

Proceedings of Eurasiaweb International Conference, Marrakesh, Morocco, 26th – 27th August, 2021

15

ON THE USE OF RAY TRACING PROGRAMMABLE FRAMEWORKS
FOR RADIO WAVE PROPAGATION PREDICTION

1MARCOS BARRANQUERO, 2JUAN CASADO, 3JOSEFA GÓMEZ, 4ABDELHAMID TAYEBI

1,3,4Computer Science Department, University of Alcalá, Alcalá de Henares, Spain

2Starleaf, Building 7, Hatters Lane Watford WD18 8YN, United Kingdom
E-mail: 1marcos.barranquero@edu.uah.es, 1josefa.gomezp@uah.es, 1hamid.tayebi@uah.es, 2juan.ballesteros@starleaf.com

Abstract - This work focuses on the use of ray tracing programmable frameworks, like Nvidia Optix, for radio wave
propagation prediction. Although these frameworks are oriented to graphics visualization, they can be tailored to calculate
specular reflections on walls and diffractions in edges of buildings. Once all the paths between the transmitter and the
receiver are obtained, Maxwell’s equations can be applied to compute the path loss or the received power.

Keywords - Propagation, Ray Launching, Ray Tracing.

I. INTRODUCTION

A huge increase in the development of ray tracing
simulation tools has been seen in the last decades [1-
5]. Since the main drawback of these tools is the high
computational requirements when analyzing complex
scenarios, lots of efforts have been done to accelerate
and optimize the algorithms.

This work focuses on deterministic models to
calculate the radio wave propagation because they
provide more accurate results. On the other hand,
empirical models are much more faster but their
accuracy is not so high.

Deterministic models can be classified in two
categories: ray launching based on the shooting and
bouncing rays technique and ray tracing based on the
image theory concept. Ray launching is also known
as brute force ray tracing method. Ray launching is
easier to implement using ray tracing programmable
frameworks since it considers a bundle of transmitted
rays that may or may not reach the receiver. The
receiver is modeled as a sphere with an appropriate
radius. If the radius is too small, it is possible that
none of the rays will reach the sphere. However, if
the radius is too big, two or more similar rays could
reach the sphere. Fig. 1 shows the partial results of a
ray launching simulation between a transmitter (red
sphere) and a receiver (grey sphere). It can be seen
that four direct rays reach the receiver. This is not
correct since there must only be one direct ray
between them. Finally, all the rays that intersect the
reception sphere contribute to the total electrical field
received at that concrete point. It is important to
remark that all duplicated rays must be removed
before applying the electromagnetic equations.

There are many ray tracing frameworks available
such as Optix [6], POVRay [7] or OSPRay [8]. The
most popular is Optix because it takes advantage of
the GPUs (Graphics Processing Unit). Therefore, the
pipeline of the ray tracing algorithms that use Optix

can be accelerated with an optimal performance.
OptiX is a programmable framework that allows
developers to create ray launching applications that
run on NVIDIA GPUs at very high speeds, thus
drastically reducing simulation time [9]. OptiX was
initially created to improve graphics rendering, but
now can be extended by allowing to collect and send
custom data related to the rays between the
transmitter and the receiver. This flexibility allows
radio propagation prediction algorithms taking
advantage of the parallelization capabilities of the
CUDA (Compute Unified Device Architecture)
technology. In this way, it will be possible to carry
out precise electromagnetic simulations of large
urban areas in much shorter time than those currently
obtained using similar tools.

Fig.1. Example of a wrong simulation because the radius of the

reception sphere is too big.

Some related works can be found in the literature
based on Optix [6, 10-15]. However, none of them
uses the Python PlotOptix interface [16], which
facilitates the implementation of the software by
allowing a very high number of rays to be handled
with a relatively low computational cost in each
simulation. PlotOptix is a Python package that allows
combining components prototyped in the high level
language with the optimized workflow of the
underlying OptiX ray tracing engine. The ray

On The Use of Ray Tracing Programmable Frameworks for Radio Wave Propagation Prediction

Proceedings of Eurasiaweb International Conference, Marrakesh, Morocco, 26th – 27th August, 2021

16

launching code proposed in this work is based on the
use of PlotOptix.

II. PROPOSED ALGORITHM

The algorithm can be implemented in Python
language. Monte-Carlo approach, typical for the ray
tracing in graphics, can been used. Specular reflection
from flat faces are implemented using the face normal
direction. A wireframe of relatively thin, linear
segments must be added to the scene in order to
implement diffraction. The unidirectional pipeline is
described as follows:

a) Start with a relatively dense distribution of rays

starting from a measurement point. Save in the
output the hit position, object id, and normal
information. Split reflection hits on faces and
diffraction hits on edges.

b) Continue with shooting reflected rays, each time
saving edge hits for later. Repeat b) until some
max reflections.

c) Process the buffer of edge hits in batches:
1. Calculate directions of a number or outgoing

segments for each edge hit; follow these rays like
in b), with a lower number of segments.

2. Continue until the buffer of edge hits is empty.

It is important to remark that all faces are triangles, if
something is a polygon, it is divided into a number of
triangles. Also, ray-triangle intersection operation is
shifted to hardware because in the RTX generation
chips the operation costs almost nothing. Still, in
practice there are too many intersections for a brute
force method. The common approach, equivalent to
the Space Volumetric Partitioning or Z-buffer [2], is a
hierarchical structure of bounding volumes (BVH),
where all the triangles from the scene mesh are
sorted. There are a few methods to calculate it. Once
the BVH is ready, the ray-BVH intersection is again
hardware supported. There are dedicated cores (called
RT) in RTX GPUs that do this intersection very fast.
So only very few triangles need to be checked for the
intersection.

Algorithms in the hit program are unique to the
application and are written in a normal way, meaning
a small piece of code that will calculate the reflection
(or diffraction) and prepare the ray to shoot the next
segment.

Three main contributions are required to be
calculated: direct ray, reflected rays and diffracted
rays. Of course, there can be combinations between
reflections and diffractions. Typically, in situations of
non-line of sight, a ray which is launched from the
transmitter to the receiver is composed of several
segments because the ray can be reflected and
diffracted several times. Specular reflection from flat
faces is trivial, because the normal direction of the

facet is the only data required to obtain the reflected
ray. Diffraction is much more complex since we need
to calculate outgoing direction of the ray taking into
account the Keller’s cone. Instead of sampling
visibility of each edge in the scene, a wireframe of
thin segments along the edges is added to the scene.
The unidirectional pipeline to compute the diffracted
rays is the following:

a) Start with a relatively dense distribution of rays

starting from a measurement point. In the output
there is the hit position, object id, and normal
information. It is easy to know if a face or a
wireframe segment (an edge) have been hit, and
at which angle.

b) Continue with shooting reflected rays, each time
saving edge hits for later. Repeat b) until some
max reflections.

c) At this point multi-reflection cases are
completed, hopefully some ended at the
transmitter. There must be a buffer of primary,
secondary, and so on edge hits, hopefully not
enormous. Now edge hits from the buffer are
processed in batches:

1. Calculate directions of a number of outgoing
segments for each edge hit. They will cover a
cone with a constant beta angle and a range of
phi (Keller’s cone). Then, follow these rays like
in b), maybe with a lower number of segments.

2. Continue until the buffer of edge hits is empty.

This pipeline should allow for multiple diffraction,
reflection, and mixed cases. At each step there is
possibility of checking also the direct visibility of the.
It is also possible to implement the pipeline avoiding
memory re-allocations (e.g. circular buffer for edge
hits), and keep high efficiency.

One can do multiple passes of such a pipeline, with a
jitter in the initial segment directions to improve
coverage of the scene with the secondary segments.

III. CONCLUSIONS

An accelerated ray launching approach is described in
this paper. It is expected that the combination of ray-
tracing algorithms and parallelization techniques on
GPUs would permit real-time simulations for future
wireless systems, as well as multidimensional
coverage maps in 3D for both indoor and outdoor
environments.

ACKNOWLEDGMENTS

This work is supported by the program “Programa de
Estímulo a la Investigación de Jóvenes
Investigadores” of Vice rectorate for Research and
Knowledge Transfer of the University of Alcala and
by the Comunidad de Madrid (Spain) through project
CM/JIN/2019-028.

On The Use of Ray Tracing Programmable Frameworks for Radio Wave Propagation Prediction

Proceedings of Eurasiaweb International Conference, Marrakesh, Morocco, 26th – 27th August, 2021

17

REFERENCES

[1] F. Saez de Adana, O. Gutierrez Blanco, I. Gonzalez Diego, J.

Perez Arriaga and M. F. Catedra, "Propagation model based
on ray tracing for the design of personal communication
systems in indoor environments," IEEE Transactions on
Vehicular Technology, vol. 49, no. 6, pp. 2105-2112, Nov.
2000, doi: 10.1109/25.901882.

[2] M. F. Catedra, J. Perez, F. Saez de Adana and O. Gutierrez,
"Efficient ray-tracing techniques for three-dimensional
analyses of propagation in mobile communications:
application to picocell and microcell scenarios," IEEE
Antennas and Propagation Magazine, vol. 40, no. 2, pp. 15-
28, April 1998, doi: 10.1109/74.683539.

[3] C. Dong, L. Guo, X. Meng and Y. Wang, "An Accelerated
SBR for EM Scattering From the Electrically Large Complex
Objects," IEEE Antennas and Wireless Propagation Letters,
vol. 17, no. 12, pp. 2294-2298, Dec. 2018. doi:
10.1109/LAWP.2018.2873119

[4] A. Navarro, D. Guevara and J. Gómez, "A Proposal to
Improve Ray Launching Techniques," IEEE Antennas and
Wireless Propagation Letters, vol. 18, no. 1, pp. 143-146, Jan.
2019. doi: 10.1109/LAWP.2018.2883235.

[5] CHANG, K.R.; KIM, H.T. ‘Improvement of the computation
efficiency for a ray-launching model’. IEE Proceedings on
Microwaves and Antennas Propagation, Vol. 145, nº 4,
Agosto 1998, pp. 303-308. N. Cadavid, D. G. Ibarra and S. L.
Salcedo, "Using 3-D Video Game Technology in Channel
Modeling," in IEEE Access, vol. 2, pp. 1652-1659, 2014. doi:
10.1109/ACCESS.2014.2370758

[6] J. Opiła, "Prototyping of visualization designs of 3D vector
fields using POVRay rendering engine," 2016 39th
International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO),
Opatija, Croatia, 2016, pp. 343-348. doi:
10.1109/MIPRO.2016.7522164

[7] I. Wald et al., "OSPRay - A CPU Ray Tracing Framework for
Scientific Visualization," in IEEE Transactions on

Visualization and Computer Graphics, vol. 23, no. 1, pp. 931-
940, Jan. 2017. doi: 10.1109/TVCG.2016.2599041

[8] NVIDIA driver. [Online]. Available:
https://www.nvidia.com/Download/index.aspx

[9] J. Tan, Z. Su and Y. Long, "A Full 3-D GPU-based Beam-
Tracing Method for Complex Indoor Environments
Propagation Modeling," in IEEE Transactions on Antennas
and Propagation, vol. 63, no. 6, pp. 2705-2718, June 2015.
doi: 10.1109/TAP.2015.2415036

[10] Y. Liu, D. Shi, A. Li and P. Zeng, "Radio Wave Propagation
Prediction Based on the NVIDIA OptiX GPU Ray Tracing
Engine," 2019 IEEE 6th International Symposium on
Electromagnetic Compatibility (ISEMC), Nanjing, China,
2019, pp. 1-3. doi: 10.1109/ISEMC48616.2019.8986068

[11] C. Y. Kee and C. Wang, "Efficient GPU Implementation of
the High-Frequency SBR-PO Method," in IEEE Antennas
and Wireless Propagation Letters, vol. 12, pp. 941-944, 2013.
doi: 10.1109/LAWP.2013.2274802

[12] J. S. Lu et al., "A Discrete Environment-Driven GPU-Based
Ray Launching Algorithm," in IEEE Transactions on
Antennas and Propagation, vol. 67, no. 2, pp. 1180-1192,
Feb. 2019. doi: 10.1109/TAP.2018.2880036

[13] V. Degli-Esposti et al., "Efficient RF coverage prediction
through a fully discrete, GPU-parallelized ray-launching
model," 12th European Conference on Antennas and
Propagation (EuCAP 2018), London, UK, 2018, pp. 1-5. doi:
10.1049/cp.2018.0579

[14] M. Schiller, A. Knoll, M. Mocker and T. Eibert, "GPU
accelerated ray launching for high-fidelity virtual test drives
of VANET applications," 2015 International Conference on
High Performance Computing & Simulation (HPCS),
Amsterdam, Netherlands, 2015, pp. 262-268. doi:
10.1109/HPCSim.2015.7237048

[15] R. Sulej, PlotOptiX: ray tracing and data visualization
package for Python. [Online]. Available:
https://plotoptix.rnd.team.

