

Proceedings of Eurasiaweb International Conference, Marrakesh, Morocco, 26th – 27th August, 2021

11

DOCKER SECURITY IN WEB SIMULATION TOOLS: A LAYERED
APPROACH

1MARCOS BARRANQUERO, 2JUAN CASADO, 3JOSEFA GÓMEZ, 4ABDELHAMID TAYEBI,

5JOSÉ A. JIMÉNEZ

1,3,4Computer Science Department, University of Alcalá, Alcalá de Henares, Spain
2Starleaf, Building 7, Hatters Lane Watford WD18 8YN, United Kingdom

5Department of Electronics, University of Alcalá, Alcalá de Henares, Spain
E-mail: 1marcos.barranquero@edu.uah.es, 2juan.ballesteros@starleaf.com, 3josefa.gomezp@uah.es, 4hamid.tayebi@uah.es,

5jose.jimenez@uah.es

Abstract - In this work, container security issues and strengths are studied using Docker as the main implementation. First,
the container infrastructure is described and compared against the traditional approach of virtual machines. Secondly, the
Docker containers security is discussed by the different infrastructure layers that compose them and different solutions are
proposed to try to decrease the attack surface over this kind of applications.

Keywords - Container Security, Cybersecurity, Docker, Docker Cybersecurity.

I. INTRODUCTION

In the last years, the popularity of containers has
increased due to necessities such as the need of a
more agile application deployment or one that
provides better performance needs compared against
other alternatives like VMs (Virtual Machines).
When it comes to security, as other papers have
studied [1], container applications have a wide attack
surface, that ranges from the container image and its
possible vulnerabilities, to the container daemon [2],
including the applications and processes being
executed in the container and the host that runs it.
Recent years have seen a huge increase in the
development and use of this technologies, as it can be
seen in [3]. Alongside this increase, security concern
towards the deployment and usage in production of
containerized applications has increased too, leading
to multiple security studies with different approaches
and focuses, like from a Platform-as-a-Service point
of view [4] or providing a framework and metrics like
[5]. The aim of this work is to provide a structured
guide of security concerns and good practices for the
reader interested in deploying a secure dockerized
application with safety. For this task, a set of good
practices and resources are listed in this work,
classified by layers. On section II, the evolution
leading from VM to containers is briefly discussed.
Section III describes the docker container
infrastructure, regarding the docker daemon and host.
Section IV presents different security concerns,
examples and consideration related to each level of
the docker infrastructure. The conclusions and future
work are included in Section V.

II. FROM VIRTUAL MACHINES TO
CONTAINERS

Traditionally, virtual machines have been used for the
purpose of emulating the hardware and software of a

real machine. Each virtual machine constitutes a
piece of software that emulates a real machine’s
hardware. It uses the host real hardware to simulate
an environment exactly identical to a real machine
with the designated operating system, and other
programs already installed and ready to use. Virtual
machines are used in multiple use cases: to simulate a
multiple-machine interconnected infrastructure to
provide a service, to execute software from an
isolated and sandboxed perspective, or to provide
compatibility with different software that cannot be
run on the host machine operating system.

However, VMs have some drawbacks:

 It takes a lot of resources from the host machine

in a blocking form in most of the VM clients. For
example, the RAM or storage will be designated
before launching the virtual machine, and will be
a fixed value even though not all the RAM or
storage is being actually used.

 VMs are less efficient than real hardware, since
they are accessing the resources in an indirect
way or simulating them by software.

 VM’s portability is limited and difficult: sharing
a VM image involves large files and usually
includes vendor data [6]. Additionally,
environment replication is difficult to manage,
although there are paid applications that can do
it.

Containers came as a solution to these problems,
looking to provide better performance, decrease the
storage and power usage, process isolation and easier
portability.

A container is a software unit that contains one or
more applications and all the requirements and
libraries needed to execute them. It is a lightweight

Docker Security in Web Simulation Tools: A Layered Approach

Proceedings of Eurasiaweb International Conference, Marrakesh, Morocco, 26th – 27th August, 2021

12

and isolated package that is ensured to work with
independence from the platform where it is executed.

Originally, Docker ran over Linux containers, known
as LXC, but then moved to libcontainer, running in
the same OS (Operating System) as the host machine.
This allows containers to share most of the host
operating system resources and run using the host
kernel, providing a more efficient approach than the
virtual machines, especially when running multiple
virtualized services.

Docker provides additional features over LXC or
libcontainer, like the automatic build feature that
allows developers to define the commands to be
executed when the container is launched, or the
possibility to share different container images over
the Docker registry.

In the end, the weight of the advantages and
disadvantages of virtual machines and containers is
determined by the use case. For isolated multiple
process that are deployed as microservices, containers
should be the initial choice. Dynamic resource
allocation is possible in containers and on VMs.

Some orchestrators, like Kubernetes, provide
dynamic control on the resource assignation.
However, if a process needs complete isolation and
guaranteed resources, a VM may be the best solution.

III. DOCKER CONTAINER ARCHITECTURE

Docker is composed by three main parts: the docker
client, the Docker host and the Docker registry.

The Docker client is the interface through which the
developer can interact with the docker host. When a
command like docker run is executed, the Docker
client communicates to the docker daemon using the
Docker API. This allows to deploy an environment
where the Docker client is separated from the Docker
host. This approach could be useful to have more
control and flexibility over Docker clients, being able
to monitor them from the interface and allocating
more or less resources depending on the use.

The docker registry is a storage and distribution
system for different Docker images. It allows the
developers to push and pull images, working as a
repository. By default, the Docker registry used is
Docker Hub, a repository of public and private
container images.

A Docker image is a binary file that includes all of
the requirements for running a Docker container:
stores the dependencies, tools, libraries and source
code needed for an application to run. The image
works as a template, similar to a snapshot for a virtual
machine. The Docker image is usually divided in

layers, where the first layer contains the base image
of an operating system, and the container layers that
describe the commands and executable files to be
executed.

IV. DOCKER SECURITY BY LEVELS

4.1. Host Level
The host machine is where the docker daemon and
the containers run. It is important to configure and
harden the operating system of the host in order to
secure it against possible attackers on a production
environment.

It is also important to configure docker properly.
Some good practices are:

 Docker containers should be run with the least

privilege possible. By default, Docker requires
root permissions to be executed, so a good
practice is to add the user to the docker group.

 Docker has a feature that allows to add and
remove capabilities to the containers, similarly to
SecComp which is discussed later. Only the
needed capabilities should be used in order to
reduce the attack surface of the deployed
container.

 By default, containers are allowed to escalate
privileges when required. There is an optional
security policy that denies the possibility to
acquire new privileges once the container is
running.

 Docker installation files should be secured. It is a
good idea to review and restrict the file
permissions and verify that the owner is the root
user.

 Whenever possible, latest software versions
should be used, since the latest version will have
most of the known vulnerabilities patched. This
goes for the docker package, the host operating
system or mostly every software layer that
interacts with the containers.

4.2. Application Level
With regard to application development, the design
must integrate security by default applying the
different known principles of secure development,
without neglecting those sections that make the
container interact with the outside world: input
verification, secure APIs, etc.

An interesting approach is the distroless images [7]
that, excluding the operating system, seek to include
only applications and their runtime dependencies.
They have neither a shell nor a package manager, nor
the vast majority of packages that are usually
included by default in Linux distributions.

This allows to deploy debloated containers, which do
not contain anything installed beyond what is

Docker Security in Web Simulation Tools: A Layered Approach

Proceedings of Eurasiaweb International Conference, Marrakesh, Morocco, 26th – 27th August, 2021

13

necessary, significantly reducing the attack surface
and therefore providing a hardened container.

4.3. Container Operating System Level
Different hardening techniques have been suggested
in papers like [8], where hardening tools and
implementations are used. An overview of these tools
would be described next.

1) SELinux: As described in [9], SELinux is a
security architecture for Linux systems that allows
administrators to have more control over who can
access the system, and defines access controls for the
applications, processes, and files on a system.

SELinux has different running modes. Enforcing,
which is the default mode, will to enforce security
policies over the application requests.

On the other hand, at the moment of running a
container, Docker supports different options such as
running a mounted volume over a host directory.
Even though the container image has SELinux in
enforcing mode, since the volume is shared between
the host and the container, the host files will be
accessible from the container and vice versa.

This is due to the fact that the Docker daemon has
SELinux disabled by default. It is possible to enable it
by overwriting the daemon settings with a new
configuration file, as instructed in [10]:

[root@marcos]$ docker info | grep Security -A3
Security Options:
 seccomp
 Profile: default
SELinux is not enabled.
[root@marcos]$ cat /etc/docker/daemon.json
{
 "selinux-enabled": true
}
Docker service must be restarted
[root@marcos]$ systemctl restart docker
[root@marcos]$ docker info | grep Security -A3
 Security Options:
 seccomp
 Profile: default
 selinux # Selinux is enabled now

With this configuration it is still possible to mount
and access the volume files, but the unmounted host
files will not be writable or readable from the
container anymore.

2) AppArmor: AppArmor is another Linux security
module that restrains the access and permissions of
applications, similarly to SELinux. However,
AppArmor allows to define different security
configurations for each program.

Docker allows to run containers loading different
AppArmor profiles with the running command. By
default, it runs the dockerdefault policy profile.

AppArmor profiles can be very flexible: the profiles
use a globbing syntax that allows to define rules to
accept or deny network traffic by protocol or IP. They
can also define the directories that are writable or
mountable, and allow or deny certain capabilities.

3) SecComp: SecComp is a kernel module that
provides additional security with different profiles.
Unlike AppArmor or SELinux,

SecComp allows to define profiles that limit the
system calls and allow to manage the available call
from within the Docker containers to the host’s
kernel.

Once again, if there is no SecComp profile specified,
Docker will run the default profile. As it can be read
in [11], by default, the SecComp profile limits system
calls like the CAP SYS BOOT reboot system call,
that would allow the containers to reboot the host.

However, in a production environment, maybe it is
interesting to allow or deny certain system calls that
could interfere within the service continuity, blocking
commands like chmod or mkdir that contains
potentially dangerous system calls.

The SecComp filters are written in a JSON file
format, and loaded at the time the container is
launched.
A simple example of applying a SecComp profile the
”hello-world” image would be:

[root@marcos]$ cat chmod.json
{
 "defaultAction":"SCMP_ACT_ALLOW",
 "syscalls":[
 {
"name":"chmod",
"action":"SCMP_ACT_ERRNO" }] }
[root@marcos]$ docker run hello-world
--security-opt seccomp:chmod.json

For this simple example, the profile works as a
blacklist: the default action for any system call is to
allow it with the SCMP ACT ALLOW tag. But for
the chmod call, the action to be taken is to deny the
call, with the SCMP ACT ERRNO tag.

4.4. Communication Level
If a Docker container is deployed with the client and
the daemon running on different machines, it would
be desirable to secure the docker API communication
with TLS or SSH [12]. In addition, it is possible to
run the docker daemon and client in different modes,
where the client and the host authenticate each other.

Docker Security in Web Simulation Tools: A Layered Approach

Proceedings of Eurasiaweb International Conference, Marrakesh, Morocco, 26th – 27th August, 2021

14

4.5. Image and Registry Level
As it is shown in [13], the images of the most popular
docker registry, Dockerhub, do not always provide
adequate security for the deployment. Recently,
Docker has included a vulnerability scanning tool
built into the docker client and Dockerhub, which
allows to identify potential vulnerabilities in the
container’s images. Additionally, there are external
tools such as Snyk [14], which can scan and monitor
container images at different stages of the
deployment. The tool allows the user to scan a
Dockerfile, a Git repository or a Docker image,
looking for potential vulnerabilities like outdated
dependencies or configuration vulnerabilities, and
presenting alternatives and suggestions on to fix
them. A good practice to keep in mind is the use of
multi-staged builds: a way to build the container by
selecting to load only specific elements from several
different previously built images. This creates a small
image with just the commands and dependencies to
run, reducing the attack surface and providing
flexibility in development and deployment. This
could be useful, for example, in a use case where
there are two container images: a large one with the
SDK and the needed compilations tools to compile
the source code of an application, and a small base
image with only the needed runtime dependencies for
running the compiled application, producing a
smaller final image.

V. CONCLUSIONS

As the use of containers and Docker grows, concerns
about container security increase. It is difficult to
maintain an adequate level of security while keeping
pace with software updates and use. More research
and dissemination should be done on the different
hardening techniques in order to increase the average
level of safety. To do this, future work will study
more methods and approaches to add security by
default at different layers and levels, as well as
performing security verification of container images
and related software or real-time protection and
integration with security systems.

ACKNOWLEDGMENTS

This work was supported by the University of Alcala
through project CCG20/IA-045.

The authors would like to thank professor Javier
Junquera Sánchez for providing multiple resources
and different points of view on the matter of adding
security to docker.

REFERENCES

[1] T. Combe, A. Martin, R. Di Pietro, “To Docker or Not to

Docker: A Security Perspective”, IEEE Cloud Computing,
vol. 3, no. 5, pp. 54-62, Sept.-Oct. 2016.

[2] S. Sultan , I. Ahmad, T. Dimitriou, “Container Security:
Issues, Challenges, and the Road Ahead”, IEEE Access, vol.
7, pp. 5297-52996, 17 April 2019.

[3] Sysig, “Container usage report of 2019”. [Online]. Available
from: https://sysdig.com/blog/sysdig-2019-container-usage-
report/.

[4] A. R. Manu, J. K. Patel, S. Akhtar, V. K. Agrawal and K. N.
B. Subramanya, ”A study, analysis and deep dive on cloud
PAAS security in terms of Docker container security”, 2016
International Conference on Circuit, Power and Computing
Technologies, pp. 1-13, 2016, doi:
10.1109/ICCPCT.2016.7530284.

[5] H. Jin, Z. Li, D. Zou and B. Yuan, “DSEOM: A Framework
for Dynamic Security Evaluation and Optimization of MTD
in Container-Based Cloud”, IEEE Transactions on
Dependable and Secure Computing, vol. 18, no. 3, pp. 1125-
1136, 1 May-June 2021, doi:10.1109/TDSC.2019.2916666.

[6] D. Kargatzis, S. Sotiriadis and E. G. M. Petrakis, “Virtual
machine migration in heterogeneous clouds: from openstack
to VMWare”, 2017 IEEE 38th Sarnoff Symposium, pp. 1-6,
2017, doi: 10.1109/SARNOF.2017.8080393.

[7] GoogleContainerTools Organization, “Distroless Docker
Images”. [Online]. Available from:
https://github.com/GoogleContainerTools/distroless.

[8] Amith Raj MP, A. Kumar, S. J. Pai and A. Gopal,
”Enhancing security of Docker using Linux hardening
techniques,” 2016 2nd International Conference on Applied
and Theoretical Computing and Communication Technology
(iCATccT), pp. 94-99, 2016, doi:
10.1109/ICATCCT.2016.7911971.

[9] RedHat, “What is SELinux?”. [Online]. Available from:
https://www.redhat.com/en/topics/linux/what-is-selinux.

[10] Docker, “Docker daemon documentation”. [Online].
Available from:
https://docs.docker.com/engine/reference/commandline/dock
erd/.

[11] Docker, “Seccomp security profiles for Docker”. [Online].
Available from:
https://docs.docker.com/engine/security/seccomp/.

[12] Docker, “Protect the Docker daemon socket”. [Online].
Available from:
https://docs.docker.com/engine/security/protect-access/

[13] Snyk, “Top ten most popular docker images each contain at
least 30 vulnerabilities”. [Online]. Available from:
https://snyk.io/blog/top-tenmost-popular-docker-images-
each-contain-at-least-30-vulnerabilities/

[14] Snyk, “Snyk open source security management tool”.
[Online]. Available from: https://snyk.io/product/open-
source-security-management/

