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Abstract

The purpose of this bachelor thesis work will be to perform a test bench with different methods used

for Blind Source Separation (BSS) of people’s voices, to be used in acoustic localization algorithms to

improve their accuracy.

For this purpose, the MATLAB software tool will be used to implement and evaluate the different

proposed systems. We will consider that most related systems in the scientific literature have three phases:

move the audio source to the time-frequency (TF) domain by perfoming the Short Time Fourier Transform

(STFT) to the audio mix, separate the audio into the different sources applying BSS techniques, and a

final task with the obtained signals of reconstruction and transition to the time domain using the Inverse

Short Time Fourier Transform (ISTFT).

For reaching the objectives described, the project has been divided in the following tasks: design

of the blocks responsible for carrying out the STFT and the ISTFT that will be common for all BSS

methods and the development of the BSS method bank and of the filtering stage, using a Wiener filter

or similar, which will also be common to all methods. Last of all, testing and evaluation of the complete

system using audio mixes obtained in similar environments to the one in which the system is to be applied

to improve the location of the various sources.

Keywords: Blind Source Separation, Non-negative Matrix Factorization, Acoustic Source Localiza-

tion, STFT, MATLAB.
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Resumen

El propósito de este Trabajo de Fin de Grado (TFG) será realizar un banco de pruebas con distintos

métodos utilizados para la separación ciega de fuentes de audio, Blind Source Separation (BSS), que será

usado en algoritmos de localización acústica para mejorar su precisión.

Bajo este propósito, se usará la herramienta software MATLAB para implementar y evaluar los

distintos sistemas propuestos. Consideraremos que la mayoŕıa de los sistemas relacionados en la literatura

cient́ıfica se componen de tres fases: pasar al dominio tiempo-frecuencia mediante la realización de la

Short Time Fourier Transform (STFT) de la mezcla de audio, separar la misma en las diferentes fuentes

aplicando tecnicas Blind Source Separation (BSS), y la final reconstrucción de las señales obtenidas y

paso al dominio del tiempo utilizando la Inverse Short Time Fourier Transform (ISTFT).

Con el fin de alcanzar los objetivos descritos, se ha dividido el trabajo en las siguientes tareas: diseño

de los bloques encargados de realizar la STFT y la ISTFT, que serán comunes para todos los métodos

BSS, desarrollo del banco de métodos BSS y de la etapa de filtrado, utilizando un filtro Wiener o similar,

que también será común a todos los métodos. Finalmente, se probará y evaluará el sistema completo

mediante mezclas de audio obtenidas en entornos similares al que se desea aplicar el sistema para mejoar

la localización de las distintas fuentes.

Keywords: Separación ciega de fuentes, Factorización de matrices no negativas, Localizacion de

fuentes de audio, STFT, MATLAB.
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Extended Summary

The purpose of this bachelor thesis work will be to build a test bench with different methods used for

Blind Source Separation (BSS) of people’s voices, to be used in acoustic localization algorithms to improve

their accuracy.

The work is centered on separating audio sources selected from different databases well known by

the scientific community and with diverse algorithms, in order to test and validate some of them. These

sequences are generated in different rooms and with several microphone array configurations, so that

our implementation will address different scenarios. We will consider cases with a single person still in

a room, others where a person is in continuous movement at different speeds, or even with a group of

people who are talking at the same time.

Figure 1: Prototype of the initial block diagram

The design of the system has been divided into different modules for ease of implementation, as

detailed below and shown in Figure 1:

• A first block of code will be introduced to read from the databases the mix of audio that we want

to separate into different sources.

• The STFT block will take care of transforming audio samples, thus moving from the time domain

to the frequency domain, allowing us to have the signal described in each TF slot.

• A bank of BSS methods will then be implemented and tested with a switch, allowing to choose the

method with which the test is being performed.

• A filter similar to the Wiener filter and a ISTFT block will be implemented in order to reconstruct

the separated signal in the time domain.
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The MATLAB software tool is used to carry out all these modules, which will also be used for the

subsequent verification of the results.

We will start by defining a series of parameters that the system will use, such as the number of

microphones, the size of the window used by the STFT, its displacement, the number of iterations, etc.

The STFT of the signals is then performed with the previously established parameters (thus obtaining

the spectogram of the signal).Then, covariance matrix is computed, for each TF slot. We will assume that

in each TF slot, each source behaves like a complex Gaussian variable. After that, the desired separation

method can then be applied.

All this different BSS methods will be implemented and tested, with a particular focus on Non-

Negative Matrix Factorization (NMF) due to its universality, flexibility to add limitations to the model

and its good performance (see Figure 2). Although the basic techniques of NMF work only with non-

negative values, we will use semi-NMF methods. This is done with the covariance matrix that models the

phase difference between the signal arriving at each pair of microphones for every frequency value. This

is a very useful information form one channel, since this phase difference information will give knowledge

about the direction from which the sources arrive.

Figure 2: Figure from [1]. A general scheme of example-guided audio source separation based on NMF
modeling.

The different methods are implemented on a bench and are:

• Ozerov.

• Sawada.

• Directional.

After going through the source separation algorithm, an estimation of the parameters that make up

the different sources are obtained, that can be used to build a Wiener filter or similar to separate the

sources.

Finally, the ISTFT of the reconstructed signals is performed to pass them to the time domain, so that

they can be reproduced and the correct operation of the system can be checked.



Contents

Abstract ix

Resumen xi

Extended Summary xiii

Contents xv

List of Figures xix

List of Tables xxi

List of Acronyms xxiii

1 Introduction 1

1.1 Work context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Document organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the art 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Ozerov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 NMF modeling of the sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 NTF modeling of the sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Model estimation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Sawada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Directional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Implementation 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Deletion of possible variables stored in the system . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Introduction of the paths where the necessary libraries are located . . . . . . . . . . . . . 18



xvi CONTENTS

3.4 Input object creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.5 Parameters definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 STFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Separation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7.1 Ozerov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7.2 Sawada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7.3 Directional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8 ISTFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.9 Saving of separate sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.10 Localisation block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Results 27

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Audio with a single speaker (seq08-1p-0100) . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1.1 Ozerov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.1.2 Sawada . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1.3 Directional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1.4 Summary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.2 Audio with two speakers (seq18-2p-0101) . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusions and future work 37

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Bibliography 39

A Solicitation document 41

A.1 Physical elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B Budget 43

B.1 Software resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B.2 Human resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B.3 Material execution budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B.4 Amount of the contract execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



CONTENTS xvii

B.5 Facultative fees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B.6 Total budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



xviii CONTENTS



List of Figures

1 Prototype of the initial block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

2 Figure from [1]. A general scheme of example-guided audio source separation based on

NMF modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1.1 Example of a multimodal localization system. Red circles shows where the microphone

arrays are located . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Schematic of the proposed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Figure from [2]. NMF-based audio spectral analysis. A short-time frequency transform,

such as the magnitude or power short-time Fourier transform, is applied to the original

time-domain signal x(t). The resulting non-negative matrix is factorised into the non-

negative matrices W and H. In this schematic example, the red and green elementary

spectra are unmixed and extracted into the dictionary matrix W. The activation matrix

H returns the mixing proportions of each time-frame (a column of W) . . . . . . . . . . . 6

2.2 Figure from [2]. NMF applied to the spectrogram of a short piano sequence composed of

four notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Figure from [3]. An illustration of a spatial covariance matrix Rjfn in the 2-channel case

(I = 2). While dropping the indices j, f and n, the covariance matrix eigendecomposition

may be written as R = UΛUH , with being the eigenvectors and U = [u1,u1],u1,u2 ∈ C2

being the eigenvectors and Λ = diag([λ1, λ2]), λ1, λ2 ∈ R+ being the eigenvalues. This il-

lustration is not fully complete, since a 2D complex-valued covariance matrix is represented

on a 2D real plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Figure from [3]. A visualization of spectral models of multichannel NMF. Source variances

Vj of each of J (here J = 3) sources are modeled with NMF with Kj (here Kj = 24)

components, which can be decomposed as a sum of Kj rank-1 matrices (wj,k and hj,k are

the columns and the lines of matrices w and H, respectively). . . . . . . . . . . . . . . . . 9

2.5 Figure from [3]. A visualization of spectral models of multichannel NTF. Source variances

Vj are stuck in a common 3-valence tensor V modeled with PARAFAC model with K

(here K = 6) components, which can be decomposed as a sum of K rank-1 3-valance tensors. 10

2.6 Figure from [4]. Graphical models for the factorizations . . . . . . . . . . . . . . . . . . . 14

4.1 Figure from [5].Physical setup: three cameras C1, C2 and C3 and two 8-microphone circular

arrays MA1 and MA2. The gray is in the field of view of all three cameras. The L-shaped

area is a 3 m-long by 2 m-wide rectangle, minus a 0.6 m-wide portion taken by the tables. 28

4.2 Audio mix of three sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



xx LIST OF FIGURES

4.3 Three separate speakers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Localisation result applying Ozerov’s method with 8 NMF bases, and different window

sizes/shifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Localisation result applying Ozerov’s method with 16 NMF bases, and different window

sizes/shifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Localisation result applying Sawada’s method with 8 NMF bases, and different window

sizes/shifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 Localisation result applying Sawada’s method with 16 NMF bases, and different window

sizes/shifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.8 Localisation result applying the directional method with 8 NMF bases, and different win-

dow sizes/shifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.9 Localisation result applying the directional method with 16 NMF bases, and different

window sizes/shifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.10 Spectrogram of a section of the original sequence (seq08-1p-0100) and of the two separated

sources by the Ozerov method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.11 Spectogram of a section of the original sequence (seq08-1p-0100) and of the two sources

separated by the directional method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.12 Localisation result applying Ozerov’s and directional methods in multispeaker mixes with

12 NMF bases, and different window sizes/shifts. . . . . . . . . . . . . . . . . . . . . . . . 35

4.13 Spectrogram of a section of the original sequence (seq18-2p-0100) and of the two separated

sources by the Ozerov method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



List of Tables

4.1 Table from [5]. List of the annotated sequences. Tags mean: [A]udio, [V]ideo, presominant

[ov]erlapped speech, at least one visual [occ]lusion, [S]tatic speakers, [D]ynamic speakers,

[U]nconstrained motion, [M]outh, [F]ace, [H]ead, speech/silence [seg]mentation . . . . . . 28

4.2 Mean error in millimetres between estimated position and ground truth with sequence

(seq08-1p-0100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Mean error in millimetres between estimated position and ground truth with sequence

(seq18-2p-0100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B.1 Software resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B.2 Human resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B.3 Material execution budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B.4 Amount of the contract execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B.5 Facultative fees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B.6 Total project budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



xxii LIST OF TABLES



List of Acronyms

AED Adaptive eigenvalue decomposition.

ASL Acoustic Source Localization.

BSS Blind Source Separation.

DoA Direction of Arrival.

GCC Generalised cross-correlation.

ICA Independent Component Analysis.

IS Itakura-Saito.

ISTFT Inverse Short Time Fourier Transform.

KL Kullback-Leiber.

LGM local Gaussian model.

MAP maximum a posteriori.

ML Maximum likelihood.

MM majorisation-minimisation.

NMF Non-Negative Matrix Factorization.

NTF Non-Negative Tensor Factorization.

PCA Principal Component Analysis.

STFT Short Time Fourier Transform.

SVD Singular Value Decomposition.

TF time-frequency.

TFG Trabajo de Fin de Grado.



xxiv List of Acronyms



Chapter 1

Introduction

1.1 Work context

Few would dispute the fact that, nowadays, one of the major lines of research is machine-human inter-

action. Within this field, one of the main tasks is to know the position of a person interacting within an

environment. In this context, two methodologies appear, the invasive ones (in which it is necessary to

wear portable devices to achieve localisation) and the non-invasive ones, which do not require this type

of device and are therefore preferred over the former.

Two of the main techniques used in indoor location systems are those based on audio and video

sensors. These modalities can be used separately or together to accomplish the task. Figure 1.1 shows

a non-invasive localisation system based on audio and video sensors. In this work, the visual field will

be left aside to focus on the auditory field. In this domain there are a large number of studies focused

on obtaining the position of any acoustic source appearing in a scene from an array of microphones

placed in the environment. This is known as Acoustic Source Localization (ASL). To achieve this, most

methods attempt to estimate the Direction of Arrival (DoA) of sources, due to the simplicity and ease of

access in many applications. These measurements can be obtained, for example, by using the Generalised

cross-correlation (GCC) or the Adaptive eigenvalue decomposition (AED) algorithm.

Figure 1.1: Example of a multimodal localization system. Red circles shows where the microphone
arrays are located
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The aforementioned techniques have in common that they usually work with a set of microphone

arrays distributed around the environment and the audio signal they capture. However, the aim of this

thesis will be to test whether a prior separation of the different audio sources improves their localisation.

This set of techniques is called BSS. Nowadays, there are many methodologies to achieve a correct source

separation, Principal Component Analysis (PCA), Singular Value Decomposition (SVD), Independent

Component Analysis (ICA) or Non-Negative Matrix Factorization (NMF) are some of them. The latter

is the subject of interest of this paper due to its universality, its simplicity and the good results obtained

in many studies.

In particular, this paper focuses on BSS using NMF methods. The main objectives of this thesis are

detailed below.

1.2 Goals

This thesis is focused on the use BSS techniques on recordings of acoustic signals, occurring in a known

environment, using an array of microphones.

The main purpose of this work is to develop a system that allows the separation of the different

audio sources in a given sample, in order to check if the localisation of these sources is subsequently

improved. To this end we propose the use of BSS techniques, more specifically NMF methods, which

are implemented on a test bench. The inputs of our system are the raw audio signals from the set of

microphones, and the outputs are the audios of the different sources separately. A simple schematic of

the proposed system is shown in the following figure.

Figure 1.2: Schematic of the proposed system

To achieve this goal, two first blocks will be implemented to read the raw audio samples and to

perform the STFT of them, thus passing to the frequency domain. Once in this domain, one of the NMF

methods will be chosen from a set of them to achieve the separation of the different sources. Finally, a

block will be implemented to reconstruct and return the signals to the time domain.

This system, as mentioned above, is implemented not with the objective of checking which one per-

forms a better separation of the sources, but to evaluate which of them provides a better solution to

improve the subsequent localisation of the different sources within the known environment.

1.3 Document organization

The rest of the document is organised in the following chapters:
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• State-of-the-art: it begins with an overview of BSS techniques. It then introduces the NMF

methods, explaining how they solve the problem of audio source separation and the different vari-

ants that have been implemented chronologically, with special emphasis on the methods that have

subsequently been implemented in this work.

• Proposed system: this chapter details the architecture of the designed system and how the

different separation methods have been implemented.

• Experimental work and results: shows the tests that have been carried out with different audio

samples to check the correct functioning of the system.

• Conclusion and future work: this chapter contains the conclusions and coming research lines.

• Appendixes: the document includes two additional appendices that reflect the budget to carry

out the work and the necessary software tools.
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Chapter 2

State of the art

2.1 Introduction

We live in a world where we are surrounded by sound. Because of this, it is sometimes difficult to hear

and to hold a conversation comfortably with the speaker we want to listen to. For this reason, it is

important to be able to separate and extract the speech signal from the noise for both human-to-human

and machine-to-human communications [2].

Audio source separation is an approach to estimate the source using information about the mixture

observed in each input channel. This estimation is achieved by spatial filtering based on blind source

localisation or time-frequency filtering based on audio source modelling, or both. [2]

Although until now Independent Component Analysis (ICA) has been used for audio source separa-

tion, because these signals in a real environment with reverberation are usually convoluted mixtures and

are prevalent in many applications, their separation is a much more challenging task. Recently, NMF

and DNNs have been exploited as well as other audio source separation techniques, with excellent results.

Because of these good results, as indicated above, we will focus on NMF techniques [2].

NMF is a spectral decomposition technique in which, starting from a matrix V containing the input

data, where the columns are the samples and the rows are the features, we try to find two unknown

matrices by factoring them [2,6].

V ≈ V̂
def
= WH (2.1)

The matrices W and H function as a dictionary of recurring patterns and as the activation coefficients

respectively. It is for this reason that we will henceforth refer to W as a dictionary and H as the activation

matrix. The matrix V is of dimension FxN (where F denotes frequency and N denotes time), while the

matrices W and H are of dimension FxK and KxN respectively, where K is usually the rank of the

factorisation. These matrices, as the name of the technique itself indicates, will consist of non-negative

factors [2].

Different techniques have been used over time to factor (2.1). The most notorious and oldest is

Principal Component Analysis (PCA) which minimises the quadratic cost between V and its approximate

WH. The general principle of NMF-based audio spectral analysis is shown in figure 2.1 [2].

The figure 2.2 shows the result of applying NMF to a small piano sequence.

To achieve the factorisation we first solve the minimisation problem
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Figure 2.1: Figure from [2]. NMF-based audio spectral analysis. A short-time frequency transform, such
as the magnitude or power short-time Fourier transform, is applied to the original time-domain signal
x(t). The resulting non-negative matrix is factorised into the non-negative matrices W and H. In this

schematic example, the red and green elementary spectra are unmixed and extracted into the dictionary
matrix W. The activation matrix H returns the mixing proportions of each time-frame (a column of W)

min
W,H

D(V|WH) subject to W ≥ 0,H ≥ 0 (2.2)

where W ≥ 0 and H ≥ 0 indicate the non-negativity of the matrix components, and D(V|WH) is a

separable measure of fit such that

D(V|WH) =

F∑
f=1

N∑
n=1

d([V]fn|[WH]fn) (2.3)

where d is a positive cost function with a single minimum x = y [2]. One of the most popular sets of

NMF cost functions is beta-divergence, due to its success in audio signal processing. It can be defined as

(2.4)

dβ(x|y)
def
=


1

β(β−1) (x
β + (β − 1)yβ − β x yβ−1), β ∈ R \ 0, 1

x log xy − x+ y = dKL(x|y), β = 1
x
y − log

x
y − 1 = dIS(x|y), β = 0

(2.4)

The limit cases β = 0 and β = 1 correspond to the Itakura-Saito (IS) and generalised Kullback-Leiber

(KL) divergences, respectively. The case β = 2 corresponds to the quadratic cost dQ(x|y) [2].

Factorisations with small positive values of β are relevant to decomposition of audio spectra, which

typically exhibit exponential power decrease along frequency f [2].

The matrices W and H are successively updated until a stationary point is reached. However, because

C(W,H) is jointly non-convex in W and H, the stationary point may not be a global minimum (or even

a local minimum). For this reason, in order to achieve a good factorisation, the initialisation of the

parameters is very important, which is why it is often recommended to run the algorithm from different

starting points [2].

min
W,H

C(H)
def
= D(V|WH) subject to H ≥ 0 (2.5)
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Figure 2.2: Figure from [2]. NMF applied to the spectrogram of a short piano sequence composed of
four notes.

A common approach for conditional updates of W and H is majorisation-minimisation (MM). This

technique consists of iteratively optimising an upper bound of the original objective function C(H), which

is easier to minimise [2].

This upper bound is achieved by decomposing C(H) into the sum of a convex part and a concave

part and upper bounding each of them separately. The convex part is upper bounded using Jensen’s

inequality and the concave part using the tangent inequality [2].

The resulting updates generalise can be written as

H← H ◦W
T ((WH)◦[β−2] ◦V)

WT (WH)◦[β−1]
(2.6)

W←W ◦ ((WH)◦[β−2] ◦V)HT

(WH)◦[β−1]HT
(2.7)

This update technique is called ”multiplicative updates” and will be used by the methods described

below [2] .



8 Chapter 2. State of the art

2.2 Ozerov

Multi-channel NMF can be formulated on the basis of a local Gaussian model (LGM) which is more

general in itself (than multi-channel NMF) as it allows us to change spatial and spectral information in

a systematic way [3].

xfn =

J∑
j=1

yjfn (2.8)

Each image source is modelled as a complex circular Gaussian random vector of zero mean (equa-

tion 2.9) [3, 7]. Defined by two factors:

yjfn ∼ Nc(0,Rjfnvjfn) (2.9)

• Spatial covariance Rjfn representing the spatial characteristics of image source j at point TF

• Spectral variance vjfn representing spectral characteristics

Once the spatial covariance and spectral variance are available, the random vectors yjfn are assumed

to be mutually independent in time, frequency and between sources [3] .

Given the audio mixing equation, and taking into account the independence discussed above, the

STFT coefficients can be modelled as

xfn ∼ Nc(0,
J∑
j=1

Rjfnvjfn) (2.10)

Figure 2.3: Figure from [3]. An illustration of a spatial covariance matrix Rjfn in the 2-channel case
(I = 2). While dropping the indices j, f and n, the covariance matrix eigendecomposition may be

written as R = UΛUH , with being the eigenvectors and U = [u1,u1],u1,u2 ∈ C2 being the
eigenvectors and Λ = diag([λ1, λ2]), λ1, λ2 ∈ R+ being the eigenvalues. This illustration is not fully

complete, since a 2D complex-valued covariance matrix is represented on a 2D real plane.
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In our case the spectral variances are represented by lower rank matrices or tensors. Spectral co-

variance is not usually modelled with completely non-negative structures. For this reason we speak of a

semi-negative model [3, 7].

For better understanding, an interpretation of the spatial covariance matrix is given and related to the

methods used for multi-channel audio compression. In general this matrix is a full-rank positive definite

Hermitian complex valued matrix. An example of such a matrix is depicted in figure 2.3 [3].

Because it is a complex-valued Hermitian, it can easily be shown that in the two-dimensional case it

is encoded by only 4 real scalars [3].

2.2.1 NMF modeling of the sources

In this section the NMF spectral modelling of each source is presented. This is usually referred to as

multi-channel NMF and consists of structuring the source variances in (2.9) with NMF structure as in

the single-channel NMF case:

vjfn =

Kj∑
k=1

wjfkhjkn (2.11)

where the source-dependent Kj is usually smaller than both F and N , and wjfk and hjkn are all non-

negative [3]. If we introduce non-negative matrices we can rewrite the equation (2.11) in a matrix form:

Vj = WjHj (2.12)

where Vj = [vjfn]f,n ∈ RFxN+ , Wj = [wjfk]f,k ∈ RFxKj

+ , and Hj = [hjkn]k,n ∈ RKjxN
+ [3].

A visualisation of this spectral NMF modelling is shown in the Figure 2.4

Figure 2.4: Figure from [3]. A visualization of spectral models of multichannel NMF. Source variances
Vj of each of J (here J = 3) sources are modeled with NMF with Kj (here Kj = 24) components,

which can be decomposed as a sum of Kj rank-1 matrices (wj,k and hj,k are the columns and the lines
of matrices w and H, respectively).
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2.2.2 NTF modeling of the sources

While for the single-channel case it is necessary to fix the number of components K approximately or

automatically calculated, which is not always easy, in the multi-channel case it is not only necessary to

know the number of total components, but also the number of components of each source, which may

vary from one source to another. To solve this problem, the following solution was proposed. Instead

of representing each source as a single-channel NMF. All sources will share the NMF components. In

addition, to specify the association between K components and J sources, a new non-negative matrix

Q = [qjk]j,k ∈ RJxK+ is introduced. Each q represents the proportion of association of the K component

with the J source [3].

vjfn =

K∑
k=1

wfkhknqjk (2.13)

where the columns of Q are normalized to sum to one, and each qjk represent the proportion of association

of the component k to the source j [3].

As already done in the NMF case, equation (2.13) can be rewritten in a tensor form:

V =

K∑
k=1

wk ◦ hTk ◦ qk (2.14)

where ”◦” denotes the tensor outer product [3]. A visualization of Non-Negative Tensor Factorization

(NTF) spectral models is shown on Figure 2.5

Figure 2.5: Figure from [3]. A visualization of spectral models of multichannel NTF. Source variances
Vj are stuck in a common 3-valence tensor V modeled with PARAFAC model with K (here K = 6)

components, which can be decomposed as a sum of K rank-1 3-valance tensors.

NTF modelling has several advantages over NMF modelling [3]:
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• It is not necessary to specify the number of components at the outset for each source, but only the

total number of components. This is because the components are placed automatically thanks to

the Q-matrix.

• Some components are shared between different sources, making the modelling more compact.

Finally, it is added some restrictions on the spatial covariance to avoid overfitting. First of all, when

the sources are static, the spatial covariances are assumed to be time invariant [3].

2.2.3 Model estimation criteria

Once the two proposed models have been presented, in order to estimate the model parameters from

observed data, an estimation criterion is needed.

One of the most popular choices is the Maximum likelihood (ML) criterion that writes

θ = argmax
θ′

p(X|θ′) (2.15)

On the other hand, when an a priori distribution of the model parameters is specified, the maximum

a posteriori (MAP) criterion is used instead of the ML criterion [3]:

θ = argmax
θ′

p(θ′|X) = argmax
θ′

p(X|θ′)p(θ′) (2.16)

2.3 Sawada

This section includes explanations, algorithms and formulas made by Hiroshi Sawada to extend NMF to

the multi-channel case.

In this section, as in the previous one, complex NMF is used to improve the capabilities for audio

applications. Complex NMF takes into account phase information xij/|xij |, which is neglected in standard

NMF. As we considered before, x(t) is a microphone observation during a specific time to which the STFT

is applied to obtain the complex matrix X whose elements are denoted as xij ∈ R. Where i represents

time and j represents frequency [8].

Sawada considers a stereo case, where matrices X(1) and X(2) are complex and represent the time-

frequency domain observations of microphones 1 and 2. In this case, the multi-channel observation is

modelled with the common non-negative matrices T and V, plus a matrix explained below representing

the inter-channel characteristics corresponding to the T matrix [8, 9].

Channel 1 is chosen as reference, where the inter-channel characteristics are normalised to 1. This

modeling will look like:

p(X(1)|T,V,G) =
∏
i,j

Nc(x
(1)
ij |

∑
k

gijktikvkj , 1) (2.17)

While the second channel is modelled by introducing a matrix H, the elements of which are complexes

hik ∈ C and using the same T, V and G matrices:

p(X(2)|T,V,G,H) =
∏
i,j

Nc(x
(2)
ij |

∑
k

gijkhiktikvkj , 1) (2.18)
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This matrix H contains information about the phase difference as well as the amplitude ratio between

channels 1 and 2 [8].

In this case, we want to maximize the multichannel likelihood

p(X(1),X(2)|T,V,G,H) = p(X(1)|T,V,G) · p(X(2)|T,V,G,H) (2.19)

whose negative log-likelihood is given by

Lmc(T,V,G,H) =
∑
i,j

(|x(1)ij −
∑
k

gijktikvkj |2 + |x(2)ij −
∑
k

gijkhiktikvkj |2) (2.20)

An auxiliary function is defined in order to follow the iterative optimisation process

Lmc(T,V,G,H,S(1), S(2)) =
∑
i,j

(
∑
k

|s(1)ijk − gijktikvkj |2

rijk
+
∑
k

|s(2)ijk − gijkhiktikvkj |2

rijk
) (2.21)

where S(1) and S(2) are newly tensors whose elements are complex and satisfy

∑
k

s
(1)
ijk = x

(1)
ij ,

∑
k

s
(2)
ijk = x

(2)
ij (2.22)

and rijk,∀ i, j, k are parameters satisfying
∑
k rijk = 1, rijk ≥ 0 [8].

The minimization updates for this auxiliary function with respect to S(1) and S(2) are given by

s
(1)
ijk = gijktikvkj + rijk(x

(1)
ij −

∑
k

gijktikvkj) (2.23)

s
(2)
ijk = gijkhiktikvkj + rijk(x

(2)
ij −

∑
k

gijkhiktikvkj) (2.24)

And the minimization updates with respect to T, V, H and G are derived from its partial derivatives,

and given by

tik =

∑
j x̂ij<[g∗ijk(s

(1)
ijk + s

(2)
ijkh

∗
ik)]

(1 + |hik|2)
∑
j x̂ijvkj

(2.25)

vkj =

∑
i x̂ij<[g∗ijk(s

(1)
ijk + s

(2)
ijkh

∗
ik)]∑

i x̂ijtik(1 + |hik|2)
(2.26)

hik =

∑
j x̂ijs

(2)
ijkg

∗
ijk

tik
∑
j x̂ijvkj

(2.27)

gijk =
s
(1)
ijk + s

(2)
ijkh

∗
ik

|s(1)ijk + s
(2)
ijkh

∗
ik|

(2.28)

In summary, the negative log-likelihood is iteratively minimized by repeating (2.23)-(2.24) and one of

the four updates (2.25)-(2.28).
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This method does not work correctly, as H does not successfully reflect the inter-channel character-

istics. This is because the complex phases have too much freedom to model the images accurately. To

solve this problem there are two possible approaches [8].

• Impose a priori constraints to reduce the freedom, e.g. a spatial constraint on the excitation or a

constraint on the clustering.

• Ignoring the phase g of each component t , and considering only the inter-channel features h.

(Extension from standard NMF)

2.4 Directional

In contrast to the previous two methods, in this case, data on the directionality of sound propagation is

used to improve NMF for source separation. Thanks to this information, the need for training data is

eliminated, with the slight penalty of doubling the execution time. This new method was presented as

the first to take advantage of the directionality of a set of microphones with a distance between them

much smaller than the wavelength of the sound [4].

As introduced earlier, this method guides the NMF to find the different sources by providing estimates

of the DoA obtained for each time-frequency slot from an array of microphones. This forms an X tensor

of dimensions frequencyxtimexdirection, which shows the energy distribution in the environment. This

jointly solves for all sources by finding the tensors B (direction distribution per source), W (spectral

dictionary per source) and H (temporal performance of each element of the dictionary) to fit

X(f, t, d) ≈
∑
s,z

B(d, s)W (f, z, s)H(t, z, s) (2.29)

where s indexes the different sources and z indexes the sub-components of the dictionary.[4]

Among the main advantages obtained with this approach are the following [4]:

• Perceived separation quality - better than NMF;

• No supervision - no clean audio examples needed;

• Low overhead - computation on the same order as NMF;

• Suitability for small arrays - usable DoA estimates can be obtained from arrays which are much

smaller than the wavelength of audible sounds and for which beamforming fails.

In this section we are going to use probabilistic language instead of matrix language as we have been

doing in the previous sections. For this reason, rather than X we take a given probability distribution

pobs(f, t) to decompose it as pobs(f, t) ≈
∑
z q(f, t, z), where q is factored as one of the following forms:

q(f, t, z) := q(f, z)q(t | z) = q(f | z)q(t, z) (2.30)

as in Figure 2.6(a). The values of z index a dictionary of prototype spectra q(f |z) which combine

according to the time activations q(t, z).[4]

To estimate the DoA in each time-frequency slot, the last squared method (probably the simplest)

is used. The Fourier transform of the audio signals recorded by each of the M microphones is taken
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Figure 2.6: Figure from [4]. Graphical models for the factorizations

as given. This process is applied to all the slots, so we will focus on a single slot and its STFT value

Y1, ..., YM .[4]

It is assumed that this fringe is dominated by a point source far enough away to look like a plane

wave and the array is small enough to avoid phase overlap ∠Yi. If we denote xi as the position of the

microphone i and k as the wave vector, is obtained ∠Yi−∠Y1 = (xi−x1)∗k. To solve this linear equation

for k, least squares will be applied. Serving k as an estimate of the DoA for the chosen slot. The different

coefficients of k are fixed by the geometry, so it is possible to solve with a single pseudoinverse and a

small matrix multiplication, the least squares problems for all TF bins [4].

In practice, instead of using a matrix pobs(f, t), we take as given a tensor (NTF) pobs(f, t, d), which will

be interpreted as a distribution over time, frequency, and DoA quantified in a finite domain of size D. We

decompose pobs(f, t, d) = pobs(f, t)pobs(d|f, t), where pobs(f, t) represents the normalised spectrogram and

pobs(d|f, t) represents the estimate of the direction per TF slot. On the other hand, because the distance

between the microphones is small, the variation of the signal amplitude between them is negligible, so we

can derive the normalised spectrogram of one of the microphones [4].

We set pobs(f, t, d) ≈
∑
s,z q(f, t, d, z, s) for the factorization

q(f, t, d, z, s) := q(s)q(f |s, z)q(t, z|s)q(d|s) = q(d, s)q(f |s, z)q(t, z|s) (2.31)

represented in Figure 2.6(c). A distribution q(d|s) rather than a fixed DoA per source allows for noise,

slight movements of sources, and modeling error [4].

The majorisation-minimisation method is used to fit (2.31) to pobs(f, t, d). This argument leads us to

begin with a factored model:

q0(f, t, d, z, s) := q0(d|s)q0(f |s, z)q0(t, z|s), (2.32)

forced the desired marginal to obtain

r(f, t, d, z, s) := pobs(f, t, d)q0(z, s|f, t, d), (2.33)

and return to factored form by computing conditionals of r [4]:

q1(d, s) := r(d, s), q1(f |s, z) := r(f |s, z), q1(t, z|s) = r(t, z|s). (2.34)
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2.5 Conclusions

In this chapter we have made a brief introduction to the subject of BSS, and then explained the NMF

methods in more detail, explaining their theoretical basis, including equations and figures that describe

how they work applied to single-channel cases. Next, the three NMF methods that have been implemented

on the bench have been analysed in detail in order to deal with the multichannel-multilocutor case.

Explaining how they are implemented and identifying their advantages over other different methods.
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Chapter 3

Implementation

3.1 Introduction

This chapter of the book will detail the work carried out by the author. It will detail how the BSS

bank responsible for separating the different audio sources that make up the mix has been implemented

through programming. This code will be made up of codes that were previously made by the authors

mentioned in the previous chapter (Ozerov, Sawada, etc.) and modifications that have been made to

them to adapt them to our particular situation.

In order to facilitate the understanding of this system, pseudo-code will be included both for the

general operation of the bank and for each of the methods that have been studied specifically.

Thus, the pseudocode representing the operation of the complete system divided into its different

modules would look like 3.1

Algoritmo 3.1: Operation and different modules of the system

Result: Separates the different audio sources that make up the input mix
Deletion of possible variables stored in the system;
Introduction of the paths where the necessary libraries are located;
Input object creation;
Parameters definition;
STFT;
Apply separation algorithm;
Inverse STFT for each source;
Save separated speech on results folder;

3.2 Deletion of possible variables stored in the system

With this module, all possible variables stored in the workspace that could interfere with the correct

functioning of the system are deleted. In addition, all the figure windows are closed and the command

window is cleaned to facilitate the viewing of future results. The algorithm of this module is represented

in 3.2
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Algoritmo 3.2: Deletion module

Result: Delete all possible saved variables and close the open figure windows
close all;
clear;
clc;

3.3 Introduction of the paths where the necessary libraries are

located

In this case, as the system needs, on the one hand, the different toolboxes made by the authors mentioned

in previous sections, and on the other hand, the database containing the different audio mixes, it is

necessary to add the paths where they are located so that the system can make use of them. To perform

this task, it is simply necessary to use the algorithm 3.3

Algoritmo 3.3: Introduction of the paths

Result: Adds the specified folders to the top of the search path
addpath();

3.4 Input object creation

Once the necessary paths have been added, the next step is to create the audio mix to be fed into the

system so that its different sources are separated. To do this, first the database to be used, in our case

AV.16, must be selected. This database is presented in the results chapter, where the different sequences

that compose it are detailed. After selecting the database, it is necessary to choose one of the available

sequences, which will be the audio mix that will definitely enter the BSS system. All this is summed up

in the algorithm 3.4

Algoritmo 3.4: Creation of the input audio mix

Result: Input object creation
Database selection;
Details of the sequences that make up the database;
Adding the database path;
Sequence selection;

3.5 Parameters definition

After having generated the audio mix to be fed into the system, it is necessary to set the value of some

parameters in order for the system to function correctly.

First, it will be necessary to know the number of sources that make up the mix, the number of

microphones in the room, and it will also be necessary to mark one of them as the reference microphone.

On the other hand, it will be necessary to set the total number of NMF bases and the components for

each source for the separation to work correctly.

Secondly, it is necessary to set the size of the STFT window and the size of its displacement, in order

to achieve the highest possible resolution when passing the input audio to the frequency domain.
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Finally, once all these parameters have been set, the user will be asked which of the three implemented

BSS methods he/she wants to be used to achieve the separation of the different sources.

All these actions carried out in this module are detailed in the pseudocode 3.5

Algoritmo 3.5: Section of the code for setting the required parameter value

Result: Parameters configuration
Select the BSS method to be used;
Set number of sources;
Set the reference microphone;
Set fft size;
Set fft offset size;
Set number of total NMF bases;
Set number of iterations;
Set the number of microphones;
Set the number of NMF bases for each source;
Read the input audio mix;

3.6 STFT

In this section, after setting the configuration parameters and reading the audio signal, we proceed to

the frequency domain and calculate its spectrogram using the STFT. To achieve this, the Sawada STFT

function is used. This function must receive as input parameters

• The input audio signal, which has to have dimensions length x number of channels.

• Length of the frame (fftSize).

• Frame shift (shiftsize).

• Analysis window, which can be chosen from four possible windows: Hamming window, von Hann

window, rectangular window, Blackman window and sine window

This function will first check if there is an error such as not enough elements are entered, the frame

size is odd and will set some parameters to default values if they are not specified, such as the shift size

(fftSize/2) or the analysis window (Hamming).

After checking that there is no error, zeros are added at the beginning and end of the signal before

applying the FFT, thus achieving an interpolation of the samples in the frequency domain.

Finally, the STFT is calculated using the MATLAB fft function and the optimal analysis window

function is calculated.

This whole process is synthesised in the pseudocode 3.6

3.7 Separation algorithms

Now that the spectrogram of the input audio signal has been obtained, we proceed to separate the

different sources that make up the mix. To do this, a bank of three BSS methods has been designed by

means of a switch, where each case represents one of the implemented methods.Once the program is run,

it will ask the user which of the three methods he/she wants to use to perform the separation, and the

user will indicate this via the command bar.
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Algoritmo 3.6: Function that performs the STFT of the input audio

Result: Audio input in frequency domain
Function STFT(signal,fftSize,shiftSize,window) is

Check errors and set default values;
Pad zeros before and after signal values;
Calculate STFT;
Analysis window function used in STFT;

end

Algoritmo 3.7: Blind Source Separation Bank

Result: Audio source separation
switch method do

case 1 (Ozerov) do
Ozerov method;

case 2 (Sawada) do
Sawada method;

end
case 3 (Directional) do

Directional method;
end

end

The pseudo-code that represents this bank is 3.7.

In the following, we present how each of the methods has been implemented with their respective

pseudocodes.

3.7.1 Ozerov

This section explains how the Ozerov method and its corresponding algorithm have been implemented. As

can be seen in pseudocode 3.8, first the number of frequency and time slots are assigned, and the K value

is calculated as a function of the components of each source and the number of sources. Subsequently,

the matrices A, W, H and Q are initialised with random values. Finally, two functions are executed to

separate and reconstruct the sources, which we will explain below.

Algoritmo 3.8: Ozerov method

Result: Audio source separation
The number of frequency slots is assigned;
The number of time slots is assigned;
Calculate K, K = nsrc ∗NMFCompPerSrcNum;
A is randomly initialised;
W is randomly initialised;
H is randomly initialised;
Q is randomly initialised;
//NMF MU rules;
[QMU , WMU , HMU , cost] = multinmfconvmu(V, niter, Q, W, H, part, switchQ, switchW ,
switchH);

//Reconstruction of the spatial source images;
IeMU = multinmf-recons-im(X, QMU , WMU , HMU , source-NMF-ind);

The function responsible for separating the different sources of the audio mix is contained in the

code 3.9. This function will first check for errors and set some parameters to default values if they are
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not specified. Next, the V and cost matrices are defined, and the value of the V matrix is calculated for

each channel and each source. Finally, the values of the Q, W and H matrices are iterated niter times

and scaled.

Algoritmo 3.9: Separation function

Result: Source separation
Function multinmfconvmu(V, niter, Q, W, H, part, switchQ, switchW, switchH) ) is

If any arguments are missing, it initialises them to 1 by default;
Definition of the matrices Vap and cost;
for j ≤ nsrc do

for i ≤ nc do
Vap(:, :, i) = Vap(:, :, i) + repmat(Q(:, i, j), 1, N). ∗ Pj ;

end

end
cost(1) = sum(V (:)./Vap(:)− log(V (:)./Vap(:)))− F ∗N ∗ nc;
for iter ≤ niter do

Update Q;
Update W;
Update H;

end
Scale Q/W ;
Scale W/H;

end

Algoritmo 3.10: Reconstruction function

Result: Reconstruction of the spatial source images

Function multinmf-recons-im(X,Q,W,H,part) is

[F,N,nc] = size(X);

ns = size(Q,3);

P = zeros(F,N,ns);

for j ≤ ns do
P(:,:,j) = W(:,partj) * H(partj,:);

end

Im = zeros(F, N, ns, nc);

for i ≤ nc do

Prueba(:,:,:,i) = zeros(size(P));

end

for j ≤ ns do

for i ≤ nc do

Prueba(:,:,j,i) = repmat(Q(:,i,j),1,N) .* P(:,:,j);

end

end

for j ≤ ns do

for i ≤ nc do

Im(:,:,j,i) = (Prueba(:,:,j,i) ./ sum(Prueba(:,:,:,i),3)) .* X(:,:,i);

end

end

end

Finally, once the different sources have been separated, they are reconstructed with code 3.10. This

function initially defines the ns and P matrices, and calculates the value of P for each source by mul-
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tiplying the W and H matrices. Finally it is multiplied by the value of the Q matrix for each source

and each channel, normalised with respect to itself and finally multiplied by the original input signal to

achieve source separation.

3.7.2 Sawada

This section explains how the Sawada method and its corresponding algorithm have been implemented.

As you can see in code 3.11, this method starts by calling a function which is explained below.

Algoritmo 3.11: Sawada method

Result: Audio source separation
[Y,cost] = bss-multichannelNMF(X,nsrc,nb,fftSize,shiftSize,it,drawConv);

This function in charge of font separation is shown in pseudocode 3.12. First, a delta value is set to

avoid numerical computational instability. Subsequently, time-frequency-wise spatial covariance matrices

are obtained and the observed spatial covariance matrix in each time-frequency slot is calculated. Finally,

the sources are separated with the function detailed in pseudocode 3.13 and the signals are reconstructed

using a Wiener filter.

Algoritmo 3.12: Bss-multichannelNMF Function

Result: Audio source separation
Function bss-multichannelNMF(X,ns,nb,fftSize,shiftSize,it,drawConv) is

delta = 10(−12);
[I,J,M] = size(X);
XX = zeros(I,J,M,M);
x = permute(X,[3,1,2]);
for i ≤ I do

for j ≤ J do
XX(i,j,:,:) = x(:,i,j)*x(:,i,j)’ + eye(M)*delta;

end

end
[Xhat,T,V,H,Z,cost] = multichannelNMF(XX,ns,nb,it,drawConv);
Wiener filtering;

end

This function first checks if there is an error due to missing or erroneous arguments, and sets default

values for those parameters that are not assigned one. Finally, the matrices T, V, Z and H are calculated

by means of multiplicative updates.

Algoritmo 3.13: MultichannelNMF Function

Result: Audio source separation
Function multichannelNMF(X,N,K,maxIt,drawConv,T,V,H,Z) is

Check errors and set default values;
Xhat = local-Xhat( T, V, H, Z, I, J, M );
Iterative update;
Update T;
Update V;
Update Z;
Update H;

end
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3.7.3 Directional

Algorithm 3.14 explains how the Directional method works. In this case, first the coordinates of the

microphones in the room are entered and the angles and directions of arrival of all signals at the micro-

phones are calculated. Then, the variables are randomly initialised and the variables that will store the

multiplicative update factor are created. Subsequently, qsft is obtained by iterating numIter times and

for each source, summing over all z values. Finally, the different sources are reconstructed by multiplying

the original input signal by qsft for each source and each channel.

Algoritmo 3.14: Directional method

Result: Audio source separation
Entering microphone coordinates;
The arrival angles and directions of arrival of the radio signals at the microphones are calculated;
qfsz is initialised randomly and normalised to the sum of all elements;
qtsz is initialised randomly and normalised to the sum in z;
qds randomly initialised and normalised with respect to the sum in d;
qdeltadft is initialised;
Variables storing the multiplicative update factor are created;
for iter ≤ numIter do

Calculation of qdfts ;
Plot qds ;
for src ≤ nsrc do

Sum over all z values for each source to get qfts;
end

end
We finally have what we wanted (qsft): an F x T x S tensor with the fraction of each source in
each time-frequency bin;

//Signal reconstruction;
for ch ≤ numCh do

for src ≤ nsrc do
Y (:, :, src, ch) = qsft(:, :, src). ∗X(:, :, ch);

end

end

3.8 ISTFT

After having achieved the separation and reconstruction of the signals from the different sources that

made up the audio mix, we proceed to transfer these signals to the time domain and their subsequent

graphical representation in different figures. To achieve this, the Sawada ISTFT function is used. This

function must receive as input parameters

• Spectrogram of the input signal.

• Frame shift (shiftsize).

• Analysis window, which can be chosen from four possible windows: Hamming window, von Hann

window, rectangular window, Blackman window and sine window.

• Length of the original signal.

As with the STFT function, this function will first check for any errors such as not enough elements

being entered, the number of rows not being odd, and will set some parameters to default values if they

are not specified, such as the Hamming window.
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After checking that there are no errors, the optimal synthesis window is calculated based on the

minimum distortion principle and the ISTFT is calculated using the MATLAB ifft function.

Finally, discarding padded zeros in the end of the signal.

This whole process is synthesised in the pseudocode 3.15

Algoritmo 3.15: Function that performs the ISTFT of the separate sources

Result: Separate sources in the time domain
for src ≤ nsrc do

sep(:,:,src)=Function ISTF(spectrogram, shiftSize, window, orgLength) is
Check errors and set default values;
Calculate optimal synthesis window based on minimal distortion principle;
Inverse STFT;
Discarding padded zeros in the end of the signal;

end
Plot of the separate audio sources in the time domain;

end

3.9 Saving of separate sources

Finally, after having all the sources separated in the time domain, we will proceed to save the results

using the code 3.16.

Algoritmo 3.16: Saving of separate sources

Result: Creation of the different .wav files containing the different sources separated and
received by the different microphones

for iSource ≤ nsrc do
y = sep(:,:,iSource);
for iMic ≤ nMics do

audiowrite
end

end

3.10 Localisation block

Once the different sources that make up the mixture have been separated, they are fed into the localisation

block to estimate the position of the sources. The algorithm starts by loading the parameters of the

experiment, such as the number of microphones, the method used or the database. It then creates

a network of 3D points around the ground truth in order to locate the speaker. Then, the localisation

process begins, starting with the reading of the audio signal, to later perform a pre-processing and remove

zero mean, pre-emphasis and windowing, SRP-PHAT is calculated and the maximum SRP-location is

obtained. Finally, the error between the estimated position and the true position of the source is evaluated,

representing graphically this difference of positions in millimetres, and a document with the estimated

coordinates of the speakers is generated.
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3.11 Conclusions

In this chapter, the pseudocode of the different blocks that make up the system has been compiled. It

began by indicating the structure of the complete system, mentioning the different modules that make it

up. Then, in each section, the functioning of each of the blocks has been detailed, explaining and adding

the code of the most important functions that make up each of them. In this way, not only the code

that had already been implemented by each of the authors mentioned in the text is included, but also

the code that has been developed and included in this thesis in order to adapt the code base to our test

case.
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Chapter 4

Results

4.1 Introduction

This chapter will show the results obtained at the end of the work, as well as the database that has been

used. It will be divided into 4 sections. Section 4.2 describes the database used, giving details of the

scenario where it was recorded and the different sequences. Section 4.3 contains the results of applying

two specific sequences from this database to our system, and section 4.4 groups together the conclusions

we draw from the results obtained.

4.2 Database

The database used for system evaluation is AV16.3 [5], recorded in the Smart Meeting Room of the IDIAP

research institute, which consists of a 8.2m×3.6m×2.4m rectangular room containing a centrally located

4.8m× 1.2m rectangular table.

This database has a variety of different scenarios, from ”meeting situations” where the speakers are

seated most of the time, to ”motion situations” where the speakers are moving most of the time.

The location of the speakers is specified in an L-shaped area around the table in the room, as shown

in Figure 4.1. This area in which the speakers can move has a length of 3 metres and a width of 2 metres,

minus 0.6 metres of width which is occupied by the table [5].

Three cameras and two 8-microphone arrays of 10 cm radius are used, which are 0.8 m apart. The

position of the cameras is optimised, using a loop process that includes the calibration of the cameras

with 2D information only. On the other hand, each camera is calibrated using information from the 2D

and 3D measurements in the reference of the microphone arrays.

The reason why all this hardware is used is:

• Recording with several cameras generates different points of view from which people can be observed.

• Recording with two array microphones creates test cases for 3D audio source location and tracking,

as each array of microphones can provide an estimate of the location of each audio source [5].

• In order to compute the 3D coordinates of an object from the 2D coordinates of the image planes

of the cameras, at least two cameras must be used [5] .
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Figure 4.1: Figure from [5].Physical setup: three cameras C1, C2 and C3 and two 8-microphone circular
arrays MA1 and MA2. The gray is in the field of view of all three cameras. The L-shaped area is a 3

m-long by 2 m-wide rectangle, minus a 0.6 m-wide portion taken by the tables.

So, the database contains audio and video data taken by the 3 video cameras, and the two circular

microphone arrays. The cameras have a frame rate of 25 f.p.s (40ms period) while the audio has been

recorded at 16 kHz. The dataset is fully labeled, providing the mouth ground truth location. Synchro-

nization information between the audio and video streams is also available.

In the experiments we have used a total of 8 annotated sequences, listed in table 4.1.

Table 4.1: Table from [5]. List of the annotated sequences. Tags mean: [A]udio, [V]ideo, presominant
[ov]erlapped speech, at least one visual [occ]lusion, [S]tatic speakers, [D]ynamic speakers,

[U]nconstrained motion, [M]outh, [F]ace, [H]ead, speech/silence [seg]mentation

• seq01-1p-0000 A single speaker, static while speaking, at each of 16 locations covering the shaded

area in Fig 2. The speaker is facing the microphone arrays. The purpose of this sequence is to

evaluate audio source localization on a single speaker case [5].

• seq08-1p-0100 One speaker, mostly moving while speaking. Always facing the cameras and mi-

crophones. The speaker is talking most of the time [5].

• seq11-1p-0100 One speaker, mostly moving while speaking. The only constraint on the speaker’s

motion is to face the microphone arrays. The speaker is talking most of the time [5].

• seq15-1p-0100 One moving speaker, walking around while alternating speech and long silences [5].
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• seq18-2p-0101 Two speakers, speaking and facing the microphone arrays all the time, slowly

getting as close as possible to each other, then slowly parting [5].

• seq24-2p-0111 Two moving speakers, crossing the field of view twice and occluding each other

twice. The two speakers are talking most of the time [5].

• seq37-3p-0001 Three speakers, static while speaking. Two speakers remain seated all the time

and the third one is standing. Overall five locations are covered. Most of the time 2 or 3 speakers

are speaking concurrently [5].

• seq40-3p-0111 Three speakers, two seated and one standing, all speaking continuously, facing the

arrays, the standing speaker walks back and forth once behind the seated speakers [5].

• seq45-3p-1111 Three moving speakers, entering and leaving the scene, all speaking continuously,

occluding each other many times. Speakers’ motion is unconstrained. This is a very difficult case

of overlapped speech and visual occlusions [5].

4.3 Results and discussion

The results of the experiments that have been carried out are given below. In this section only localisation

results will be presented and not separation results. This is because we don’t have access to the true

separated sources, so that we cannot evaluate by objective metrics how good is the separation we have

achieved from our estimated sources. We can only subjectively evaluate the separation by listening to

the audios and observing the time (or frequency) domain representation of the audios (as in Figures 4.2

and 4.3), which do not provide sufficient clarity nor objective information on the separation performance.

Figure 4.2: Audio mix of three sources.
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Figure 4.3: Three separate speakers.

It is for this reason that we will only evaluate the quality of the location of the speakers after the

separation. For this purpose, the system will be run with two different audio samples from the database.

The first will be sequence seq08-1p-0100, which, as indicated in the previous section, consists of a man

in continuous movement around the room who keeps talking almost all the time. Although when we do

source separation we expect there to be more than one speaker, in this case we are going to apply our

bank of methods to an audio mix composed of a single person to try to separate the background noise

from the speaker’s voice. So in this case the system will be configured to detect 2 different sources, trying

to separate the voice from the noise. Secondly, sequence seq18-2p-0101 will be used, which involves 2

seated speakers talking at the same time. This sequence is used to test the correct functioning of the

NMF methods to separate two overlapping voices. On the other hand, the values of different variables

will be varied to check how they affect localisation. In this case, the number of NMF bases that make up

the audio, the size of the STFT window and the size of its displacement will be varied. In order to test

which of the three methods results in better localisation, all will be simulated with the same configuration

sets.

4.3.1 Audio with a single speaker (seq08-1p-0100)

In this first experiment, as explained above, this sequence will be used to try to separate the background

noise from the locutor’s voice, and thus try to check if the speaker’s localisation is improved thanks to a

cleaner signal compared to the case in which the background noise is not eliminated.

4.3.1.1 Ozerov

This method, as well as the other two methods, will be simulated by initially setting a maximum of 8

NMF bases for the whole mixture and gradually changing the STFT window size and shift. Giving values

of 1024/512, 2048/1024 and 4096/2048 respectively as can be seen in Figures 4.4a,4.4b and 4.4c.

Subsequently, the three methods will be simulated again, with the same three window sizes but in

this case setting 16 NMF bases instead of 8 as set out in Figures 4.5a,4.5b and 4.5c.
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(a) Window size/shift 1024/512. (b) Window size/shift 2048/1024. (c) Window size/shift 4096/2048.

Figure 4.4: Localisation result applying Ozerov’s method with 8 NMF bases, and different window
sizes/shifts.

(a) Window size/shift 1024/512. (b) Window size/shift 2048/1024. (c) Window size/shift 4096/2048.

Figure 4.5: Localisation result applying Ozerov’s method with 16 NMF bases, and different window
sizes/shifts.

4.3.1.2 Sawada

In this section we will perform the same experiments as in the previous section, except that this time the

Sawada method will be used. First, a value of 8 NMF bases will be set, thus obtaining the results shown

in the Figures 4.6a, 4.6b and 4.6c.

(a) Window size/shift 1024/shift. (b) Window size/shift 2048/shift. (c) Window size/shift 4096/shift.

Figure 4.6: Localisation result applying Sawada’s method with 8 NMF bases, and different window
sizes/shifts.

Subsequently, the three methods will be simulated again, with the same three window sizes but in

this case setting 16 NMF bases instead of 8 as set out in Figures 4.7a,4.7b and 4.7c.
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(a) Window size/shift 1024/shift. (b) Window size/shift 2048/shift. (c) Window size/shift 4096/shift.

Figure 4.7: Localisation result applying Sawada’s method with 16 NMF bases, and different window
sizes/shifts.

4.3.1.3 Directional

In this section we will perform the same experiments as in the previous section, except that this time

the directional method will be used. First, a value of 8 NMF bases will be set, thus obtaining the results

shown in the Figures 4.8a, 4.8b and 4.8c.

(a) Window size/shift 1024/512. (b) Window size/shift 2048/1024. (c) Window size/shift 4096/2048.

Figure 4.8: Localisation result applying the directional method with 8 NMF bases, and different
window sizes/shifts.

Subsequently, the three methods will be simulated again, with the same three window sizes but in

this case setting 16 NMF bases instead of 8 as set out in Figures 4.9a,4.9b and 4.9c.

(a) Window size/shift 1024/512. (b) Window size/shift 2048/1024. (c) Window size/shift 4096/2048.

Figure 4.9: Localisation result applying the directional method with 16 NMF bases, and different
window sizes/shifts.

As can be seen from the results obtained for the three methods, we can affirm that the localisation of

the speaker is not sufficiently correct. Despite the fact that after listening to the resulting audios, in most

cases the speaker’s voice was correctly separated from the noise, although in some points the difference in
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distance between the estimated position and the real one is less than 30 cm, in many others it is almost

equal to 3 metres. This could be due to the fact that by using only audio to achieve localisation, when

there are moments of silence or other noises, this could be seriously affected. As, for example, this causes

silent frames to exist and therefore the error may increase, which could be solved with a voice activity

detector..

4.3.1.4 Summary results

The results in the figures above are meant to provide a general picture of the precision we can achieve

with each of the methods (with errors up to almost 3 meters), but a clearer quantitative metric is

required to assess which of them is actually better than the others and which are the factors affecting

this performance.

To do so, we provide Table 4.2, in which the average error in millimeters is shown, for each of the

evaluated methods and control parameters.

Table 4.2: Mean error in millimetres between estimated position and ground truth with sequence
(seq08-1p-0100)

The results are similar among the different methods, but the directional method seems to provide the

lowest average error in most of the cases.

We can also observe that when we increase the number of total NMF bases, the localisation result

worsens, as well as when we increase the size of the window and its displacement, except in the case of

applying Sawada’s method, where if we increase the size of the window, the error is reduced.

Spectrograms in Figures 4.10 and 4.11 are then shown below to give a visual idea on the quality of

the audio separation. In Figure 4.11, it can be seen how the original audio seems to be separated into

voice and noise, as opposed to the Ozerov method which seems to separate high and low frequencies, as

can be seen in Figure 4.10, thus concluding that the task we had of separating the ambient noise from

the voice, with the directional method seems to be possible and that may be the reason why the error in

the subsequent localisation is lower.

Additional experimentation and a detailed error analysis is needed to provide statistically significant

results and conclusions.

4.3.2 Audio with two speakers (seq18-2p-0101)

As has been shown in the previous subsection, the use of BSS methods does not introduce any improve-

ment in the location of the speakers. This can be seen from the fact that there are several points where

the difference in distance between the estimated position and the true position is up to 3 metres. Based on

this premise, we now present the results obtained when there are two speakers instead of one in the audio
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Figure 4.10: Spectrogram of a section of the original sequence (seq08-1p-0100) and of the two separated
sources by the Ozerov method.

Figure 4.11: Spectogram of a section of the original sequence (seq08-1p-0100) and of the two sources
separated by the directional method.

mix, assuming that since this task is more complicated than the previous one, where only the ambient

noise was separated from the speaker, the results obtained will also be poor in terms of localisation.

In this case, the three implemented methods were tested again, this time setting the number of NMF

bases to 12 (4 per source, as before) and only with two window sizes, 1024 and 4096, in order o better

appreciate the differences. As the results obtained are similar to those of the previous section and hardly

differ from each other, it has been decided to include only the Figures 4.12a, 4.12b and 4.12c, so as not

to overload the document with almost identical information.

Again, as can be seen in the last three figures, we can state that the localisation achieved after

separating the different audio sources is not accurate. This is because at many points the positional error

is again above two metres. However, in this case the result could have been more expected, as now when

listening to the audio of the estimated sources, it could be seen at several points how the voices of the

two speakers overlapped and a correct separation was not achieved. So it was almost certain that the

localisation was going to fail as well. Moreover, if we start from the fact that the single-speaker case is

supposed to be easier to separate and localise, when this one failed, we could sense that the multi-speaker

case was not going to have good results either. This is confirmed by looking at the figures, where we can

see that many points are more than 30 centimetres apart, and therefore we can affirm that the localisation
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(a) Sawada, window size/shift 4096/2048. (b) Ozerov, window size/shift 4096/2048.

(c) Directional, window size/shift 4096/2048.

Figure 4.12: Localisation result applying Ozerov’s and directional methods in multispeaker mixes with
12 NMF bases, and different window sizes/shifts.

is not correct. This may again be due to losing track of the speakers when they are silent, or to losing

track of them when both speakers are too close to each other.

As we did for the case of the single speaker task, we provide a summary performance metric in 4.3,

showing the average localization error for this task. Again, the directional method is the one showing the

lowest error, closely followed by the other two.

We do not show the summary results for different window sizes, but the conclusions are similar to

those discussed in the previous section.

The spectrogram of the sequence with two speakers appying the Ozerov method is shown in Fig-

ure 4.13, where it can be seen that it mixes information from the two speakers, resulting in two audios

in which the two voices are heard overlapping at all times, one in the background of the other. This may

be the reason why the localisation error in this case is so high compared to the rest.

Again, additional experimentation and a detailed error analysis is needed to provide statistically

significant results and conclusions.
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Table 4.3: Mean error in millimetres between estimated position and ground truth with sequence
(seq18-2p-0100)

Figure 4.13: Spectrogram of a section of the original sequence (seq18-2p-0100) and of the two separated
sources by the Ozerov method.

4.4 Conclusions

This chapter of the book contains the results obtained after carrying out the relevant experiments, as

well as information on the database used. The number of sequences used has been indicated and the

reason for this selection has been explained. The reason why the quality of the separation algorithms

cannot be assessed has been explained and the quality of the localisation has been directly assessed.

During the chapter, graphs representing the difference in mm spacing between the estimated position at

each point and the ground truth have been included, and the average localization error results have been

summarized in specific tables.

The main conclusions are that the directional method seems to be the one to achieve the best results

in both the single and multiple speaker case, with higher errors when increasing the number of NMF

basis and window sizes.

We could not run additional experimentation nor a detailed error analysis to further obtain relevant

insights in the operation of the different methods, so this is the most important task to be addressed in

future work.



Chapter 5

Conclusions and future work

5.1 Conclusion

The objective of this thesis was to create a bank with different BSS methods that would allow us to

analyse whether a previous separation of the different sources that make up an audio mix would give

us better results when trying to locate the speakers than by applying only the SRP-based localisation

algorithm.

To achieve the bank design, the MATLAB software tool was used to design the skeleton of the bank

and the stages prior to separation. On the other hand, for the separation stage, we have used the algorithm

already implemented by the authors mentioned in the paper, adapting them to our multichannel case

study.

From the obtained results, the methods implemented in the bank do not perform a good enough

separation for our case study (multi-channel and multi-speaker), and the subsequent localisation of the

sources gets very high localization errors, thus concluding that the results are not good enough to be used

in the localization systems being developed in our group. Certainly, additional work must be carried out

to do a more thorough and extensive evaluation.

5.2 Future works

The following future lines derived from this work are proposed:

• Carry out a more detailed study on the operation and performance of the proposed methods, using

additional testing sequences, as time limitations did not allow to do so during the development of

this work

• Use another existing database or record our own database consisting of audio sequences more in

line with the implemented BSS methods. This could lead to better results in the separation of the

different sources and therefore a possible improvement of the subsequent localisation.

• As a result of having our own database, from which we would have access to the separated real

sources. Metrics could be implemented to assess whether the separation of such sources from an

audio mix is good or not.
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• Implement different NMF methods in the BSS method bank. One of the methods that could be

included is GCC, as recent studies have shown that, after applying a localisation method based on

SRP after having separated the different sources using GCC, good localisation results are achieved.

• Use techniques other than NMF methods, such as Principal Component Analysis (PCA), Indepen-

dent Component Analysis (ICA) or Singular Value Decomposition (SVD). In order to see if these

methods yield better results than NMF.

• Include a voice activity detector so that audio localisation is performed only when speakers are

speaking, in order to reduce error due to stages of silence.
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Appendix A

Solicitation document

The elements necessary to carry out the project are specifically detailed below. Indicating the hardware

and software used

A.1 Physical elements

• ASUS ZenBook laptop, for system programming.

A.2 Software

• Data processing and analysis: Matlab, versión 2020b, toolboxes .

• Flowcharts made with: https://app.diagrams.net/.

• Text editor: TeXstudio (Latex).

https://app.diagrams.net/
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Appendix B

Budget

In this last chapter an estimate of the total cost to realise the project is included. Then, the costs are

presented divided according to their origin, showing the subtotal in each of the subsections, and at the

end the total of these figures is shown.

B.1 Software resources

In order to carry out this project, it is necessary to use the Matlab software tool, with which the system

responsible for separating the different audio sources has been implemented.

The table B.1 details the cost of the licence for this application.

Concept Unit price Coefficient Subtotal

Matlab 200,00 e 0,0833 16,66 e

Table B.1: Software resources

B.2 Human resources

The human resource cost comes from the manpower of an engineer who is responsible for the development

of the entire system. This cost is included below.

Concept Hourly rate Number of hours Subtotal

Engineer 50,00 e 500 25000,00 e

TOTAL 25000,00 e

Table B.2: Human resources

B.3 Material execution budget

The material execution budget is the sum of the software and human resources necessary to carry out

the work.
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Concept Subtotal

Software resources 16,66 e

Human resources 25000,00 e

TOTAL 25016,66 e

Table B.3: Material execution budget

B.4 Amount of the contract execution

The costs of execution by contract include the costs arising from the use of the facilities where the work

has been carried out, tax charges, financial expenses, administrative fees and project control obligations.

This expenditure is assumed by establishing a surcharge on the cost of the amount of the material

execution budget. This surcharge is equivalent to 22% of this amount.

Concept Subtotal

22% of the total cost of material execution 5503,67 e

Table B.4: Amount of the contract execution

B.5 Facultative fees

A percentage of 7% of the total cost of execution by contract is fixed for this project.

Concept Subtotal

7% of the contract execution cost 385,26 e

Table B.5: Facultative fees

B.6 Total budget

The table B.6 shows the sum of all the budget items taken into account in the previous sections.

Concept Subtotal

Material execution budget 25016,66 e

Amount of the contract execution 5503,67 e

Facultative fees 385,26 e

TOTAL (without IVA) 30905,59 e

IVA (22 %) 6799,23e

TOTAL 37704,82 e

Table B.6: Total project budget
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