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a b s t r a c t

In this paper, we present a characterization for the Hausdorff distance between two given
algebraic curves in the n-dimensional space (parametrically or implicitly defined) to be
finite. The characterization is related with the asymptotic behavior of the two curves and
it can be easily checked. More precisely, the Hausdorff distance between two curves C and
C is finite if and only if for each infinity branch of C there exists an infinity branch of C
such that the terms with positive exponent in the corresponding series are the same, and
reciprocally.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Hausdorff distance is one of the most used measures in geometric pattern matching algorithms, computer aided
design or computer graphics (see e.g. [1–4]).

Given ametric space (E, d) and two arbitrary subsets A, B ⊂ E, the Hausdorff distance assigns to each point of one set the
distance to its closest point on the other and takes themaximumover all these values (see [5]). More precisely, theHausdorff
distance between A and B is defined as:

dH(A, B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}.

In this paper, we deal with the particular case where E = Cn or E = Rn, and d is the usual unitary or Euclidean distance
(see Chapter 5 in [6]). In addition, the two arbitrary subsets are two real algebraic curves C and C. In this case, the Hausdorff
distance between C and C is given by

dH(C, C) = max{sup
p∈C

d(p, C), sup
p∈C

d(p, C)}, where d(p, C) = min{d(p, q) : q ∈ C}.

In general, dH(A, B) may be infinite, and some restrictions have to be imposed to guarantee its finiteness (see e.g. [7]
or [8]).

As far as the authors know, there is no efficient algorithms for the exact computation of the Hausdorff distance between
algebraic varieties (in fact, if both varieties are given in implicit form, the computation of the Hausdorff distance is even
harder). Only some results for bounding or estimating the Hausdorff distance as well as computing it for some special cases
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can be found. For instance, in [9], the Hausdorff distance between planar free-form curves using a polyline approach is
estimated. More precisely, the input curves are approximated with polylines and the precise Hausdorff distance between
polylines is computed. It is shown that the approximation error can be totally controlled. In [10], a method for computing
the Hausdorff distance between two B-spline curves is developed. An estimation of the upper bound of the Hausdorff
distance in an sub-interval is given, which is used to eliminate the sub-intervals whose upper bounds are smaller than
the given lower bound. The conditions whether the Hausdorff distance occurs at an end point of the two curves are also
provided, and these conditions are used to turn the Hausdorff distance computation problem between two curves into a
minimumormaximumdistance computation problembetween a point and a curve,which can be solved aswell. [11] defines
and discusses the Hausdorff metric on the space of nonempty, closed, and bounded subsets of a given metric space. Two
important topological properties are considered, completeness and boundedness. It is proved that each of these properties
is possessed by a Hausdorff metric space if the property is possessed by the underlying metric space. The paper [12] is
devoted to computational techniques for generating upper bounds on the Hausdorff distance between two planar curves
(implicitly or parametrically defined). The bounds are computed directly from the control points (spline coefficients of the
curves). Potential applications include error bounds for the approximate implicitization of spline curves, for the approximate
parametrization of (piecewise) algebraic curves, and for algebraic curve fitting. This approach assumes that the two curves
are fairly close to each other. In [2], a real-time algorithm for computing the precise Hausdorff distance between two
planar freeform curves is presented. The algorithm is based on an effective technique that approximates each curve with a
sequence of G1 biarcs within an arbitrary error bound. In [8], authors consider real space algebraic curves, not necessarily
bounded, whose Hausdorff distance is finite, and bounds of their distance are provided. These bounds are related to the
distance between the projections of the space curves onto a plane. Thus, authors provide a theoretical result that reduces
the estimation and bounding of the Hausdorff distance of algebraic curves from the spatial to the planar case.

In this paper, we deal with a different aspect concerning the Hausdorff distance. We do not deal with the computation
or estimation of the Hausdorff distance as in the papers we mentioned above, but with a characterization on whether the
Hausdorff distance between two given algebraic curves (parametrically or implicitly defined) in the n-dimensional space
and that are not necessarily bounded, is finite. The characterization is based on the concept of similar asymptotic behavior
introduced in this paper, and it improves Proposition 5.4 presented in [11] (see also [13]). The notion of similar asymptotic
behavior has to deal with the convergence/divergence of the infinity branches of two given curves C and C. More precisely,
we say that C and C have a similar asymptotic behavior if there are no infinity branches in C which diverge from all the
infinity branches in C, and reciprocally. In fact, we show that the Hausdorff distance between C and C is finite if and only
if both curves have a similar asymptotic behavior. This condition is very easy to formulate from the computational point of
view and thus, we present an effective algorithm that checks if it holds.

Although the curves used in computer aided geometric design (CAGD) are usually bounded and there is no need to decide
whether or not the Hausdorff distance is bounded, the characterization presented in this paper plays an important role in
some other applications to CAGD as for instance in the approximate parametrization problem (see e.g. [7,14–17]). In that
problem, given an affine curve C (say that it is a perturbation of a rational curve), the goal is to compute a rational proper
parametrization of a rational affine curve C near C (one may state the problem also for surfaces; see [18]). As one can
check in the papers mentioned, the effectiveness of the algorithm depends on the closeness of C and C and, at least, the
finiteness of the Hausdorff distance betweenC andC has to be guaranteed (which is equivalent to ensure a similar behavior
of both curves at infinity). The potential applications of the results presented in this paper also include the approximate
implicitization problem for curves and surfaces (see [19,20]).

Moreover, since this characterization is based on the notion of infinity branch which reflects the status of a curve at the
points with sufficiently large coordinates, one may think in applying the results presented to the analysis of the behavior at
infinity of an algebraic curve, which implies a wide applicability in many active research fields. For instance, the following
problems could be considered: sketch the graph of a given algebraic curve as well as to study its topology (see e.g. [21–24]),
compute the shapes in a family of space curves (see [25]), determine the symmetries of a given curve (see [26]), etc.

The structure of the paper is as follows: in Section 2, we present the terminology that will be used throughout the paper
as well as some previous results. In this section, we assume that the given curve is implicitly defined but one can easily
check that the results obtained are independent on the representation of the curve. Only computational aspects change, and
thus, in Section 3,wepresent the necessary computational techniques to dealwith curves parametrically defined. Section 4 is
devoted to present themain theoremwhere the finiteness of the Hausdorff distance is characterized. For this purpose, some
technical lemmas are proved. In Section 5, we derive an algorithm that decides whether the Hausdorff distance between
two given algebraic curves is finite andwe show how this algorithm can be adapted to be applied only to the real parts of the
given curves. We illustrate the method with some examples in detail. Moreover, some practical examples are also shown
where one can check the applicability of our results to problems in CAGD.We finish with a section of conclusions (Section 6)
where we summarize the results obtained, we emphasize the new contributions of this paper, and we propose topics for
further study.

2. Previous results for implicit space curves

In this section, we present some previous definitions and results concerning curves in the n-dimensional space. We
assume that the curves are defined by a finite set of real polynomials but we will see that all the results and concepts
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introduced do not depend on the representation of the given curve. Only the practical computation differs from the implicit
to the parametric case. This moves us to deal with parametric curves in Section 3 where we show the computational
techniques one has to apply to this case.

The results obtained in this sectionwill provide very important tools that allow to analyzewhether theHausdorff distance
between two given algebraic curves is finite (see Sections 4 and 5).

We start with some briefs notions and terminology that will be used throughout the paper. In particular, we need some
previous results concerning local parametrizations and Puiseux series. For further details see [27–29], Section 2.5 in [30],
and Chapter 4 (Section 2) in [31].

We denote by C[[t]] the domain of formal power series in the indeterminate t with coefficients in the field C, i.e. the
set of all sums of the form


∞

i=0 ait
i, ai ∈ C. The quotient field of C[[t]] is called the field of formal Laurent series, and it

is denoted by C((t)). It is well known that every non-zero formal Laurent series A ∈ C((t)) can be written in the form
A(t) = tk · (a0 + a1t + a2t2 + · · ·), where a0 ≠ 0 and k ∈ Z. In addition, the field C ≪ t ≫:=


∞

n=1 C((t1/n)) is called the
field of formal Puiseux series. Note that Puiseux series are power series of the form

ϕ(t) = m + a1tN1/N + a2tN2/N + a3tN3/N + · · · ∈ C ≪ t ≫, ai ≠ 0, ∀i ∈ N,

where N,Ni ∈ N, i ≥ 1, 0 < N1 < N2 < · · ·. The natural number N is known as the ramification index of the series. We
denote it as ν(ϕ) (see [29]).

The most important property of Puiseux series is given by Puiseux’s Theorem, which states that if K is an algebraically
closed field, then the field K ≪ x ≫ is algebraically closed (see Theorems 2.77 and 2.78 in [30]). A proof of Puiseux’s
Theorem can be given constructively by the Newton Polygon Method (see e.g. Section 2.5 in [30]).

Under these conditions, we considerC ⊂ Cn a curve in the n-dimensional space defined by a finite set of real polynomials
f1( x ), . . . , fs( x ) ∈ R[ x ], s ≥ n − 1, where x = (x1, . . . , xn).

The assumption of reality of the curve C is included because of the nature of the problem, but the theory developed in
this paper can be applied for the case of complex non-real curves.

Let C∗ be the corresponding projective curve defined by the homogeneous polynomials Fi(x1, . . . , xn, xn+1) ∈

R[x1, . . . , xn, xn+1], i = 1, . . . , s. Furthermore, let P = (1 : m2 : . . . : mn : 0), mj ∈ C, j = 2, . . . , n, be an infinity
point of C∗.

In addition, we consider the curve implicitly defined by the polynomials gi(x2, . . . , xn, xn+1) := Fi(1, x2, . . . , xn, xn+1) ∈

R[x2, . . . , xn, xn+1] for i = 1, . . . , s. Observe that gi(p) = 0, where p = (m2, . . . ,mn, 0). Let I ∈ R(xn+1)[x2, . . . , xn] be the
ideal generated by gi(x2, . . . , xn, xn+1), i = 1, . . . , s, in the ring R(xn+1)[x2, . . . , xn]. We assume that C is not contained in
some hyperplane xn+1 = c, c ∈ C (otherwise, one can consider C as a curve in the (n−1)-dimensional space), and thus we
have that xn+1 is not algebraic over R. Under this assumption, the ideal I (i.e. the system of equations g1 = · · · = gs = 0)
has only finitely many solutions in the n-dimensional affine space over the algebraic closure of R(xn+1) (which is contained
in C ≪ xn+1 ≫). Then, there are finitely many (n − 1)-tuples (ϕ2(t), . . . , ϕn(t)) where ϕj(t) ∈ C ≪ t ≫, j ∈ {2, . . . , n},
such that gi(ϕ2(t), . . . , ϕn(t), t) = 0, i = 1, . . . , s, and ϕj(0) = mj, j = 2, . . . , n. Each of these (n − 1)-tuples is a solution
of the system associated with the infinity point (1 : m2 : . . . : mn : 0), and each ϕj(t) converges in a neighborhood of t = 0.
Moreover, since ϕj(0) = mj, j = 2, . . . , n, these series do not have terms with negative exponents; in fact, they have the
form ϕj(t) = mj +


i≥1 ai,jt

Ni,j/Nj where Nj, Ni,j ∈ N, 0 < N1,j < N2,j < · · ·.
It is important to remark that if ϕ(t) := (ϕ2(t), . . . , ϕn(t)) is a solution of the system, then σϵ(ϕ)(t) :=

(σϵ(ϕ2)(t), . . . , σϵ(ϕn)(t)) is another solution of the system, where

σϵ(ϕj)(t) = mj +

i≥1

ai,jϵλi,j tNi,j/Nj , Nj, Ni,j ∈ N, 0 < N1,j < N2,j < · · · ,

N := lcm(N2, . . . ,Nn), λi,j := Ni,jN/Nj ∈ N, and ϵN
= 1 (see [27]). We refer to these solutions as the conjugates of ϕ. The

set of all (distinct) conjugates of ϕ is called the conjugacy class of ϕ, and the number of different conjugates is N .
Under these conditions and reasoning as in [28, Section 3], we get that there existsM ∈ R+ such that for i = 1, . . . , s, it

holds that Fi(1 : ϕ2(t) : . . . : ϕn(t) : t) = gi(ϕ2(t), . . . , ϕn(t), t) = 0 for t ∈ C and |t| < M . This implies that

Fi(t−1
: t−1ϕ2(t) : . . . : t−1ϕn(t) : 1) = fi(t−1, t−1ϕ2(t), . . . , t−1ϕn(t)) = 0,

for t ∈ C and 0 < |t| < M . Now, we set t−1
= z, and we obtain that for i = 1, . . . , s,

fi(z, r2(z), . . . , rn(z)) = 0, z ∈ C and |z| > M−1, where

rj(z) = zϕj(z−1) = mjz + a1,jz1−N1,j/Nj + a2,jz1−N2,j/Nj + a3,jz1−N3,j/Nj + · · · , (1)

ai,j ≠ 0,Nj,Ni,j ∈ N, i = 1, . . . , and 0 < N1,j < N2,j < · · ·.
Since ν(ϕ) = N , we get that there are N different series in its conjugacy class. Let ϕα,j, α = 1, . . . ,N be these series, and

rα,j(z) = zϕα,j(z−1) = mjz + a1,jc
λ1,j
α z1−N1,j/Nj + a2,jc

λ2,j
α z1−N2,j/Nj + a3,jc

λ3,j
α z1−N3,j/Nj + · · · (2)

where N = lcm(N2, . . . ,Nn), λi,j = Ni,jN/Nj ∈ N, and c1, . . . , cN are the N complex roots of xN = 1.
Nowwe are ready to define infinity branch. This concept was introduced in [28, Section 3] for algebraic plane curves (see

also [13]), and in [32, Section 2] for algebraic space curves.
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Definition 2.1. An infinity branch of a n-dimensional space curve C associated to the infinity point P = (1 : m2 : . . . : mn :

0), mj ∈ C, j = 2, . . . , n, is a set B =
N

α=1 Lα , where Lα = {(z, rα,2(z), . . . , rα,n(z)) ∈ Cn
: z ∈ C, |z| > M}, M ∈ R+,

and the series rα,j, j = 2, . . . , n, are given by (2). The subsets L1, . . . , LN are called the leaves of the infinity branch B.

Remark 2.2. An infinity branch is uniquely determined from one leaf, up to conjugation. More precisely, let B be an infinity
branch and let L = {(z, r2(z), . . . , rn(z)) ∈ Cn

: z ∈ C, |z| > M} be one of its leaves, where rj is of the form given in Eq. (1).
Then, any other leaf Lα has the form Lα = {(z, rα,2(z), . . . , rα,n(z)) ∈ Cn

: z ∈ C, |z| > M}, where rα,j = rj, j = 2, . . . ,N ,
up to conjugation. That is, rα,j is of the form given in Eq. (2).

Remark 2.3. Observe that the above approach is presented for infinity points of the form (1 : m2 : . . . : mn : 0). For
the infinity points (0 : m2 : . . . : mn : 0), with mj ≠ 0 for some j = 2, . . . , n, we reason similarly but we deho-
mogenize w.r.t xj. More precisely, let us assume that m2 ≠ 0. Then, we consider the curve defined by the polynomials
gi(x1, x3, . . . , xn+1) := Fi(x1, 1, x3, . . . , xn+1) ∈ R[x1, x3, . . . , xn+1], i = 1, . . . , s, and we reason as above. We get that
an infinity branch of the space curve C associated to (0 : m2 : . . . : mn : 0), m2 ≠ 0, is a set B =

N
α=1 Lα , where

Lα = {(rα,1(z), z, rα,3(z), . . . , rα,n(z)) ∈ Cn
: z ∈ C, |z| > M}, M ∈ R+.

Additionally, instead of working with this type of branches, if C has infinity points of the form (0 : m2 : . . . : mn : 0),
one may consider a linear change of coordinates. Thus, in the following, we assume w.l.o.g that C only has infinity points of
the form (1 : m2 : . . . : mn : 0). More details on these type of branches are given in [28, see Definition 3.3 in Section 3] and
[32, see Remark 2.3 in Section 2].

In the following, we introduce the notions of convergent and divergent leaves. Intuitively speaking, two leaves converge
(diverge) if they get closer (get away) as they tend to infinity. The notion of convergence was introduced in [28, Section 4]
for algebraic plane curves, and in [32, Section 2] for algebraic space curves.

Definition 2.4. Let L = {(z, r2(z), . . . , rn(z)) ∈ Cn
: z ∈ C, |z| > M} and L = {(z, r2(z), . . . , rn(z)) ∈ Cn

: z ∈ C, |z| >
M} be two leaves that belong to two infinity branches B and B, respectively (see Definition 2.1 and Remark 2.2). We say that

1. L and L converge if limz→∞ d((r2(z), . . . , rn(z)), (r2(z), . . . , rn(z))) = 0.
2. L and L diverge if limz→∞ d((r2(z), . . . , rn(z)), (r2(z), . . . , rn(z))) = ∞.

Remark 2.5. Taking into account that the distance d is derived from the Euclidean inner product and that all the norms are
equivalent in Cn−1 (see Chapter 5 in [6]), we get that:
1. limz→∞ d((r2(z), . . . , rn(z)), (r2(z), . . . , rn(z))) = 0 if and only if limz→∞(r j(z) − rj(z)) = 0 for every j = 2, . . . , n.
2. limz→∞ d((r2(z), . . . , rn(z)), (r2(z), . . . , rn(z))) = ∞ if and only if there exists some j = 2, . . . , n such that

limz→∞(r j(z) − rj(z)) = ∞.

Remark 2.6. Observe that it may happen that

lim
z→∞

d((r2(z), . . . , rn(z)), (r2(z), . . . , rn(z))) = c ∈ R+
\ {0}

which is equivalent to limz→∞(r j(z) − rj(z)) = cj ∈ C for every j = 2, . . . , n and cj ≠ 0 for some j = 2, . . . , n. In this case,
L and L do not converge neither diverge (compare with Definition 2.4).

The following lemma provides a method to determine whether two leaves converge or diverge without the need of
computing limits.

Lemma 2.7. Let L = {(z, r2(z), . . . , rn(z)) ∈ Cn
: z ∈ C, |z| > M} and L = {(z, r2(z), . . . , rn(z)) ∈ Cn

: z ∈ C, |z| > M}

be two leaves that belong to two infinity branches B and B, respectively. It holds that:
1. L and L converge if and only if the terms with non-negative exponent in the series rj(z) and r j(z) are the same, for every j =

2, . . . , n.
2. L and L diverge if and only if the terms with positive exponent in the series rj(z) and r j(z) are not the same, for some j =

2, . . . , n.

Proof. Let

rj(z) = mjz + a1,jz1−N1,j/Nj + a2,jz1−N2,j/Nj + a3,jz1−N3,j/Nj + · · · ,

ai,j ≠ 0, ∀i ∈ N, i ≥ 1,Nj,Ni,j ∈ N, and 0 < N1,j < N2,j < · · · for j = 2, . . . , n and

r j(z) = mjz + a1,jz1−N1,j/N j + a2,jz1−N2,j/N j + a3,jz1−N3,j/N j + · · · ,

ai,j ≠ 0, ∀i ∈ N, i ≥ 1, N j,N i,j ∈ N, and 0 < N1,j < N2,j < · · · for j = 2, . . . , n. Then,

rj(z) − r j(z) = mjz − mjz + a1,jz
N−N1

N − a1,jz
N−N1

N + a2,jz
N−N2

N − a2,jz
N−N2

N + · · · .
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Under these conditions, it holds that:

1. limz→∞(rj(z)−r j(z)) = 0 for every j = 2, . . . , n, if and only if all the exponents in the series rj(z)−r j(z) are negative. This
situation holds if the terms with non-negative exponent in the series rj(z) and r j(z) are the same for every j = 2, . . . , n.

2. limz→∞(rj(z) − r j(z)) = ∞ for some j = 2, . . . , n, if and only if rj(z) − r j(z) has some term with positive exponent.
This situation holds if the terms with positive exponent in the series, rj(z) and r j(z), are not the same for some j =

2, . . . , n. �

Remark 2.8. If the terms with positive exponent in the series rj(z) and r j(z) are the same for every j = 2, . . . , n, but the
independent terms (the terms with exponent zero) are different for some j = 2, . . . , n, we have that L and L do not diverge
neither converge.

In the following, we introduce the notions of convergent and divergent branches. These concepts are obtained from
Definition 2.4, and they are an indispensable tool for comparing the asymptotic behavior of two curves.

Definition 2.9. Let B =
N

α=1 Lα and B =
N

β=1 Lβ be two infinity branches of two algebraic curves C and C, respectively.

1. B and B converge if there are two convergent leaves Lα ⊆ B, α = 1, . . . ,N and Lβ ⊆ B, β = 1, . . . ,N .
2. B and B diverge if any two leaves Lα ⊆ B, α = 1, . . . ,N and Lβ ⊆ B, β = 1, . . . ,N diverge.

From Definition 2.9 we get that two infinity branches B and B do not diverge if there are two leaves, L ⊆ B and L ⊆ B,
that do not diverge. Furthermore, the next lemma states that, in this case, every leaf of B is non-divergent with some leaf of
B, and reciprocally.

Lemma 2.10. Let B =
N

α=1 Lα and B =
N

β=1 Lβ be two non-divergent infinity branches. Then, for each leaf Lα ⊆ B there
exists a leaf Lβ ⊆ B that does not diverge with Lα , and reciprocally.

Proof. Let B and B be two non-divergent branches. Let us prove that for any leaf Lα ⊆ B there exist one or more leaves
Lβ ⊆ B non-divergent with Lα , and reciprocally. From the discussion above, we know that there exist two leaves
{(z, r2(z), . . . , rn(z)) ∈ Cn

: z ∈ C, |z| > M} ⊂ B and {(z, r2(z), . . . , rn(z)) ∈ Cn
: z ∈ C, |z| > M} ⊂ B that do not

diverge. Let

rj(z) = zϕj(z−1) = mjz + u1,jz1−
N1,j
N + · · · + uk,jz1−

Nk,j
N + uk+1,jz1−

Nk+1,j
N + · · · ,

r j(z) = zϕj(z
−1) = mjz + u1,jz

1−
N1,j
N + · · · + uk,jz

1−
Nk,j
N + uk+1,jz

1−
Nk+1,j

N + · · · ,

where ui,jui,j ≠ 0,N = ν(B) = lcm(N2, . . . ,Nn),N = ν(B) = lcm(N2, . . . ,Nn),Nk,j < N ≤ Nk+1,j and Nk,j < N ≤ Nk+1,j
for some k ∈ N (note that kmay depend on j). Note also that the expression above differs slightly from that of (1), since we
are using N and N as the common denominators for the exponents of the series rj and r j respectively.

From Lemma 2.7, we deduce that the terms with positive exponent in rj and r j are the same. Thus, mj = mj, ui,j = ui,j,
for i = 1, . . . , k, j = 2, . . . , n, and

rj(z) = mjz + u1,jz1−
n1,j
n + · · · + uk,jz1−

nk,j
n + uk+1,jz1−

Nk+1,j
N + · · · ,

r j(z) = mjz + u1,jz1−
n1,j
n + · · · + uk,jz1−

nk,j
n + uk+1,jz

1−
Nk+1,j

N + · · · ,

where ui,j, ui,j ≠ 0, n, ni,j ∈ N and 0 < n1,j < · · · < nk,j < n. Observe that we have simplified the non negative exponents
such that gcd(n, n1,j, . . . , nk,j) = 1,for j = 2, . . . , n. Hence, there are b, b ∈ N such that Ni,j = bni,j,N = bn,N i,j = bni,j,
and N = bn for i = 1, . . . , k and j = 2, . . . , n.

Under these conditions, we observe that the different leaves of B and B are obtained by conjugation on rj(z) and r j(z),
j = 2, . . . , n. That is, any two leaves Lα ⊆ B, α = 1, . . . ,N and Lβ ⊆ B, β = 1, . . . ,N will have the form Lα = {(z, rα,2(z),
. . . , rα,n(z)) ∈ Cn

: z ∈ C, |z| > M} and Lβ = {(z, rβ,2(z), . . . , rβ,n(z)) ∈ Cn
: z ∈ C, |z| > M}, where

rα,j(z) = mjz + u1,jc
N1,j
α z1−

N1,j
N + · · · + uk,jc

Nk,j
α z1−

Nk,j
N + uk+1,jc

Nk+1,j
α z1−

Nk+1,j
N + · · · ,

and

rβ,j(z) = mjz + u1,jd
N1,j
β z1−

N1,j
N + · · · + uk,jd

Nk,j
β z1−

Nk,j
N + uk+1,jd

Nk+1,j
β z1−

Nk+1,j
N + · · · ,

c1, . . . , cN are the N complex roots of xN = 1, and d1, . . . , dN are the N complex roots of xN = 1 (see Eq. (2)).
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We simplify the exponents and, using that ui,j = ui,j, i = 1, . . . , k, we get that:

rα,j(z) = mjz + u1,jc
N1,j
α z1−

n1,j
n + · · · + uk,jc

Nk,j
α z1−

nk,j
n + uk+1,jc

Nk+1,j
α z1−

Nk+1,j
N + · · ·

rβ,j(z) = mjz + u1,jd
N1,j
β z1−

n1,j
n + · · · + uk,jd

Nk,j
β z1−

nk,j
n + uk+1,jd

Nk+1,j
β z1−

Nk+1,j
N + · · · .

Now, we prove that for any leaf Lα there exist one or more leaves Lβ non-divergent with Lα . For this purpose, we just
need to show that, given any value of α = 1, . . . ,N , there exist one or more values of β = 1, . . . ,N such that c

Ni,j
α =

d
N i,j
β , i = 1, . . . , k, j = 2, . . . , n.

Indeed, since the coefficients cα, α = 1, . . . ,N are the N complex roots of xN = 1, we have that cα = e
2(α−1)π I

N , where I is
the imaginary unit. Taking into account thatN = bn, we deduce that cbα = e

2(α−1)π I
n for eachα = 1, . . . ,N and cbα = cbα+(m−1)n

for each α = 1, . . . , n and m = 1, . . . , b. That is, cbα, α = 1, . . . , n are the n complex roots of xn = 1. Reasoning similarly,

we have that dbβ = e
2(β−1)π I

n for each β = 1, . . . ,N and dbβ = dbβ+(m−1)n for each β = 1, . . . , n and m = 1, . . . , b. That is,

dbβ , β = 1, . . . , n are the n complex roots of xn = 1. Hence, for each α = 1, . . . ,N there are one or more β = 1, . . . ,N

such that cbα = dbβ , and reciprocally. Finally, the result follows taking into account that c
Ni,j
α =


cbα

ni,j
=


dbβ

ni,j
= d

N i,j
β . �

Remark 2.11. Let B and B be two infinity branches associated with two infinity points P = (1 : m2 : · · · : mn) and
P = (1 : m2 : · · · : mn), respectively. From the proof of Lemma 2.10, if B and B do not diverge, then mj = mj for every
j = 2, . . . , nwhich implies that two non-divergent infinity branches are associatedwith the same infinity point (see Remark
4.5 in [28]).

For the sake of simplicity, and taking into account that an infinity branch B is uniquely determined from one leaf, up to
conjugation (see Remark 2.2), we identify an infinity branch by just one of its leaves. Hence, in the following

B = {(z, r2(z), . . . , rn(z)) ∈ Cn
: z ∈ C, |z| > M}, M ∈ R+

will stand for the infinity branch whose leaves are obtained by conjugation on

rj(z) = mjz + a1,jz1−N1,j/Nj + a2,jz1−N2,j/Nj + a3,jz1−N3,j/Nj + · · · ,

ai,j ≠ 0, ∀i ∈ N, i ≥ 1,Nj,Ni,j ∈ N, and 0 < N1,j < N2,j < · · · for j = 2, . . . , n. Observe that the results stated above hold
for any leaf of B.

Finally, we remark that there exists well known algorithms that allow to compute the series ϕj(t) ∈ C ≪ t ≫, j =

2, . . . , n, and then the branch B = {(z, r2(z), . . . , rn(z)) ∈ Cn
: z ∈ C, |z| > M} (see e.g. [27]). In addition, in [32], a

procedure for computing the branches for n = 3 is presented. This method is based on projections over the plane, and it can
be generalized for a given curve in the n-dimensional space by successively eliminating variables and reducing the problem
to the computation of infinity branches for plane curves (a method for successively eliminating the variables, by means of
univariate resultants, is presented in [33]). For the plane case (n = 2) methods are well known (see e.g. Section 3 in [28]).

In the following example, we compute the infinity branches for a given algebraic curve in the 4-dimensional space
implicitly defined by the polynomials fi(x1, x2, x3, x4) ∈ R[x1, x2, x3, x4], i = 1, 2, 3.

Example 2.12. Let C be the irreducible curve defined over C by

f1(x1, x2, x3, x4) = x1 − x22 + 2x3, f2(x1, x2, x3, x4) = x1 + x2 − x24, and f3(x1, x2, x3, x4) = 2x2 − x23 + x4.

The projection along the x4-axis, Cp, is defined by the polynomials

f p1 (x1, x2, x3) = x1 − x22 + 2x3, and f p2 (x1, x2, x3) = x1 + x2 − 4x22 + 4x2x23 − x43

(these polynomials can be obtained by computing univariate resultants).
By applying the method described in Section 3 in [32] (we use the algcurves package included in the computer algebra

systemMaple), we compute the infinity branches ofCp. We obtain the branch Bp
1 = {(z, r1,2(z), r1,3(z)) ∈ C3

: z ∈ C, |z| >

Mp
1}, where

r1,2(z) = z1/2 +
√
3z−1/4

+

√
3z−3/4

12
−

z−1

2
−

7
√
3z−5/4

288
+ · · ·

r1,3(z) =
√
3z1/4 +

√
3z−1/4

12
+ z−1/2

−
7
√
3z−3/4

288
+

z−1

4
+ · · · ,
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Fig. 1. Curve Cp and infinity branches Bp
1 (left) and Bp

2 (right).

and the branch Bp
2 = {(z, r2,2(z), r2,3(z)) ∈ C3

: z ∈ C, |z| > Mp
2}, where

r2,2(z) = z1/2 + z−1/4
−

z−3/4

4
+

z−1

2
−

z−5/4

32
+ · · · ,

r2,3(z) = z1/4 −
z−1/4

4
+ z−1/2

+
z−3/4

32
−

z−1

4
+ · · · .

Note that both branches are associated to the infinity point P1 = (1 : 0 : 0 : 0). Moreover, ν(Bp
1) = ν(Bp

2) = 4, and thus
each branch has 4 (conjugated) leaves. That is, Bp

1 =
4

α=1 L1,α , where L1,α are obtained by conjugation in the above series
r1,2 and r1,3 (similarly for Bp

2).
Once we have the infinity branches of the projected curve Cp, we compute the infinity branches of the curve C. We use

the lift function h(x1, x2, x3) = −2x2 + x23 to get the fourth component of these branches (we apply the results in [34] to
compute h). Thus, the infinity branches of C are B1 = {(z, r1,2(z), r1,3(z), r1,4(z)) ∈ C4

: z ∈ C, |z| > M1}, where

r1,4(z) = h(z, r1,2(z), r1,3(z)) = z1/2 +
1
2

−
z−1/2

8
+

√
3z−3/4

2
+ · · ·

and B2 = {(z, r2,2(z), r2,3(z), r2,4(z)) ∈ C4
: z ∈ C, |z| > M2}, where

r2,4(z) = h(z, r2,2(z), r2,3(z)) = −z1/2 −
1
2

+
z−1/2

8
−

z−3/4

2
+ · · · .

In Fig. 1, we plot the curve Cp and some points of the infinity branches Bp
1 and Bp

2.

3. Parametric space curves: computation of infinity branches

In Section 2, we have assumed that the given real algebraic curve in the n-dimensional space is implicitly defined. In this
section, we deal with algebraic curves defined by a rational real parametrization.

Note that the definitions introduced in Section 2, and the obtained results, are independent on whether the curve is
parametrically or implicitly defined. However, the method to compute the infinity branches has to be different (of course,
one may implicitize and reason as in Section 2, but we are interested in computing the infinity branches from the given
parametrization without implicitizing).

Thus, in this section, we present a method to compute infinity branches of a rational curve in the n-dimensional space
from their parametric representation (without implicitizing). Similarly as above, we work over C, but we assume that the
curve has infinitely many points in the affine plane over R and then, the curve has a real parametrization. The method
presented generalize the results in [32, see Section 5].

The computation of infinity branches of the given curve will be an essential tool for checking whether the Hausdorff
distance between two algebraic curves is finite or not (see Sections 4 and 5).

Therefore, in the following, we consider a real space curve C in the n-dimensional space Cn, defined by the parametriza-
tion

P (s) = (p1(s), . . . , pn(s)) ∈ R(s)n \ Rn, pi(s) = pi1(s)/p(s), i = 1, . . . , n.

We assume that we have prepared the input curve C, by means of a suitable linear change of coordinates (if necessary) such
that (0 : m2 : . . . : mn : 0) (mj ≠ 0 for some j = 2, . . . , n) is not an infinity point (see Remark 2.3). Note that, hence,
deg(p1) ≥ 1.

Now, let C∗ denote the projective curve associated to C. We have that a parametrization of C∗ is given by P ∗(s) =

(p11(s) : · · · : pn1(s) : p(s)) or, equivalently,

P ∗(s) =


1 :

p21(s)
p11(s)

: · · · :
pn1(s)
p11(s)

:
p(s)
p11(s)


.
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Under these conditions,we showhow to compute the infinity branches ofC. That is, the sets B = {(z : r2(z) : . . . : rn(z)) :

z ∈ C, |z| > M}, where rj(z) = zϕj(z−1) ∈ C ≪ z ≫, j = 2, . . . , n. We recall that these series must verify Fi(1 : ϕ2(t) :

. . . : ϕn(t) : t) = 0 around t = 0, where Fi, i = 1, . . . , s are the polynomials defining implicitly C∗ (see Section 2). Observe
that in this section, we are given the parametrization P ∗ of C∗ and then, Fi(P ∗(s)) = Fi


1 :

p21(s)
p11(s)

: · · · :
pn1(s)
p11(s)

:
p(s)

p11(s)


= 0.

Thus, intuitively speaking, in order to compute the infinity branches of C, and in particular the series ϕj, j = 2, . . . , n,

one needs to ‘‘reparametrize’’ the parametrization P ∗(s) =


1 :

p21(s)
p11(s)

: . . . :
pn1(s)
p11(s)

:
p(s)

p11(s)


in the form (1 : ϕ2(t) : . . . :

ϕn(t) : t) around t = 0. For this purpose, the idea is to look for a value of the parameter s, say ℓ(t) ∈ C ≪ t ≫, such that
P ∗(ℓ(t)) = (1 : ϕ2(t) : . . . : ϕn(t) : t) around t = 0.

Hence, from the above reasoning, we deduce that first, we have to consider the equation p(s)/p11(s) = t (or equivalently,
p(s)− tp11(s) = 0), and we have to solve it in the variable s around t = 0 (note that deg(p1) ≥ 1). From Puiseux’s Theorem,
there exist solutions ℓ1(t), ℓ2(t), . . . , ℓk(t) ∈ C ≪ t ≫, where k = deg(p1), such that, p(ℓi(t)) − tp11(ℓi(t)) = 0, i =

1, . . . , k, in a neighborhood of t = 0. For this purpose, we may use for instance the command puiseux included in the
package algcurves of the computer algebra system Maple.

Thus, for each i = 1, . . . , k, there exists Mi ∈ R+ such that the points (1 : ϕi,2(t) : . . . : ϕi,n(t) : t) or equivalently, the
points (t−1

: t−1ϕi,2(t) : . . . : t−1ϕi,n(t) : 1), where

ϕi,j(t) =
pj,1(ℓi(t))
p11(ℓi(t))

, j = 2, . . . , n, (3)

are in C∗ for |t| < Mi. Observe that ϕi,j(t), j = 2, . . . , n, are Puiseux series, since pj,1(ℓi(t)), j = 2, . . . , n, and p11(ℓi(t))
can be written as Puiseux series (around t = 0) and C ≪ t ≫ is a field.

Finally, we set z = t−1. Then, we have that the points (z, ri,2(z), . . . , ri,n(z)), where ri,j(z) = zϕi,j(z−1), j = 2, . . . , n, are
in C for |z| > M−1

i . Hence, the infinity branches of C are the sets

Bi = {(z, ri,2(z), . . . , ri,n(z)) ∈ Cn
: z ∈ C, |z| > M−1

i }, i = 1, . . . , k.

Remark 3.1. 1. The series ℓi(t) satisfies that p(ℓi(t))/p11(ℓi(t)) = t , for i = 1, . . . , k. Then, from equality (3), we have that
for j = 2, . . . , n

ϕi,j(t) =
pj,1(ℓi(t))
p(ℓi(t))

t = pj(ℓi(t))t, and ri,j(z) = zϕi,j(z−1) = pj(ℓi(z−1)).

2. In order to compute ri,j(z), we first write pj(ℓi(t)) as Puiseux series around t = 0, and then we set t = z−1. For this
purpose, we may use for instance the command series included in the computer algebra system Maple.

3. When we compute the series ℓi, we cannot handle its infinite terms so it must be truncated, which may distort the
computation of the series ri,j. The number of affected terms in ri,j depends on the number of terms computed in ℓi. That
is, as more termswe compute in ℓi, as more accurate the computation of ri,j is. More details on this question are analyzed
in Proposition 5.4 in [32].

In the following example, we illustrate the above procedure and we compute the infinity branches for a given curve
defined by a parametrization P (s) ∈ R(s)4.

Example 3.2. Let C be the curve defined by the parametrization

P (s) = (p1(s), p2(s), p3(s), p4(s)) =


p11(s)
p(s)

,
p21(s)
p(s)

,
p31(s)
p(s)

,
p41(s)
p(s)


=


−1 + 2s3 − s

s
,
s + 1
s

,
−1
s

,
s2 + 3s − 5

s


∈ R(s)4.

We compute the solutions of the equation p(s) − tp11(s) = 0 in the variable s around t = 0. For this purpose, we use the
algcurves package included in the computer algebra systemMaple; in particular, the command puiseux is used. We get the
Puiseux series

ℓ1(t) = −t + t2 − t3 − t4 + 7t5 + · · · ,

ℓ2(t) =
1
2

√
2t−1/2

+
1
4

√
2t1/2 +

1
2
t −

1
16

√
2t3/2 −

1
2
t2 −

11
32

√
2t5/2 +

1
2
t3 +

235
256

√
2t7/2 + · · ·

(note that ℓ2(t) represents a conjugation class composed by two conjugated series).
Now, we determine the series ri,j(z), i = 1, 2, j = 2, 3, 4. We get

r1,2(z) = p2(ℓ1(z−1)) = −z + 2z−2
− 4z−3

− 13z−4
− 11z−5

+ · · ·

r1,3(z) = p3(ℓ1(z−1)) = z + 1 − 2z−2
+ 4z−3

+ 13z−4
+ 11z−5

+ · · ·

r1,4(z) = p4(ℓ1(z−1)) = 5z + 8 − z−1
− 9z−2

+ 19z−3
+ 64z−4

+ 62z−5
+ · · · ,
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and

r2,2(z) = p2(ℓ2(z−1)) = 1 +
√
2z−1/2

−
1
2

√
2z−3/2

− z−2
+

3
8

√
2z−5/2

+ 2z−3
+ · · ·

r2,3(z) = p3(ℓ2(z−1)) = −
√
2z−1/2

+
1
2

√
2z−3/2

+ z−2
−

3
8

√
2z−5/2

− 2z−3
+ · · ·

r2,4(z) = p4(ℓ2(z−1)) =
1
2

√
2z1/2 + 3 −

19
4

√
2z−1/2

+
1
2
z−1

+
39
16

√
2z−3/2

+
9
2
z−2

−
71
32

√
2z−5/2

−
19
2

z−3
+ · · ·

Therefore, the curve has two infinity branches given by

B1 = {(z, r1,2(z), r1,3(z), r1,4(z)) ∈ C4
: z ∈ C, |z| > M1}, and

B2 = {(z, r2,2(z), r2,3(z), r2,4(z)) ∈ C4
: z ∈ C, |z| > M2}

for someM1,M2 ∈ R+. Note that B1 is associated to the infinity point (1 : −1 : 1 : 5 : 0), and B2 is associated to the infinity
point (1 : 0 : 0 : 0 : 0). In addition, we observe that ν(B1) = 1 and ν(B2) = 2, and thus B1 has one leaf, and B2 has two
(conjugated) leaves.

4. Asymptotic behavior and Hausdorff distance

In this section, we consider two algebraic curves, C and C, in the n-dimensional space defined by a finite set of real
polynomials or by a rational real parametrization, and we prove the main theorem where the finiteness of the Hausdorff
distance betweenC andC is characterized. For this purpose,weneed to compute the infinity branches ofC andC. Depending
on whether they are parametrically or implicitly defined, one proceeds as in Section 2 or as in Section 3, respectively.

We remind that C and C are prepared such that (0 : m2 : . . . : mn : 0) (mj ≠ 0 for some j = 2, . . . , n) is not an infinity
point of their corresponding projective curves (see Remark 2.3).

The main result of the section (Theorem 4.5) states that the Hausdorff distance between two algebraic curves C and
C is finite if and only if their asymptotic behaviors are similar (we say that two algebraic curves have similar asymptotic
behaviors if their infinity branches are pair-wise non-divergent; see Definition 4.1). From this result an effective and fast
algorithm is derived, and it can be stated from two different points of view: for characterizing the finiteness of the Hausdorff
distance between the real parts of C and C, or for characterizing the finiteness of the Hausdorff distance between C and C
considering also the complex part of both curves (see Section 5).

The computation of the Hausdorff distance and in particular, the characterization of the finiteness of the Hausdorff
distance will play an important role in the frame of practical applications in CAGD such as approximate parametrization
problems where the curves are in general not bounded (see Section 1 for more details). In particular, the characterization
presented in this section is specially interesting since it is an appropriate tool for measuring the closeness between two
given curves (we will see that the finiteness of the Hausdorff distance will imply a similar asymptotic behavior at infinity).
Many authors have addressed some problems in this frame (see e.g. [2,3,7–10], etc.) but all of them assume that the given
curves are bounded or that the Hausdorff distance between them is finite. In this paper, we go one step further, and we
characterize whether the Hausdorff distance between two given algebraic curves is finite without assuming any additional
condition (as boundedness of the given curves). In Section 5, we illustrate the applications of the method derived in this
section to particular and practical problems.

To start with, we first introduce the following definition.

Definition 4.1. We say that two algebraic curves, C and C, have a similar asymptotic behavior if, for every infinity branch
B ⊂ C there exist an infinity branch B ⊂ C non-divergent with B, and reciprocally.

Now, we introduce the notion of Hausdorff distance. For this purpose, we recall that, given an algebraic space curve C
over C and a point p ∈ Cn, the distance from p to C is defined as d(p, C) = min{d(p, q) : q ∈ C}.

Definition 4.2. Given a metric space (E, d) and two subsets A, B ⊂ E \ {∅}, the Hausdorff distance between them is defined
as:

dH(A, B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}

(see [5]). If E = Cn (or E = Rn), and d is the unitary (or euclidean) distance (see Chapter 5 in [6]), the Hausdorff distance
between two curves C and C can be expressed as:

dH(C, C) = max{sup
p∈C

d(p, C), sup
p∈C

d(p, C)}.

In order to prove the main theorem (see Theorem 4.5), we first need to prove some technical lemmas. The first one
(Lemma 4.3) states that any point of the curve with sufficiently large coordinates belongs to some infinity branch (see also
Lemma 3.6 and Remark 3.7 in [28]).
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Lemma 4.3. Let C be an algebraic space curve. There exists K ∈ R+ such that every p = (a1, . . . , an) ∈ C with |ai| > K (for
some i ∈ {1, . . . , n}) belongs to some infinity branch of C.

Proof. First, let us prove that there exists K 1
∈ R+ such that every point p = (a1, . . . , an) ∈ C with |a1| > K 1 belongs to

some infinity branch.
Let us assume that this is not true and let us consider a sequence {Kκ}κ∈N ∈ R+ such that limκ→∞ Kκ = ∞. Then, for

every κ ∈ N there exists a point pκ = (a1,κ , . . . , an,κ) ∈ C such that |a1,κ | > Kκ , and pκ does not belong to any infinity
branch of C. The corresponding projective point is Pκ = (a1,κ : . . . : an,κ : 1), and it holds that F(Pκ) = f (pκ) = 0. Thus,
we have a sequence {Pκ}κ∈N of points in the projective curve C∗ such that limκ→∞ |a1,κ | = ∞. Note that these projective
points can be expressed as

Pκ = (1 : a2,κ/a1,κ : . . . : an,κ/a1,κ : 1/a1,κ).

Under these conditions, we extract a subsequence {Pκl}l∈N for the sequences {ai,κl/a1,κl}l∈N, i = 2, . . . , n to bemonotone.
In order to simplify the notation, we also denote it as {Pκ}κ∈N. Now, we distinguish two cases:

1. Let us assume that all these monotone sequences are bounded. Then, limκ→∞ ai,κ/a1,κ = mi ∈ C, i = 2, . . . , n and
limκ→∞ 1/a1,κ = 0. Furthermore, since F(Pκ) = 0 for every κ ∈ N, we get that limκ→∞ F(Pκ) = F(limκ→∞ Pκ) = F(1 :

m2 : · · · : mn : 0) = 0. We conclude that the sequence {Pκ}κ∈N converges to the infinity point P = (1 : m2 : · · · : mn : 0)
as κ tends to infinity; that is, there exists M ∈ R+ such that ∥Pκ − P∥ ≤ ϵ, for κ ≥ M . Thus, we deduce that the points
{Pκ}κ∈N, κ≥M can be obtained by a place centered at P . Hence, the points {pκ}κ∈N, κ≥M belong to some infinity branch of
C, which contradicts the hypothesis.

2. If not all the sequences are bounded, then there is some i = 2, . . . , n such that liml→∞ ai,κ/a1,κ = ±∞. We assume
without lost of generality that liml→∞ a2,κ/a1,κ = ±∞. Then, we write

Pκ = (a1,κ/a2,κ : 1 : a3,κ/a2,κ : . . . : an,κ/a2,κ : 1/a2,κ),

and we extract a subsequence {Pκl}l∈N for the sequences {ai,κl/a2,κl}l∈N, i = 3, . . . , n to be monotone. For the sake of
simplicity, we denote it by {Pκ}κ∈N.

At this point, we consider two different situations:
• If all these monotone sequences are bounded, we get that

lim
κ→∞

ai,κ/a1,κ = mi ∈ C, i = 3, . . . , n.

Furthermore, limκ→∞ a1,κ/a2,κ = limκ→∞ 1/a2,κ = 0 and thus, reasoning as above, we deduce that the sequence
{Pκ}κ∈N converges to an infinity point P = (0 : 1 : m3 : · · · : mn : 0).

• If some of the sequences {ai,κl/a2,κl}l∈N, i = 3, . . . , n are not bounded, we can assume w.l.o.g. that liml→∞ a3,κ/a2,κ =

±∞ and we reason as above. Finally, we obtain a subsequence that converges to an infinity point of the form
(0 : m2 : m3 : · · · : mn : 0).

In both cases, we find a contradiction, since we have prepared the input curve such that it does not have infinity points
of the form (0 : m2 : m3 : · · · : mn : 0).

From the above discussion, the initial assumption leads us to a contradiction. Therefore, there exists K 1
∈ R+ such that

every point of the curve p = (a1, . . . , an) with |a1| > K 1 belongs to some infinity branch. Reasoning similarly, we deduce
that for each i = 2, . . . , n, there exists K i

∈ R+ such that every point of the curve p = (a1, . . . , an) with |ai| > K i belongs
to some infinity branch. Finally, the result follows by taking K = min{K 1, . . . , K n

}. �

The following technical lemma states that, given two divergent branches B and B, we can find points in B as far as we
want from any point in B (and reciprocally).

Lemma 4.4. Let B = {(z, r2(z), . . . , rn(z)) ∈ Cn
: z ∈ C, |z| > M} and B = {(z, r2(z), . . . , rn(z)) ∈ Cn

: z ∈ C, |z| > M}

be two divergent infinity branches. For each K > 0, there exists δ > 0 such that if |x| > δ then d((x, r2(x), . . . , rn(x)), (y, r2(y),
. . . , rn(y))) > K for any point (y, r2(y), . . . , rn(y)) ∈ B.

Proof. We assume w.l.o.g. that B is associated to the infinity point (1 : 0 : . . . : 0) (otherwise we can apply a linear change
of coordinates). Note that since all the norms in Cn are equivalent, there exists some λ > 0 such that

d((x, r2(x), . . . , rn(x)), (y, r2(y), . . . , rn(y))) > λ(|x − y| + |r2(x) − r2(y)| + · · · + |rn(x) − rn(y)|).

Thus, we only need to prove that, for each K > 0 there exists δ > 0 such that if |x| > δ then

φ(x, y) := |x − y| + |r2(x) − r2(y)| + · · · + |rn(x) − rn(y)| > K .

First of all, if |x − y| > K the result follows, so we assume that |x − y| ≤ K . Hence, |y| > |x| − K since |x − y| > |x| − |y|.
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On the other hand, note that

|ri(x) − r i(y)| = |r i(y) − ri(x)| > |r i(y) − ri(y) + ri(y) − ri(x)|

> |r i(y) − ri(y)| − |ri(y) − ri(x)|, i = 2, . . . , n. (4)

From the proof of Theorem 4.11 in [28], we get that ri(z) is derivable for |z| > M and limitz→∞r ′

i (z) = mi, where (1 : m2 :

. . . : mn : 0) is the infinity point associated to B. In this case mi = 0, so there is δ0 > 0 such that for |z| > δ0, it holds that
|r ′

i (z)| < 1/
√
2. Hence, applying the Mean Value Theorem (see [35]), we have that if |x|, |y| > δ0, then

|ri(x) − ri(y)|2 = (Re(ri ′(c1))2 + Im(ri ′(c2))2)|x − y|2, i = 2, . . . , n

where Re(q) and Im(q) denote the real part and the imaginary part of q(z) ∈ C ≪ z ≫, respectively, and c1, c2 ∈]x, y[,
where ]x, y[:= {z ∈ C : z = x+ (x− y)t, t ∈ (0, 1)}. Since |r ′

i (z)| < 1/
√
2 for |z| > δ0, we get that |ri(y)− ri(x)| < |x− y|,

for i = 2, . . . , n. In addition, since |y| > |x| − K , we deduce that |ri(y) − ri(x)| < |x − y| for |x| > δ0 + K , and i = 2, . . . , n.
Now, substituting in (4), we get that

|ri(x) − r i(y)| > |r i(y) − ri(y)| − |x − y|

which implies that φ(x, y) > |r i(y)− ri(y)| for i = 2, . . . , n. Note that, since B and B are divergent branches, there exists i0 ∈

{1, . . . , n} such that |r i0(y)− ri0(y)| may be as large as we want by choosing |x| (and thus |y|) large enough (see Remark 2.5,
statement 2). Then, for each K > 0, there exists δ > 0 such that if |x| > δ, it holds that φ(x, y) > |r i0(y) − ri0(y)| > K . �

Under these conditions, we obtain Theorem 4.5 that characterizes whether the Hausdorff distance between two curves
is finite.

Theorem 4.5. Let C and C be two algebraic space curves. It holds that C and C have a similar asymptotic behavior if and only if
the Hausdorff distance between them is finite.

Proof. First, let us prove that if C and C have a similar asymptotic behavior then, the Hausdorff distance between them is
finite.

Let κ be the number of infinity branches of C. Then, C = B1 ∪ · · · ∪ Bκ ∪B, whereB is the set of points of C that do not
belong to any infinity branch. Thus,

sup
p∈C

d(p, C) = max{sup
p∈B1

d(p, C), . . . , sup
p∈Bκ

d(p, C), sup
p∈B d(p, C)}.

For each i = 1, . . . , κ , let Bi =
Ni

j=1 Li,j, where Li,j = {(z, ri,j,2(z), . . . , ri,j,n(z)) ∈ Cn
: z ∈ C, |z| > Mi}, and Ni = ν(Bi).

Then,

sup
p∈Bi

d(p, C) = max
j=1,...,Ni


sup

|z|>Mi

d((z, ri,j,2(z), . . . , ri,j,n(z)), C)


.

Moreover, since C and C have a similar asymptotic behavior then there exists an infinity branch Bi ⊂ C non-divergent with
Bi (see Definition 4.1). This implies that there is a leaf

Li,j = {(z, r i,j,2(z), . . . , r i,j,n(z)) ∈ Cn
: z ∈ C, |z| > M i} ⊂ Bi

such that

lim
z→∞

d((ri,j,2(z), . . . , ri,j,n(z)), (r i,j,2(z), . . . , r i,j,n(z))) = ci,j < ∞

(see Lemma 2.10 and Remark 2.6). Then

lim
z→∞

d((z, ri,j,2(z), . . . , ri,j,n(z)), C) ≤ lim
z→∞

d((z, ri,j,2(z), . . . , ri,j,n(z)), (z, r i,j,2(z), . . . , r i,j,n(z))) = ci,j < ∞.

Hence, given η > 0 there exists δ > 0 such that for |z| > δ it holds that

d((z, ri,j,2(z), . . . , ri,j,n(z)), C) < η

for every i = 1, . . . , κ and j = 1, . . . ,Ni.
On the other hand, since ri,j,2, . . . , ri,j,n are continuous functions, and {z ∈ C : Mi ≤ |z| ≤ δ} is a compact set, there

exists ξ > 0 such that

sup
Mi≤|z|≤δ

d((z, ri,j,2(z), . . . , ri,j,n(z)), C) < ξ

for every i = 1, . . . , κ and j = 1, . . . ,Ni.
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As a consequence, we have that

sup
p∈Bi

d(p, C) ≤ max{ξ, η} < ∞.

Now, let p = (a1, . . . , an) ∈B. From Lemma 4.3, we have that there exists K ∈ R+ such that |ai| ≤ K , for i = 1, . . . , n. Thus,
d(p, O) ≤ K , where O is the origin and,

d(p, C) ≤ d(p, O) + d(O, C) ≤ K + d(O, C).

Note that K < ∞, and d(O, C) < ∞, which implies that supp∈B d(p, C) < ∞.
Therefore, we conclude that supp∈C d(p, C) < ∞. Reasoning similarly, we deduce that supp∈C d(p, C) < ∞, which

implies that dH(C, C) < ∞.
Reciprocally, let us assume that the Hausdorff distance between C and C is finite (that is, dH(C, C) = K < ∞), and let

us prove that the asymptotic behavior of both curves is similar (i.e. for any infinity branch B ⊂ C there exists an infinity
branch B ⊂ C that does not diverge with B).

For this purpose, we assume that this statement does not hold and let B = {(z, ri,j,2(z), . . . , ri,j,n(z)) ∈ Cn
: z ∈ C, |z| >

M} ⊂ C be such that every infinity branch of C diverges from B. Then, according to Lemma 4.4, for each infinity branch
Bi = {(z, r i,j,2(z), . . . , r i,j,n(z)) ∈ Cn

: z ∈ C, |z| > M i} ⊂ C (i = 1, . . . , κ), there exists δi > 0 such that if |x| > δi,
then

d((x, ri,j,2(x), . . . , ri,j,n(x)), (a1, a2, . . . , an)) > K

for every (a1, a2, . . . , an) ∈ Bi. In addition, from Lemma 4.3, there exists δ0 > 0 such that any point (a1, a2, . . . , an) ∈ C
with |aj| > δ0 for some j = 1, . . . , n, belongs to some infinity branch Bi ⊂ C.

Under these conditions, let δ := max{δ0, δ1, . . . , δκ}, and we consider a point (x, ri,j,2(x), . . . , ri,j,n(x)) ∈ B such that
|x| > δ + K . Since dH(C, C) = K , there should exist some point (a1, a2, . . . , an) ∈ C such that

d((x, ri,j,2(x), . . . , ri,j,n(x)), (a1, a2, . . . , an)) ≤ K .

However, this implies that |a1| > |x|−K (see the proof of Lemma 4.4) and, hence, |a1| > δ. Now, Lemma 4.3 states that this
point must belong to some infinity branch Bi ⊂ C and then, Lemma 4.4 claims that

d((x, ri,j,2(x), . . . , ri,j,n(x)), (a1, a2, . . . , an)) > K ,

which is a contradiction. �

5. Algorithm and examples

In this section, we present an algorithm that allows us to decide whether the Hausdorff distance between two given
curves C and C (implicitly or parametrically defined) is finite. For this purpose, we use the results obtained in Section 4
(in particular, Theorem 4.5), and the computational techniques developed in Section 2 (for implicitly defined space curves)
and in Section 3 (for parametrically defined space curves). Moreover, the deal with the particular case of characterizing
the finiteness of the Hausdorff distance between the real parts of C and C, and an algorithm is also presented for this
situation.

In addition, we illustrate the method with two examples in detail (see Examples 5.1 and 5.2), and three more examples
where we show the application to practical problems in CAGD (see Examples 5.4–5.6). In particular, we show how the
Hausdorff distance between two algebraic curves obtained by applying approximate parametrization problems is finite
(we consider examples presented in [7,8,17]). Once one has ensured that the Hausdorff distance between the two curves is
finite, some additional existingmethods can be applied to estimate the Hausdorff distance between two not bounded curves
(see [8]), or for a chosen bounded frame of the input curves (see e.g. [2,3,9,10], etc.).

The goal of this section is to illustrate the performance and the application to practical problems of the algorithm
presented. We do not intend to compare our results with some other existing methods that allow to compute or estimate
the Hausdorff distance between two sets. The results obtained in this paper do not provide an alternative method to this
question, but away of applying important and effective existingmethods to the case inwhich some assumptions on the input
curves are not satisfied, as for instance the boundedness (see e.g. [2,3,9,10], etc.) or the finiteness of the Hausdorff distance
between them (see [7,8]). Thus, in particular, the algorithm presented will allow to explore further the existing techniques
for analyzing the Hausdorff distance between curves in the n-dimensional space that are not bounded. These curves are
especially important as for instance in approximate parametrization or implicitization methods where, in general, curves
are not bounded.

In order to apply the algorithm, we first should assume that we have prepared the input curves, C and C, by means of a
suitable linear change of coordinates (the same change applied to both curves), such that (0 : a2 : . . . : an : 0) (ai ≠ 0 for
some i = 2, . . . , n) is not an infinity point of C∗ and C

∗ (see Remark 2.3).
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Algorithm Hausdorff Distance.

Given two algebraic curves C and C in the n-dimensional space, the algorithm decides whether the
Hausdorff distance between C and C is finite.

1. Compute the infinity points of C and C. If they are not the same, Return the Hausdorff distance
between C and C is not finite. Otherwise, let P1, . . . , Pκ be these infinity points.

2. For each Pℓ, ℓ = 1, . . . , κ do:
2.1. Compute the infinity branches of C associated to Pℓ (see Sections 2 and 3). Let B1, . . . , Bnℓ

be
these branches. For each i = 1, . . . , nℓ, let Bi = {(z, ri,2(z), . . . , ri,n(z)) ∈ Cn

: z ∈ C, |z| >
Mi}.

2.2. Compute the infinity branches of C associated to Pℓ (see Sections 2 and 3). Let B1, . . . , Blℓ be
these branches. For each j = 1, . . . , lℓ, let Bj = {(z, r j,2(z), . . . , r j,n(z)) ∈ Cn

: z ∈ C, |z| >
Mj}.

2.3. For each i = 1, . . . , nℓ, find j = 1, . . . , lℓ such that the terms with positive exponent in ri,k(z)
and r j,k(z) for k = 2, . . . , n, are the same up to conjugation. If there isn’t such j = 1, . . . , lℓ,
Return the Hausdorff distance between C and C is not finite (see Lemmas 2.7 and 2.10, and
Theorem 4.5).

2.4. For each j = 1, . . . , lℓ, find i = 1, . . . , nℓ such that the terms with positive exponent in ri,k(z)
and r j,k(z) for k = 2, . . . , n, are the same up to conjugation. If there isn’t such i = 1, . . . , nℓ,
Return the Hausdorff distance between C and C is not finite (see Lemmas 2.7 and 2.10, and
Theorem 4.5).

3. Return the Hausdorff distance between C and C is finite.

If one is interested in characterizing the finiteness between the real parts of the input curves, some steps of the algorithm
have to be subtly modified. In particular, we observe that if we restrict to R, a problem appears with Lemma 2.10. More
precisely, Lemma 2.10 states that if two branches B =

N
α=1 Lα ⊂ C and B =

N
β=1 Lβ ⊂ C are two non-divergent infinity

branches, for each (complex) leaf Lα ⊆ B there should exists a (complex) leaf Lβ ⊆ B that does not diverge with Lα , and
reciprocally. Thus, Lα and Lβ can be complex or real leaves. However, if we restrict to the real part, necessarily the leaves Lα

and Lβ have to be both real leaves.
Taking into account this question, the algorithm Hausdorff Distance can be easily adapted to characterize whether the

Hausdorff distance between the real parts of the input curves is finite. For this purpose, one has to check if for each real leaf
of each branch of C there exists a real leaf of C satisfying that the terms with positive exponent in the corresponding series
that determine the leaves of the two curves are the same.

Under these conditions, we note that the Hausdorff distance could go from being finite (if we consider the input curves
over C) to be infinite (if we consider the real parts of the input curves). We will analyze this situation in Example 5.2 (see
also Remark 5.3).

In the following, we present the algorithm that decides whether the Hausdorff distance between the real parts of two
given algebraic curves C and C in the n-dimensional space is finite. We will illustrate this algorithm with three examples
(see Examples 5.4–5.6).
Algorithm Hausdorff Distance (over R).

1. Compute the real infinity points of C and C. If they are not the same, Return the Hausdorff distance between the real parts
of C and C is not finite. Otherwise, let P1, . . . , Pκ be these real infinity points.

2. For each Pℓ, ℓ = 1, . . . , κ do:
2.1 Compute the infinity branches of C associated to Pℓ. Let B1, . . . , Bnℓ

be these branches, and for each i = 1, . . . , nℓ,
let

Lα,i = {(z, rα,i,2(z), . . . , rα,i,n(z)) ∈ Cn
: z ∈ C, |z| > Mα,i}, α = 1, . . . ,Ni

be the real leaves of Bi.
2.2 Compute the infinity branches of C associated to Pℓ. Let B1, . . . , Blℓ be these branches, and for each j = 1, . . . , lℓ, let

Lβ,j = {(z, rβ,j,2(z), . . . , rβ,j,n(z)) ∈ Cn
: z ∈ C, |z| > Mβ,j}, β = 1, . . . ,N j

be the real leaves of Bj.
2.3 For each i = 1, . . . , nℓ and eachα = 1, . . . ,Ni, find j = 1, . . . , lℓ andβ = 1, . . . ,N j such that the termswith positive

exponent in rα,i,k(z) and rβ,j,k(z) for k = 2, . . . , n, are the same up to conjugation. If there isn’t such j = 1, . . . , lℓ
and β = 1, . . . ,N j, Return the Hausdorff distance between the real parts of C and C is not finite.

2.4 For each j = 1, . . . , lℓ and eachβ = 1, . . . ,N j, find i = 1, . . . , nℓ andα = 1, . . . ,Ni such that the termswith positive
exponent in rα,i,k(z) and rβ,j,k(z) for k = 2, . . . , n, are the same up to conjugation. If there isn’t such i = 1, . . . , nℓ

and α = 1, . . . ,Ni, Return the Hausdorff distance between the real parts of C and C is not finite.
3. Return the Hausdorff distance between the real parts of C and C is finite.
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In the following, we illustrate with two examples the performance in detail of the algorithm Hausdorff Distance. In the
first one, we compare two rational curves parametrically defined. In the second one, the curves are implicitly defined.

Example 5.1. Let C and C be two rational space curves in the 4-dimensional space defined by the parametrizations

P (s) =


−1 + 2s3 − s

s
,
s + 1
s

,
−1
s

,
s2 + 3s − 5

s


, and

P (s) =


−1 + 2s3 − s2

s
,
s + 1
s

,
−1
s

,
s2 + 3s − 5

s


,

respectively. We apply the algorithm Hausdorff Distance to decide whether the Hausdorff distance between C and C is
finite.

Step 1: Compute the infinity points of C and C. We obtain that C and C have the same infinity points: P1 = (1 : −1 : 1 :

5 : 0) and P2 = (1 : 0 : 0 : 0 : 0).
We start by analyzing the infinity branches associated to P1:

Step 2.1: Reasoning as in Example 3.2, we get only one infinity branch associated to P1 inC. It is given by B1 = {(z, r1,2(z),
r1,3(z), r1,4(z)) ∈ C4

: z ∈ C, |z| > M1}, where

r1,2(z) = −z + 2z−2
− 4z−3

− 13z−4
− 11z−5

+ · · · ,

r1,3(z) = z + 1 − 2z−2
+ 4z−3

+ 13z−4
+ 11z−5

+ · · · ,

r1,4(z) = 5z + 8 − z−1
− 9z−2

+ 19z−3
+ 64z−4

+ 62z−5
+ · · · .

Step 2.2: We also have that there exists only one infinity branch associated to P1 in C. It is given by B1 = {(z, r1,2(z),
r1,3(z), r1,4(z)) ∈ C4

: z ∈ C, |z| > M1}, where

r1,2(z) = −z + 1 + z−1
+ 2z−2

+ z−3
− 4z−4

− 7z−5
+ · · · ,

r1,3(z) = z − z−1
− 2z−2

− z−3
+ 4z−4

+ 7z−5
+ · · · ,

r1,4(z) = 5z + 3 − 6z−1
− 10z−2

− 6z−3
+ 18z−4

+ 33z−5
+ · · · .

Step 2.3 and Step 2.4: r1,j and r1,j, j = 2, 3, 4 have the same terms with positive exponent. Thus, the branches B1 and B1
do not diverge.

Now we analyze the infinity branches associated to P2:
Step 2.1: Reasoning as in Example 3.2, we get that the only infinity branch associated to P2 in C is given by B2 =

{(z, r2,2(z), r2,3(z), r2,4(z)) ∈ C4
: z ∈ C, |z| > M2}, where

r2,2(z) = 1 +
√
2z−1/2

−

√
2z−3/2

2
− z−2

+
3
√
2z−5/2

8
+ 2z−3

+ · · · ,

r2,3(z) = −
√
2z−1/2

+

√
2z−3/2

2
+ z−2

−
3
√
2z−5/2

8
− 2z−3

+ · · · ,

r2,4(z) =

√
2z1/2

2
+ 3 −

19
√
2z−1/2

4
+

z−1

2
−

39
√
2z−3/2

16
+

9z−2

2
+ · · · .

We note that ν(B2) = 2, and thus B2 has 2 (conjugated) leaves. That is, B2 = L2,1 ∪ L2,2, where L2,i are obtained by
conjugation in the series r2,2, r2,3 and r2,4.
Step 2.2: We also have that there exists only one infinity branch associated to P2 in C. It is given by B2 = {(z, r2,2(z),
r2,3(z), r2,i4(z)) ∈ C4

: z ∈ C, |z| > M2}, i = 1, 2, where

r2,2(z) = 1 +
√
2z−1/2

−
z−1

2
−

√
2z−3/2

16
− z−2

+
383

√
2z−5/2

512
−

z−3

2
+ · · · ,

r2,3(z) = −
√
2z−1/2

+
z−1

2
+

√
2z−3/2

16
+ z−2

−
383

√
2z−5/2

512
+

z−3

2
+ · · · ,

r2,4(z) =

√
2z1/2

2
+

13
4

−
159

√
2z−1/2

32
+ 3z−1

−
449

√
2z−3/2

1024
+ 5z−2

+ · · · .

We note that ν(B2) = 2, and thus B2 has 2 (conjugated) leaves. That is, B2 = L2,1 ∪ L2,2, where L2,i are obtained by
conjugation in the series r2,2, r2,3 and r2,4.
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Fig. 2. Projections of C and C along the axis x2 .

Step 2.3 and Step 2.4: r2,j and r2,j, j = 2, 3, 4 have the same terms with positive exponent. Thus, the branches B2 and B2
do not diverge.
Step 3: The algorithm returns that the Hausdorff distance between C and C is finite.

We observe that, in this case, the infinity branches of C and C do not converge neither diverge (see Fig. 2).

Example 5.2. Let C and C be two space curves in the 3-dimensional space implicitly defined by the polynomials

f1(x1, x2, x3) = −x2 + x21 − 2x1x22 + x42, f2(x1, x2, x3) = x1 + x22 − x3x22 − x3

and

f 1(x1, x2, x3) = x22 − x1, f 2(x1, x2, x3) = 2x1 − x3x22 − x3,

respectively. We apply the algorithm Hausdorff Distance to decide whether the Hausdorff distance between C and C is
finite:

1. Step 1: Compute the infinity points of C and C. We obtain that C and C have P = (1 : 0 : 0 : 0) as their unique infinity
point.

We analyze the infinity branches associated to P:
2. Step 2.1: Reasoning as in Example 2.12, we get that the only infinity branch associated to P in C is given by B =

{(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M}, where

r2(z) = z1/2 +
z−1/4

2
−

z−7/4

64
+

z−10/4

128
+ · · · ,

r3(z) = 2 − z−3/4
− 2z−1

+
3z−3/2

4
+ 3z−7/4

+ · · · .

We note that ν(B) = 4, and thus B has 4 (conjugated) leaves. That is, B =
4

α=1 Lα , where Lα are obtained by conjugation
in the series r2 and r3.

3. Step 2.2:We also have that there exists only one infinity branch associated to P inC. It is given by B = {(z, r2(z), r3(z)) ∈

C3
: z ∈ C, |z| > M}, where

r2(z) = z1/2,
r3(z) = 2 − 2z−1

+ 2z−2
− 2z−3

+ 2z−4
− 2z−5

+ · · · .

We note that ν(B) = 2, and thus B has 2 (conjugated) leaves. That is, B =
2

β=1 Lβ , where Lβ are obtained by conjugation
in the series r2 and r3.

4. Step 2.3 and Step 2.4: rj and r j, j = 2, 3, have the same terms with positive exponent. Thus, the infinity branches B and
B do not diverge.

5. Step 3: The algorithm returns that the Hausdorff distance between the curves C and C is finite (see Fig. 3).
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Fig. 3. C (left), C (center), and the asymptotic behavior of C and C (right).

Remark 5.3. In Example 5.2, we show that the Hausdorff distance between C and C is finite. However, as one can deduce
from Fig. 3, the Hausdorff distance between the real parts of C and C is not finite. Indeed, the infinity branch B ⊂ C is such
that ν(B) = 2 and thus, B = L1 ∪ L2, where Lj = {(z, r j,2(z), r j,3(z)) ∈ C3

: z ∈ C, |z| > M}, j = 1, 2, and

r1,2(z) = z1/2, r1,3(z) = 2 − 2z−1
+ 2z−2

− 2z−3
+ 2z−4

− 2z−5
+ · · · ,

r2,2(z) = −z1/2, r2,3(z) = 2 − 2z−1
+ 2z−2

− 2z−3
+ 2z−4

− 2z−5
+ · · · .

On the other side, ν(B) = 4 and then, B =
4

i=1 Li ⊂ C, where Li = {(z, ri,2(z), ri,3(z)) ∈ C3
: z ∈ C, |z| > M}, i =

1, . . . , 4, and

r1,2(z) = z1/2 +
z−1/4

2
−

z−7/4

64
+ · · · , r1,3(z) = 2 − z−3/4

− 2z−1
+

3z−3/2

4
+ · · · ,

r2,2(z) = z1/2 −
z−1/4

2
+

z−7/4

64
+ · · · , r2,3(z) = 2 + z−3/4

− 2z−1
+

3z−3/2

4
+ · · · ,

r3,2(z) = −z1/2 +
Iz−1/4

2
+

Iz−7/4

64
+ · · · , r3,3(z) = 2 + Iz−3/4

− 2z−1
−

3z−3/2

4
+ · · · ,

r4,2(z) = −z1/2 −
Iz−1/4

2
−

Iz−7/4

64
+ · · · , r4,3(z) = 2 − Iz−3/4

− 2z−1
−

3z−3/2

4
+ · · · .

Note that the real leaf L1 converges to the real leaves L1 and L2, and the real leaf L2 converges to the complex leaves L3 and
L4. However, if we restrict to the real parts of C and C, Step 2.4 of the algorithm Hausdorff Distance (over R ) outputs that
the Hausdorff distance between C and C is not finite since L2 does not converge to any real leaf of B.

Practical applications
In the following, we illustrate the performance of the algorithm Hausdorff Distance (over R ) with three examples. We

note that, in general, in practical applications, one is interested in analyzing the Hausdorff distance between the real parts
of the input curves.

The first example is obtained from [8, see Example 5.2], and we prove that the Hausdorff distance between the real parts
of the input (not bounded) space curves is finite. We recall that results in [8] (where a method for estimating the Hausdorff
distance between two given space curves is presented) can be applied for curves satisfying that the Hausdorff distance
between them is finite.

Example 5.4. Let C and C be two space curves implicitly defined by

f1(x1, x2, x3) = x32 − x2x1 − x31, f2(x1, x2, x3) = x1x3 − x22
f3(x1, x2, x3) = x3x2 − x2 − x21, f4(x1, x2, x3) = x23 − x3 − x2x1,

and

f 1(x1, x2, x3) = −9 − x1 + 13x2 + 3x21 − x2x1 − 6x22 − x31 + x32,

f 2(x1, x2, x3) = −3 − x3 − x1 + 4x2 + x1x3 − x22,

f 3(x1, x2, x3) = 3 + x3x2 − 2x2 + 2x1 − 2x3 − x21,

f 4(x1, x2, x3) = −x2x1 + 2x1 + x2 − 3x3 + x23,

respectively. In this particular example, C and C are rational curves and they can be parametrized by

P (s) =


s

s3 − 1
,

s2

s3 − 1
,

s3

s3 − 1


, P (s) =


s + s3 − 1
s3 − 1

,
s2 + 2s3 − 2

s3 − 1
,
2s3 − 1
s3 − 1


,

respectively. In order to apply the results in [8], one has to ensure that the Hausdorff distance between the real parts of the
input curves is finite. We apply the algorithm Hausdorff Distance (over R ).
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Fig. 4. C (left) and C (right).

Fig. 5. Asymptotic behavior of C and C from different perspectives.

1. Step 1: Compute the real infinity points of C and C. We obtain that C and C have P = (1 : 1 : 1 : 0) as their unique (real)
infinity point.

We analyze the infinity branches associated to P:
2. Step 2.1: Reasoning similarly to Example 2.12 or 3.2, we get that C has only an infinity branch B associated to P . We have

that B = {(z, r2(z), r3(z)) ∈ C3
: z ∈ C, |z| > M}, where

r2(z) = z + 1/3 − 1/81z−2
+ 1/243z−3

− 4/2187z−4
+ · · · ,

r3(z) = z + 2/3 + 1/9z−1
− 2/81z−2

+ 2/2187z−4
+ · · · .

Note that ν(B) = 1 (that is, B has one leaf), and the leaf is real.
3. Step 2.2:Wealso get that there exists only one infinity branch B associated to P inC.We have that B = {(z, r2(z), r3(z)) ∈

C3
: z ∈ C, |z| > M}, where

r2(z) = z + 4/3 − 1/81z−2
+ 196/243z−3

− 2029/2187z−4
+ · · · ,

r3(z) = z + 2/3 + 1/9z−1
+ 7/81z−2

+ 8/9z−3
− 1888/2187z−4

+ · · · .

Note that ν(B) = 1, and the only leaf of B is also real.
4. Step 2.3 and Step 2.4: rj and r j, j = 2, 3, have the same terms with positive exponent. Thus, the infinity branches B and

B do not diverge.
5. Step 3: The algorithm returns that the Hausdorff distance between the real parts of C and C is finite (see Figs. 4 and 5).

Once the finiteness of the Hausdorff distance is guaranteed, one may apply the method in [8] to estimate the Hausdorff
distance between the real parts of C and C (see Example 5.2 in [8]).

The second example is obtained from [7, see Example 5.4]. In [7], given a non-rational irreducible real space curve C,
satisfying certain additional conditions, a rational parametrization of a space curve, C, near C is computed. It is proved that
C is of the same degree as C, both curves have the same structure at infinity, and the Hausdorff distance between the real
parts of C and C is finite. The finiteness of the Hausdorff distance is proved from the initial conditions imposed to the input
curve C. We observe that, in general, the curves considered in this type of problems are not bounded.

Taking into account the results presented in this paper, the initial conditions imposed toC can be avoided and themethod
in [7] could be applied to a more general space curves (not satisfying the initial assumptions).
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Fig. 6. C (left) and C (center), and asymptotic behavior of C and C (right).

Example 5.5. Let C be the input space curve implicitly defined by

f1(x1, x2, x3) = 20052827033x1x2 + 2850904342x2x3 − 7155364672x3x1 + 1610946062x23
− 215763180597/100x1 − 7869010116x3 + 1743412651801/100x2 − 43102722226x22,

f2(x1, x2, x3) = −18330943984x3x2 + 33857630124x1x3 − 390188402999/25x1 − 56921602320x3
+ 12611223036001/100x2 − 166608514760x22 + 57179742076x23 + 20052827033x21.

In [7, see Example 5.4], an approximate rational space curve C defined by the parametrization P (s) =

p1(s)/q(s),

p2(s)/q(s), p3(s)/q(s)

, where

p1 = −17673/21055s − 134689/69893s2 − 199091/1476253 − 18405/25661s4 − 53236/27529s3,
p2 = 24795/6974s3 + s4 + 39160/8471s2 + 24359/9278s + 27655/50016,
p3 = 8442/921241s − 10679/122442s3 + 2769/593578 − 1721/32378s4 − 11925/389597s2,
q = 24795/6974s3 + s4 + 39160/8471s2 + 24359/9278s + 27655/50016

is computed.
In order to prove the effectiveness of the method, one has to check that both curves are close. For this purpose, the Haus-

dorff distance betweenC andC has to be estimated (see Example 5.4 in [7]). However, previously one has to ensure that the
Hausdorff distance between the real parts of the both curves is finite. By applying the algorithm Hausdorff Distance (over R
), we compute the branches associated to the two different (real) infinity points that both curves share, and the algorithm
returns that the Hausdorff distance between the real parts of C and C is finite (see Fig. 6).

Finally, the last example is obtained from [17, see Example 9]. In [17] given a rational plane curve, C, defined by a
parametrization P that is ‘‘almost’’ improper (numerically speaking), a method for computing a new rational plane curve,
C, defined by a proper parametrization, P , is presented. In [17], some bounds for measuring the closeness between C and C
are presented but it can be applied for bounded frames of the curves (see Section 4 in [17]). In order to have a total analysis
of both curves and to ensure the effectiveness of the method presented, the behavior at infinity has to be studied, and the
finiteness of the Hausdorff distance between C and C has to be guaranteed.

Example 5.6. Let C be the plane curve defined by the rational parametrization

P (s) =


s2(20s6 − 40s3 + 20 + 2s5 − 2s2 − s4)

(s3 − 1)3
,
2(−s4 − 3s5 + 3s2 + 3s6 − 6s3 + 3)

(−s2 + s3 − 1)(s3 − 1)


.

This parametrization is ‘‘almost’’ improper (see Section 3 in [17]). The algorithm presented in [17] returns the curve C
defined by the parametrization P (s) = (p1(s)/q1(s), p2(s)/q2(s)), where

p1(s) = −60688159524533550201(20s2 − 2s − 1),
q1(s) = 60688159524533550201s3 − 18449333330658180s2 + 60081278530101s − 265814138756,
p2(s) = 10975164641(1105s2 + 1104s − 368),
q2(s) = 92(21953640540s2 + 21950329282s − 21975135).

Using Theorem 5 in [17], the closeness between C and C is measured for every s0 ∈ (−5, 5). More precisely, the bounds
presented in [17] can be applied but these bounds work for each bounded frame of the curves (see Section 4 in [17]). Thus,
since both curves are (in general) not bounded, as a previous step, one has to checkwhether the Hausdorff distance between
C andC is finite. For this purpose, we apply the algorithmHausdorff Distance (overR ), we compute the branches concerning
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Fig. 7. C (left) and C (center), and asymptotic behavior of C and C (right).

the two real infinity points that both curves share, and the algorithm returns that the Hausdorff distance between the real
parts of C and C is finite (see Fig. 7).

6. Conclusions

Given two real algebraic curves in the n-dimensional space, we provide a method for checking whether the Hausdorff
distance between them is finite or not. The algorithm is derived by checking the terms with positive exponent in the
corresponding series that determine the infinity branches of the two given curves.

The method presented is very useful for measuring the performance of approximate parametrization and approximate
implicitizationmethodswhere, in general, the curves are not bounded (see e.g. [7,14–17,20]).More precisely, in approximate
parametrization problems, the Hausdorff distance is an essential tool for measuring the resemblance between the input and
the output curves (which could not be bounded). In fact, the effectiveness of the method will depend on whether one may
ensure that both curves have a similar behavior at infinity (that is, the finiteness of the Hausdorff distance), and estimate
the Hausdorff distance between them.

In order to estimate the Hausdorff distance between two curves, only a chosen bounded frame of the curves can be
analyzed since most of the existing results applied to bounded curves (see e.g. [2,3,9,10], etc.). Only a general method for
estimating the distance between two space curves (not necessarily bounded) is presented in [8]. In [8], bounds for the
Hausdorff distance between space curves are provided and they are related to the distance between the projections of
the space curves onto a plane. Thus, the algorithm in [8] allows the use of every method developed so far to estimate
the Hausdorff distance between plane curves to achieve estimations of the distance for space curves. However, in [8], an
important assumption has to be imposed: the finiteness of the Hausdorff distance between the input space curves.

In this paper, we go one step further, and we characterize whether the Hausdorff distance between two given algebraic
curves (parametrically or implicitly defined) in the n-dimensional space is finite. Hence, the results in this paper allow (for
instance) the application of [8] without any additional assumption and then, the profit obtained with the results in [8] is
ensured. In addition, we provide an effective and accurate algorithm that can be easily applied to measure the resemblance
between two curves at infinity (which is equivalent to ensure the finiteness of the Hausdorff distance).

We think that the characterization presented in this paper could allow the use of many methods developed so far to
achieve estimations of the distance for space curves not necessarily bounded. In this sense, more analysis is necessary but
the idea that previous result and existing techniques could be adapted for computing the Hausdorff distance for any pair of
given curves (not necessarily bounded) is promising.

Moreover, since this characterization is based on the notion of infinity branch (which reflects the status of a curve at the
points with sufficiently large coordinates), one may think in applying the results presented to the analysis of the behavior
at infinity of a given algebraic curve not necessarily bounded. This would imply a wide applicability in many active research
fields as for instance in the study of the topology (see e.g. [21–24]), the determination of the symmetries (see [26]), etc.
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