are rational
(see Section 2). Let us assume that C12 and C23 are rational, and let P12 =
(p1, p2) ∈ K(t1)

2, P23 = (p̃1, p̃2) ∈ K(t1)
2 be rational proper parametrizations of

C12 and C23, respectively.

2. If p1 6= 0, there exists (L, T ) ∈ K( t )\K such that one of the following statements
holds:

2.1. p1(T )−m3
p1(T )
p̃2(L) −m1 = p2(T ) +m3

p̃1(L)−p2(T )
p̃2(L) −m2 = 0. In this case,

P( t ) =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)) + t2

p̃1(R(t1))− p2(S(t1))

p̃2(R(t1))
, t2

)
,

is a rational proper parametrization of V, where (R, S) ∈ (K(t1) \ K)2 is
a rational proper parametrization of the curve CN1 defined parametrically
by (L, T ).

2.2. p1(T )−m3
p1(T )
p̃2(L) −m1 = p2(T )−m2 = 0. In this case,

P( t ) =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)), t2

)
is a rational proper parametrization of V, where (R, S) ∈ (K(t1) \ K)2 is
a rational proper parametrization of the curve CN2 defined parametrically
by (L, T ).

3. If p1 = 0, there exists L ∈ K( t ) \ {0}, and T ∈ K( t ) \ K such that one of the
following statements holds:

3.1. 
m3

q1(T )
q2(T ) −m1 = L −m3

L
q2(T ) −m2 = 0,

if P13 = (q1, q2), q2 6= 0 is a
proper parametrization of C13

m3T −m1 = m3L −m2 = 0, L 6∈ K
if P13 = (t1, 0) is a
parametrization of C13

In this case,
P( t ) =

(
t2

q1(S(t1))
q2(S(t1))

, R(t1)− t2 R(t1)
q2(S(t1))

, t2

)
,

if P13 = (q1, q2), q2 6= 0 is a
proper parametrization of C13

P( t ) = (t2S(t1), t2R(t1), t2) , R 6∈ K
if P13 = (t1, 0) is a
parametrization of C13

is a rational proper parametrization of V, where (R, S) ∈ K(t1)
2, S 6∈ K is a

rational proper parametrization of the curve CN3 or CN4, defined parametri-
cally by (L, T ).
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3.2. m3T − m1 = L − m2 = 0. In this case, P( t ) = (t2S(t1), R(t1), t2) , is a
rational proper parametrization of V, where (R, S) ∈ (K(t1)\K)2 is a rational
proper parametrization of the curve CN5 defined parametrically by (L, T ).

Proof. It is clear that if statements 1 and 2 (or 3) hold, then V is a rational ruled
surface. Reciprocally, let V be a rational ruled surface. Then, statement 1 holds (see
statement 1 in Theorem 2), and some of the statements, 2 or 3, of Theorem 2 holds.
Let us assume that statement 2.1 holds (one reasons similarly if a different statement
holds). That is,

P∗(t1, t2) =

(
p1(S

∗(t1))− t2
p1(S

∗(t1))

p̃2(R∗(t1))
, p2(S

∗(t1)) + t2
p̃1(R

∗(t1))− p2(S∗(t1))
p̃2(R∗(t1))

, t2

)
is a proper parametrization of V , where (R∗, S∗) ∈ (K(t1) \ K)2 is a rational proper
parametrization of the curve CN1 (see Corollary 3). SinceM is also a parametrization
of V , there exists (U, V ) ∈ (K( t ) \ K)2 such that P∗(U, V ) = M. From this equality,
we get that V = m3, and

p1(S
∗(U))−m3

p1(S
∗(U))

p̃2(R∗(U))
= m1, p2(S

∗(U)) +m3
p̃1(R

∗(U))− p2(S∗(U))

p̃2(R∗(U))
= m2.

That is,

p1(T )−m3
p1(T )

p̃2(L)
−m1 = p2(T ) +m3

p̃1(L)− p2(T )

p̃2(L)
−m2 = 0,

where (L, T ) := (R∗(U), S∗(U)) ∈ (K( t )\K)2. Observe that since (R∗, S∗) is a rational
parametrization of CN1 , then (L, T ) also parametrizes CN1 .
Now, we consider (R(t1), S(t1)) ∈ (K(t1) \ K)2 a new rational proper parametrization
of CN1 , and

P(t1, t2) =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)) + t2

p̃1(R(t1))− p2(S(t1))

p̃2(R(t1))
, t2

)
.

Since (R∗, S∗) and (R, S) are both rational proper parametrizations of CN1 , there
exists r ∈ K(t1) \ K, deg(r) = 1, such that (R∗, S∗) = (R(r), S(r)). Then,
P(r(t1), t2) = P∗(t1, t2) which implies that P is a rational proper parametrization of
V (note that (r(t1), t2) and P∗( t ) are both proper, and thus P( t ) is also proper).

In Theorem 5, one important task is to solve (T ,L) from the equation systems.
The systems appearing in the statements 2.2, 3.1 and 3.2 are clearly zero dimension-
al. We now study the system of the statement 2.1, it is defined by the equations
p1(x) − m3p1(x)/p̃2(y) − m1 = p2(x) + m3(p̃1(y)− p2(x))/p̃2(y) − m2 = 0. We show
that the system is zero dimensional if M(t̄) defines a ruled surface in the following
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proposition. Hence, the computations of (T ,L) ∈ K( t )2 are not difficult (see state-
ment 2 in Remark 7).

To prove the proposition, we consider the equations

e1(x, y, t ) = p1,1(x)p̃2,1(y)−m3( t )p1,1(x)p̃2,2(y)−m1( t )p1,2(x)p̃2,1(y)

e2(x, y, t ) = p2,1(x)p̃2,1(y)p̃1,2(y) +m3( t )p̃2,2(y)(p2,2(x)p̃1,1(y)− p2,1(x)p̃1,2(y))−
m2( t )p2,2(x)p̃2,1(y)p̃1,2(y),

where pi = pi,1/pi,2, p̃i = p̃i,1/p̃i,2, gcd(p̃i,1, p̃i,2) = gcd(pi,1, pi,2) = 1, for i =
1, 2. Observe that the system defined by p1(x) − m3p1(x)/p̃2(y) − m1 = p2(x) +
m3(p̃1(y)− p2(x))/p̃2(y)−m2 = 0 is equivalent to the system defined by e1 = e2 = 0.
In addition, we note that p1(x), p̃2(y) are not both constant (otherwise, P would
parametrize a plane, and this case is excluded). Similarly, p2(x), (p̃1(y)− p2(x))/p̃2(y)
are not both constant.

Since the systems in Theorem 5 are in the implication from that V is a ruled surface,
we can assume the V has a rational proper parametrization of the form M( t ) =
(a1(t1) + t2b1(t1), a2(t1) + t2b2(t1), t2). Under these conditions, we have the following
proposition.

Proposition 1. For the ruled surfaces, the system defined by the equations e1 = e2 = 0
w.r.t. the variables {x, y}, is zero dimensional.

Proof. We distinguish two cases depending on the form of the parametrization M.

1. Let M( t ) = (a1(t1) + t2b1(t1), a2(t1) + t2b2(t1), t2) be proper, and let

H(x, y, t ) := gcd(e1, e2) ∈ K[x, y, t ].

We assume that p1 6∈ K, and p̃2 6∈ K. Otherwise, the system defined by the
equations e1 = e2 = 0 w.r.t. the variables {x, y}, is clearly zero dimensional.
Similarly, we assume that p2(x) 6∈ K, and (p̃1(y)− p2(x))/p̃2(y) 6∈ K. Under these
conditions, the following properties hold:

• If degt2(H) = 0, then degt1(H) = 0. Otherwise, there exists α ∈ K(x, y)

(K(x, y) is the algebraic closure of K(x, y)) such that ej(x, y, α, t2) = 0 (note
that gcd(pi,1, pi,2) = 1, i = 1, 2). Then, (p1(x), p2(x)) = (a1(α), a2(α))

which implies that α ∈ K(x) \ K (note that pi 6∈ K). Furthermore,
(−p1(x)/p̃2(y), (p̃1(y)− p2(x))/p̃2(y)) = (b1(α), b2(α)) which is impossible
since α ∈ K(x) \ K and p1(x)/p̃2(y), (p̃1(y)− p2(x))/p̃2(y) 6∈ K. Thus, we
conclude that H ∈ K[x, y] or H ∈ K[x, y, t ] with degti

(H) ≥ 1, i = 1, 2.

• It holds that Cj(x, y, t1) := Contentt2(ej) ∈ K[x, y], j = 1, 2. If degt1(C1) ≥
1, there exists α ∈ K(x, y) such that p1(x) = a1(α), p1(x)/p̃2(y) = b1(α)
which is impossible since p1(x) 6∈ K and p̃2(y) 6∈ K. Thus, C1 ∈ K[x, y].
Reasoning similarly and taking into account that p2(x) 6∈ K, and
(p̃1(y)− p2(x))/p̃2(y) 6∈ K, we conclude that C2 ∈ K[x, y].
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Under these conditions, let us assume that the system defined by the equations
e1 = e2 = 0 w.r.t. the variables {x, y}, is not zero dimensional. Then, we may
write ej = H(x, y, t )Cj(x, y), j = 1, 2, with degt2(H) = 1 (note that degt2(ej) =
1), and degt1(H) ≥ 1. Hence, e1C2 − e2C1 = 0 which implies that a1 = a2, b1 =
b2. Thus, V is a plane which is impossible.

2. Let M be some rational parametrization of V , and we consider fi(x, y, t ) :=
ei(x, y, t )/C(x, y), C := gcd(C1, C2), i = 1, 2. Observe that if C(α, β) = 0, then

(α, β) ∈ K2. Indeed: let (α, β) ∈ K(s)
2

be such that C(α, β) = 0 (K(s) is the
algebraic closure of K(s), and s is a new variable). Then, e1(α, β, t ) = 0 (note
that C divides gcd(e1, e2)). Since p1,1 6= 0, we get that p1,1(α) = p2,2(β) = 0
which implies that (α, β) ∈ K2. Thus, the system defined by ei = 0, i = 1, 2 is
equivalent to the system defined by fi = 0, i = 1, 2.
Let M∗ be a proper parametrization of V with the form of statement 1, and
such thatM∗(U, V ) =M, where (U, V ) ∈ (K( t ) \K)2 (M∗ exists because of the
results in [16]). We denote by fM

∗
j , j = 1, 2, the equations fj constructed from

M∗, and fMj , j = 1, 2, the equations fj constructed fromM. From statement 1,
we have that R∗(y, t ) 6= 0, where R∗(y, t ) := Resx(fM

∗
1 , fM

∗
2 ). Let R(y, t ) :=

Resx(fM1 , fM2 ). Taking into account the properties of resultants (see [29]), it holds
that R∗(y, U( t ), V ( t )) = `(y, U, V )kR(y, t ), k ∈ N, where `(y, t1, t2) denotes the
leading coefficient of fM

∗
1 w.r.t. x (note that `(y, U, V ) 6= 0). Since R∗(y, U, V ) 6=

0, we conclude that R(y, t ) 6= 0 and then, gcd(fM1 , fM2 ) = 1.

From Theorem 5 and Proposition 1, we obtain the following algorithm that decides
whether a rational surface defined parametrically by a rational parametrization M is
ruled. In the affirmative case, it computes a rational proper reparametrization.

Algorithm 3: Reparametrization of a Ruled Surface

• Input: A surface V defined by a rational parametrization

M( t ) = (m1( t ),m2( t ),m3( t )) ∈ K( t )3.

• Output: the message “V is not a ruled surface” or a proper parametriza-
tion P of “the ruled surface V in the standard reduced form.”

1. Check whether V defines a plane. In the affirmative case, compute a proper
parametrization of V . Otherwise, go to Step 2.

2. Compute the polynomials Hi( t , h ) = numer(mi( t ) − mi(h )), where h =
(h1, h2), and i ∈ {1, 2, 3}. Check whether gcd(Hi, Hj) = 1, for i, j ∈ {1, 2, 3}
and i < j. In the affirmative case, go to Step 3. Otherwise, if gcd(H1, H2) 6= 1
(similarly if gcd(H1, H3) 6= 1 or gcd(H2, H3) 6= 1) do:
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2.1. Consider a ∈ K such that (m1,m2)(a, t2) 6∈ K2.

2.2. Compute

f(x1, x2)
r = Rest2(G1(a, t2, x2), G2(a, t2, x2)), where r ∈ K, and

Gi( t , xi) = numer(mi( t )− xi), i = 1, 2 (see Theorem 8 in [19]).

2.3. Determine a proper parametrization (p(t1), q(t1)) ∈ K(t1)
2 of the plane curve

defined by the equation f(x1, x2) = 0.

2.4. Return P( t ) = (p(t1), q(t1), t2) , “is a proper parametrization”.

3. Compute the polynomials f ij
0 (xi, xj) (apply Theorem 4), and check whether there

exist two rational plane curves Cij and Ck` defined by a factor of f ij
0 and fk`

0 ,
respectively, for ij 6= k`, and ij, k` ∈ {12, 23, 13} . In the affirmative case,
assume that ij = 12, and k` = 23 (see Remark 5) and go to Step 4. Otherwise,
Return “V is not a ruled surface”.

4. Compute P12 = (p1, p2) ∈ K(t1)
2, and P23 = (p̃1, p̃2) ∈ K(t1)

2 rational proper
parametrizations of C12 and C23, respectively. If p1 6= 0 go to Step 5. Otherwise,
go to Step 7.

5. Check whether there exists (L, T ) ∈ (K( t ) \ K)2 such that

p1(T )−m3
p1(T )

p̃2(L)
= m1, p2(T ) +m3

p̃1(L)− p2(T )

p̃2(L)
= m2.

In the affirmative case, compute (R, S) ∈ (K(t1) \ K)2 a rational proper
parametrization of the curve CN1 defined by (L, T ), and Return

P( t ) =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)) + t2

p̃1(R(t1))− p2(S(t1))

p̃2(R(t1))
, t2

)
,

“is a proper parametrization”. Otherwise, go to Step 6.

6. Check whether there exists (L, T ) ∈ (K( t ) \ K)2 such that

p1(T )−m3
p1(T )

p̃2(L)
= m1, p2(T ) = m2.

In the affirmative case, compute (R, S) ∈ (K(t1) \ K)2 a rational proper
parametrization of the curve CN2 defined by (L, T ), and Return

P( t ) =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)), t2

)
“is a proper parametrization”. Otherwise, go to Step 3, and consider differ-
ent rational components and apply again the algorithm. If there have no more
rational components, Return “V is not a ruled surface”.
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7. Check whether the plane curve C13 is rational. In the affirmative case, compute
P13 = (q1, q2) ∈ K(t1)

2 a rational proper parametrization of C13, and go to Step
8. Otherwise, go to Step 9.

8. 8.1. If q2 6= 0, check whether there exists (L, T ) ∈ K( t )2, T 6∈ K such that

m3
q1(T )

q2(T )
= m1, L −m3

L
q2(T )

= m2.

In the affirmative case, compute (R, S) ∈ K(t1)
2, S 6∈ K a rational proper

parametrization of the curve CN3 defined by (L, T ), and Return

P( t ) =

(
t2
q1(S(t1))

q2(S(t1))
, R(t1)− t2

R(t1)

q2(S(t1))
, t2

)
,

“is a proper parametrization”. Otherwise, go to Step 3, and consider
different rational components and apply again the algorithm. If there have
no more rational components, Return “V is not a ruled surface”.

8.2. If q2 = 0, let L = m2/m3, and T = m1/m3, and compute (R, S) ∈ (K(t1) \
K)2 a rational proper parametrization of the curve CN4 defined by (L, T ),
and Return

P( t ) = (t2S(t1), t2R(t1), t2) ,

“is a proper parametrization”. Otherwise, go to Step 3, and consider
different rational components and apply again the algorithm. If there have
no more rational components, Return “V is not a ruled surface”.

9. Let L = m2, and T = m1/m3, and compute (R, S) ∈ (K(t1) \ K)2 a rational
proper parametrization of the curve CN5 defined by (L, T ). Return

P( t ) = (t2S(t1), R(t1), t2) ,

“is a proper parametrization”. Otherwise, go to Step 3, and consider differ-
ent rational components and apply again the algorithm. If there have no more
rational components, Return “V is not a ruled surface”.

Remark 7. 1. Remark 3 can be stated similarly in this new situation to the rational
parametrizations P12,P23,P13, (R, S), and the output parametrization P.

2. The systems appearing in Steps 6, 8 and 9 are clearly zero dimensional. The
system in Step 5 is equivalent to the zero dimensional system defined by the
equations f1 = f2 = 0 w.r.t. the variables {x, y} (Proposition 1 implies that
fj(T ,L, t ) = 0, j = 1, 2; note that C(T ,L) 6= 0). In order to find (L, T ) ∈
(K( t ) \ K)2, one may use, for instance, univariate resultants. Once (L, T ) is
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determined, one computes the implicit equation of the rational plane curve CNi

defined by (L, T ) as the square free part of

Contentt2(Rest1(numer(L − x1), numer(T − x2))) ∈ K[x1, x2]

(see Section 4.5 in [23]). Afterwards, we parametrize CNi
by applying for instance

the results in Sections 4.7 and 4.8 in [23].

3. If the system appearing in Steps 5 is not zero dimensional, then according to
Proposition 1, the input surface is not a ruled surface. And we need not to solve
the system.

4. Note that in this case, we can not apply Theorem 1. More precisely, if V is a
rational ruled surface, by Theorem 1, there exists a parametrization of the form

P∗( t ) = (p1(S
∗(t1)) + t2q

∗
1(t1), p2(S

∗(t1)) + t2q
∗
2(t1), t2) ∈ K( t )3

where (q∗1, q
∗
2, S

∗) is a rational parametrization of a space curve D (see Corol-
lary 1). Reasoning as in Theorem 5, we have that P∗(U, V ) = M, where
(U, V ) ∈ (K( t ) \ K)2. From this equality, we get that V = m3, and

p1(S
∗(U)) +m3q

∗
1(U) = m1, p2(S

∗(U)) +m3q
∗
2(U) = m2.

That is,
p1(T ) +m3L1 −m1 = p2(T ) + t2L2 −m2 = 0,

where (L1,L2, T ) := (q∗1(U), q∗2(U), S∗(U)) ∈ (K( t ) \ K)3. Observe that we have
two equations, and three unknowns L1,L2, T . So, we have a consistent indepen-
dent system.

In the following example, we illustrate the performance of Algorithm 3.

Example 4. Consider the surface V defined by the parametrization

M( t ) = (m1,m2,m3) =

(
−2t42t1 + 10t22t

3
1 + 5t2t

4
1 − 7t32t

2
1 − 5t31 − 9t21t2 + 7t1t

2
2 − t32

t2(−t21 − 2t1t2 + t22)(t
2
2 + t21)

,

−t2(−14t21t
2
2 + 4t41 + 4t32t1 − 14t31t2 + 9t21 + 18t1t2 − 9t22

(−t21 − 2t1t2 + t22)(t
2
2 + t21)t1

,
t1t2 − 1

t22 + t21

)
∈ R( t )3.

Let us apply Algorithm 3. We first observe that V is neither a cylinder nor a plane (see
Steps 1 and 2 of the algorithm). In Step 3 of the algorithm, applying Theorem 4, we
compute the polynomials f ij

0 (xi, xj) and get

f 12
0 (x1, x2) = 49x21 − 20x1 − 2x1x2 + 5x2 − x22,

f 23
0 (x2, x3) = x32− 14x22− 25x3x

2
2 + 1396x3x2− 1120x3− 4237x23x2− 5190x23− 48915x33,
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define implicitly two rational plane curves C12 and C23. Thus, in Step 4, we compute

P12 = (p1, p2) =

(
−
√

2t1(−5 + t1)

5(4t1 − 10 + 5
√

2)
,
(50 + 5

√
2)t1(−20 + 100

√
2 + 49t1)

1225(4t1 − 10 + 5
√

2)

)
∈ R(t1)

2,

and

P23 = (p̃1(t1), p̃2(t1)) =

(
2(−378367t21 + 10410900t1 − 142098075 + 4102t31)

1241(t31 − 25t21 − 4237t1 − 48915)
,

2(20322550− 513355t1 − 28t21 + 49t31)

1241(t31 − 25t21 − 4237t1 − 48915)

)
∈ R(t1)

2

rational proper parametrizations of C12 and C23, respectively. Hence, we go to Step 5
of the algorithm, and we check whether there exists (L, T ) ∈ (C( t ) \ C)2 such that

p1(T )−m3
p1(T )

p̃2(L)
= m1, p2(T ) +m3

p̃1(L)− p2(T )

p̃2(L)
= m2.

We obtain

L( t ) =
415t1 − 236t2

2t2 + 7t1
, T ( t ) =

−5(−1 + 5
√

2)t2

9t1 + 4t1
√

2− 5t2
√

2 + t2
.

(L, T ) parametrizes the rational plane curve CN1 defined by the equation

−315x1 + 18675 + 70
√

2x1 − 4150
√

2 + 2482x2
√

2 + 73x2x1 − 2555x2 = 0

(see statement 2 in Remark 7). We compute a rational proper parametrization of CN1,
and we get

(R(t1), S(t1)) =

(
t1,
−5(−9 + 2

√
2)(7t1 − 415)

73(34
√

2 + t1 − 35)

)
∈ R(t1)

2.

Therefore, we Return the proper parametrization of the ruled surface V given by

P( t ) =

(
p1(S(t1))− t2

p1(S(t1))

p̃2(R(t1))
, p2(S(t1)) + t2

p̃1(R(t1))− p2(S(t1))

p̃2(R(t1))
, t2

)
=

=

(
q11( t )

q12( t )
,
q21( t )

q22( t )
, t2

)
∈ R( t )3,

where

q11 =
√

2(−9 + 2
√

2)(5 + 7
√

2)(−40645100 + 1026710t1 + 56t21 − 98t31 + 1241t31t2 −
31025t21t2 − 5258117t1t2 − 60703515t2),
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q12 = 73(7t1 − 415)(−4199
√

2 + 106t1 − 4866 + 17t1
√

2)(34
√

2 + t1 − 35),

q21 = 78183t2t
3
1

√
2+63812t31+487494t31t2+10234t31

√
2+331704t21

√
2−10107945t21t2

√
2−

63026010t21t2 + 2068272t21 − 87398734t1
√

2 − 544956812t1 + 239474529t2t1
√

2 +
1493194122t1t2 + 11741634840 + 5038391745t2

√
2 + 31415854410t2 + 1883092380

√
2,

q22 = 146(34
√

2 + t1 − 35)(−4199
√

2 + 106t1 − 4866 + 17t1
√

2)(118 + t1).

Observe that since P12,P23 and (R, S) have coefficients in R, then the output
parametrization P also has coefficients in R (see statement 1 in Remark 7).

5. Conclusion

The parametrization of an implicit surface is a basic problem in algebraic geometry.
In this paper, we focus on the problem of rational ruled surface, since the ruled surface
is an important modeling surface. By the linearity of one parameter in the standard
form and the birational parameter transformation, we can get a simple expression
which can be projected as a planar curve. Therefore we reduce the problem to that
of curve parametrization. The algorithms to determine and parameterize the implicit
rational ruled surfaces are then proposed. We also have considered the determination
and reparametrization for the parametric ruled surfaces not being in the standard form.
More precisely, we can distinguish whether a given rational parametrization (not nec-
essarily proper) defines a ruled surface, and in the affirmative case, we reparameterize
it properly to the standard reduced form.

Besides the ruled surface, there are some other basic modeling surfaces such as
sphere-swept surfaces and cyclides. They have special geometric features for modeling
design. And these features are also reflected in the algebraic expressions. According to
the well investigation, one can find some algorithms to determine the types of surface
from a given algebraic surface, further, find a parametrization. As the further work,
we would like given more discussions for those modeling surfaces.
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