
      

 

 

 

 

BIBLIOTECA 

 

 

This work is licensed under a  

Creative Commons Attribution-NonCommercial-NoDerivatives  

4.0 International License. 

       

 

 
 

 

Document downloaded from the institutional repository of the University of 
Alcala: http://ebuah.uah.es/dspace/ 

 

This is a posprint version of the following published document: 

 

Pérez Díaz, S. 2006, “On the problem of proper reparametrization for 

rational curves and surfaces”, Computer Aided Geometric Design, vol. 23, 

no. 4, pp. 307-323. 

 

Available at https://doi.org/10.1016/j.cagd.2006.01.001   

 

© 2006 Elsevier 

 

 

 

(Article begins on next page) 

http://ebuah.uah.es/dspace/
https://doi.org/10.1016/j.cagd.2006.01.001


On the Problem of Proper Reparametrization for
Rational Curves and Surfaces∗
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Universidad de Alcalá
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Abstract

A rational parametrization of an algebraic curve (resp. surface) establishes
a rational correspondence of this curve (resp. surface) with the affine or projec-
tive line (resp. affine or projective plane). This correspondence is a birational
equivalence if the parametrization is proper. So, intuitively speaking, a rational
proper parametrization trace the curve or surface once. We consider the problem
of computing a proper rational parametrization from a given improper one. For
the case of curves we generalize, improve and reinterpret some previous results.
For surfaces, we solve the problem for some special surface’s parametrizations.

1 Introduction

Unirational algebraic varieties, in particular curves and surfaces, play an important
role in the frame of practical applications (see [14], [15]). Many authors have addressed
problems related to the construction of conversion algorithms; i.e. algorithmic methods
that change from the implicit representation to the parametric one, and vice versa (see
[4], [5], [12], [13], [14], [18], [22], [25], [26], [27], etc).

In addition, if one considers rational parametrizations as rational mappings from an
affine space onto the variety, three natural questions appear. First, deciding whether
the mapping is birational, i.e. whether the parametrization is proper or invertible
(properness problem); secondly, in case of birationality, compute the inverse of the
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parametrization (inversion problem). Finally, if the parametrization is not proper, the
question of reparametrizing such a variety as to make it properly parametrized is con-
sidered (proper reparametrization problem).

These problems, in particular when the variety is a curve or a surface, are specially
interesting in some practical applications in C.A.G.D where objects are often given and
manipulated parametrically. In addition, proper parametrizations play an important
role in many practical applications in computer aided geometric design, such as in
visualization (see [14], [15]) or rational parametrization of offsets (see [2]). Also, they
provide an implicitization approach based on resultants (see [6] and [28]).

An algorithmic approach to the two first problems based on Gröbner Basis, can be
found in [23]. For plane curves, the three problems are directly related to Lüroth’s
Theorem, that is valid over any field, and different algorithmic procedures to solve the
problem can be found in [1], [8], [9], [11], [16], [24], [28] or [29]. For rational maps
between algebraic surfaces a solution of the properness problem and inversion problem
can be found in [19] and [20]. For the reparametrization problem, although it is known
from Castelnuovo’s Theorem that unirationality and rationality are equivalent over
algebraically closed fields, algorithmic questions and approaches are still required.

In this paper we deal with the proper reparametrization problem for the case of
algebraic curves and surfaces. A direct approach to the reparametrization problem
could consist in implicitizating the parametrization (see [4], [5], [18], [28]) to apply
afterwards algorithms developed for instance in [7], [11], [12], [13], [14], [22], [26],
[27], to the implicit equation. This solution might be too time consuming and then,
we would like to approach the problem by means of rational reparametrizations. With
rational reparametrization we basically mean without implicitizating, or more formally,
by finding a non–constant rational change of parameter, if it exists, that transforms the
input parametrization onto a new parametrization of the same curve or surface that
solves the problem. Note that any reparametrization of a rational parametrization is
again a parametrization of the same variety.

For the case of curves, it is always possible to reparametrize an improperly
parametrized curve in such a way that it becomes properly parametrized. In this
paper, we present a new approach to compute a proper parametrization from a given
improper one. This new method improves and reinterprets some previous results (see
for instance [1], [9] or [24]). We have implemented these ideas, and we have compared
our method with the methods in [9] and [24].

For the case of surfaces defined over algebraically closed fields, we solve the problem
of proper reparametrization for some special surface’s parametrizations. The basic idea
is to compute two univariate resultants of certain curves directly constructed from the
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given parametrization. In addition, from these results, we derive one algorithm for
computing the rational proper reparametrization. We have implemented this algorithm
in Maple and we show that running times are very satisfactory.

More precisely, the structure of the paper is as follows: In Section 2, we present
a new approach that deal with the proper reparametrization problem for the case of
curves. In Section 3, we outline the algorithm, and we illustrate it with an example.
We also show the actual computing times of the implementation, and we compare
the method with previous algorithms. Section 4 focuses on the problem of proper
reparametrization for improperly parametrized surfaces. In particular, we show how
to solve the problem for some special surface’s parametrizations. Section 5 is devoted
to outline the algorithm for the case of surfaces, and to illustrate it with an example.
Actual computing times of the implementation are also provided. Finally, in Section 6,
we summarize the main idea, contributions and advantages of the approach presented
in the paper, and we describe the future work.

2 The Problem of Proper Reparametrization for

Curves

The problem of proper reparametrization for curves can be stated as follows: given a
field K, and a rational parametrization P(t) ∈ K(t)2 of an algebraic plane curve C, find a
rational proper parametrization Q(t) ∈ K(t)2 of C, and a rational function R(t) ∈ K(t) \K
such that P(t) = Q(R(t)).

This section is preliminar, and we present some results that will be used to prove
the correctness of the algorithm for reparametrizing a curve stated in Section 3.

For this purpose, first we introduce the notation that we will use throughout Sec-
tions 2 and 3. Afterwards, we state three lemmas that deal with properties on gcd’s
and resultants. From these results, we show, in Theorem 1, that the rational func-
tion R(t) ∈ K(t) \ K satisfying that P(t) = Q(R(t)) can be determined by any pair
of the coefficients of a gcd. Finally, we show how to compute the proper rational
parametrization Q(t) (see Theorems 2 and 3).

Notation

Let K be a field, and let K? = K \ {0}. If C is an affine rational plane curve, and P(t)
is a rational affine parametrization of C over K, we write its components as

P(t) =

(
p1,1(t)

p1,2(t)
,

p2,1(t)

p2,2(t)

)
,
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where pi,1(t), pi,2(t) ∈ K[t], and gcd(pi,1, pi,2) = 1 for i = 1, 2. For simplicity, we assume
w.l.o.g. that none of pi,1/pi,2 is constant. Note that, if for instance p1,1/p1,2 = λ ∈ K,
then a proper parametrization of C is Q(t) = (λ, t), and then problem is trivial.

Furthermore, associated with the given parametrization P , we consider the polynomials

HP
1 (t, s) = p1,1(t)p1,2(s)− p1,2(t)p1,1(s), HP

2 (t, s) = p2,1(t)p2,2(s)− p2,2(t)p2,1(s).

as well as SP(t, s) = gcd(HP
1 (t, s), HP

2 (t, s)). The polynomial SP plays an important
role in deciding whether a parametrization P is proper; i.e. in studying whether the
parametrization is injective for almost all parameter values. More precisely, it holds
that P is proper if and only if, up to constants in K?, SP(t, s) = t− s (see [24], [28]).

Finally, we introduce the polynomials GP
i (t, xi) = xipi,2(t)− pi,1(t), for i = 1, 2.

Taking into account that every space curve is birationally equivalent to a plane
curve (see e.g. Theorem 6.5 in [30]), we restrict the discussion to plane curves. Most
of the results presented here can be easily extended to space curves.

The first lemma we state is known as the base change formula for resultants, and it
can be found in [17].

Lemma 1 Let P, Q ∈ (K[s])[t] \ K be polynomials over K[s] with degt(P ) = m, and
degt(Q) = n. Let R(t) = M(t)/N(t) ∈ K(t) be a non–constant rational function in
reduced form, such that degt(M − βN) = degt(R) for every root β for the unknown t
of the polynomial P (t, s)Q(t, s). Let P ′(t, s) and Q′(t, s) be the polynomials

P ′(t, s) = P (R(t), s)N(t)m, Q′(t, s) = Q(R(t), s)N(t)n.

Then, if a, b are the leading coefficient of Q′ and Q, respectively, w.r.t the variable t,

Rest(P
′, Q′) =

am(deg(R)−deg(N))

bdeg(R)m
·Rest(P,Q)deg(R)·Rest(Q

′, N)m.

Remark 1 We observe that if the polynomial P (t, s)Q(t, s) does not have factors in
K[t] then, every root β for the unknown t of the polynomials P (t, s)Q(t, s) is in K(s)
which implies that degt(M − βN) = degt(R).

Lemma 2 Let P, Q ∈ K[t, s] \ K be polynomials such that gcd(P, Q) = 1, and let
R(s) = M(s)/N(s) ∈ K(s) be a non–constant rational function in reduced form such
that degs(M − βN) = degs(R) for every root β for the unknown s of the polynomial
P (t, s)Q(t, s). Let P ?(t, s) and Q?(t, s) be the polynomials

P ?(t, s) = P (t, R(s))N(s)r, Q?(t, s) = Q(t, R(s))N(s)l,

where r := degs(P ), and l := degs(Q). Then, it holds that gcd(P ?, Q?) = 1.
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Proof: First, we express the polynomials P, Q as

P (t, s) = ar(t)s
r + · · ·+ a0(t), Q(t, s) = bl(t)s

l + · · ·+ b0(t).

Then, P ?(t, s) = ar(t)M(s)r+· · ·+a0(t)N(s)r, Q?(t, s) = bl(t)M(s)l+· · ·+b0(t)N(s)l.
In these conditions, we assume that K(t, s) := gcd(P ?, Q?) 6= 1, and we distinguish
three different cases.
(1.) If K(t, s) ∈ K[s], then gcd(M,N) 6= 1 which is impossible. Thus, K(t, s) 6∈ K[s].
(2.) If K(t, s) ∈ K[t], then K(t) divides gcd(ar, . . . , a0, bl, . . . , b0) which implies that
gcd(P, Q) 6= 1. This is impossible, and then K(t, s) 6∈ K[t].
(3.) Statements 1 and 2 imply that K(t, s) ∈ K[t, s] and depends on both t and s.
Then, by the properties of resultants (see [3]), we have that Ress(P

?, Q?) = 0. In
these conditions, since degs(M − βN) = degs(R) for every root β for the unknown
s of the polynomial P · Q, we may apply Lemma 1 (in this case for polynomials
P,Q ∈ (K[t])[s]), and we get that either Ress(P, Q) = 0 or Ress(Q

?, N) = 0. The first
case implies that gcd(P,Q) 6= 1 (see [3]) which is impossible. The second case implies
that gcd(Q?, N) 6= 1 and then gcd(M, N) 6= 1. Thus, this case is also impossible.
Hence, we conclude that gcd(P ?, Q?) = 1.

By Lüroth’s Theorem, we have that there exists a rational proper parametrization

U(t) =

(
u1,1(t)

u1,2(t)
,

u2,1(t)

u2,2(t)

)
∈ K(t)2

of C such that P(t) = U(B(t)), where B(t) = M(t)/N(t) ∈ K(t)\K, and gcd(M,N) = 1.

In the following lemma, we show the relation between the polynomial SP(t, s), the
polynomial SU(t, s), and the rational function B(t). Observe that since U is a proper
parametrization, then SU(t, s) = t− s (see [24] or [28]).

Lemma 3 It holds that, up to constants in K?, SP(t, s) = N(s)M(t)−M(s)N(t).

Proof: First, for j = 1, 2, we consider the polynomials

HU
j (t, s) = uj,1(t)uj,2(s)− uj,1(s)uj,2(t),

and we denote by mj := max{deg(uj,1(t)), deg(uj,2(t))} = degt(H
U
j ) (note that mj ≥ 1

since we have assumed that none pi,1/pi,2 is constant). Now, from P(t) = U(B(t)), we
deduce that

HP
j (t, s) = HU

j (B(t), B(s))N(t)mjN(s)mj .

Then, SP(t, s) = gcd(HP
1 (t, s), HP

2 (t, s)) =

gcd(HU
1 (B(t), B(s))N(t)m1N(s)m1 , HU

2 (B(t), B(s))N(t)m2N(s)m2) (I).
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On the other side, since SU(t, s) = gcd(HU
1 (t, s), HU

2 (t, s)), we deduce that for j = 1, 2,

HU
j (t, s) = SU(t, s)AU

j (t, s) with gcd(AU
1 , AU

2 ) = 1, and AU
j ∈ K[t, s].

Observe that since U is a proper parametrization, then degt(S
U) = 1 which implies

that degt(A
U
j ) = mj − 1 (note that mj = degt(H

U
j ) ≥ 1). Moreover, it holds that the

polynomials AU
j do not have factors in K[t] neither in K[s]. Indeed, let us assume that

K(t) ∈ K[t] is a factor of the polynomial AU
j (similarly we reason for a factor in K[s]).

Then, K is a factor of the polynomial HU
j which is impossible since gcd(uj,1, uj,2) = 1.

In these conditions, and taking into account that up to constants in K?, SU(t, s) = t−s,
we get that

HU
j (B(t), B(s))N(t)mjN(s)mj = SU(B(t), B(s)) · AU

j (B(t), B(s)) ·N(t)mjN(s)mj =

(N(s)M(t)−M(s)N(t)) · AU
j (B(t), B(s)) ·N(t)mj−1N(s)mj−1.

Therefore, from (I), we deduce that SP(t, s) = (N(s)M(t)−M(s)N(t))·
· gcd(AU1 (B(t), B(s))N(t)m1−1N(s)m1−1, AU2 (B(t), B(s))N(t)m2−1N(s)m2−1).

Thus, the statement of lemma holds if we prove that

gcd(AU
1 (B(t), B(s))N(t)m1−1N(s)m1−1, AU

2 (B(t), B(s))N(t)m2−1N(s)m2−1) = 1,

which is equivalent to prove that

Rest(A
U
1 (B(t), B(s))N(t)m1−1N(s)m1−1, AU

2 (B(t), B(s))N(t)m2−1N(s)m2−1) 6= 0.

For this purpose, first note that if mj = 1 for some j, then AU
j ∈ K?, and then the

above statement follows trivially. Let us assume that mj ≥ 2 which implies that
degt(A

U
j ) = mj − 1 ≥ 1. In these conditions, we apply Lemma 1 to the polynomials

P = AU
1 (t, B(s))N(s)m1−1, and Q = AU

2 (t, B(s))N(s)m2−1, and the rational function
R(t) = B(t). We observe that since the polynomials AU

j (t, s) do not have factors in K[t],
then the polynomials AU

j (t, B(s))N(s)mj−1 do not have factors in K[t], which implies
that degt(M − βN) = degt(B) for every root β for the unknown t of PQ (see Remark
1). Hence, from Lemma 1, we deduce that

Rest(A
U
1 (B(t), B(s))N(t)m1−1N(s)m1−1, AU

2 (B(t), B(s))N(t)m2−1N(s)m2−1) =

a(m1−1)(deg(B)−deg(N))

b(m1−1) deg(B)
· Rest(A

U
1 (t, B(s))N(s)m1−1, AU

2 (t, B(s))N(s)m2−1)deg(B) ·

Rest(A
U
2 (B(t), B(s))N(t)m2−1N(s)m2−1, N(t))(m1−1),

where a and b are the leading coefficient of AU
2 (B(t), B(s))N(t)m2−1N(s)m2−1 and

AU
2 (t, B(s))N(s)m2−1, respectively, w.r.t the variable t. In these conditions, we first

observe that

Rest(A
U
1 (t, B(s))N(s)m1−1, AU

2 (t, B(s))N(s)m2−1) 6= 0,
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since gcd(AU
1 (t, s), AU

2 (t, s)) = 1 which implies, by Lemma 2, that
gcd(AU

1 (t, B(s))N(s)m1−1, AU
2 (t, B(s))N(s)m2−1) = 1. Furthermore, we also have that

Rest(A
U
2 (B(t), B(s))N(t)m2−1N(s)m2−1, N(t)) 6= 0.

Indeed, let AU
2 (t, s) := am2−1(s)t

m2−1 + · · ·+ a0(s). Then,

AU
2 (B(t), B(s))N(t)m2−1N(s)m2−1 = a′m2−1(s)M(t)m2−1 + · · ·+ a′0(s)N(t)m2−1.

Taking into account that gcd(M, N) = 1, we deduce that

gcd(AU
2 (B(t), B(s))N(t)m2−1N(s)m2−1, N(t)) = 1.

Therefore, we conclude that

Rest(A
U
1 (B(t), B(s))N(t)m1−1N(s)m1−1, AU

2 (B(t), B(s))N(t)m2−1N(s)m2−1) 6= 0 .

Remark 2 Lemma 3 can be interpreted as follows: by Lüroth’s Theorem, we have
that K (p1,1/p1,2, p2,1/p2,2) = K(B(s)) ⊂ K(s). Let P [Z] be the minimal polynomial of s
over K (p1,1/p1,2, p2,1/p2,2), and Pi[Z] the minimal polynomial of s over K (pi,1/pi,2), for
i = 1, 2. Then, Lemma 3 implies that P = gcd(P1, P2) in K (p1,1/p1,2, p2,1/p2,2) [Z].

In the following, we express the polynomials N, M defining the rational function
B(t) = M(t)/N(t) as

M(t) = amtm + · · ·+ a0, N(t) = bmtm + · · ·+ b0, ai, bi ∈ K

with am 6= 0 or bm 6= 0. By Lemma 3, we deduce that, up to constants in K?,

SP(t, s) = Cm(t)sm + Cm−1(t)s
m−1 + · · ·+ C0(t),

where Cj(t) = ajN(t) − bjM(t), for j = 0, . . . , m. In these conditions, we have the
following theorem.

Theorem 1 The following statements are equivalents

1. aj0bi0 6= ai0bj0,

2. gcd(Cj0 , Ci0) = 1,

3. Cj0(t), Ci0(t) are not associated polynomials.

Moreover, if gcd(M, N) = 1, there exist aj0 , bj0 , ai0 , bi0 ∈ K such that aj0bi0 6= ai0bj0.
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Proof: First, we prove that the assumption gcd(M, N) = 1, implies that there exist
aj0 , bj0 , ai0 , bi0 ∈ K satisfying that aj0bi0 6= ai0bj0 . Let us assume that ajbi− aibj = 0 for
every i, j ∈ {0, . . . , m}. This implies, that the rank of the matrix 2 × (m + 1) which
rows are the coefficients of the polynomials M,N is equal to 1. Thus gcd(M, N) 6= 1
which is impossible. Now, let us prove the equivalence of statements.

(1)⇒(2) Let us assume that K(t) := gcd(Cj0 , Ci0) 6= 1. Then,

Cj0(t) = aj0N(t)−bj0M(t) = K(t)M1(t), Ci0(t) = ai0N(t)−bi0M(t) = K(t)M2(t), (I)

with gcd(M1,M2) = 1. Thus, (ai0bj0 − aj0bi0)M(t) = K(t)(aj0M2(t)− ai0M1(t)). Since
ai0bj0−aj0bi0 6= 0, and M(t) 6= 0, we deduce that K(t) divides to M(t). Therefore, from
(I) we conclude that gcd(M, N) 6= 1, which is impossible. Thus, gcd(Cj0 , Ci0) = 1.

(2)⇒(3) If Cj0 , Ci0 are associated polynomials, then Cj0 = k Ci0 , k ∈ K. Thus,

gcd(Cj0 , Ci0) 6= 1 which is impossible. Therefore, Cj0 , Ci0 are not associated.

(3)⇒(1) Let us assume that aj0bi0 = ai0bj0 , and we distinguish two different cases.

(a.) If bi0 6= 0, then aj0 = ai0bj0/bi0 . Thus,

Cj0(t) = aj0N(t)− bj0M(t) = bj0/bi0(ai0N(t)− bi0M(t)) = bj0/bi0Ci0(t),

which implies that Cj0 , Ci0 are associated. Therefore, this case is impossible.
(b.) Let bi0 = 0. Since aj0bi0 = ai0bj0 , we deduce that ai0 = 0 or bj0 = 0. If ai0 = 0
then Ci0(t) = 0, which implies that Cj0 , Ci0 are associated polynomials. If bj0 = 0,
then Cj0(t) = aj0N(t), and Ci0(t) = ai0N(t) from where we also deduce that Cj0 , Ci0

are associated polynomials. Therefore, this case is also impossible.

From Theorem 1, we get the next corollary that plays an important role in Section 4.

Corollary 1 Let H(t, s) = Dm(t)sm +Dm−1(t)s
m−1 + · · ·+D0(t) ∈ (K(t))[s] such that

there exist i0, j0 ∈ {0, . . . , m} satisfying that gcd(Di0 , Dj0) = 1, and Di0 ∈ K[t] \ K or
Dj0 ∈ K[t]\K. Thus, there exists polynomials M(t), N(t) ∈ K[t], not both constant with
gcd(M, N) = 1, satisfying that

H(t, s) = M(t)N(s)−M(s)N(t),

if and only if
Di0(t)Dj0(s)−Di0(s)Dj0(t) = cH(t, s), c ∈ K?.

Proof: First, we assume that there exists polynomials M(t), N(t) ∈ K[t], with
gcd(M, N) = 1, satisfying that H(t, s) = M(t)N(s) −M(s)N(t). In these conditions,
we express the polynomials N, M as

M(t) = amtm + · · ·+ a0, N(t) = bmtm + · · ·+ b0,
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with am 6= 0 or bm 6= 0. Then,

H(t, s) = Dm(t)sm + Dm−1(t)s
m−1 + · · ·+ D0(t) ∈ (K(t))[s],

where Dj(t) = ajN(t)− bjM(t), for j = 0, . . . , m. Observe that

Di(t)Dj(s)−Di(s)Dj(t) = (aibj − ajbi)(M(t)N(s)−M(s)N(t)) = (aibj − ajbi)H(t, s),

for every i, j ∈ {0, . . . , m}. Thus, since gcd(Di0 , Dj0) = 1, by applying Theorem 1
(note that the polynomial H is of the same form than the polynomial SP , and then we
may apply Theorem 1), we have that ai0bj0 − aj0bi0 6= 0. Thus

Di0(t)Dj0(s)−Di0(s)Dj0(t) = cH(t, s), c ∈ K?.

Conversely, since Di0(t)Dj0(s)−Di0(s)Dj0(t) = cH(t, s), c ∈ K?, and gcd(Di0 , Dj0) =
1, the statement follows by taking M(t) = Di0(t)/c, and N(t) = Dj0(t). Observe that
since Di0 , Dj0 are not both constant then M, N are not both constant.

Taking into account Theorem 1, we consider the rational function

R(t) =
Ci0(t)

Cj0(t)
=

ai0N(t)− bi0M(t)

aj0N(t)− bj0M(t)
∈ K(t) \ K,

where ai0bj0 6= aj0bi0 , and Ci0 , Cj0 are coefficients of the polynomial

SP(t, s) = Cm(t)sm + Cm−1(t)s
m−1 + · · ·+ C0(t).

In these conditions, we have the following theorem.

Theorem 2 There exists a proper parametrization Q(t) of the curve C satisfying that
P(t) = Q(R(t)).

Proof: First, we observe that we may express R(t) = g(B(t)), where g(t) =
(bi0t− ai0)/(bj0t− aj0). Since aj0bi0 6= ai0bj0 (see Theorem 1), we get that g(t) is in-
vertible. In these conditions, we consider Q = U(g−1), and we prove that Q is a proper
parametrization of C. Indeed, first note that

Q(R(t)) = U(g−1(t)) ◦R(t) = U(g−1(t)) ◦ g(B(t)) = U(B(t)) = P(t),

and then Q parametrizes C. In addition, since U and g are invertible, we get that
Q = U(g−1) is proper.

Once the rational function R(t) = r1(t)/r2(t), with gcd(r1, r2) = 1, is computed,
one has to determine the proper rational parametrization Q(t) ∈ K(t)2 of the curve
C, satisfying that P = Q(R) (note that Q exists by Theorem 2). For this purpose,
one may use the method of undetermined coefficients as in [9] or [24]. However in the
following theorem, we show an alternative method based on univariate resultants that
provides running times more satisfactory than the known algorithms (see Section 3).
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Theorem 3 For i = 1, 2, let Li(s, xi) = Rest(G
P
i (t, xi), sr2(t) − r1(t)). It holds that,

up to constants in K?

Li(s, xi) = (qi,2(s)xi − qi,1(s))
deg(R),

where Q(s) = (q1,1(s)/q1,2(s), q2,1(s)/q2,2(s)) is the proper parametrization, in reduced
form, given by Theorem 2.

Proof: Observe that the implicit equation of the curve parametrized by
(pi,1(t)/pi,2(t), B(t)) is given by xqi,2(y)− qi,1(y), and apply Theorem 13 in [10].

3 Algorithm of Proper Reparametrization for

Curves

In this section, we apply the results obtained in Section 2 to derive an algorithm that
computes a rational proper reparametrization of an improperly parametrized algebraic
plane curve. We outline this approach, and we illustrate it with an example. We finish
this section by comparing our method with the methods in [9] and [24].

Algorithm Proper Reparametrization for Curves.

Given a rational affine parametrization P(t) = (p1,1(t)/p1,2(t), p2,1(t)/p2,2(t)) , in
reduced form, of a plane algebraic curve C, the algorithm computes a rational proper
parametrization Q(t) of C, and a rational function R(t) such that P(t) = Q(R(t)).

1. Compute HP
j (t, s) = pj,1(t)pj,2(s)− pj,1(s)pj,2(t), j = 1, 2.

2. Determine the polynomial SP(t, s) = gcd(HP
1 (t, s), HP

2 (t, s)) = Cm(t)sm +
· · ·+ C0(t). Let m := degt(S

P(t, s)).

3. If m = 1, then return Q(t) = P(t), and R(t) = t. Otherwise go to Step 4.

4. Consider a rational function R(t) =
Ci0

(t)

Cj0
(t)
∈ K(t), such that Cj0(t), Ci0(t) are

not associated polynomials.

5. For i = 1, 2, determine the polynomials

Li(s, xi) = Rest(G
P
i (t, xi), sCj0(t)− Ci0(t)) = (qi,2(s)xi − qi,1(s))

deg(R),

where GP
i (t, xi) = xipi,2(t)− pi,1(t).

6. Return Q(t) = (q1,1(t)/q1,2(t), q2,1(t)/q2,2(t)) , and R(t) = Ci0(t)/Cj0(t).

10



The algorithm follows directly from Lemma 3 in Step 2, Theorem 1 in Step 4, and
Theorems 2 and 3 in Step 5. Step 3 is obtained by previous results (see [24] or [28]).
In the following, we illustrate Algorithm Proper Reparametrization for Curves with an
example.

Example 1

Let C be the rational curve defined by the parametrization

P(t) =

(
p1,1(t)

p1,2(t)
,

p2,1(t)

p2,2(t)

)
=

(
3t4 + 4t3 + 32t2 + 28t + 99

(t2 + t + 7)(t2 + 1)
,

(t2 + t + 7)3

(t + 6)(t2 + 1)2

)
.

In Step 1 of the algorithm, we compute the polynomials

HP
1 (t, s) = −97t + 97s + 71t3 + 568t2 + 78t4 − 71s3 − 568s2 − 78s4 − 8s4t2 − 25s4t +

8s2t4 − 192s2t + 25st4 + 192st2 + s3t4 − 24s3t− s4t3 + 24st3,

HP
2 (t, s) = −539t+539s−6t6 +325t5 +428t3 +3108t2 +1914t4 +6s6−325s5−428s3−

3108s2−1914s4−s5t6−6s5t4−132s5t2−144s5t−6s4t6+6s4t5−720s4t2−858s4t−12s2t6+
132s2t5 + 720s2t4 − 1596s2t− st6 + 144st5 + 858st4 + 1596st2 + s6t5 + 6s6t4 + 12s6t2 +
s6t−2s3t6+37s3t5+210s3t4+180s3t2−251s3t−37s5t3−210s4t3−180s2t3+251st3+2s6t3,

Now, we determine SP(t, s). We obtain

SP(t, s) = C0(t) + C1(t)s + C2(t)s
2,

where C0(t) = −(−1 + 6t)t, C1(t) = −1− t2, and C2(t) = t + 6.

Since m := degt(S
P) > 1, we go to Step 4 of algorithm, and we consider

R(t) =
C0(t)

C1(t)
=

t(6t− 1)

t2 + 1
.

Note that gcd(C0, C1) = 1. Now, we determine the polynomials

L1(s, x1) = Rest(G
P
1 (t, x1), sC1(t)− C0(t)) = 1369(2s2 + sx1 − 28s− 7x1 + 99)2,

L2(s, x2) = Rest(G
P
2 (t, x2), sC1(t)−C0(t)) = 50653(−s3+21s2+x2s−147s+343−6x2)

2,

where GP
i (t, xi) = xipi,2(t) − pi,1(t) (see Step 5). Finally, in Step 6, the algorithm

outputs the proper parametrization Q(t), and the rational function R(t)

Q(t) =

(−(2t2 − 28t + 99)

t− 7
,

t3 − 21t2 + 147t− 343

t− 6

)
, R(t) =

t(6t− 1)

t2 + 1
.
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Comparison of methods

We finish this section with a comparative discussion of the existing methods that
solve the proper reparametrization problem for the case of plane curves. In particular,
we analyze the algorithm in [24] (A1), the algorithm in [9] (A2), and the new proper
reparametrization algorithm presented in this section (A3). We base our discussion on
three different aspects: density of the output parametrization, algebraic manipulation
required in the algorithms, and actual computing times in the implementation.

First of all, we comment that the algorithm A1 is heuristic, and the other two
algorithms, A2 and A3, are deterministic. A1 determines the rational function R(t) by
means of the computation of several gcd’s, and solving some linear systems of equations.
Algorithms A2 and A3 only require the computation of a gcd. However, the gcd, SP

(see Lemma 3), computed by A3 is more general, and it allows to determine rational
function R(t) simply by choosing two of the coefficients of SP (see Theorem 2). With
respect to the computation of the proper parametrization Q(t), only algorithm A1
avoids the use of undetermined coefficients. This implies that the outputs provided by
A2 and A3 are in general more complicated, in the sense of density, than the outputs
given by A1.

Concerning algebraic manipulations required to derive the rational function R(t),
algorithms A2 and A3 are better since they only involve the computation of a gcd.
In the case of A1, evaluations and computations of solutions of some linear systems
of equations generated from the parametrization are required, and therefore is not as
direct. In order to compute the proper rational parametrization Q(t), algorithm A3 is
much better since it involves the computation of an easy univariate resultant whereas
algorithms A1 and A2 solve the problem by means of the undetermined coefficient
process.

Algorithms A1, A2 and A3, have been implementated in Maple. In the following
table we illustrate the performance of these three implementations, showing times for
some parametrizations. In the table we also show the degree of each input and output
parametrization. Actual computing times, running on a PC Mobile Intel Celeron 2.4
GHz and 265 MB of RAM, are given in seconds of CPU.
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INPUT
Degree
of Input

A1 A2 A3
Degree of
Output

P1 7 0.01 0.01 0.001 7
P2 80 3.886 0.611 0.070 8
P3 42 2.644 0.901 0.120 7
P4 49 1.762 0.541 0.201 7
P5 27 0.170 0.140 0.060 3
P6 27 6.930 3.395 0.190 9
P7 132 1.693 0.641 0.261 4
P8 30 0.781 0.401 0.150 6
P9 30 0.231 0.100 0.020 5
P10 40 0.641 0.350 0.300 5

4 The Problem of Proper Reparametrization for

Surfaces: An Special Case

In Sections 2 and 3, we deal with the problem of computing a rational proper
reparametrization of a given improperly parametrized algebraic plane curve. For the
case of surfaces, although it is known from Castelnuovo’s Theorem that unirationality
and rationality are equivalent over algebraically closed fields, algorithmic questions and
approaches are still required in order to solve the reparametrization problem.

In this section, we solve partially the proper reparametrization problem for the case
of surfaces. More precisely, given an algebraically closed field K, and P(t1, t2) a rational
parametrization of a surface V , we decide whether there exists

R(t1, t2) = (r1(t1), r2(t2)) =

(
r1,1(t1)

r1,2(t1)
,

r2,1(t2)

r2,2(t2)

)
∈ (K(t1, t2) \ K)2,

such that P(t1, t2) = Q(R(t1, t2)), and Q(t1, t2) is a proper parametrization of V . In the
affirmative case, we compute R(t1, t2), and Q(t1, t2).

The results obtained in this section provide a new and first approach that will be
used to solve the important problem of the proper reparametrization for a general
parametrized surface (see Section 6). No other result approaching the problem was
known up to the moment. In addition, this approach can be applied to other prob-
lems in the frame of algebraic manipulations of parametrized algebraic surfaces as for
instance, in the decomposition problem (see for instance [9]).

This section is preliminar, and we present some results that will be used to prove
the correctness of the algorithm for reparametrizing a surface stated in Section 5.

13



For this purpose, first we present the notation that we will use throughout Sections
4 and 5. In particular, we introduce some polynomials using the results in [19], [20],
and [21]. Afterwards, we state some previous lemmas (Lemmas 4 and 5) that will be
used to prove Theorem 5. In this theorem, we characterize the rational surfaces we
reparametrize properly. Finally, in Theorem 6, we show the existence of the proper
reparametrization.

Notation

Let K be an algebraically closed field, and let K? = K \ {0}. In addition, if V is an
affine rational surface, and P(t1, t2) is a rational affine parametrization of V over K, we
write its components as

P( t ) =

(
p1,1( t )

p1,2( t )
,

p2,1( t )

p2,2( t )
,

p3,1( t )

p3,2( t )

)
∈ K( t )3,

where t = (t1, t2), and gcd(pi,1, pi,2) = 1 for i = 1, 2, 3. For simplicity, we assume
w.l.o.g. that none pi,1/pi,2 is constant. Note that, if for instance p1,1/p1,2 = λ ∈ K,
then a proper parametrization of V is Q(t1, t2) = (λ, t1, t2), and then problem is trivial.

Furthermore, associated with the given parametrization P , we consider the polynomials

HP
j ( t , s ) = pj,1( t )pj,2( s )−pj,2( t )pj,1( s ) ∈ K[ s ][ t ], for j = 1, 2, 3, where s = (s1, s2),

and HP
4 ( t ) = lcm(p1,2, p2,2, p3,2). In addition, we also will use the polynomials

SP1 (t1, s ) = pp s (ContentZ(Rest2(H
P
1 , HP

2 + ZHP
3 ))),

SP2 (t2, s ) = pp s (ContentZ(Rest1(H
P
1 , HP

2 + ZHP
3 ))),

where pp s denotes the primitive part w.r.t. s , and ContentZ denotes the content w.r.t
a new variable Z. We denote by F the algebraic closure of the field K( s ).

Finally, we introduce the polynomials GP
i ( t , xi) = xipi,2( t ) − pi,1( t ), for i = 1, 2, 3.

The polynomials SPj will play an important role in deciding whether a parametrization
P is proper; i.e. in studying whether the parametrization is injective for almost all
parameter values (see [20]). More precisely, in [20] the following theorem is proved.

Theorem 4 The following statements hold:

1. FP( s ) =
{

t ∈ F2
∣∣∣ Hi

P( t , s ) = 0, i ∈ {1, 2, 3}, HP
4 ( t ) 6= 0

}
, where FP( s ) de-

notes the fibre P−1(P( s )); i.e. FP( s ) = { t ∈ F2 | P( t ) = P( s )}.
2. FP( s ) = {(A,B)∈ F2|SP1 (A, s ) = 0, MP

A (B, s ) = 0}, where

MP
A (t2, s ) = pp s (gcd

F[t2]
(HP

1 (A, t2, s ),HP
2 (A, t2, s ),HP

3 (A, t2, s ))).
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3. The polynomials SP1 , SP2 define the t1 and t2–coordinates of the points in FP( s ).

4. Card(FP( s )) = deg(φP) = degt1(S
P
1 (t1, s )) = degt2(S

P
2 (t2, s )), where φP de-

notes the rational map φP : K2 −→ V ; t 7−→ P( t ) induced by P. In particular,
P is proper if and only if, up to constants in K?, it holds that SPj = tj − sj.

Remark 3 The degree of the rational map induced by a pair of bivariate rational func-
tions can be also computed by applying the results in [20]. More precisely, given

R( t ) = (r1( t ), r2( t )) = (r1,1( t )/r1,2( t ), r2,1( t )/r2,2( t )) ∈ (K( t ) \ K)2,

where gcd(ri,1, ri,2) = 1 for i ∈ {1, 2}, we consider the polynomials

HR
i ( t , s ) = ri,1( t )ri,2( s )− ri,1( s )ri,2( t ) ∈ K[ s ][ t ], i ∈ {1, 2},

and HR
3 = lcm(r1,2, r2,2) (compare to HP

j ). In these conditions, we use the polynomials

SR
1 (t1, s ) = pp s (Rest2(H

R
1 , HR

2 )), SR
2 (t2, s ) = pp s (Rest1(H

R
1 , HR

2 ))

(compare to SPj ), to obtain similar results to Theorem 4 (for more details see [21]).

In these conditions, using the above preliminary results, in the following we characterize
whether a rational parametrization P of a surface V , can be expressed as P = Q(R),
where R( t ) = (r1(t1), r2(t2)) ∈ (K( t ) \ K)2, and Q is a proper parametrization of V .
Note that rj 6∈ K since we have assumed that none pi,1/pi,2 is constant. We start with
the following lemmas. The first one states a well known property of resultants (see [3]).

Lemma 4 Let f(x) = an
∏n

i=1(x − αi), and g(x) = bm
∏m

i=1(x − βi). Then, it holds
that Resx(f, g) = (−1)nmbn

m

∏m
i=1 f(βi).

Lemma 5 Let P( t ) be a rational parametrization of a surface V satisfying that
SP1 (t1, s ) = HR

1 (t1, s1)
`2 , and SP2 (t2, s ) = HR

2 (t2, s2)
`1 , where

HR
j (tj, sj) = rj,1(tj)rj,2(sj)− rj,2(tj)rj,1(sj), gcd(rj,1, rj,2) = 1, j = 1, 2

rj(tj) := rj,1(tj)/rj,2(tj) ∈ K[tj] \ K, and `j := degtj
(HR

j ). Let

Li(s1, t2, xi) = Rest1(G
P
i ( t , xi), s1r1,2(t1)− r1,1(t1)),

Ni( s , xi) = ppxi
(Rest2(Li(s1, t2, xi), s2r2,2(t2)− r2,1(t2))), i = 1, 2, 3,

where ppxi
denotes the primitive part w.r.t xi. It holds that

Ni( s , xi) = (qi,2( s )xi − qi,1( s ))deg(r1) ·deg(r2), i = 1, 2, 3

where qi,1( s ), qi,2( s ) ∈ K[ s ], and gcd(qi,1, qi,2) = 1.
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Proof: We prove the theorem for N1, and similarly one reasons for Nj, j = 2, 3. For
this purpose, first we note that the following three statements hold:
(1.) Since gcd(rj,1, rj,2) = 1 for j = 1, 2, then the polynomials HR

j do not have factors
in K[tj] neither in K[sj].
(2.) The polynomials HR

j do not have multiple roots for the variable t1. Indeed, first
note that HR

j ∈ K[sj][tj] \ K; if HR
j = c ∈ K, then since Hj(sj, sj) = 0, we get that

c = 0. Thus, since gcd(rj,1, rj,2) = 1, we deduce that rj,1, rj,2 ∈ K which is impossible.
Now, we assume that HR

1 has a multiple root a(s1) ∈ K(s1) (similarly for HR
2 ). Thus,

r1,1(a(s1))r1,2(s1)− r1,2(a(s1))r1,1(s1) = 0, r′1,1(a(s1))r1,2(s1)− r′1,2(a(s1))r1,1(s1) = 0.

Observe that since HR
1 does not have factors in K[t1] (see statement (1.)), then a(s1) 6∈

K. This implies that r1,1(a(s1))r
′
1,1(a(s1)) 6= 0, and then

r1,1(a(s1))

r1,2(a(s1))
=

r′1,1(a(s1))

r′1,2(a(s1))
=

r1,1(s1)

r1,2(s1)
.

From the above equality, one gets that r′1,1(a(s1))r1,2(a(s1))−r1,1(a(s1))r
′
1,2(a(s1)) = 0.

Hence, (r1,1(t1)/r1,2(t1))
′ (a(s1)) = 0, and then a(s1) ∈ K which is impossible.

(3.) We consider

R( t ) = (r1(t1), r2(t2)) =

(
r1,1(t1)

r1,2(t1)
,

r2,1(t2)

r2,2(t2)

)
∈ (K( t ) \ K)2,

and we prove that FP( s ) = FR( s ). For this purpose, first we note that Card(FP( s )) =
`1 · `2 (apply Theorem 4, Statement 4). Let ai(s1) ∈ K(s1), i = 1, . . . , `1 be the roots of
the polynomial HR

1 , and let bj(s2) ∈ K(s2), j = 1, . . . , `2 be the roots of the polynomial
HR

2 . Note that by statement (2.), we have that ai 6= aj and bi 6= bj for every i 6= j. In
these conditions, taking into account Theorem 4, we deduce that

FP( s ) = {(a1(s1), b1(s2)), . . . , (a1(s1), b`2(s2)), · · · · · · · · · , (a`1(s1), b1(s2)), . . . , (a`1(s1), b`2(s2))}.

Indeed, each root ai(s1) of the polynomial SP1 is `2 times, and ai 6= aj for every
i 6= j. Thus, to each ai(s1) corresponds `2 different roots (see Lemma 5 in [20]) of the
polynomial SP2 . Hence, since bi 6= bj for every i 6= j, we deduce the above equality.
On the other hand, by Remark 3, we have that

SR
1 (t1, s ) = pp s (Rest2(H

R
1 , HR

2 )), SR
2 (t2, s ) = pp s (Rest1(H

R
1 , HR

2 )).

Taking into account that pp s (Rest2(H
R
1 , HR

2 )) = (HR
1 )`2 , and pp s (Rest1(H

R
1 , HR

2 )) =
(HR

2 )`1 (apply Lemma 4), we deduce that SR
i (ti, s ) = SPi (ti, s ) for i = 1, 2. Thus,

reasoning similarly as above with R( t ), we get that FP( s ) = FR( s ).

In these conditions, and using the above statements, we prove the lemma in three
different steps:
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Step 1: First, we show that degx1
(N1) = deg(r1) · deg(r2). Indeed, by Lemma 4, and

taking into account that the leader coefficient of s1r1,2(t1)− r1,1(t1) w.r.t. t1 is in K[ s ],
we get that up to factors in K[ s ]

L1(s1, t2, x1) =
`1∏

i=1

GP
1 (αi, t2, x1),

where αi(s1) ∈ K(s1), i = 1, . . . , `1, are the roots of the polynomial s1r1,2(t1)−r1,1(t1)
for t1. Note that since gcd(r1,1, r1,2) = 1, then αi(s1) ∈ K(s1) \ K, and r1,2(αi(s1)) 6= 0.
Thus, r1(αi(s1)) = s1. Now, we apply Lemma 4 to the polynomial N1. Taking into
account that the leader coefficient of s2r2,2(t2)−r2,1(t2) w.r.t. t2 is in K[ s ], we get that

N1( s , x1) = ppx1




`2∏

j=1

L1(s1, βj, x1)


 = ppx1




`2∏

j=1

`1∏

i=1

GP
1 (αi, βj, x1)


 =

ppx1




`2∏

j=1

`1∏

i=1

(x1p1,2(αi, βj)− p1,1(αi, βj))


 , (I)

where βj(s2) ∈ K(s2), j = 1, . . . , `2, are the roots of the polynomial s2r2,2(t2)−r2,1(t2)

for t2. Note that since gcd(r2,1, r2,2) = 1, then βj(s2) ∈ K(s2) \ K, and r2,2(βj(s2)) 6=
0. Thus, r2(βj(s2)) = s2. Since we also had that r1(αi(s1)) = s1, we deduce that
R(αi, βj) = (s1, s2) for i = 1, . . . , `1, and j = 1, . . . , `2. Thus FR(R−1( s )) =

{(α1(s1), β1(s2)), . . . , (α1(s1), β`2(s2)), · · · · · · , (α`1(s1), β1(s2)), . . . , (α`1(s1), β`2(s2))}, (II).

Then, since FP( s ) = FR( s ) (see statement (3.)), we get that FP(R−1( s )) =
FR(R−1( s )) which implies that P is defined at (αi, βj) for i = 1, . . . , `1, and
j = 1, . . . , `2. Hence, in particular, we have that p1,2(αi, βj) 6= 0 for every i = 1, . . . , `1,
and j = 1, . . . , `2 which implies, from (I), that degx1

(N1) = `1 · `2 = deg(r1) · deg(r2).
Step 2: Now, we prove that N1( s , x1) only has one different root for the unknown x1.
Indeed, let A1( s ), A2( s ) be two roots of N1( s , x1) for x1. From (I) (see Step 1) and
taking into account that p1,2(αi, βj) 6= 0 for i = 1, . . . , `1, and j = 1, . . . , `2, we get that

Ak = p1,1(αik , βjk
)/p1,2(αik , βjk

), k = 1, 2,

for some ik ∈ {1, . . . , `1}, and jk ∈ {1, . . . , `2}. From (II) (see Step 1), we deduce that
P(αi1 , βj1) = P(αi2 , βj2), which implies that A1 = A2.
Step 3: Finally, since degx1

(N1) = deg(r1) · deg(r2) (see Step 1), and N1( s , x1) only
has one different root for the unknown x1 (see Step 2), from the equality (I), we deduce
that N1( s , x1) =

ppxi
(Rest2(L1(s1, t2, x1), s2r2,2(t2)−r2,1(t2))) = (q1,2( s )xi−q1,1( s ))deg(r1) deg(r2) ∈ K[ s , x1].

Thus, q1,1( s ), q1,2( s ) ∈ K[ s ], and gcd(q1,1, q1,2) = 1.

Applying these results one has the following theorem.
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Theorem 5 Let P( t ) be a rational parametrization of a surface V. The following
statements are equivalent:

1. P( t ) = Q(R( t )) where R( t ) = (r1(t1), r2(t2)) ∈ (K( t ) \ K)2, and Q( t ) is a
proper parametrization of V

2. SP1 (t1, s ) = HR
1 (t1, s1)

`2 , and SP2 (t2, s ) = HR
2 (t2, s2)

`1 , where for j = 1, 2,

HR
j (tj, sj) = rj,1(tj)rj,2(sj)− rj,2(tj)rj,1(sj), gcd(rj,1, rj,2) = 1,

rj(tj) := rj,1(tj)/rj,2(tj) ∈ K[tj] \ K, and `j := degtj
(HR

j ).

Proof: First, we prove that Statement 1 implies Statement 2. Note that since Q is
proper, we deduce that FP( s ) = FR( s ) which implies that

SP1 (t1, s ) = pps(Rest2(H
R
1 , HR

2 )), SP2 (t2, s ) = pps(Rest1(H
R
1 , HR

2 )),

where HR
i ( t , s ) = ri,1( t )ri,2( s )− ri,2( t )ri,1( s ), i = 1, 2 (see Theorem 4, and Remark

3). Now, by Lemma 4, we deduce that

SP1 (t1, s ) = HR
1 (t1, s1)

`2 , SP2 (t2, s ) = HR
2 (t2, s2)

`1 , where `i := degti
(HR

i ), i = 1, 2.

Now, let us prove that Statement 2 implies Statement 1. First, we consider

R( t ) = (r1(t1), r2(t2)) =

(
r1,1(t1)

r1,2(t1)
,

r2,1(t2)

r2,2(t2)

)
∈ (K( t ) \ K)2,

and we show that there exists Q( t ) ∈ K( t )3 such that P( t ) = Q(R( t )). By applying
Lemma 5, we have that,

Ni( s , xi) = (qi,2( s )xi − qi,1( s ))deg(r1) · deg(r2), i = 1, 2, 3

where qi,1( s ), qi,2( s ) ∈ K[ s ], and gcd(qi,1, qi,2) = 1. Let

Q( s ) = (q1( s ), q2( s ), q3( s )) =

(
q1,1( s )

q1,2( s )
,

q2,1( s )

q2,2( s )
,

q3,1( s )

q3,2( s )

)
,

and let us prove that P = Q(R); that is qj(R) = pj,1/pj,2, j = 1, 2, 3. Since
Nj(qj( s ), s ) = 0, j = 1, 2, 3, taking into account the behavior of resultants under
specializations (see Lemma 4.3.1, pp.96 in [31]), we deduce that

Rest2(Lj(qj( s ), t2, s1), s2r2,2(t2)− r2,1(t2)) = 0, j = 1, 2, 3.

Since gcd(r2,1, r2,2) = 1, we get that s2r2,2(t2) − r2,1(t2) is irreducible which im-
plies that this factor divides Lj(qj( s ), t2, s1). Therefore, s2 = r2(t2) is a root of
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Lj(qj(s1, s2), t2, s1), and then Lj(qj(s1, r2(t2)), t2, s1) = 0. Thus applying Lemma 4.3.1,
pp.96 in [31], we deduce that

Rest1(G
P
j ( t , qj(s1, r2(t2))), s1r1,2(t1)− r1,1(t1)) = 0, j = 1, 2, 3

Since gcd(r1,1, r1,2) = 1, we get that s1r1,2(t1)−r1,1(t1) is irreducible which implies that
this factor divides

GP
j ( t , qj(s1, r2(t2))) = qj,1(s1, r2(t2))pj,2( t )− pj,1( t )qj,2(s1, r2(t2)).

Hence, s1 = r1(t1) is a root of qj,1(s1, r2(t2))pj,2( t )− pj,1( t )qj,2(s1, r2(t2)), and then

qj,1(r1(t1), r2(t2))pj,2( t )− pj,1( t )qj,2(r1(t1), r2(t2)) = 0, j = 1, 2, 3;

that is, qj(R) = pj,1/pj,2, j = 1, 2, 3.

Finally, we prove that Q is proper. Indeed, since P = Q(R), and deg(φP) = deg(φR)
(see Statement 3 of the proof in Lemma 5), and taking into account that the degree
of a rational map is multiplicative under composition, we get that deg(φQ) = 1 which
implies that Q is proper (see Theorem 4).

Remark 4 We observe that applying Corollary 1, one may check easily if the square
free parts of the polynomials SPj (tj, sj) for j = 1, 2, say Mj(tj, sj), are of the form

Mj(tj, sj) = rj,1(tj)rj,2(sj)− rj,2(tj)rj,1(sj), gcd(rj,1, rj,2) = 1,

with rj(tj) := rj,1(tj)/rj,2(tj) ∈ K[tj] \K. In the affirmative case, by Theorem 5, we get
that P can be expressed as P = Q(R) where R( t ) = (r1(t1), r2(t2)) ∈ (K( t ) \K)2, and
Q is a proper parametrization of V.

Let us assume that for j = 1, 2,

Mj(tj, sj) = rj,1(tj)rj,2(sj)− rj,2(tj)rj,1(sj), gcd(rj,1, rj,2) = 1,

with rj(tj) := rj,1(tj)/rj,2(tj) ∈ K[tj] \ K. We express the polynomials rj,1(tj), rj,2(tj)
as

rj,1(tj) = amj ,jt
mj

j + · · ·+ a0,j, rj,2(tj) = bmj ,jt
mj

j + · · ·+ b0,j, j = 1, 2

with amj ,j 6= 0 or bmj ,j 6= 0. We get that,

Mj(tj, sj) = Cmj ,j(tj)s
mj

j + Cmj−1(tj)s
mj−1
j + · · ·+ C0,j(tj),

where C`,j(t) = a`,jrj,2(tj)− b`,jrj,1(tj), for ` = 0, . . . , mj, and j = 1, 2.
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Now, taking into account Theorem 1 (observe that each polynomial Mj is of the same
form than SP), we consider B( t ) =

(
Ci0,1(t1)
Cj0,1(t1)

,
Ci1,2(t2)
Cj1,2(t2)

)
=

(
ai0,1r1,2(t1)− bi0,1r1,1(t1)
aj0,1r1,2(t1)− bj0,1r1,1(t1)

,
ai1,2r2,2(t2)− bi1,2r2,1(t2)
aj1,2r2,2(t2)− bj1,2r2,1(t2)

)
∈ (K( t )\K)2,

where ai0,1bj0,1 6= aj0,1bi0,1, and ai1,2bj1,2 6= ai1,2bj1,2. In these conditions, we have the
following theorem.

Theorem 6 There exists a proper parametrization U( t ) of the surface V satisfying
that P( t ) = U(B( t )).

Proof: First, we observe that we may express B( t ) = G(R( t )), where

G( t ) =

(
bi0,1t1 − ai0,1

bj0,1t1 − aj0,1

,
bi1,2t2 − ai1,2

bj1,2t2 − aj1,2

)
.

Since ai0,1bj0,1 6= aj0,1bi0,1, and ai1,2bj1,2 6= ai1,2bj1,2 (see Theorem 1), we get that G( t )
is invertible. In these conditions, we consider U = Q(G−1), and we prove that U is a
proper parametrization of V . Indeed, first note that

U(B( t )) = Q(G−1( t )) ◦B( t ) = Q(G−1( t )) ◦G(R( t )) = Q(R( t )) = P( t ),

and then Q parametrizes V . In addition, since Q, G are invertible, we get that U =
Q(G−1) is proper.

5 Algorithm of Proper Reparametrization for Sur-

faces

The results obtained in Section 4 (in particular Lemma 5, and Theorems 5 and 6) can
be applied to derive an algorithm that decides whether a rational parametrization P of
a surface V , can be expressed as P = Q(R), where R( t ) = (r1(t1), r2(t2)) ∈ (K( t )\K)2,
and Q is a proper parametrization of V . In the affirmative case, the algorithm also
computes R and Q.

In the following, we outline this algorithm, and we illustrate it with an example.
We finish this section with a brief experimental analysis of the algorithm.
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Algorithm Proper Reparametrization for Surfaces.

Given a rational affine parametrization P = (p1,1/p1,2, p2,1/p2,2, p3,1/p3,2) , in reduced
form, of an algebraic surface V, the algorithm decides whether P( t ) = Q(R( t )), with
R( t ) = (r1(t1), r2(t2)) ∈ K( t )2, and in the affirmative case, it computes R( t ) and the
rational proper parametrization Q( t ).

1. Compute HP
j ( t , s ) = pj,1( t )pj,2( s )− pj,2( t )pj,1( s ), j = 1, 2, 3.

2. Determine the polynomials

SP1 = pp s (ContentZ(Rest2(H
P
1 ,HP

2 + ZHP
3 ))),

SP2 = pp s (ContentZ(Rest1(H
P
1 ,HP

2 + ZHP
3 )))

3. If degtj (S
P
j ) = 1, return Q( t ) = P( t ) and R( t ) = (t1, t2). Otherwise go to Step 4.

4. If SPj (tj , s ) ∈ K[tj , sj ], for j = 1, 2, go to Step 5. Otherwise, return “P cannot be
expressed as P( t ) = Q(R( t )), with R( t ) = (r1(t1), r2(t2))”.

5. Compute the polynomial

Mj(tj , sj) = Sqrfree(SPj (tj , s )) = Cmj ,j(tj)s
mj

j + · · ·+ C0,j(tj), j = 1, 2,

where Sqrfree(p) denotes the square free part of a polynomial p.

5.1. Consider R( t ) = (r1(t1), r2(t2)) with

rj(tj) = C`0,j(tj)/Cn0,j(tj) ∈ K(tj), j = 1, 2

and such that C`0,j and Cn0,j are not associated polynomials.

5.2. If C`0,j(tj)Cn0,j(sj)− C`0,j(sj)Cn0,j(tj) = cjMj(tj , sj), cj ∈ K?, j = 1, 2,
then go to Step 6. Otherwise, return “P cannot be expressed as P( t ) =
Q(R( t )), with R( t ) = (r1(t1), r2(t2))”.

6. For i = 1, 2, 3, compute the polynomials

Li(s1, t2, xi) = Rest1(G
P
i ( t , xi), s1r1,2(t1)− r1,1(t1)),

Ni( s , xi) = ppxi
(Rest2(Li(s1, t2, xi), s2r2,2(t2)−r2,1(t2))) = (qi,2( s )xi−qi,1( s ))deg(r1) deg(r2)

where GP
i ( t , xi) = xipi,2( t )− pi,1( t ).

7. Return
Q( t ) = (q1,1( t )/q1,2( t ), q2,1( t )/q2,2( t ), q3,1( t )/q3,2( t )) ,

and R( t ) = (C`0,1(t1)/Cn0,1(t1), C`0,2(t2)/Cn0,2(t2)).
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The algorithm follows directly from Theorem 4 in Step 3, Theorem 5 in Step 4,
Remark 4 in Step 5.2, Lemma 5 in Step 6, and Theorem 6 in Step 7. In the following,
we illustrate Algorithm Proper Reparametrization for Surfaces with an example.

Example 2

Let V be the rational surface defined by the parametrization

P( t ) =

(
t1

4 t2
4 + 2 t1

4 t2
2 + 5 t1

4 + 2 t2
4 + 4 t2

2 + 11

t2
4 + 2 t2

2 + 5
,

6 + t1
4 t2

4 + 2 t1
4 t2

2 + 5 t1
4 + t2

4 + 2 t2
2

(t2
4 + 2 t2

2 + 5) (t1
4 + 1)

, −3 + t1
4 t2

4 + 2 t1
4 t2

2 + 5 t1
4 + t2

4 + 2 t2
2

t2
4 + 2 t2

2 + 5

)
.

In Step 1 of the algorithm, we compute the polynomials

HP
1 ( t , s ) = −2t41t

4
2s

2
2−25t41−t41t

4
2s

4
2+t42+2t22+25s4

1−s4
2−2s2

2−2t41t
2
2s

4
2+2s4

1s
2
2t

4
2+4s4

1s
2
2t

2
2+

2s4
1s

4
2t

2
2+s4

1s
4
2t

4
2−4t41t

2
2s

2
2+10s4

1t
2
2−5t41t

4
2−10t41t

2
2+5s4

1s
4
2+5s4

1t
4
2+10s4

1s
2
2−5t41s

4
2−10t41s

2
2,

HP
2 ( t , s ) = 5t41 + t42 + 2t22 − 5s4

1 − s4
2 − 2s2

2 + t41t
4
2 + 2t41t

2
2 − s4

1s
4
2 − 2s4

1s
2
2,

HP
3 ( t , s ) = 2t41t

4
2s

2
2+25t41+t41t

4
2s

4
2+2t42+4t22−25s4

1−2s4
2−4s2

2+2t41t
2
2s

4
2−2s4

1s
2
2t

4
2−4s4

1s
2
2t

2
2−

2s4
1s

4
2t

2
2−s4

1s
4
2t

4
2+4t41t

2
2s

2
2−10s4

1t
2
2+5t41t

4
2+10t41t

2
2−5s4

1s
4
2−5s4

1t
4
2−10s4

1s
2
2+5t41s

4
2+10t41s

2
2.

Now, we determine SPj (tj, s ). We obtain

SP1 (t1, s1) = (t1 − s1)
4(t1 + s1)

4(t21 + s2
1)

4,

SP2 (t2, s2) = (t2 + s2)
4(t2 − s2)

4(t22 + 2 + s2
2)

4.

Since degtj
(SPj ) > 1, and SPj (tj, s ) ∈ K[tj, sj] for j = 1, 2, we go to Step 5 of algorithm,

and we determine the polynomials

M1(t1, s1) = (t1 − s1)(t1 + s1)(t
2
1 + s2

1) = C4,1(t1)s
4
1 + C0,1(t1),

where C4,1 = −1, C0,1 = t41, and

M2(t2, s2) = (t2 + s2)(t2 − s2)(t
2
2 + 2 + s2

2) = C4,2(t2)s
4
2 + C2,2(t2)s

2
2 + C0,2(t2),

where C4,2 = −1, C2,2 = −2, C0,2 = t42 + 2t22. Now, we consider

R( t ) = (C0,1(t1)/C4,1(t1), C0,2(t2)/C4,2(t2)) = (−t41,−t22(2 + t22)).

In Step 5.2 we check that

M1 = C4,1(t1)C0,1(s1)− C4,1(s1)C0,1(t1), M2 = C4,2(t2)C0,2(s2)− C4,2(s2)C0,2(t2).
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Note that C0,i, C4,i are not associated polynomials for i = 1, 2. In Step 6 of algorithm,
we compute the polynomials

Li(s1, xi) = Rest1(G
P
i ( t , xi), s1r1,2(t1)− r1,1(t1)),

Ni( s , xi) = ppxi
(Rest2(Li(s1, xi), s2r2,2(t2)−r2,1(t2))) = (qi,2( s )xi−qi,1( s ))degt1

(r1) ·degt2
(r2),

where GP
i ( t , xi) = xipi,2( t )− pi,1( t ). We get

N1( s , x1) = (11− 5x1 − 5s1 + s2x1 − 2s2 + s2s1)
16,

N2( s , x2) = (−6 + 5x2 − 5s1x2 + 5s1 − s2x2 + s2 + s2s1x2 − s2s1)
16,

N3( s , x3) = (−s2x3 − s2 + s2s1 − 5s1 + 5x3 + 3)16.

Finally, in Step 7, the algorithm returns the proper parametrization

Q( t ) =
(
−11 + t2t1 − 5t1 − 2t2

t2 − 5
,

6− t2 − 5t1 + t2t1
5− 5t1 − t2 + t2t1

,
−t2 + t2t1 − 5t1 + 3

t2 − 5

)
,

and R( t ) = (t41, t
2
2(2 + t22)).

Practical Implementation

In the following table we illustrate the performance of the implementation in Maple
of Algorithm Proper Reparametrization for Surfaces, showing times for some parametriza-
tions. In the table, we also show a list with the degree on the variables t1, t2, and total
degree, of each input and output parametrization, and R( t ). Actual computing times,
running on a PC Mobile Intel Celeron 2.4 GHz and 265 MB of RAM, are given in
seconds of CPU.

INPUT
Degree
of Input

Algorithm
Degree of
Output

Degree of
R( t )

P1 [1, 3, 4] 32.437 [2, 2, 3] [1, 3, 3]
P2 [2, 4, 6] 16.744 [1, 1, 2] [2, 4, 4]
P3 [3, 4, 4] 0.030 [1, 1, 1] [3, 4, 4]
P4 [4, 5, 9] 0.162 [2, 1, 3] [2, 5, 5]
P5 [4, 2, 4] 11.657 [4, 2, 4] [1, 1, 1]
P6 [6, 2, 7] 50.463 [6, 1, 7] [1, 2, 2]
P7 [5, 3, 8] 0.370 [1, 1, 2] [5, 3, 5]
P8 [5, 2, 7] 0.081 [1, 1, 2] [5, 2, 5]
P9 [6, 2, 6] 1.672 [3, 2, 3] [2, 1, 2]
P10 [8, 4, 8] 14.181 [4, 2, 4] [2, 2, 2]

We remark that the density of the input parametrization influences considerably
in the processing time. In particular, in the table, we observe that for some input
parametrizations having similar degrees, we obtain very different times.
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6 Conclusion

In this paper, we deal with the problem of proper reparametrization for rational curves
and surfaces. More precisely, for the case of curves, we present a new approach that
improves and reinterprets some previous results. In particular, the proper parametriza-
tion is obtained from the coefficients of a univariate gcd, and by computing a univariate
resultant.

For surfaces, no results approaching the problem algorithmically were known up
to the moment. We develop a first approach that solve the problem for some special
surface’s parametrizations. The basic idea is to compute two univariate resultants
of certain curves directly constructed from the given parametrization. These results
provide effective methods that can be used to solve the general case. We will deal with
this problem in a future work.
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