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Abstract 1 

Hypertension is one of the main causes of cardiovascular diseases. Different drugs have 2 

been employed in the treatment of hypertension being ACE inhibitors those showing the 3 

highest effectiveness. Synthetic drugs inhibiting ACE activity present high effectiveness but 4 

cause undesirable side effects. Recently, great attention was paid to peptides with 5 

antihypertensive activity. Antihypertensive peptides are naturally present in some foods and 6 

do not show adverse effect. Since hypertension is closely related to modern diet habits, the 7 

interest for this kind of foods is increasing. In most cases, antihypertensive peptides are 8 

encrypted in a parent protein from which they are released during gastrointestinal digestion or 9 

during food processing. In other occasions, antihypertensive peptides are added to certain 10 

foods to improve its functionality. There has been a great development of methodologies for 11 

the purification, isolation, and characterization of antihypertensive peptides in foods. Despite 12 

this wide literature, there is no revision work trying to summarize and compare the different 13 

strategies that have been employed. The aim of this work has been to review all the strategies 14 

employed with this purpose.  15 

 16 

 17 
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1. Introduction 1 

Traditionally, the dietetic value of a protein was evaluated from its nutritional quality, 2 

mainly presence of antinutrients and availability of essential amino acids. A new aspect to 3 

take into account is the possibility of generating bioactive peptides. Bioactive dietary 4 

components are defined as `food components that can affect biological processes or 5 

substrates and hence have an impact on body function or condition and ultimately health' 6 

(Schrezenmeir et al., 2000). Since any consumed dietary component in enough quantity could 7 

be described by this definition, two caveats should be added: the component should impart a 8 

measurable effect at a realistic physiological level and the measured ‘bioactivity’ has to show 9 

a potential beneficial health affect (Moller et al., 2008; Schrezenmeir et al., 2000). Bioactive 10 

peptides can be naturally occurring in foods but the most usual they are in parent proteins 11 

(Iwaniak and Minkiewicz, 2008; Korhonen and Pihlanto, 2003; Moller et al., 2008; Wang and 12 

de Mejia, 2005). 13 

Several bioactive peptides from different origins such as milk (Hernandez-Ledesma et al., 14 

2008; Madureira et al., 2010; Zimecki and Kruzel, 2007) and soybean (Wang and de Mejia, 15 

2005) have been released, isolated, characterized, and briefly reviewed. Moreover, peptides 16 

showing numerous bioactivities such as antihypertensive, antilipemic, anticariogenic, 17 

antioxidative, antimicrobial, antiamnestic, opiate, antithrombotic, osteoprotective, 18 

vasodilatative, immunomodulating were thoroughly described (Iwaniak and Minkiewicz, 19 

2008; Kitts and Weiler, 2003; Korhonen and Pihlanto, 2003; Wang and de Mejia, 2005). 20 

According to the BIOPEP database, 37 different types of bioactivities have been gathered for 21 

more than 1950 peptides (Minkiewicz et al., 2008). Among them, peptides with 22 

antihypertensive activity are the most prevalent.      23 

Hypertension or high blood pressure is attributed by World Health Organization (WHO) as 24 

the fundamental source of cardiovascular mortality. Worldwide high blood pressure was 25 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Minkiewicz%20P%22%5BAuthor%5D
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estimated to be the cause of 7.6 million premature deaths (13.5% of the total premature 1 

deaths) (Lawes et al., 2008). Additionally, hypertension along with other cardiovascular risk 2 

factors (high cholesterol, high BMI (Body Mass Index), low fruit and vegetable intake, 3 

smoking, and alcohol intake) were established to be the cause of about 83-89% ischaemic 4 

heart disease and 70-76% of stroke in the world (Ezzati et al., 2003). Furthermore, 5 

hypertension can lead to cardiac arrhythmia, coronary heart disease, heart and renal failure, 6 

disability and death (Murray and FitzGerald, 2007) and, in accordance to the World 7 

Hypertension League (WHL), over 50% of the hypertension population are unaware of their 8 

condition (Chockalingam, 2008). Hypertension can be treated with distinct medications such 9 

as nitrates, diuretics, β-blockers, α-adrenergic antagonist, vasodilators, dopamine agonists 10 

calcium channel blockers (CCBs), and angiotensin converting enzyme (ACE) inhibitors 11 

(Perez and Musini, 2008). Among them, ACE inhibitors (e.g. captopril) are mostly employed 12 

for showing greater effectiveness and lower side effects (Souza et al., 2009).  13 

First ACE inhibitor was described by Ferreira et al. (1970). It was a bradykinin potentiator 14 

and was isolated from snake (Bothrops jararaca) venom (Ferreira et al., 1970). The first 15 

synthetic ACE inhibitor adopted for hypertension therapy was [2S]-1-[3-mercapto-2-16 

methylpropionyl]-L-proline (captopril) (Cushman and Ondetti, 1991). Afterwards, several 17 

other synthetic ACE inhibitors were employed for treatment of hypertension (enalapril, 18 

lisinopril, alecepril or fosinopril) although they provoked adverse effects such as skin rashes, 19 

cough, angioedema, taste disturbances, hypotension, reduced renal function, increased 20 

potassium levels, and fetal abnormalities (Atkinson and Robertson, 1979; FitzGerald et al., 21 

2004). Unlike these drugs, antihypertensive peptides do not yield any adverse effect but are 22 

usually less potent in comparison to synthetic substances (Lee et al., 2010). Indeed, seven 23 

dipeptides isolated from garlic showed decreasing systolic blood pressure (SBP) after oral 24 

administration of 200 mg/kg in spontaneously hypertensive rats (SHRs). However, none of 25 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lawes%20CM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ezzati%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Souza%20LM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cushman%20DW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Atkinson%20AB%22%5BAuthor%5D
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these peptides lowered SBP as much as captopril which was used as a positive control test 1 

(Suetsuna, 1998). There are some exceptions to this fact such as a peptide isolated from tuna 2 

frame protein peptic hydrolysate and the milk peptides VPP and IPP that exert 3 

antihypertensive effects comparable with captopril (Lee et al. 2010; Pina and Roque, 2009).  4 

Since hypertension is closely related to modern diet habits, interest in functional foods with 5 

antihypertensive activity is having a great consideration. Therefore, the aim of this work has 6 

been to review the methodologies used to isolate, purify, identify, and characterize food 7 

peptides with antihypertensive activity. 8 

 9 

 2. ACE and blood pressure (BP) 10 

Several interacting biochemical pathways are associated to the control of blood pressure 11 

(BP) in living organisms being the renin-angiotensin system the most important. 12 

Additionally, kinin-nitric oxide system, endothelin converting enzyme system, and neutral 13 

endopeptidase system are also recognized to have influence on BP.  14 

Renin-angiotensin system is shown in Figure 1. Angiotensinogen is the first link of the 15 

reaction chain in the renin-angiotensin system. It is the precursor of Angiotensin I (Ang I- 16 

DRVYIHPFHL). In fact, it converts to Ang I in the presence of renin (E.C. 3.4.23.15) in the 17 

bloodstream. On the other hand, Ang I hydrolyzes by removing of C-terminal dipeptide HL to 18 

Angiotensin II (Ang II- DRVYIHPF) by the action of angiotensin I converting enzyme (ACE; 19 

kinases II peptidyldipeptide hydrolase). Afterwards, Ang II is distributed in the blood until its 20 

inactivated by aminopeptidase A (E.C. 3.4.11.7) or N (E.C. 3.4.11.2) enzymes and its 21 

converted to Angiotensin III and IV (RVYIHPF and VYIHPF, respectively). Ang II peptide 22 

causes vasoconstriction by activation of AT1 receptor (AT1R) which leads to raise the BP. 23 

Furthermore, Ang II negatively affects to kidney retaining salts and water, causing raise of 24 
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extracellular fluid volume and, in a consequence, increasing BP (Chen et al., 2009; FitzGerald 1 

et al., 2004; Schmieder et al., 2007).  2 

Moreover, ACE also removes a dipeptide from C-terminus of bradykinin (RPPGFSPFR) 3 

resulting in the inactivation of this vasodilator. Therefore, ACE inhibitors decrease BP not 4 

only by lowering the level of Ang II but also by increasing the level of bradykinin. Since the 5 

inhibition of ACE causes an effective decrease of BP, most antihypertensive drugs employ 6 

this mechanism for the treatment of hypertension. 7 

 8 

3. Release of antihypertensive peptides from foodstuffs 9 

Antihypertensive peptides used to be encrypted in a parent protein from which they need to 10 

be released to exert its ability to inhibit ACE. Two main proteolytic pathways can be 11 

distinguished, in vivo and in vitro. First one involves the in vivo digestion of parent protein by 12 

the action of gastrointestinal enzymes while the second one involves food processing or 13 

protein processing before its ingestion. Moreover, some bioactive peptides cannot be liberated 14 

by gastrointestinal enzymes and have to be synthetically produced, added to foods, and 15 

supplied as functional foods (Meisel, 1997). 16 

First antihypertensive peptide isolated and identified from food was described in 1982 by 17 

Maruyama and Suzuki (1982). Casein from bovine milk was subjected to hydrolysis by 18 

trypsin and purified following several chromatographic steps. A peptide with 12 amino acids 19 

and sequence FFVAPFPEVFGK was identified. The knowledge about preparation, 20 

purification, and identification of antihypertensive peptides from food steadily increased since 21 

this first discovery, especially in the case of milk derived peptides (Lopez-Fandino et al., 22 

2006; Ricci et al., 2010; Yamamoto and Takano, 1999). In this case, advances have even 23 

enabled the development of commercial milk products enriched with antihypertensive 24 

peptides (Table 1) (Ricci et al., 2010; Sirtori et al., 2009).  25 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ricci%20I%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ricci%20I%22%5BAuthor%5D
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In addition to milk and dairy products, several others foodstuffs have been examined as 1 

potential sources of peptides with ACE inhibition activity. Marine foods (shrimps, sea 2 

cucumber, blue mussel), fishes (alaska pollock, bonito, salmon, pacific hake), meat (pork, 3 

pork loin, bullfrog, porcine, chicken), vegetable foods (soybean, wheat products, rice, garlic, 4 

aramanth grain), mushrooms or processed products (miso paste, douche, wakame, royal jelly, 5 

soy sauce or paste) are some examples. The most common ways to in vitro release of 6 

antihypertensive peptides are enzymatic digestion (hydrolysis) and fermentation with 7 

bacterial organisms. 8 

Regarding enzymatic digestion, the composition of hydrolysate depends on several 9 

parameters such as the enzyme to substrate ratio, hydrolysis time, pH and temperature of 10 

hydrolysis, etc. but it mostly depends on the kind of proteolytic enzyme. Most commonly 11 

used enzymes are pepsin (Lee et al., 2010; Qian et al., 2007a), thermolysin (Arihara et al., 12 

2001; Yokoyama et al., 1991), and alcalase (Chiang et al., 2006; Qian, Z.J., 2007b; Yang et 13 

al., 2007). They cleave peptide bonds near to hydrophobic amino acid residues resulting in 14 

peptides with the most favorable amino acid residues for antihypertensive activity at the C-15 

terminal position (Otte et al., 2007a, Qian et al., 2007b). 16 

Different strategies have been followed to increase antihypertensive activity. Pepsin 17 

treatment followed by digestion with pancreatin (Escudero et al., 2010; Majumder and Wu, 18 

2009; Yang et al., 2003), corolase PP (Gomez-Ruiz et al., 2007) or trypsin (E.C. 3.4.21.4) 19 

with chymotrypsin (E.C. 3.4.21.1) (Gomez-Ruiz et al., 2007; Matsui et al., 2002; Li et al., 20 

2002) has usually been employed to obtain smaller peptides with greater antihypertensive 21 

effects. Moreover, since these enzymes are present during gastrointestinal digestion, it is 22 

possible to assess that these peptides will not be inactivated during this process. Quiros et al. 23 

(2007a) attempted to promote the release of bioactive peptides from ovalbumin with 24 

chymotrypsin, trypsin, and pepsin using high hydrostatic pressures observing that 25 

http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/4/21/1.html
http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/4/21/1.html
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antihypertensive effect of certain peptides improved when pressures of 200-400 MPa were 1 

employed. Another strategy for increasing antihypertensive activity was explored by Jia et al. 2 

(2010). They evaluated the effect of ultrasonic irradiation on the hydrolysis and the ACE 3 

inhibitory activity of defatted wheat germ protein (DWGP). Results suggested that this 4 

approach improved enzymatic hydrolysis by promoting the release of peptides. Moreover, 5 

some authors have demonstrated an increase in antihypertensive activity of foodstuffs by the 6 

combination of bacterial fermentation and enzymatic digestion. Tonouchi et al. (2008) 7 

observed these results when digesting with different enzymes a Danish skim milk-cheese 8 

previously fermented with Lactococcus. Similarly, Hernandez-Ledesma et al. (2004) found a 9 

higher number of antihypertensive peptides when a milk sample fermented with Lactobacillus 10 

rhamnosus was submitted to simulated gastrointestinal digestion. Chobert et al. (2005) 11 

compared the antihypertensive activity of peptides obtained from ovine milk by tryptic 12 

digestion and fermentation with different bacterial strains. Fermentation yielded higher ACE 13 

inhibitory activity than digestion probably because fermentation yielded peptides with lower 14 

molecular masses (Chobert et al., 2005).  15 

In some occasions, the foodstuffs contain antihypertensive peptides that are not encrypted 16 

in any protein, not being necessary any fermentation of digestion. For example, few peptides 17 

which exerted antihypertensive activity were detected in garlic (allium sativum L) (Suetsuna, 18 

1998), in various kind of mushrooms (Pholiota adiposa, Tricholoma giganteum) (Hyoung et 19 

al., 2004; Koo et al., 2006), in soypaste (Shin, et al., 2001) and in different kind of cheeses 20 

(gouda, manchego and varieties of Spanish and Swiss cheeses) (Gomez-Ruiz et al. 2002; 21 

Gomez-Ruiz et al., 2006; Meyer, et al., 2009; Saito et al., 2000). These peptides can simply be 22 

extracted with water or alcohols like ethanol or methanol. At this regard, it is possible to 23 

differentiate between processed and unprocessed products. Unprocessed products are garlic or 24 

mushrooms while processed products comprised soypaste and cheese. The manufacture of 25 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hyoung%20Lee%20D%22%5BAuthor%5D
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these products involves the use of enzymes or bacterial organisms but, in no case, they are 1 

added to release antihypertensive peptides.  2 

The other way to release peptides without addition of bacterial organisms or enzymes is 3 

autolyzation. Autolyzation involves the employment of proteolytic enzymes which already 4 

are ingredients of foodstuffs. This approach was followed for the preparation of hydrolyzates 5 

of bonito bowels (Fujii et al., 1993; Matsumura et al., 1993), pacific hake fish (Samaranayaka 6 

et al., 2010) or wheat bran (Nogata et al., 2009). A similar approach was also used when 7 

proteins of oyster and blue mussel were fermented without any addition of bacterial organism 8 

for 6 months at 20°C in salty conditions. In both cases, antihypertensive peptides were 9 

obtained from hydrolysate after long-term fermentation (Je et al. 2005a; Je et al., 2005b).  10 

 11 

4. Determination of ACE inhibitory activity of food peptides 12 

General framework of experimental investigation for production, purification, and 13 

identification of antihypertensive peptides is presented in Figure 2. Work strategies 14 

commonly consist of releasing of peptides, isolation, purification, identification, and 15 

determination of amino acid sequence. After each step, screening of ACE inhibitory activity 16 

is crucial to select those experimental conditions or fractions with the most potential 17 

antihypertensive abilities.  18 

ACE inhibition activity is expressed using IC50 index which is the concentration required 19 

of a particular substance to inhibit 50% of the ACE activity. Different assays have been 20 

developed to determinate the ACE inhibition value in vitro. First assays underwent with errors 21 

related to peptidases interferences. Then, assays using artificial substrate started to play 22 

considerable role since they were inexpensive, easy to obtain, not liable to be hydrolyzed by 23 

peptidases and presented higher dissociation constant for ACE (Meng and Oparil, 1996). 24 

Released compounds by the action of ACE could be quantified by spectrophotometric 25 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Matsumura%20N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nogata%20Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Meng%20QC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Oparil%20S%22%5BAuthor%5D
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(Holmquist et al., 1979), fluorometric (Alves et al., 2005), HPLC (Wu et al., 2002), CE (Van 1 

Dyck et al., 2003) or by a radiometric method (Rohzabach, 1978).  2 

Nowadays, the most broadly spread method for the determination of ACE inhibition 3 

activity is that developed by Cushman and Cheung (1971). It is based on the reaction between 4 

hippuryl-L-histydyl-L-leucine (HHL) used as substrate and ACE and the subsequent 5 

formation of hippuric acid (HA). The ACE activity is directly related to the extent of HA 6 

liberated from HHL. The extent of this reaction in the presence or absence of inhibitory 7 

peptides is evaluated by measuring the amount of formed HA from its absorbance at 228 nm. 8 

In this first approach ACE was firstly acetone extracted from rabbit lung. Further 9 

modification of this procedure employed pure ACE from rabbit lung in place of their acetone 10 

extract (Nakamura et al., 1995; Vermeirssen et al., 2002). Despite the high selectivity of this 11 

reaction, the assay had low sensitivity since unhydrolyzed HHL was co-extracted with HA 12 

(Meng and Oparil, 1996; Lopez-Fandino et al., 2006). Furthermore, long incubation times 13 

(around 30 min) were required to obtain enough product amounts to be quantified. Hence, 14 

numerous modifications appeared in the literature, as a consequence obtained IC50 values 15 

differed significantly among them being not possible their comparison (Kodera and Nio, 16 

2006). In fact, the IC50 of hydrolysates obtained by digestion of an insect protein with four 17 

different enzymes were determined by applying two different ACE assays. One method was 18 

based on the spectrophotometric measurement of FAPGG [2-furanacryloyl-phenylalanyl-19 

glycyl-glycine] used as substrate while an HPLC method which adopted DTG 20 

[dansyltriglycine] as substrate was employed in the second approach. When using FAPGG 21 

method, IC50 values were 3.935 ± 0.014 and 0.214 ± 0.179 mg/mL for the nonhydrolyzed and 22 

hydrolyzed extract, respectively. The HPLC method yielded IC50 values of 22.465 ± 0.615 23 

and 4.969 ±0.622 mg/mL (with 50 µL of ACE extract) and 43.220 ± 12.66 and 1.253 ± 0.120 24 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Holmquist%20B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wu%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nakamura%20Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Meng%20QC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Oparil%20S%22%5BAuthor%5D
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mg/mL (with 25 µL of ACE extract), respectively, for the nonhydrolyzed and hydrolyzed 1 

extract (Vercruysse et al., 2005). 2 

In addition to the in vitro determination of the IC50 values, additional experiments are very 3 

frequently included to confirm ACE inhibitory activity. Indeed, experiments using 4 

spontaneously hypertensive rats (SHR) have also been used for assaying ACE inhibition in 5 

living organisms. This kind of experiments is usually focused on short and/or long-term 6 

administration studies. Nevertheless, results obtained by in vivo studies significantly differ 7 

from the results observed by in vitro assays. These differences could be justified by the 8 

bioavailability of peptides (Lopez-Fandino et al., 2006; Ricci et al., 2010). In fact, a peptide 9 

(β- lactosin B, ALPM) derived from a commercial whey product that presented weak ACE 10 

inhibitory activity (IC50=928 µM) showed a noticeable decrease of SBP after 8 h oral 11 

administration (2 mg/mL) to SHRs (Murakami et al., 2004). Fujita and Yoshikawa (1999) 12 

compared the ACE inhibitory activity of LKPNM and LKP peptides (obtained by digestion 13 

from dried bonito with thermolysin) with captopril using an in vitro and an in vivo study. The 14 

in vitro study yielded much lower ACE inhibitory activity for peptides while the in vivo study 15 

demonstrated that peptides were more effective for reducing BP than captopril (Fujita and 16 

Yoshikawa, 1999). The differences between two approaches to assess the ACE inhibitory 17 

activity appeared also when Yamamoto et al. (1999) purified and characterized a dipeptide 18 

from a yoghurt-like product. The IC50 value of the dipeptide was estimated at 720 µM which 19 

would classify it as a peptide with moderate antihypertensive activity. However, the same 20 

peptide provoked similar in vivo antihypertensive activity as IPP and VPP which are generally 21 

categorized as peptides with very high activity (IC50 values, 5 and 9 µM, respectively) 22 

(Yamamoto et al., 1999).  23 

In addition to the estimation of IC50 value, some authors pay also attention to additional 24 

measurements such as simulated gastrointestinal digestion or caco-2 cell monolayer transport. 25 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ricci%20I%22%5BAuthor%5D
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These experiments can yield information on bioavailability of target compounds and will be 1 

discuss later. Additionally, the activity of peptides may be affected by factors such us 2 

stability, processing or mechanism of action (Yamamoto et al., 2003). In fact, ACE inhibition 3 

activity is significantly influenced by the position of proline in the amino acid sequence, by 4 

protein hydrophobicity, and by size of released peptides. Next examples can show these facts. 5 

Different protein sources were hydrolyzed in the same conditions: soybean protein, wheat 6 

gluten, caseinate, and whey proteins. IC50 for these hydrolyzates were 180, 340, 100, and 200 7 

µg/mL, respectively. High antihypertensive activity of casein (100 µg/mL) could be attributed 8 

as much for their high hydrophobicity as for the high amount of encrypted prolines in its 9 

primary structure. Despite wheat gluten also contain high amount of proline residues, its 10 

lower hydrophobicity caused a significant increase of its IC50 value (340 µg/mL) (Kodera and 11 

Nio, 2006). In addition to the IC50, another important parameter to take into account is the 12 

degree of hydrolysis (DH). This parameter is commonly calculated by the o-phtaldialdehyde 13 

(OPA) method (Chiang et al., 2006; Jiang et al., 2007) neverthless other methods and 14 

techniques have also been employed for this purpose as SDS-PAGE (Jang and Lee, 2005), 15 

calculation of α-amino nitrogen and total nitrogen (Mao et al., 2007) or calculation of relative 16 

peak area in regard to whole protein (Chobert et al., 2005). Yak milk casein was hydrolyzed 17 

by alcalase at pH 8 and 55°C in 0, 60, 120, 180, 240, 300, and 340 min. It was observed that 18 

at 240 min of hydrolyzing, ACE inhibitory activity reached the maximum level and DH was 19 

correlated with it. After this time, DH was too high and inhibition activity decreased due to 20 

the hydrolysis of small peptides with antihypertensive activity (Mao et al., 2007). However, 21 

when the same yak milk casein was hydrolyzed with various enzymes (trypsin, pepsin, 22 

alcalase, flavourzyme, papain, and neutrase) at their optimal pH and temperature and at 23 

different times till 12 h, the DH was not correlated with the ACE inhibition activity. ACE 24 

inhibition activity was the poorest when using flavourzyme despite its high DH. Inversely, the 25 
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most promising antihypertensive activities were obtained with papain and neutrase which 1 

showed low DH (Jiang et al., 2007). Similar results were also observed when milk was 2 

fermented by 13 different strains of lactic acid bacteria (Nielsen et al., 2009) and when a 3 

soybean protein isolate was hydrolyzed by different enzymes (alcalase, flavourzyme, trypsin, 4 

chymotrypsin, and pepsin) (Chiang et al., 2006).  5 

 6 

5. Isolation and purification of bioactive peptides from foodstuffs 7 

The purification of a hydrolyzate showing antihypertensive activity is one of the most 8 

important steps in the framework presented in Figure 2. The purification path could 9 

significantly influence the number of identified peptides, their activity and characteristic (e.g. 10 

size of the peptide and their composition), and their properties. Generally, Liquid 11 

Chromatography (LC) is the most employed technique. Different chromatographic modes can 12 

be selected on the base of the properties of ACE inhibitory peptides. After each 13 

chromatographic step, fractions with the highest in vitro ACE inhibitory activity are 14 

lyophilized and subjected to the next chromatographic step till pure peptide/s are obtained. 15 

Table 2 summarizes the methods that have been employed for releasing and purifying 16 

peptides with antihypertensive properties. Despite there are some general approaches that are 17 

more or less common in all procedures, the number of purification steps in every case 18 

depends on the complexity of the sample and the dynamic range and abundance of peptides 19 

(Gomez-Ruiz et al., 2004; De Simone et al., 2009).  20 

Generally, first step in the purification is a separation based on peptide size using either 21 

ultrafiltration (UF) or size-exclusion chromatography (SEC). UF is a low-pressure technique 22 

where solution is processed through a semipermeable membrane and molecules are isolated 23 

by molecule size. Moreover, UF also enables the concentration and enrichment of fractions by 24 

removal of solvent, it is quite easy to use, it does not require special equipment, and can be 25 



14 

 

used at cold room temperature (Schratter, 2004). UF enables the separation of small 1 

antihypertensive peptides from bigger molecules such as unproteolyzed proteins and other 2 

interferences being the first purification step in many cases. Despite membranes with Mw in 3 

the range 1-30 kDa have been tried, smaller cut-off membranes are preferred. As example, an 4 

hydrolyzate of sea cucumber gelatin was subjected to UF using membranes with cut-offs of 5 

10, 5, and 1 kDa observing IC50 values of 0.72, 0.47, and 0.35 mg/mL, respectively. On the 6 

base of ACE inhibition activity, the fraction containing molecules smaller than 1 kDa was 7 

purified (Zhao et al., 2007). However, very low Mw cut-off membranes can sometimes result 8 

in a loss of activity (Miguel et al., 2009; Rho et al., 2009; Samaranayaka et al., 2010; Zhang et 9 

al., 2009). In fact, results obtained when a pacific hake protein hydrolysate was ultrafiltrated 10 

through membranes of 10, 3, and 1 Mw cut-off indicated that the fraction with the highest 11 

ACE inhibition activity was that obtained when the hydrolysate passed through the 3 kDa cut-12 

off membrane (Samaranayaka et al., 2010).  13 

SEC (also known as Gel-Filtration Chromatography (GFC) when an aqueous solution 14 

system is used and Gel-Permeation Chromatography (GPC) with non-aqueous solution 15 

system) is also very used for the purification of peptides. SEC tends to be used at the 16 

beginning of the purification path similarly as UF, as well as in the middle of protocols for 17 

removing interferences. SEC is quick, easy to use, universal, and compatible with 18 

physiological conditions. SEC is also useful for estimating the Mw range or for desalting. 19 

Nevertheless, the separation of a target peptide from a closely related peptide mixture is 20 

practically impossible and additional SEC separations using stationary phases with different 21 

pore diameters are needed (Sewald and  Jakubke, 2009). Among SEC columns, porous silica 22 

base TSK-gel SW (Katayama et al., 2007; Katayama et al., 2008; Nakade et al., 2008) and 23 

polyhydroxymethacrylate base OHpak (Jung et al., 2006) are preferred. For low and medium 24 

pressure SEC, dextran base Sephadex or agarose/dextran base Superdex columns are mainly 25 
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employed. Among Superdex columns, those with Mw ranging from 100 to 7000 like Peptide 1 

10/300 GL column (Hatanaka et al., 2009; Rho et al., 2009; Majumder and Wu, 2009) and 2 

Peptide HR 10/30 column (Abubakar et al., 1998; Cheng et al., 2009; Matsui et al., 2002; Li 3 

et al., 2002; Saito et al., 2000; Tonouchi et al., 2008) were mostly chosen. Regarding 4 

Sephadex columns, most used were Sephadex G-25 (Mw range, 1000-5000) and Sephadex G-5 

15 (Mw ≤ 1500). Other less used Sephadex columns are G-50 (Mw range, 1500–30000) (Je et 6 

al. 2005a), G-75 (Mw range, 30000–80000) (Je et al., 2005b), and G-200 (Mw range, 5000–7 

250000) (Tovar-Perez et al., 2009). Tovar-Perez et al. (2009) purified alcalase aramanth 8 

albumin and globulin protein hydrolysates using sequentially Sephadex G-200 and G-15 9 

columns. Albumin hydrolysate eluted in 18 h in one broad peak (Mr<1.35 kDa) using the G-10 

200 column while globulin hydrolysate eluted in 5 h in two separated fractions. Afterwards, 11 

fractions were individually separated in a G-15 column observing signals corresponding to 12 

molecules of 4.70 and 0.55 kDa for the albumin hydrolysate and signal corresponding to Mw 13 

of 7.50, 4.70, 0.55, and 0.40 kDa for the globulin hydrolysate (Tovar-Perez et al., 2009).  14 

An alternative and complementary chromatographic mode for the purification of ACE 15 

inhibitory peptides is Ion Exchange Chromatography (IEC). IEC is mainly employed as a 16 

further purification step after or between UF or SEC purification. Cation exchange resins with 17 

negatively charged groups like sulfopropyl (SP), methyl sulfonate (S), and carboxymethyl 18 

(CM) and anion exchange resins positively charged with quaternary ammonium (Q), 19 

quaternary aminoethyl (QAE) or DEAE (diethylaminoethyl) are mostly employed (Selkirk, 20 

2004). Since antihypertensive peptides contain mainly hydrophobic amino acid whose pI’s are 21 

between 5-7, both cation exchange (CEC) and anion exchange (AEC) can be employed. When 22 

AEC is used, pH tends to be around 7.5 and binding peptides are negatively charged, while in 23 

CEC pH is maintained at acidic level (4.0) to retain positively charged peptides. AEC 24 

purification methods focus rather on column with weak ion-exchange ligands as DEAE (Lee 25 
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et al., 2010; Qian et al., 2007a) or DE (Katayama et al., 2008; Katayama et al., 2007; Mao et 1 

al., 2007) while CEC methods mainly prefer strong ion-exchange ligands as SP. In both cases, 2 

peptides are eluted by increasing the eluent ion strength using NaCl gradients at constant pH 3 

(Herraiz, 1997). CEC with isocratic elution has also been possible by using of sodium 4 

succinate buffer in 20% ACN (Shin et al., 2001), 2 N NH4OH (Suetsuna, 1998; Suetsuna et 5 

al., 2004), ammonia solution (Chen et al. 2002; Suetsuna and Nakano, 2000) or ammonium 6 

carbonate buffer (Majumder and Wu, 2009). 7 

 Reserved-Phase Chromatography (RPC) is the dominate technique in the purification of 8 

peptides with antihypertensive activity (Herraiz, 1997). Generally, RPC is employed at the 9 

end of the purification protocol after UF, SEC or IEC separations. However, there are also 10 

examples in which this has been the only technique employed in the purification (Chobert et 11 

al., 2005; Fujita et al.,  2000; Gouda et al., 2006; Lee et al., 2006ab; Maeno et al., 1996; Pan 12 

et al., 2005; Papadimitriou et al., 2007; Yano et al., 1996; Yokoyama et al., 1991).  13 

There is a large number of RPC columns that can be used in the separation and purification 14 

of peptides where column support, bonded phase, pore size, particle size, and column 15 

dimension should be taken into consideration. Porous silica-based supports are the first choice 16 

since they offer good mechanical stability and wide range of selectivity by bonding of 17 

different phases. C4-C12 phases are typically used with high hydrophobic samples like large 18 

peptides and small hydrophilic proteins, while C18 phases prefers slightly more hydrophilic 19 

analytes and are the perfect choice for small peptides. Moreover, phases such as cyano, hexyl, 20 

phenyl, hexyl/phenyl, perfluorinated are also available (Neville, 2004). Alternatively, 21 

polymeric reserved phases such as polystyrene divinylbenzene standing a wide range of pHs 22 

have also been employed.  23 

Mobile phases consist of mixtures of water with and organic modifier being acetonitrile 24 

followed by alcohols such us methanol, ethanol or isopronanol as the most popular options 25 
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(Neville, 2004). Gradient elution by the increasing concentration of the organic modifier is 1 

the most usual. Mobile phases are usually set up at acidic pH. Moreover, the addition of ion-2 

pairing agents is also very usual to increase hydrophobicity of peptides by complexing with 3 

positively charged peptides. Trifluoroacetic acid (TFA) is usually the first choice because it is 4 

transparent to UV light, does not block amino groups (therefore, derivatization of peptides is 5 

possible), is highly volatile (therefore, easy to remove by lyophylization), and easily miscible 6 

with most organic mobile phases. Other ion-pairing agents like acetic acid, formic acid, 7 

phosphoric acid, heptafluorobutyric acid (HFBA) or quaternary ammonium salts can be 8 

alternatives to TFA.  9 

Online detection during purification was performed by UV absorption at the following 10 

wavelengths: 210-220 nm (corresponding to the absorption of peptide bonds), and/or 254 and 11 

280 nm (specific absorption of aromatic amino acids as tryptophan, phenylalanine and 12 

tyrosine) (Herraiz, 1997).  13 

Moreover, additional steps involving liquid-liquid extraction, desalination or dialysis are 14 

also employed for the purification of antihypertensive peptides. Desalination of samples is 15 

usually conducted by electrodialysis (Je et al., 2005ab; Kodera and Nio, 2006; Nakahara et 16 

al., 2010) or by solid-phase extraction (Katayama et al., 2007; Katayama et al., 2008; 17 

Muguruma et al., 2009).  18 

 19 

6. Identification and characterization of bioactive peptides from foodstuffs  20 

Isolated and purified peptides possesing the most potential antihypertensive activity at the 21 

end of the framework (see Figure 2) are identified and characterized. Characterization mostly 22 

involved the determination of the amino acid sequence and the IC50 value. Moreover, in some 23 

cases additional information like the amino acid composition, molecular weight, molecular 24 

weight distribution, peptide content, molecular structure, and purity are also determined. 25 
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Table 3 summarizes all peptides that have been identified from foodstuffs and the kind of 1 

characterization that has been performed.  2 

Amino acid sequence determination can be carried out by mass spectrometry (MS) or by 3 

Edman degradation sequencing. Edman degradation is based on the sequential elimination of 4 

N-terminal amino acids by chemical procedures. However, this method is time consuming 5 

and requires highly purified samples (free of salts, detergents, and nonvolatile additives such 6 

as urea). Edman degradation can be performed manually or fully automated using special 7 

automated protein/peptide sequencers (Gouda et al., 2006; Kuba et al., 2009; Lee et al., 8 

2006ab; Papadimitriou et al., 2007; Rho et al., 2009). An alternative technique to determine 9 

molecular structure is NMR. NMR has been used for tripeptides of salmon muscle 10 

hydrolysate (1H NMR) (Enari et al., 2008) and dipeptides of steamed soybean mixed with 11 

roasted wheat hydrolysate (1H NMR and 13C NMR) (Nakahara et al., 2010).  12 

MS is a powerful technique widely employed for the characterization of bioactive peptides. 13 

In addition to the amino acid sequence, MS can also yield accurate information on molecular 14 

masses, peptide purity or post-translational modifications, etc. (Herraiz, 1997). MALDI 15 

(matrix assisted laser desorption and ionization), ESI (electrospray ionization) and, less 16 

frequently, FAB (Fast Atom Bombardment) have been the ionization sources employed. LC 17 

and, less frequently, capillary electrophoresis (CE) are sometimes needed previously to the 18 

MS analysis. In fact, a CE-IT-MS system has enabled the identification of 28 different 19 

peptides from an ovine casein hydrolysate. Neverthless, the separation of peptides by CE 20 

requires special attention to avoid peptides are adsorbed on the wall of the capillary (Gomez-21 

Ruiz et al., 2007).  22 

Antihypertensive peptides are mainly short peptides with 2-12 amino acid residues. In fact, 23 

active sites of ACE cannot accommodate big molecules (Murray and FitzGerald, 2007). 24 
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Amino acid composition is determined by the chemical hydrolysis of peptides and amino 1 

acid analysis using an automatic analyzer. Other options for the amino acid analysis have 2 

been peptide hydrolysis with HCl and phenol, followed by RPC separation and UV detection 3 

(Murakami et al., 2004; Saito et al., 2000).  4 

Although full relationship between structure and ACE inhibitory properties of 5 

antihypertensive peptides is still not established, it is important to highlight some common 6 

features for antihypertensive peptides. In addition to low molecular weight and short 7 

sequences, antihypertensive peptides contain a significant amount of hydrophobic amino 8 

acids especially at C-terminal position (Meisel, 1997). The presence at C-terminal of proline 9 

(P) or positive charge of lysine (K) (ε- amino group) or arginine (R) (guanidine group) 10 

enhances the potency of antihypertensive peptides (Hernandez-Ledesma et al., 2008; Kitts, 11 

and Weiler, 2003; Meisel, 1997; Murray and FitzGerald, 2007). This fact could be related 12 

with the bioavailability of antihypertensive peptides since it has been demonstrated that 13 

peptides including proline at the end of the sequence are particularly resistant to in vivo 14 

proteolysis (Quiros et al., 2008).  15 

Nevertheless, the presence in vitro antihypertensive activity of isolated peptide does not 16 

involve the activity in vivo. In fact, orally administered peptide need to reach the target 17 

cardiovascular system in an active form. Before that, orally delivered peptides have to resist 18 

the gastrointestinal tract digestion and be transported in bioactive form (Vermeirssen et al., 19 

2004). Primary digestion of peptides starts in the stomach by the action of pepsin in acidic 20 

conditions. Following, peptides are digested in the luminal phase of small intestine at alkaline 21 

pH by the action of pancreatic proteases like trypsin, α-chymotrypsin, elastase, and 22 

carboxypeptidase A and B (Vermeirssen et al., 2004). Next, peptides resisting gastrointestinal 23 

digestion are subjected to the intestinal brush border membrane where a variety of peptidases 24 



20 

 

can further hydrolyze ACE inhibitory peptide. Generally, peptides resisting this step can be 1 

transported to the blood circulation (Pihlanto-Leppala, 2000). 2 

In order to demonstrate peptide bioavailability, additional (bio)chemical characterization is 3 

needed. Several measurements of stability of purified antihypertensive peptides against 4 

gastrointestinal enzymatic digestion can be carried out. Pure peptide can be submitted to a 5 

simulated gastrointestinal digestion using different enzyme systems. Combination of trypsin–6 

chymotrypsin (Rizzello et al., 2008), pepsin-pancreatin (Robert et al., 2004), pepsin-corolase 7 

PP (Quiros et al., 2005), pepsin-trypsin (Koo et al., 2006) or pepsin-trypsin-protease N 8 

(Hyoung et al., 2004) enzymes have been employed for this purpose. This procedure has been 9 

assayed with peptides isolated from sea cucumber (Zhao et al., 2009), rice (Kuba et al., 2009), 10 

oyster (Wang et al., 2008a), porcine hemoglobin (Yu et al., 2006) and wakame (Sato et al., 11 

2002) hydrolysates. Resistance to intestinal digestion can also be demonstrated by the use of a 12 

model system such as Caco-2 cells. Caco-2 cells in monolayers format express a variety of 13 

intestinal enzymes and transporters and have been employed as a model of intestine 14 

epithelium (Lopez-Fandino et al., 2006). Geerling et al. purified three peptides (TGPIPN, 15 

SLPQ, and SQPK) from goat milk hydrolysate with similar IC50 values. All peptides were 16 

subjected to the Caco-2 monolayer experiment but only TGPIPN was found to pass intact in 17 

small amount. Nevertheless, intake of goat milk hydrolysate by SHR for 12 weeks had 18 

resulted in a decrease of SBP (Geerlings et al., 2006). The reason for this disagree could be 19 

that Caco-2 model is tighter than intestinal mammalian tissue and some molecules which do 20 

not show sufficient absorption in the model can exert in vivo effect (Vermeirssen et al., 2005).  21 

Furthermore, since ACE cleaves the C-terminal of oligopeptides with wide specificity, 22 

antihypertensive peptides reaching the cardiovascular system also need to resist ACE action. 23 

In relation to this fact, peptides can be divided into three groups: inhibitor type, substrate type, 24 

and pro-drug type (Fujita et al., 2000). ‘Inhibitor type’ peptides are not affected when they are 25 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hyoung%20Lee%20D%22%5BAuthor%5D
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preincubated with ACE. ‘Substrate type’ peptides show a decrease in activity when they are 1 

exposed to ACE where ‘Pro-drug type’ peptides are transformed to true inhibitor by ACE or 2 

gastrointestinal proteases (Li et al., 2004; Vermeirssen, et al., 2004). True inhibitor type 3 

(Tonouchi et al., 2008; Yang et al., 2007; Zhao et al., 2009), substrate type (Katayama et al., 4 

2007; Katayama et al., 2008), and pro-drug inhibitor (Lee et al., 2006c) peptides have been 5 

found in different hydrolysates.  6 

One of the attempts to understand the inhibition site and to explore the inhibition 7 

mechanism of antihypertensive peptides is the measurement of inhibition mode of peptides. 8 

Overall pattern for ACE inhibition was investigated by the incubation of inhibitory peptides 9 

with different concentrations of HHL and the measurement of the ACE inhibitory activity. 10 

The majority of antihypertensive peptides inhibit ACE following a competitive mode 11 

although noncompetitive inhibition has also been found (Li et al., 2004). Structure- activity 12 

correlation is influenced by the three C-terminal residues of antihypertensive peptide where 13 

substrate or competitive inhibitors containing at all positions hydrophobic (aromatic or 14 

branched-side chains) residues are preferred. However, the most favorable are aromatic amino 15 

acid residues and proline (Li et al., 2006). Competitive ACE inhibitor peptides have been 16 

found inter alia in porcine skeletal muscle troponin (Katayama et al., 2008), glycinin from 17 

soybean (Gouda et al., 2006), Pholiota adiposa  (Koo et al., 2006), oyster (Je et al., 2005a), 18 

mushroom tricholoma giganteum (Hyoung et al., 2004) and porcine hemoglobin (Yu et al., 19 

2006) hydrolysates. Noncompetitive ACE inhibitor peptides have been found in oyster (Wang 20 

et al., 2008a), tuna dark muscle (Qian et al., 2007a), bullfrog muscle (Qian et al., 2007b), pork 21 

loin (Katayama et al., 2007), bovine lactoferrin (Lee et al., 2006a), and hen ovotransfferin 22 

hydrolysates (Lee et al,. 2006b).  23 

 24 

7. Quantification of peptides with antihypertensive activity  25 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hyoung%20Lee%20D%22%5BAuthor%5D
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Since first discover of antihypertensive peptide from foodstuff, studies in the area of ACE 1 

inhibitory peptides were mainly focused on the area of isolation, purification, identification, 2 

and characterization of these peptides. In last year new trend can be observed where 3 

additional quantitative analysis of particular peptides with high IC50 value is added. This fact 4 

can be related to variety of causes. First of all recent rapid development of functional foods 5 

which contain antihypertensive peptides require established standardized methodologies for 6 

quantification of peptides including stability studies in complex biological matrices. 7 

Continuously due to the high dosage dependent of some antihypertensive activity, the 8 

quantification of peptide in functional food to assess the safety, activity of the final product 9 

and health claims is essential (Contreras et al., 2008; Gilani et al., 2008). The amount of 10 

encrypted peptide in different crops varieties or amount of released peptides in slightly 11 

different conditions of hydrolysate preparation like time of storage (Papadimitriou et al., 12 

2007) or supporting of hydrolysis by high pressure (Quiros et al., 2007a) can fluctuate 13 

drastically. Moreover considering that functional food become more widespread (including 14 

genetically modified organism) and probably in a future will be a crucial diet supplement for 15 

hypertensive population, cited information are necessary for regulatory agencies to expand 16 

policy and regulations of adding particular peptides to commercial foodstuff (Contreras et al., 17 

2008; Gilani et al., 2008).  18 

In the majority quantification of selected antihypertensive peptide was done by the use of 19 

mass spectrometry with previous HPLC separation, however some other attempts also can be 20 

found in the literature. The quantification of particular peptides which posses antihypertensive 21 

activity was made on the standard calibration curve of corresponding synthetic peptide 22 

injected to LC-MS system. By this methodology the concentration of seven dipeptides in the 23 

wakame (Sato et al., 2002) and eight dipeptides in salmon muscle (Enari et al., 2008) 24 

hydrolysates was estimated. Figure 3 shows the chromatograms and the mass spectra 25 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gilani%20GS%22%5BAuthor%5D
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corresponding to the antihypertensive peptide FY in a synthetic standard and in the 1 

hydrolysate of wakame. Since mass spectrum obtained with the synthetic peptide was 2 

identical to that observed in hydrolysate, this was used for the quantitation of the peptide in 3 

wakame by LC-MS (Sato et al., 2002). A similar approach has also been used for the 4 

determination of three peptides in goat milk hydrolysate (Geerlings et. al., 2006). 5 

Quantification of LHLPLP peptide in fermented milk has been performed by HPLC-MS and 6 

HPLC-MS/MS. Developed method was validated by the determination of repeatability, 7 

reproducibility, linearity, and recovery. Calibration was performed base on the peak area of 8 

the precursor and it adducts in the MS experiments and on peak area of the most abundant 9 

product ions after fragmentation of precursor in MS/MS analysis. Limits of detection and 10 

quantification determined by MS/MS were 7 μg/mL and 25 μg/mL, respectively (Quiros et 11 

al., 2006). Similarly, method for determination of LKPNM antihypertensive peptide in bonito 12 

muscle hydrolysate was evaluated by use of HPLC-MS and HPLC-MS/MS system. 13 

Validation of method by measuring specificity, linearity, accuracy, precision and 14 

reproducibility was presented (Curtis et al., 2002). Next, quantification of nine 15 

antihypertensive dipeptides in fermented soybean seasoning and soybean sauce was 16 

performed by LC-MS/MS (Nakahara et al., 2010). A comparative study of the concentration 17 

of IPP and VPP in Swiss cheeses and non Swiss cheeses (Butikofer et al., 2007) and in 18 

chesses with different ripening time (Meyer et al., 2009) using HPLC-MS3 and PPPP as 19 

internal standard revealed that large variations were obtain among individual loaves from 20 

various producers and high concentration of both peptides often occurred in long-term ripened 21 

cheeses produced from raw milk. The same peptides were quantified in miso paste by LC-MS 22 

using also internal standard methodology, whereas isotopes (13C5)Val(13C5)Pro-Pro and Ile-23 

(13C5)Pro-Pro were involved (Inoue et al., 2009). HPLC with UV detection has also been 24 

employed for the quantitation of antihypertensive peptides in foodstuffs. Yamamoto et al. 25 
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(1999) used it for the quantitation of YP in yoghurt like products using a synthetic peptide for 1 

the calibration (Yamamoto et al., 1999). The same methodology was employed in 2 

quantification of IY, VY and IVY in Protease N treated Royal Jelly (Tokunaga et al., 2004).  3 

 4 

8. Conclusions  5 

The role of antihypertensive peptides derived from foodstuff becomes increasingly 6 

appreciated since hypertension is a grave problem, especially, in highly-developed countries. 7 

Possibility of partly substitution and support of synthetic ACE inhibitor treatment or 8 

prevention and mitigation of hypertension by functional food consisting antihypertensive 9 

peptides, can be significant. The knowledge about ACE inhibitory peptides in last year 10 

improved such as the specification of their biochemistry, bioavailability, properties or 11 

mechanism of inhibition. As well, the number of identified peptides with certain ACE 12 

inhibition activity from various sources noteworthy increased. However due to the high 13 

interest in supplementation of food by some peptides the development of standardized 14 

methodologies for isolation, purification and identification is needed. Next, selection of 15 

appropriate source of protein with suitable releasing technique is crucial in production of 16 

antihypertensive peptides. The most frequently involve technique is enzyme digestion where 17 

the use of biomolecules with low specificity or their combination to produce small 18 

antihypertensive peptides is essential. The techniques such as fermentation, autolysis or 19 

simple extraction in a case of naturally presented antihypertensive peptides was also found in 20 

the literature as an alternative. Also the varieties of ACE assays to evaluate IC50 value is 21 

presented where the need of standardized method for measuring antihypertensive activity 22 

should be underline since significant differences between used methods appears. The 23 

purification path for separation of antihypertensive peptides is a difficult task. Even if the 24 

number of employed steps generally depends on the complexity of hydrolysate, some general 25 
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features in purification can be extracted. For production of peptides with probably the highest 1 

ACE inhibitory activity as a first step UF or SEC is mainly in use. Both techniques are on the 2 

base of partial exclusion of molecules by the mass. Since peptides with antihypertensive 3 

activity are small molecules which posses from 2- 12 amino acid residues, overall the 4 

technique should use suitable conditions to remove bigger molecules and in the same time not 5 

exclude peptides of interest. Next IEC, where as much CEC as AEC frequently was used in 6 

the purification path, where the first one with much higher repeatability. The most powerful 7 

technique RP-HPLC appears both at finalization of purification path of peptide as also as the 8 

unique used technique. Since antihypertensive peptides contain significant amount of 9 

hydrophobic amino acid and the standard conditions for separation of peptides are mainly in 10 

use, it is quite easy to predict where high potent peptides should elute. Some others methods 11 

as desalination, liquid-liquid extraction, solid phase extraction or capillary electrophoresis 12 

also randomly appears in purification of antihypertensive peptides. Furthermore for 13 

identification mainly two methods namely, mass spectrometry or Edman degradation method 14 

appeared, where the first one in last time gain special attention since is quick, reliable and 15 

some additional information as accurate molecular weight can be obtain in the same time. 16 

After identification frequently additional (bio)chemical tests for antihypertensive peptides are 17 

made since habitually ACE inhibition activity in vitro does not provide in vivo activity. 18 

Namely, gastrointestinal digestion, Caco-2 monolayer, preincubation with ACE or inhibition 19 

mode are employed to check inter alia the bioavailability of peptide. Following the 20 

quantitative analysis of some particular peptides starts to play important role since future 21 

trend of functional food supplemented with ACE inhibitory peptides can be observe. In this 22 

area standard calibration curve with synthetic analogs measured by HPLC-MS system 23 

domain, however UV detection also randomly was employed.  24 
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Figure 1. Scheme of Renin- Angiotensine system. 1 
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Figure 2. Framework  of production, purification and identification of bioactive peptides with 1 

antihypertensive activity. 2 
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Figure 3. Chromatograms (A,C) and mass spectra (B, D) obtained by LC-MS and 1 

corresponding to FY: (A,B) synthetic FY; (C,D) FY in the hydrolysate of wakame. LC 2 

conditions: Column, Xterra MS C18, 150 x 2.1 mm; gradient, 3-20% in 40 min; mobile 3 

phases, A: water + 0.05% TFA; B: ACN+0.05% TFA; flow-rate, 0.2 mL/min; MS 4 

conditions: cone voltage: +30V; capillary voltage: 3 kV; desolvation temp.: 300 °C; 5 

source block temp.: 100°C; desolvation gas flow: 350 L/min; cone gas flow: 50 L/min 6 

(Sato et al., 2002). 7 
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Table 1. Commercialy available milk products enriched with antihypertensive peptides (Ricci et 1 

al., 2010; Sirtori et al., 2009). 2 

Brand name Company, country Bioactive peptide 

Ameal S ® Calpis Co., Japan VPP, IPP 

BioZate ® Davisco, USA ---- 

Calpis ® Calpis Co., Japan VPP, IPP 

Casein DP ® Kanebo Ltd., Japan FFVAPFEVFGK 

C12 peptide ® DMV International, Holland FFVAPFEVFGK 

Danten ® Danone, France ---- 

Evolus ® Valio, Finland VPP, IPP 
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Table 2. Purification of peptides with antihypertensive activity 1 

Source of peptide Release of peptides 

Employed 

enzyme(s) or 

bacterial strains 

Purification steps Ref. 

MILK AND DAIRY PRODUCTS 

Milk 

Fermentation or 

sequentially 
fermentation and 

digestion 

Several bacterial 
strains or 

Lactbacillus 
rhamnosus and 

pepsin, corolase PP 

UF: MWCO 3 kDa 
RPC: Widepore C18, 250 x 4.6 mm; 0-45% B in 60 min; A: 0.037% TFA; B: ACN + 0.027% TFA; 0.8 mL/min; UV detection 
(220 nm) 

Hernandez-
Ledesma et al., 

2004 

Milk Fermentation 
Strains  

Enterococcus 
faecalis 

Centrifugation (20,000g, 10 min, 10°C) / filtration (Whatman no. 40)  
RPC: Widepore C18, 250 x 4.6 mm; 0-45% B in 60 min; A: 0.037% TFA; B: ACN + 0.027% TFA; 0.8 mL/min; MS detection 

Quiros et al., 
2006 

Milk Fermentation 
Strains 

Enterococcus 
faecalis 

Extraction followed by centrifugation (20000g, 10 min, 10˚C) and filtration (Whatman no. 40) 
UF: MWCO 3 kDa 
RPC: Prep Nova Pak® HR C18, 300 x 7.8 mm; 0-35% B in 70 min; A: 0.1% TFA; B: ACN + 0.08% TFA; 4 mL/min; UV 
detection (214 nm) 

RPC: Prep Nova Pak® HR C18, 300 x 7.8 mm; 20-35% B in 40 min; A: 0.1% TFA; B: ACN + 0.08% TFA; 4 mL/min; UV 
detection (214 nm) 

Quiros  et al., 
2007b 

Goat milk* Digestion Alcalase 

RPC: Resource RP; linear gradient of 0.05% TFA and 84% ACN+0.05% TFA, 40 min; 1 mL/min; UV detection (220 nm) 
Caco-2 cell 

RPC: Zorbax 5 C18, 2.1 x 250 mm; 0-30% in 60 min; 30-80% in 10 min; A: 0.05% TFA; B: ACN +  0.04% TFA; 350 µL/min; 

UV detection (220 nm) 

Greelings et 

al., 2006 

Ovine milk 
Simulated 

gastrointestinal 
digestion 

Pepsin, trypsin with 
chymotrypsin or 

pepsin and corolase 
PP 

UF: Centrifugation/ filtration (Whatman no. 40); MWCO 3 kDa 
RPC: Prep Nova Pak® HR C18, 300 x 7.8 mm; 0-40% B in 70 min; A: 0.1% TFA; B: ACN + 0.08% TFA; 4 mL/min; UV 

detection (214 nm) 
CE: bare fused silica capillary, 76 cm x 50 μm; 0.9 M HFo, pH=2.0; 18 kV; MS detection 

Gomez-Ruiz et 

al., 2007 

Ovine β-
lactoglobulin from 

skimmed milk 
Digestion Trypsin RPC: Nucleosil C18, 250 x 4 mm; 10-100% B in 23 min; A: 0.11% TFA; B: 80% ACN +  0.09% TFA; 0.6 mL/min  

Chobert et al., 

2005 

Yak milk casein Digestion 

Trypsin, pepsin, 
alcalase, 

flavourzyme, 
papain or neutrase 

UF: MWCO 10 kDa and 6 kDa 
SEC: Sephadex G- 25, 26 x 800 mm; elution with water; 0.6 mL/min; UV detection (215 nm); 

RPC: Shim-pack PREP-ODS C18, 20 x 250 mm; 10-60% B in 35 min; A: 0.05% TFA; B: ACN + 0.05% TFA; 6 mL/min; UV 
detection (215 nm) 
RPC: C18, 4.6 x 250 mm; 20-50% B in 20 min; A: 0.05% TFA; B: ACN + 0.05% TFA; 1 mL/min; UV detection (215 nm) 

Jiang et al., 
2007 

Yak milk casein Digestion Alcalase 

UF: MWCO 10 kDa and 6 kDa 
IEC: DE-52, 1.6 x 30 cm; 0-0.4 mM NaCl in 5 mM PBS, pH 8.0; 24 mL/h; UV detection (220 nm)  
SEC: Sephadex G-25, 2.5 x 100 cm; elution with water; 16 mL/h; UV detection (220 nm)   
RPC: Zorbax Eclipse XDB-C18, 10 x 400 mm; 0–60% B (B: ACN + 0.1% TFA) in 45 min; 1 mL/min; UV detection (214 nm) 

RPC: Zorbax Eclipse XDB-C18, 2.1 x 150 mm; A: 0.1% TFA; B: ACN + 0.1% TFA; 0.4 mL/min;  UV detection (214 nm)  

Mao et al., 
2007 
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Casein Fermentation 
Lactobacillus 

helveticus CP790 

RPC: µ-Bondashere C18, 3.9 x 150 mm; 0-40% B in 60 min; A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection 

(215 nm) 
RPC: µ-Bondashere C18, 3.9 x 150 mm; 90-30% B in 60 min; A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection 
(215 nm) 

Maeno et al., 
1996 

Skimmed milk Fermentation 

Strains 
Lactobacillus 

helveticus 

JCM1004 

RPC: YMC-Pack ODS-AP-303, 4.6 x 250 mm; 0-100% B; A: 10% ACN + 0.1% TFA; B: 90% ACN + 0.8% TFA; 1 mL/min; 
UV detection (215 nm) 
RPC: ODS-100S, 3.9 x 150 mm; 0-40% B in 40 min, 40-70% B in 28 min, 70-100% B in 22 min; A: 10% ACN + 0.1% TFA; B: 
90% ACN + 0.8% TFA; 1 mL/min; UV detection (215 nm) 

RPC: µBondasphere C18, 3.9 x 150 mm; 0-30% B in 45 min, 30-65% B in 25 min, 65-100%  B in 20 min; A: 10% ACN + 0.1% 
TFA; B: 90% ACN + 0.8% TFA; 1 mL/min; UV detection (215 nm) 

Pan et al. 2005 

Sheep milk yoghurt Fermentation 
Different bacterial 

cultures 

RPC: Nucleosil C18, 250 x 4 mm; 0% B in 10 min; 0-80% B in 80 min; 100% B in 10 min; A: 0.1% TFA; B: 60% ACN + 
0.09% TFA; 0.8 mL/min; UV detection (214 nm)   
RPC: Nucleosil C18, 250 x 4 mm; 0% B in 10 min; 0-80% B in 80 min; 100% B in 10 min; A: 0.1% TFA; B: 60% ACN + 
0.09% TFA; 0.2 mL/min; UV detection (278 nm)  

Papadimitriou 
et al., 2007 

Yoghurt Fermentation 
Different bacterial 

cultures 

RPC: C-18 monomeric, 250 x 4.6 mm; 0-100% B in 90 min; A: 0.1% TFA; B: 90% ACN + 0.1% TFA; 0.75 mL/min; UV 

detection (214 nm) 
CE: Coated capillary, 50 cm x 50 μm; 30 mM Na3BO3 and 17 mM PBS, pH=8.2; 15 kV, 30 min; 20˚C; UV detection (214 nm) 

Donkor et al., 
2007 

Yoghurt- like product Fermentation 
Lactobacillus 

helveticus CPN4 

Extraction in Sep-pak C-18 cartridges; elution with different ACN ratios 10-50% B (ACN + 0.1% TFA) 
RPC: µ-Bondasphere C18, 3.9 x 150 mm; 100-60% in 60 min; A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection 
(215 nm) 
RPC: µ-Bondasphere C18, 3.9 x 150 mm; 5-20% B in 60 min; A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection 
(215 nm) 

Yamamoto et 
al., 1999 

Caprine Kefir* Fermentation 
Different bacteria 

strains 

Centrifugation/ filtration/ UF 
12,000 x g, 10 min, 5°C/ filter Whatman no. 40/  MWCO 3 kDa  
RPC: 0-30% B in 70 min; A: 0.1% TFA; B: ACN + 0.08% TFA; UV detection (214 nm) 
RPC: 8-20% B in 45 min; A: 0.1% TFA; B: ACN + 0.08% TFA; UV detection (214 nm)  

Quiros et al., 
2005 

Cheese 
Fermentation/ 

digestion 

Lactococcus starter 
culture (MM100)/  
protease N amino,  

Umamizyme and 
Flavourzyme 

Dialysis: Molecular porous membrane tubing (Spectra/Por 3; MWCO 3.5) against water; 48 h; 4˚C 
RPC: YMC-Pack R&D ODS, 20 x 250 mm; 0-70% B (B: ACN + 0.1% TFA) in 50 min; 7.5 mL/min; UV detection (214 nm) 
RPC: TSK-gel ODS 80Ts, 20 x 250 mm; 0-30% B (B: ACN + 0.1% TFA) in 50 min; 7.5 mL/min; UV detection (214 nm) 

SEC: Superdex Peptide HR 10/30, 10 x 300 mm; elution with water + 0.1% TFA; 0.5 mL/min; UV detection (214 nm) 
RPC: CAPCELL PAK C18 MG, 4.6 x 250 mm; elution with 12% ACN + 0.1% TFA; 0.4 mL/min; UV detection (214 nm) 

Tonouchi et 
al., 2008 

Gouda cheese Extraction ---------------- 

Hydrophobic chromatography in Wakogel LP-40c18 resin; 15-90% ACN 

RPC: Superiorex ODS, 4.6 x 150 mm; 0-100% B in 30 min; A: 10% ACN + 0.05% TFA; B: 60% ACN + 0.05% TFA; 0.5 

mL/min; UV detection (214 nm)   
SEC: Superdex Peptide HR 10/30, 1 x 30 cm; elution with 0.1% TFA; 0.5 mL/min; UV detection (214 nm) 
CE: Coated capillary, 24 cm x 25 μm; BGE: 0.1 M PBS, pH=2.5; 10 kV, 15 min; UV detection (200 nm) 

Saito et al., 
2000 

Several spanish 
cheeses 

Extraction ---------------- 
UF: MWCO 1 kDa 
RPC: Hi-Pore C18, 250 x 4.6 mm; 0-40% B in 60 min; 40-70% B in 5 min; A: 0.037% TFA; B: ACN + 0.027% TFA; 0.8 
mL/min; UV detection (214 nm) 

Gomez-Ruiz et 
al., 2006 

Manchego cheese Fermentation /ripening 
Different bacterial 

strains 

Extraction/ centrifugation/ filtration/ centrifugation/ filtration 

UF: MWCO 3 kDa 

Gomez-Ruiz et 

al., 2002 
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CEC: HiLoadt 26/10 SP Sepharose Fast Flow; 0% B in 20 min; 0- 30% B in 40 min; 30-100% B in 10 min; 100% B in 10 min; 

A: 10mM HFo; B: 5M NH4OH; 5 mL/min; UV detection (280 nm) 
RPC:C18 Prep-Nova Pak HR, 300 x 7.8 mm; 5- 50% B in 60 min; 60- 100% B in 10 min; 100% B in 10 min; A: 0.1% TFA; B: 
80% ACN + 0.08% TFA; 6 mL/min; UV detection (214, 280 nm) 
RPC: Hi-Pore C18, 250 x 4.6 mm; 10- 25% B in 30 min or 18-23% B in 25 min or 20-24% B in 25 min; A: 0.1% TFA; B: 80% 
ACN + 0.08% TFA; 0.8 mL/min; UV detection (214, 280 nm) 

Manchego cheese Fermentation 
Several bacterial 

strains 

UF: MWCO 3 kDa 
RPC: Widepore C18, 250 x 4.6 mm; 0-40% A in 60 min; A: 0.037% TFA; B: 80% ACN + 0.027% TFA; 0.8 mL/min; UV 

detection (220 nm) 

Gomez-Ruiz et 
al., 2004 

Enzyme –modified 
cheese 

Digestion 

Neutrase,  
Lactobacillus casei 

enzyme or 
Debitrase® DBP20 

RPC: Delta Pak C18, 30 x 150 mm; 20-40% B in 15 min; 40-60% B in 15 min; 60-100% B in 5 min; 100-20% B in 35 min; A: 
0.1% TFA; B: 40% ACN + 0.08% TFA; 0.5 mL/min; UV detection (214 nm)  

Haileselassie 
et al., 1999 

Cheese whey protein Digestion 

Trypsin, proteinase 
K, actinase E, 

thermolysin, 
papain, 

chymotrypsin or 
pepsin 

Hydrophobic chromatography in LiChropep RP-18 resin (25-40 µm); 0-90% MetOH  
Hydrophobic chromatography in LiChropep RP-18 resin (25-40 µm); 30-42% MetOH  

RPC: Superiorex ODS, 4.6 x 150 mm; 0-100% B in 30 min; 100% B in 10 min; A: 10% ACN + 0.05% TFA; B: 60% ACN + 
0.05% TFA; 0.5 mL/min; UV detection (214 nm)  
SEC: Superdex peptide HR 10/30, 1 x 30 cm; elution with 0.1% TFA; 0.5 mL/min; UV detection (214 nm) 
CE: Coated capillary, 24 cm x 25 μm; 0.1 M PBS, pH=2.5; 10 kV; UV detection (200 nm) 

Abubakar et 
al., 1998 

Commercial whey 
product* 

Not shown Not shown 

Extraction with Wakogel LP-40C18 resin (20-40 µm); elution with 90% EtOH 
SEC: Sephadex G-15, 2.6 x 90 cm; 0.05% TFA; 0.5 mL/min; UV detection (214 nm) 
RPC: Wakosil-II 5C18, 4.6 x 150 mm; 0- 80% B in 15 min; A: 10% ACN + 0.05% TFA; B: 60% ACN + 0.05% TFA; 0.5 

mL/min; UV detection (214 nm) 
CE: Coated capillary, 17 cm x 25 μm; 0.1 M PBS, pH=2.5; 10 kV, 15 min; 20˚C; UV detection (200 nm) 

Murakami et 
al., 2004 

Sodium caseinate Fermentation 
Lactobacillus (Lb.) 

helveticus NCC 
2765 

SEC: Superdex 75 HR 10/30; 50 mM NH4Ac (pH 7) for 65 min; 0.5 mL/min; UV detection (215, 280 nm) 
RPC: C8 208TP54; 0% B in 5 min, 0-50% B in 60 min, 50-100% B in 1 min, 100% B in 4 min; A: 0.05% TFA; B: 80% ACN + 
0.045% TFA; 0.8 mL/min; UV detection (215 nm) 

Robert et al., 

2004 

α-lactalbumin1 and β-
casein2 Digestion Thermolysin 

SEC: SuperdexTM 30 prep grade, 2.6 x 61 cm; 0.1M NH4HCO3, pH 8.0; 2.5 mL/min; UV detection (280 nm) 
RPC: Nucleosil 300-S C18, 4.6 x 250 mm; 10-80% B (10-90 min); 230-55% B (90 min) or 22-40% B (80 min); A: 0.1% TFA; B: 

60% ACN + 0.1% TFA; 1 mL/min;  UV detection (210 and 280 nm) 
RPC: Nucleosil 300-S C18, 4.6 x 250 mm; 1 20-45% B (80 min) or 120-50% B (80 min); A: 0.1% TFA; B: 60% ACN + 0.1% 
TFA; 1 mL/min; UV detection (210 and 280 nm) 

Otte et al., 
2007b 

PLANT ORIGIN 

Soybean Digestion Pepsin 

IEC: Dowex 50 W, 45 x 200 mm; elution with 5 % NH4OH 
SEC: Sephadex G-25, 26 x 1400 mm; water; 30 mL/min 
IEC: Sephadex C-25, 20 x 500 mm; 0- 3% NaCl; 30 mL/min 
RPC: Develosil ODS-5, 4.6 x 250 mm; 0- 16% B (B: ACN + 0.05% TFA) in 60 min; 1 mL/min; UV detection (220 nm) 

Chen et al., 
2002 

Soybean Fermentation 
Aspergillus 

oryzae 

UF: MWCO 3, 10, 30 kDa 
CEC: HiPreP 16/10 SP FF, 16 x 100 mm; 0-100% B in 40 min: A: 10 mM NaAc, pH 4.0; B: 20 mM NaAc (pH 4.0) in 1 M 
NaCl; 5 mL/min; UV detection (214 nm) 
Desalination: Cellulose dialysis membrane, MWCO 100 

Rho et al., 
2009 
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SEC: Superdex Peptide 10/300 GL, 10 x 300 mm; elution with 30% ACN in 40 min; 0.36 mL/min; UV detection (214 nm) 

RPC: μBondapakTM C18, 4.6 x 300 mm; 0-100% B in 40 min; A: 0.1% TFA; B: 40% ACN + 0.1% TFA; 1 mL/min;  UV 
detection (214 nm) 
RPC: μBondapakTM C18, 4.6 x 300 mm; 0-100% B in 40 min; A: 25 % ACN + 0.1% TFA; B: 35% ACN + 0.1% TFA; 1 
mL/min; UV detection (214 nm) 

Soybean protein Digestion Mature D3 protease 

Desalination by electrodialyzation  
SEC: Superdex Peptide HR 10/300; elution with 0.05 % TFA; 0.5 mL/min; UV detection (215 nm) 
RPC: Cosmosil 5C18 AR 4.6/250; 0-50% B in 50 min; A: 0.05% TFA; B: ACN + 0.065% TFA; 0.75 mL/min; UV detection 

(215 nm) 

Kodera and 
Nio, 2006 

Glycinin from 
soybean* 

Digestion 
Protease P, trypsin, 

chymotrypsin or 
ginger protease 

RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 nm) 

RPC: C-18 Shimpak, 250 x 4.6 mm; 0-100% B; A: 50 mM NH4Ac; B: 50 mM  NH4Ac/ ACN (50:50);  UV detection (230 nm) 
RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 nm) 

Gouda et al., 
2006 

Steamed soybean 

mixed with roasted 
wheat 

Fermentation 

Tane koji rich in A. 

sojae 
 

Desalination by electrodialyzing  

RPC: SP-120-40/60-ODS-B, 150 x 1000 mm; 0-100% B in 25 h; water- 0.1% TFA-ACN; 45 mL/min; UV detection (220 nm) 
RPC: Cosmosil-5C18-ARII, 20 x 250 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) 

RPC: C30 Develosil RPAQUEOUS-AR, 20 x 250 mm; 0-100% B in 90 min; water-ACN; 5 mL/min; UV detection (220 nm) 

Nakahara et 
al., 2010 

Wheat bran* Autolyzation 
Endogenous 

proteases 

RPC: LiChroprep RP-18, 2.5 x 25 cm; 10-95% EtOH 
IEC: AG MP-1 resin, 3 x 20 cm 
SEC: Superdex 75HR, 10 x 30 cm; elution with 30% ACN + 0.1% TFA; 0.5 mL/min; UV detection (220 nm) 
RPC: Jupiter C4, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min 
RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min 

Nogata et al., 

2009 

Wheat gliandin Digestion 
Pepsin and 
protease M 

IEC: SP-Toyopearl 550C, 2.6 x 40 cm; 0-0.5M NaCl in 5 mM NaAc, pH 3.5; 1 mL/min; UV detection (220 nm) 

SEC: Bio-gel P-2, 1.6 x 100 cm; elution with water; 0.33 mL/min; UV detection (220 nm) 
RPC: TSK-GEL ODS 120T, 4.6 x 250 mm; 0-30% ACN + 0.01% TFA; 1 mL/min; UV detection (220 nm) 

Motoi and 
Kodama, 2003 

White wheat, 
wholemeal wheat, 

rye flours* 
Fermentation 

Different 

sourdoughs 

Extraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4 °C and centrifugation at 20,000g, 20 min 

RP-FPLC: 5% B 16 min; 5-46% B 46 min; A: 0.05% TFA; B: ACN+0.05%; 1 mL/min; UV detection (214 nm) 

Rizzello et al., 

2008 

Rice* Digestion Alcalase 

Desalination with an ion exchange resin 
SEC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) 

RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0- 60% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection 
(220 nm) 

RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection 

(220 nm)   

Li et al., 2007 

Rice Fermentation Monascus strains 

Separation in SEPABEADS SP825 and elution with different EtOH percentages: 10-70% 
SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm) 
RPC: Cosmosil 5 C18-AR-300;  0–50% B (B: ACN + 0.05% TFA) in 50 min; 0.5 mL/min; UV detection (220 nm) 
RPC: Cosmosil 5 C18-AR-300 or Cosmosil 5Ph-AR-300; ACN + 0.05% TFA; 0.25 mL/min; UV detection (220 nm) 

Kuba et al., 
2009 

α-zein* Digestion Thermolysin 

DEAE-Tyopearl 650 M, 2.6 x 100 cm; 0-0.3 M NaCl in 5mM Tris-HCl (pH 8); 3 mL/min; UV detection (254 nm) 
Desalination with Sephadex LH-20, 1.6 x 100 cm 
RPC: C-18 Capcellpak, 1.5 x 25 cm; 10-60% B (B: ACN + 0.1% TFA); 8 mL/min; UV detection (210 nm) 
RPC: C-18 Capcellpak, 1.5 x 25 cm; ACN + 0.1% TFA; 8 mL/min; UV detection (210 nm) 

Miyoshi et al., 
1991 
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CEC: Senshupak SCN-1251, 0.46 x 25 cm; 20 mM/pH 4.0- 50 mM/pH 6.3 NH4Ac  

SP-Toyopearl 650 M, 2.6 x 100 cm; 20 mM/pH 4.0- 50 mM/pH 6.3 NH4Ac; 3 mL/min; UV detection (254 nm) 
RPC: C-18 Capcellpak, 1.5 x 25 cm; 10-60% B (B: ACN + 0.1% TFA); 8 mL/min; UV detection (210 nm) 
RPC: C-18 Capcellpak, 1.5 x 25 cm; 5-30% B (ACN + 0.1% TFA); UV detection (210 nm)  

Urea denaturated Z19 
α-zein 

Digestion Thermolysin 

RPC: YMC-GEL C4, 4.6 x 110 mm; 0 -30% B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (220 nm) 
RPC: YMC-GEL C18, 4.6 x 250 mm; 0-15% or 0-25% B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (220 nm) 

Yano et al., 

1996 Urea denaturated 

total α-zein 
RPC: YMC-GEL C18, 4.6 x 250 mm; 0-30% B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (220 nm) 

Corn gluten meal* Digestion 
Protamex, neutrase, 
alcalase or trypsin 

UF: MWCO 5 kDa 
SEC: Bio-Rad P-2, 700 x 15 mm; 2 mM PBS, pH 8.0; 0.25 mL/min;  UV detection (220 nm) 
RPC: μ-Bondapak C 18, 300 x 7.8 mm; 0–40% B (B: ACN + 0.1% TFA); 3 mL/min; UV detection (220 nm) 

Yang et al., 
2007 

Spinach Rubisco 
Simulated 

gastrointestinal 
digestion 

Pepsin and 
pancreatin 

RPC: Cosmosil 5C18-AR-II, 20 x 250 mm; 1%/min B (B: ACN + 0.1% TFA); 10 mL/min; UV detection (230 nm) 
RPC: 5PE-MS, 4.6 x 250 mm; 1%/min B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (230 nm) 
RPC: Cosmosil 5 CN-R, 4.6 x 250 mm; 1%/min B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (230 nm) 

RLC: 5NPE, 4.6 x 150 mm; 1%/min B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (230 nm) 

Yang et al., 
2003 

Amaranth 
(Amaranthus 

hypochondriacus) 
grain 

Digestion Alcalase 

SEC: Sephadex G-200, 1.4 x 29 cm; 0.4 M NaCl + 20 mM 2-MER; 0.4 mL/min; UV detection (280 nm) 

SEC: Sephadex G-15, 1.4 x 29 cm; 0.4 M NaCl + 20 mM 2-MER; 0.4 mL/min; UV detection (214 nm) 
RPC: Nucleosil 100 C18 RP, 4.6 x 250 mm; 0-30% B (B: ACN + 0.1% TFA) in 60 min; 2 mL/min; UV detection (214 nm) 

Tovar-Perez et 
al., 2009 

Mung bean protein Digestion Alcalase 

UF: MWCO 6 kDa 

SEC: Sephadex G-15, 1.8 x 60 cm; elution with 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) 
RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0-100% B in 60 min; A: 0.1% TFA; B: 60% ACN + 0.1% TFA; 1 
mL/min; UV detection (220 nm) 
RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 10-80% B in 40 min; A: 0.1% TFA; B: 60% ACN + 0.1% TFA; 1 
mL/min; UV detection (220 nm) 

Li et al., 2006 

Sesame protein 
hydrolysate 

Hydrolysis Thermolysin 

SEC: Bio-Gel P-2, 15 x 820 mm; elution with 10% EtOH; 0.18 mL/min; UV detection (210 nm) 
RPC.: Develosil ODS-10, 20 x 250 mm; 5% B in 20 min; 5-40% B in 60 min; B, ACN + 1% TFA; 10 mL/min; UV detection 
(210 nm) 

RPC: Develosil C-30-UG-5, 10 x 250 mm; ACN + 1% TFA; 4 mL/min; UV detection (210 nm) 
RPC: Develosil Ph-UG-5, 10 x 250 mm; 6% ACN + 1% TFA; 4 mL/min; UV detection (210 nm) 

Nakano et al., 
2006 

Alfalfa white 

protein* 

Hydrolyzation at pilot plant scale by 
Delvolase® in enzymatic membrane 

reactor 

SEC: Superdex Peptide HR 10/300, 10 x 300 mm; elution with 30% ACN + 0.1% TFA; 0.2 mL/min; UV detection (226 nm) 

RPC: C18, 4.6 x 250 mm; 0-28% B in 50 min, 28-47% B in 20 min; B, ACN + 0.1% TFA; UV detection (226 nm) 

Kapel et al., 

2006 

ANIMAL ORIGIN 

Chicken bone Digestion Pepsin 

SEC: TSK gel G2000SWXL, 7.8 x 300 mm; elution with 0.2 M PBS, pH 7.0; 1 mL/min; UV detection (225 nm) 
RPC: Inertsil ODS-2;0–35% B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (225 nm) 
RPC: Inertsil ODS-2; 8-14% B (B: ACN + 0.1% TFA); 0.5 mL/min; UV detection (225 nm) 
RPC: Cosmosil 5PE-MSl; elution with 10% ACN and 5% ACN; 0.5 mL/min; UV detection (215 nm) 

Nakade et al., 
2008 
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Chicken leg Digestion 

Aspergillus oryzae 

protease, protease 
FP/ protease A 

amano G/  protease 
N, pepsin and 

trypsin/ 
chymotrypsin 

UF: MWCO 3 kDa 
RPC: C18 ODS, 22 x 250 mm and 4.6 x 250 mm; 8-40% B in 40 min or 8-40 % B in 64 min (B: ACN + 0.1% TFA); 1 mL/min; 
UV detection (220 nm) 

Saiga et al., 
2008 

Chicken leg bone Digestion Alcalase 
UF: MWCO 5 kDa 

SEC:  SuperdexTM Peptide HR 10/30, 10 x 300 mm; elution with water; 0.5 mL/min;  UV detection (220 nm) 

Cheng et al., 

2009 

Chicken muscle1 and 

ovalbumin2 Digestion 

Thermolysin1 and 
pepsin, trypsin, 

chymotrypsin or 
thermolysin2 

RPC: Cosmosil 5C18-AR, 20 x 250 mm; 0-50% B (B: ACN + 0.1% TFA) in 50 min; 10 mL/min; UV detection (2151 or 2302 
nm) 
RPC: Cosmosil 5 Ph, 4.6 x 250 mm; 0-40% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min 
RPC: Cosmosil 5CN-R, 4.6 x 250 mm; 0-40% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min 
RPC: Cosmosil 5C18-AR, 20 x 250 mm; 0-40% B (B: ACN + 10 mM PBS, pH 7.0) in 40 min; 1 mL/min 

Fujita et al., 

2000 

Porcine skeletal 
muscle 

Digestion 

Trypsin, α-

chymotrypsin, 
pronase E, 

proteinase K, 
thermolysin, ficin, 
papain or pepsin 

RPC: CAPCELL PAK C18 UG120, 4.6 x 150 mm; 0-100% B; A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection 
(215 nm) 
RPC: CAPCELL PAK C18 UG120, 4.6 x 150 mm; 0-100% B; A: 0.015% NH4OH; B: ACN + 0.015%  NH4OH; 1 mL/min; UV 
detection (215 nm) 

Arihara et al., 
2001 

Porcine skeletal 
muscle troponin 

Digestion Pepsin 

AEC: DE53, 16 x 150 mm; 0–300 mM NaCl in 20 mM Tris-acetate, pH 7.5; 1.13 mL/min; UV detection (215 nm) 
Desalination: Sep-Pak Plus C18; elution with 50% ACN 

RPC: Cosmosil 5C18 ARII, 4.5 x 150 mm; 1–80% B (B: ACN + 0.1% TFA); 0.5 mL/min; UV detection (215 nm) 
RPC: Cosmosil 5C18 ARII, 4.5 x 150 mm; elution with 12 or 16% ACN + 0.1% TFA); 0.5 mL/min; UV detection (215 nm) 
SEC: TSK-gel G2000SWXL, 7.8 x 300 mm; elution with 20 mM PBS, pH 7.0; 0.5 mL/min; UV detection (215 nm) 
RPC: Cosmosil 5PEMS, 4.6 x 250 mm; elution with 12 or 15% ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm); 

Katayama et 
al., 2008 

Porcine hemoglobin Digestion 
Pepsin, trypsin or 

papain 

SEC: Sephadex LH-20, 2.6 x 90 cm; elution with 30% MetOH; 0.5 mL/min; UV detection (280 nm) 
RPC: Hypersil BDS C18, 4.6 x 250 mm; 0% B in 5 min; 0-50% B in 40 min; 100% B in 10 min; A: 10% ACN + 0.1% TFA; B: 
90% ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm) 
RPC: Hypersil BDS C18, 4.6 x 250 mm; 0% B in 3 min; 0-40% B in 15 min; 100% B in 10 min; A: 10% ACN + 0.1% TFA; B: 

90% ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm) 

Yu et al., 2006 

Porcine myosin B Digestion Pepsin 

SEC: SuperdexTM 30, 1.6 x 90 cm; elution with 20 mM NaAc (pH 7.0) + 150 mM NaCl; 0.45 mL/min 
Desalination: SEP-PAK Plus C18; elution with 50% ACN 
RPC: Inertsil ODS-2, 4.6 x 250 mm; 1–80% B and:1-50% B (ACN + 0.1% TFA); 0.5 mL/min; UV detection (225 nm) 
RPC: Comosil 5PE-MS, 4.6 x 250 mm; elution with ACN at different proportions and flow-rates (0.1-0.5 mL/min); UV 
detection (225 nm) 

Muguruma et 

al., 2009 

Pork loin Digestion Pepsin 

AEC: DE53, 16 x 150 mm; 0- 300 mM NaCl in 20 mM Tris-acetate, pH 7.5; 1.13 mL/min; UV detection (215 nm) 

Desalination with Sep-Pak Plus C18; elution with 50% ACN  
RPC: Cosmosil 5C18 AR-II, 4.5 x 150 mm; 1-80% B (B: ACN + 0.1% TFA); 0.5 mL/min; UV detection (215 nm) 
RPC: Cosmosil 5C18 AR-II , 4.5 x 150 mm; elution with 12% ACN + 0.1% TFA; 0.5 mL/min; UV detection (215 nm) 
SEC: TSK-gel G2000 SWXL, 7.8 x 300 mm; elution with 20 mM PBS, pH 7.0; 0.5 mL/min; UV detection (215 nm)  

Katayama et 
al., 2007 
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RPC: Cosmosil 5PE-MS, 4.6 x 250 mm; elution with 12% ACN + 0.1 % TFA; 1 mL/min; UV detection (215 nm) 

Pork meat 
Simulated 

gastrointestinal 
digestion 

Pepsin and 
pancreatin 

RPC: Symmetry C18, 4.6 x 250 mm;  1% B in 5 min and 1-100% B in 80 min; water-0.1-0.085% TFA-ACN; 0.8 mL/min;  
Escudero et al., 

2010 

Bullfrog 
(Rana catesbeiana 

Shaw) muscle 
Digestion 

Alcalase,  α-
chymotrypsin, 

neutrase, papain, 

pepsin or trypsin 

IEC: HiPrep 16/10 CM FF; 0–2 M NaCl  in 20 mM PBS, pH 4.0; 62 mL/ h; UV detection (215 nm) 
RPC:  Primesphere 10 C18, 10 x 250 mm; 0–35% B (B: ACN + 0.1% TFA) in 35 min; 1.2 mL/ min; UV detection (215 nm) 
RPC: SynChropak RP-P-100, 4.6 x 250 mm; elution with 15% ACN + 0.1% TFA in 20 min; 1.2 mL/min; UV detection (215 

nm) 

Qian et al., 
2007b 

Beef rump Digestion 

Thermolysin, 
proteinase A or 

protease type XIII 
and their 

combination 

UF: MWCO 10 kDa 
SEC: Sephadex G-25, 2.6 cm x 1 m; elution eith 20 mM PBS, pH 7.4; 1.6 mL/min 

RPC: C18, 25 x 0.46 cm; 0% B  in 10 min, 0-65% B in 20 min, 100% B in 10 min; A: 0.1% TFA; B: ACN + 0.07% TFA; 0.8 
mL/min; UV detection (214 nm) 

Jang and Lee, 

2005 

Bovine αS2- casein Digestion Trypsin 
RPC: XTerra C18, 4.6 x 250 mm; 1.6% B in 3 min; 1.6-40% B in 87 min (B:ACN + 0.1% TFA); 1 mL/min; UV detection (210-

300 nm) 

Tauzin et al., 

2002 

Bovine lactoferrin 

Digestion 
Pepsin or trypsin 
and chymotrypsin 

RPC: Capcell PAK C18, 4.6 x 150 mm; 0-45% B in 25 min;  A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection (230 
nm) 
RPC: TSK gel ODS 80-Ts, 4.6 x 150 mm; 0-45% B in 25 min; A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection 
(230 nm) 

Lee et al., 
2006a;  

Hen ovotransfferin 
Lee et al., 

2006b 

SEAFOOD 

Antarctic krill 

(Euphausia superba) 
tail meat 

Digestion Thermoase PC10F 

CEC: HiPrep 16/10 SP XL, 16 x 100 mm; 0-1 M NaCl + 26.5 mM HFo; 2 mL/min; UV detection (214 nm) 
SEC: Superdex Peptide 10/300 GL, 10 x 300 mm; 0.9 mL/min; UV detection (214 nm); 
RPC: ODS-80TM, 4.6 x 75 mm; 0- 40% ACN + 0.1% TFA; 0.5 mL/min; UV detection (214 nm) 
RPC: μRPC C2/C18 SC 2.1/10, 2.1 x 100 mm; 7-13% ACN in 35 min; UV detection (214 nm) 

Hatanaka et 
al., 2009 

Blue mussel 
(Mytilus edulis) 

Fermentation 
Salty conditions for 

6 months 

SEC: Sephadex G-75, 2.5 x 90 cm; elution with 50 mM PBS, pH 7.0; 60 mL/h; UV detection (280 nm) 

IEC: SP-Sephadex C-25, 2.5 x 45 cm; 0-1 M NaCl in 20 mM NaAc, pH 4.0; UV detection (280 nm) 
RPC: Nucleosil 100-7 ODS C18, 10 x 250 mm; 0-40% B (B: ACN + 0.1% TFA); 2 mL/min; UV detection (215 nm) 
RPC: Nucleosil 100-7 ODS C18, 10 x 250 mm; 0-25% B (B: ACN + 0.1% TFA); 2 ml/min; UV detection (215 nm) 

Je et al., 2005b 

Marine shrimp 
(Acetes chinensis) 

Fermentation 
Labtobacillus 

fermentum SM 605 

UF: MWCO 3 kDa 
SEC: Sephadex G-15, 1.6 x 80 cm; elution with water; 25 mL/min; UV detection (220 nm) 
RPC: HIQ sil C18-10, 4.6 x 250 mm; 0-50% B (B: MetOH + 0.1% TFA) in 50 min; 0.8 mL/min; UV detection (214 nm) 

Wang et al., 
2008b 

Gelatin of sea 
cucumber 

Digestion 
Bromelain and 

alcalase 

UF: MWCO 1, 5, 10 kDa 
IEC: SP Sephadex C-25, 16 x 300 mm; 0-0.15 M NaCl in 20 mM NaAc (pH 4); 0.4 mL/min; UV detection (220 nm) 
SEC: Sephadex G-15, 16 x 300 mm; elution with water; 0.3 mL/min; UV detection (220 nm) 
RPC.: Zorbax C18, 1 x 250 mm; 0-10% ACN in 15 min; 0.8 mL/min; UV detection (220 nm) 
RPC: Zorbax SB C18, 4.6 x 250 mm; 0-10% ACN in 10 min; 0.8 mL/min; UV detection (220 nm) 

Zhao et al., 
2007 

Sea cucumber 
(Acaudina 

molpadioidea) 
Digestion 

Bromelain and 
alcalase 

UF: Mwco 2 kDa 
SEC: Sephadex G-25, 1.6 x 30 cm; elution with water; 0.6 mL/min; UV detection (220 nm) 

Zhao et al., 
2009 

   
IEC: SP Sephadex C-25, 2.6 x 30 cm; 0–1 M NaCl in 20 mM NaAc, pH 4.0; 0.6 mL/min; UV detection (220 nm) 
SEC: Sephadex G-25, 1.6 x 100 cm 
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RPC: Zorbax C18, 9.4 x 250 mm; 5–40% B (B: ACN + 0.1% TFA) in 40 min; 0.8 mL/min;  UV detection (220 nm) 

Oyster* Fermentation 
Salty conditions for 

6 months 

IEC: SP-Sephadex C-25, 4.0 x 40 cm; 0-2 M NaCl in 20 mM NaAc, pH 4.0; 60 mL/h; UV detection (215 nm) 
Desalination by electrodialyzation  
SEC: Sephadex G-50, 2.5 x 98 cm; elution with water; 60 mL/h; UV detection (215 nm) 
SEC: elution with water; 60 mL/min; UV detection (215 nm)  
RPC: Nucleosil 100-3 ODS C18; 0-11% B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (215 nm) 

Je et al., 2005a 

Oyster 

(Crassostrea 
talienwhanensis 

crosse) 

Digestion Pepsin 

Filtration: Mwco 10 kDa 

SEC: Sephadex LH-20, 2.7 x 80 cm; elution with 30% MetOH; 0.5 mL/min;  UV detection (280 nm) 
RPC: Hypersil BDS C18, 4.6 x 210 mm; 0–100% B in 40 min; 100% B in 10 min; A: 0.1% TFA; B: ACN; 1 mL/min; UV 
detection (215 nm) 

Wang et al., 
2008a 

Wakame (Undaria 
pinnatifida) 

Digestion Pepsin 

Dialysis against water in cellulose tubing for 2 days 
IEC: Dowex 50W, 2.6 x 20 cm; elution with 3.7% NH4OH 
SEC: Sephadex C-25, 2 x 50 cm; elution with 1.5% NaCl; 70 mL/h 
RPC: Develosil C18 ODS-5, 4.6 x 250 cm; 0-25% B (B: ACN + 0.05% TFA) in 2 h; 1 mL/min; UV detection (220 nm) 

Suetsuna and 
Nakano, 2000 

 

Wakame (Undaria 
pinnatitida) 

Digestion Protease S “amano” 

Extraction with 1-butanol 
RPC: µBondasphere C18, 300 x 30 mm; 0-35% B in 140 min; A: 0.1% TFA; B: ACN + 0.07% TFA; 30 mL/min; UV detection 
(220 nm) 
RPC: XTerraRP18, 150 x 4.6 mm; 0% B in 10 min, 0-20% B in 40 min; A: 50 mM NH4Ac (pH 10) + 1% ACN; B: 50 mM 
NH4Ac (pH 10) + 95% ACN; 1 mL/min; UV detection (220 nm) 
RPC: 1C.: ODP50-4D, 150 x 4.6 mm; 0-20% B in 30 min; A: 50 mM NH4OH (pH 10) + 1% ACN; B: 50 mM ,  NH4OH  
NH4OH (pH 10) + 95% ACN; 0.5 mL/min; UV detection (220 nm); 2C.: XTerra RP18, 150 x 4.6 mm; 0-30% B in 40 min; A: 
0.1% TFA/0.07% TFA in ACN (99/1); B: 0.1% TFA/0.07% TFA in ACN (5/95); 1 mL/min; UV detection (220 nm) 

Sato et al., 
2002 

Wakame (Undaria 
pinnatifida) 

Extraction ---------------- 

Dialysis against water (10 L) in cellulose tubular membrane (90 cm) 
IEC: Dowex 50W, 45 x 450 mm; elution with NH4OH 
SEC: Sephadex G-25, 2.6 x 140 cm; elution with 0.1 M PBS, pH 7.0; 30 mL/min  
RPC: Develosil ODS-5, 4.6 x 250 mm; 0-25% B (B: ACN + 0.05% TFA) in 180 min; 1 mL/min; UV detection (220 nm) 
RPC: Asahipack CG-320HQ, 7.6 x 300 mm; elution with 25 % ACN in 50 mM NH4Ac, pH 6.8; 0.5 mL/min 

Suetsuna et al., 
2004 

FISHES 

Tuna dark muscle Digestion 

Alcalase, neutrase, 
pepsin, papain, α-
chymotrypsin or 

trypsin 

UF: MWCO 3 kDa 
IEC: HiPrep 16/10 DEAE FF; 0–2 M NaCl in NaAc (pH 4); 2.0 mL/min; UV detection (280 nm) 
RPC: ODS C18 Primesphere 10, 20 x 250 mm; 0–50% B (B: ACN + 0.1% TFA) in 55 min; 2.0 mL/min; UV detection (215 nm) 
RPC: Synchropak RPP-100, 4.6 x 250 mm; elution with 20% ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm) 

Qian et al., 
2007a 

Tuna Digestion 

Alcalase, α- 

chymotrypsin, 
papain 

pepsin, neutrase or 
trypsin 

UF: MWCO 1, 5, 10 kDa 
IEC: Hiprep 16/10 DEAE FF; 0–2 M NaCl in 20 mM NaAc, pH 4.0; 62 mL/h; UV detection (280 nm) 
RPC: Primesphere 10 C18, 20 x 250 mm; 0–50% B (B: ACN + 0.1% TFA) in 20 min; 2 mL/min; UV detection (215 nm) 
RPC: Synchropak RPP-100, 4.6 x 250 mm; elution with 15% ACN + 0.1% TFA; 1.2 mL/min; UV detection (215 nm) 

Lee et al., 
2010 

Upstream chum 
salmon muscle 

Digestion Thermolysin 

RPC: ODS, Comsosil 140,C18- OPN, 44 x 370; elution with 10, 25, 50, 99.5% EtOH 
SEC: Sephadex G-25, 16 x 650 mm; elution with water 

RPC: Mightysil RP-18, 4.6 x 250 mm; elution with 10% ACN + 0.1% TFA; 1 mL/min; UV detection (220 nm) 

Ono et al., 
2003 

Salmon muscle Digestion Papain Extraction with 1-butanol  Enari et al., 



57 

 

Separation in silica gel; PSQ 100B, 1380 x 100 mm; elution with CHCl3: MetOH: water: CH3COOH (65:25:4:1, 31 L) 

Separation in silica gel, 400 x 80 mm; elution with CHCl3:2-propanol:water: CH3COOH 
IEC: Amberlite CG50-type, 400 x 80 mm; elution with water; water:MetOH; MetOH; MetOH:2M HCl 
RPC: XTerra MS C18, 100 x 4.6 mm; 5–30% B (B: ACN + 0.1% HFo) in 30 min; 0.2 mL/min 
Methylation: 10% sodium methoxide in MetOH (50 mL); 16 h, RT; refluxing (4.5 h) 

Separation in Silica gel 60, 600 x 20 mm; elution with CHCl3:2-propanol at different ratios 

2008 

Dried bonito Digestion 
Pepsin, 

chymotrypsin, 
trypsin, thermolysin 

RPC: YMC-Pack ODS-AQ, SH-343-5, 20 x 250 mm; 1-41% B (B: ACN + 0.1% TFA) in 40 min; 10 mL/min; UV detection 
(230 nm) 
RPC: Cosmosil 5Ph, 4.6 x 250 mm; 0-40% B (B: ACN + 0.1 % TFA) in 40 min; 1 mL/min; UV detection (215 nm) 
RPC: Cosmosil 5CN-R, 4.6 x 250 mm; 0-40% B (B: ACN + 0.1 % TFA) in 40 min; 1 mL/min; UV detection (215 nm) 
RPC: Cosmosil 5C18, 4.6 x 150 mm; 0-40% B (B: ACN + 0.1 % TFA) in 40 min; 1 mL/min; UV detection (215 nm) 

Yokoyama et 

al., 1991 

Bonito bowels Autolyzed 
Endogenous 

proteases 

UF: Mwco 6 kDa 

Purification with Sep-Pak Plus C18; elution with 15% ACN  
Purification with Toyopak IC-SP M; elution with 10 mM PBS, pH 9.0 
RPC: RP-18(e), 100 mm x 250 mm; 0-30% B (B: ACN + 0.05% TFA); 4 mL/min; UV detection (210 nm) 
RPC: RP-18(e), 4 mm x 250 mm; 0-30% B (B: ACN + 0.05% TFA); 1 mL/min; UV detection (210 nm) 
SEC: Asahipak GS-220 and GS-320, 7.6 mm x 500 mm; 50 mM NH4Ac; 1 mL/min; UV detection (210 nm) 
IEC: SP-2SW, 4.6 mm x 250 mm; 0-0.5 M NaCl in 20 mM PBS, pH 6.0; UV detection (210 nm)  

RPC: RP-18(e), 4 mm x 250 mm; elution with 7% ACN + 0.05% TFA; UV detection (210 nm) 

Matsumura et 

al., 1993 

Alaska pollack 
(Theragra 

chalcogramma) skin 
Digestion 

Alcalase, pronase E 
and collagenase 

SEC: Sephadex G-25, 2.5 x 90 cm; elution with water; 0.5 mL/min; UV detection (220, 280 nm) 
CEC: SP-Sephadex C-25, 2.5 x 45 cm; 0-1 M NaCl in 20 mM NaAc, pH 4.0; 2 mL/min; UV detection (220, 280 nm) 
SEC: Sephadex G-15; elution with water; 0.5 mL/min; UV detection (220, 280 nm) 
RPC: ODS C18; 10-50% B in 40 min; A: 0.1% TFA; B: ACN + 0.1% TFA; 2 mL/min; UV detection (215 nm)  
CE: Coated capillary, 24 cm x 25 μm; 0.1 M PBS, pH=2.5; 10 kV; UV detection (200 nm) 

Byun and Kim, 
2001 

Yellowfin sole frame Digestion α-chymotrypsin 

UF: MWCO 5, 10, 30 kDa 
IEC: SP-Sephadex C-25, 35 x 350 mm; 0-2 M NaCl in 20 mM NaAc, pH 4.0; 1 mL/min; UV detection (215 and 280 nm) 
SEC: OHpak SB-803 HQ, 8.0 x 300 mm; 20 mM NaAc, pH 4.0; 1 mL/min; UV detection (215 nm) 
RPC: SP Nucleosil 100- 7 C18, 1 x 250 mm; 0-19% B (B: ACN + 0.1% TFA) in 40 min; 2.0 mL/min; UV detection (215 nm) 
RPC: Zorbax SB C18, 4.6 x 250 mm; 0-19% B (B: ACN + 0.1% TFA) in 30 min; 0.5 mL/min; UV detection (215 nm) 

Jung et al., 
2006 

Pacific hake fish Autolyzation 
Endogenous 

proteases 

UF: MWCO 1, 3, 10 kDa 
RPC: Jupiter C12 Proteo 90 Å, 250 x 4.6 mm; 0-25% B in 25 min and 25- 80% B in 5 min; water- 0.05% TFA-ACN; 1 mL/min; 

UV detection (214 nm) 

Samanayaka et 
al., 2010 

PROCEED PRODUCTS AND OTHERS 

Mushroom 

Tricholoma 
giganteum 

Extraction ---------------- 

UF: MWCO 5 kDa 
SEC: Sephadex G-25, 3.0 x 35 cm; elution with water; 12 mL/min  

RPC: µBondapack C18; 0-100 % B; A: 0.1% TFA; B: ACN  
RPC: µBondapack C18; 0- 100% B; A: 0.1% TFA; B: ACN 
RPC: Nova-pak C18; 0- 100% B; A: 0.1% TFA; B: ACN 

Hyoung et al., 
2004 

Mushroom   
Pholiota adiposa* 

Extraction ---------------- 
UF: MWCO 5 kDa 
SEC: Sephadex G-25, 3.0 x 80 cm; elution with water; 24 mL/min 
RPC: μBondapack C18; 0-100% B; A: 0.1% TFA; B: ACN  

Koo et al., 
2006 



58 

 

 1 
*- indicate articles in which not all data was shown 2 

Abbreviations:  3 

MWCO -membrane with molecular weight cutoffs; Eq.- equilibration; UF- ultrafiltration; IEC- Ion Exchange Chromatography; RPC- Reserved- Phase High Performance 4 
Liquid Chromatography; FPLC- Fast Protein Liquid Chromatography; CEC- Cation Exchange Chromatography; AEC- Anion Exchange Chromatography; SEC- Size 5 
Exclusion Chromatography; ACN- acetonitryl; TFA-trifluoroacetic acid; MetOH- methanol; EtOH-ethanol; RT-room temperature; PBS- phosphate buffer solution.  6 

 7 

 8 

RPC: μVydac protein/peptide 218Tp; 0-100% B; A: 0.1% TFA; B: ACN  

Fermented soybean 
paste 

Extraction ---------------- 

RPC: JAIGEL-A-343-10, 250 x 20 mm; 98% B in 5 min; 96% B in 20 min; 65% B in 30 min; 5 mL/min; B, ACN; UV detection 
(214 nm) 
IEC: JAIGEL-ES-502CP, 20 x 100 mm; elution with 0.01M sodium succinate buffer (pH 4.3) in 20% ACN; 4 mL/min; UV 
detection (214 nm) 
RPC: JAIGELODS-A-343-10, 250 x 20 mm; elution with 0.05% TFA/ACN (95:5, v/v); 5 mL/min; UV detection (214 nm) 
IEC: Shodex Asahipak ES-2502N-7C, 100 x 7.6 mm; elution with 20 mM Tris-HCl (pH 7.5) + 125 mM NaCl; 1 mL/min; UV 
detection (214 nm) 

Shin et al., 
2001 

Salt-free soy sauce Fermentation Aspergillus oryzae 

Extraction: Sep-Pak Plus C18; elution with 35% ACN + 0.1%  TFA 

RPC: Cosmosil 5C18-ARII, 4.6 x 250 mm; 5–35% B (B: ACN + 0.1% TFA) in 65 min; 0.4 mL/min; UV detection (220 nm) 
RPC: Cosmosil 5C18-AR300, 4.6 x 250 mm; 5–35% B (B: ACN + 0.1% TFA) in 65 min; 0.3 mL/min; UV detection (220 nm) 

Zhu et al., 

2008 

Douchi 
Fermentation  and 

ripening 
Aspergillus 

egypticus culture 

Extraction/centrifugation (3,000g, 10 min)/filtration 
SEC: Sephadex- G25, 10 x 750 mm; elution with PBS; 0.2 mL/min; UV detection (220 and 280 nm) 
RPC: Vydac 218TP54; 0-60% B (B: ACN + 0.1 % TFA) in 60 min; 1 mL/min; UV detection (220 nm) 

Zhang et al., 
2006 

Miso paste with 
addition of casein 

Digestion Porcine pepsin A 
UF: MWCO 3 kDa 
RPC: Prep Nova Paks HR C18, 300 x 7.8 mm; 0- 21% B in 30 min, 21- 35% B in 40 min, 35-70% B in 5 min; A: 0.1% TFA; B: 
ACN + 0.08% TFA; 4 mL/min; UV detection (214 nm) 

Contreras et 
al., 2009 

Buckwheata 

Digestion 
Pepsin, 

chymotrypsin and 
trypsin 

SEC: Superdex Peptide HR 10/30, 1 x 30 cm; elution with 30% ACN + 0.1% TFA; 0.3 mL/min; UV detection (220 nm) 

RPC: Cosmosil 5Ph, 4.6 x 250 mm; a5-35% B (B: ACN + 0.1% TFA) in 30 min and b1-40% B (B: ACN + 0.1% TFA) in 60 
min; 0.3 mL/min; UV detection (220 nm) 
RPC: Cosmosil 5C18-ARII, 4.6 x 250 mm; 5-35% B (B: ACN + 0.1% TFA) in 60 min; 0.3 mL/min; UV detection (220 nm) 

Li et al., 2002 

Royal jellyb Matsui et al., 

2002 

Garlic (Allium 
sativum L) 

Extraction ---------------- 
CEC: Dowex 50WX4, 2.5 x 30 cm; elution with 2 N NH4OH 
SEC: Sephadex G-25, 2.5 x 150 cm; elution with 0.1 M PBS, pH 7.0; 30 mL/min 
RPC: Develosil ODS-5, 4.6 x 150 cm; 0-8% B (B: ACN + 0.05% TFA) in 1 h; 1 mL/min; UV detection (220 nm) 

Suetsuna, 1998 

Egg 

Simulated 

gastrointestinal 
digestion 

Pepsin and 
pancreatin 

UF: MWCO 3 kDa 

CEC: HiPreP 16/10 SP FF, 16 x 100 mm; Eq.: 10 mM NH4Ac pH 4; Elution: 0.5 M NH4HCO3; 5 mL/min 
SEC: Superdex peptide 10/300GL, 10 x 300-310 mm 

Majumder and 
Wu, 2009 
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Table 3. Characterization of purified peptides with antihypertensive activitiy 1 

Source of peptide(s) Identified peptide(s) IC50 [units] Characterization Ref. 

Goat milk TGPIPN, SLPQ, SQPK 316, 330, 354 [µM] Edman degradation sequencing 
Geerlings et 

al., 2006 

Bonito bowels YRPY, GHF, VRP, IKP, LRP, IRP 320, 1100, 2.2, 2.5, 1.0, 1.8 [µM] Automated protein sequencing by Edman degradation 
Matsumura et 

al., 1993 

Yoghurt 8 peptides 1.56- 12.41 [μg/mL] Automated protein/peptide sequencing by Edman degradation 
Donkor et al., 

2007 

Beef rump VLAQYK 23.2 [µg/mL] Peptide sequencing by Edman degradation  
Jang and Lee, 

2005 

Spinach Rubisco MRWRD, MRW, LRIPVA, IAYKPAG 2.1, 0.6, 0.38, 4.2 [µM] Automated protein sequencing by Edman degradation 
Yang et al., 

2003 

Cheese whey protein 
VYPFPG, GKP, IPA, FP, VYP, 

TPVVVPPFLQP 
221, 352, 141, 315, 288, 749 [µM] Automated protein sequencing by Edman degradation 

Abubakar et 
al., 1998 

Rice IY, VVY, VF, VW 4.0, 22.0, 49.7, 3.1 [μM] Gas/liquid phase protein sequencing by Edman degradation 
Kuba et al., 

2009 

Porcine myosin B KRVIQY, VKAGF 6.1, 20.3 [μM] or 4.9, 10.6 [μg/mL] Protein sequencing 
Muguruma et 

al., 2009 

Porcine skeletal muscle troponin EKERERQ, KRQKYDI 552.5, 26.2 [μM] Protein sequencing 
Katayama et 

al., 2008 

Salt-free soy sauce AF, FI, IF 165, NI, 65.8 [μmol/L] Protein sequencing 
Zhu et al., 

2008 

Chicken bone YYRA 33.9 [μg/mL] Protein sequencing 
Nakade et al., 

2008 

Pork loin VKKVLGNP 28.5 [µM] Protein sequencing 
Katayama et 

al., 2007 

Casein 10 peptides 22-> 1000 [µM] Protein sequencing 
Maeno et al., 

1996 

Dried bonito 8 peptides 3.7- 62 [µM] Protein sequencing 
Yokoyama et 

al., 1991 

Chicken muscle 
LKA, LKP, LAP, IKW, FQKPKR, 

FKGRYYP, IVGRPRHQG 0.32- 14 [µM] 

Protein sequencing 
Fujita et al., 

2000 
Ovalbumin 

FGRCVSP, ERKIKVYL, FFGRCVSP, 

LW, FCF, NIFYCP 
0.4- 15 [µM] 

Bovine lactoferrin LRPVAA 4.14 [µM] Gas-phase sequencing 
Lee et al., 

2006a 

Hen ovotransferrin KVREGTTY 102.8 [µM] Gas-phase sequencing 
Lee et al., 

2006b 

Sheep milk yoghurt 12 peptides ------------ Liquid-phase protein/peptide sequencing Papadimitriou 
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et al., 2007 

Miso paste with casein RYLGY; AYFYPEL; YQKFPQY 0.71, 6.58, 20.08 [μM] Amino acid sequencing by RP-HPLC-MS/MS 
Contreras et 

al., 2009 

Caprine Kefir PYVRYL, LVYPFTGPIPN 2.4, 27.9 [µM] Amino acid sequencing by RP-HPLC-MS/MS 
Quiros et al., 

2005 

Milk LHLPLP ------------ Amino acid sequencing by HPLC-MS/MS 
Quiros et al., 

2006 

Manchego cheese 75 peptides 13.4- > 1000 [µM] Amino acid sequencing by HPLC-MS/MS 
Gomez-Ruiz 
et el., 2004 

Milk 40 peptides * ------------ Amino acid sequencing by HPLC-MS/MS 
Hernandez-
Ledesma et 

al., 2004 

White wheat, wholemeal wheat, 

rye flours 
14 peptides 0.19 - 0.45 [mg/mL] Amino acid sequencing by nano LC-ESI-MS/MS 

Rizzello et al., 

2008 

Ovine β-lactoglobulin from 
skimmed milk 

21 peptides** 30-71.2 [%] Amino acid sequencing by LC-MS/MS 
Chobert et al., 

2005 

Fermented milk 27 peptides ------------ Amino acid sequencing by LC-MS/MS 
Nielsen et al., 

2009 

Soybean protein 8 peptides 21- > 10000 [µM] Amino acid sequencing by ESI-MS/MS 
Kodera and 
Nio, 2006 

Sodium caseinate 21 peptides 39- > 1000 [µM] and 15-650 [µM] Amino acid sequencing by ESI- MS/MS 
Robert et al., 

2004 

Marine shrimp (acetes chinensis) DP, GTG, ST 2.15, 5.54, 4.03 [µM] Mw determination and amino acid sequencing by ESI-MS/MS 
Wang et al., 

2008b 

Yak milk casein 
YQKFPQY, LPQNIPPL, SKVLPVPQK, 

LPYPYY, FLPYPYY 
------------ Mw determination and amino acid sequencing by ESI-MS/MS 

Jiang et al., 
2007 

Egg 
VDF, LPF, MPF, YTAGV, ERYPI, IPF, 

TTI 
6.59-27.38 [μM] Amino acid sequencing by LC-ESI- MS/MS 

Majumder and 
Wu, 2009 

Several Spanish cheeses 41 major peptides** 113.1- 2419.4 [µM] Amino acid sequencing by RPC and off-line MS/MS 
Gomez-Ruiz 
et al., 2006 

Ovine milk 
IAK,VR, EKDERF, KDERF, YIPIQY, 

LPYPY 
10.0- 848.0 [μM] Amino acid sequencing by CE-ESI-IT-MS 

Gomez-Ruiz 
et al., 2007 

Milk 8 peptides 5.2- >1500 [μM] Amino acid sequencing by ESI-Q-IT-MS 
Quiros et al., 

2007 

Porcine hemoglobin LGFPTTKTYFPHF, VVYPWT 4.92, 6.02 [µM] Amino acid sequencing by MALDI-TOF/MS and ESI-MS/MS 
Yu et al., 

2006 

Enzyme –modified cheese 13 peptides ------------ Mw and amino acid sequencing by API-MS 
Haileselassie 

et al. 1999 

Salmon muscle 20 di- and tri-peptides 
Dipeptides: 1.2- 86 % 
Tripeptides: 7.5- 59% 

Amino acid sequencing by LC-ESI-MS and 1H NMR 
Enari et al., 

2008 
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Chicken leg bone 
GAVGPSG, AVKQPAVVTrYP, 

AATENM, DMSVF, EGGPKP, ANSSIL, 
AITAKL, IGNTLI, NLAPFL, EIAKLM 

------------ Amino acid sequencing by LC/MS/MS 
Cheng et al., 

2009 

Gelatin of sea cucumber ------------ 0.0142 [mg/mL] 
Hydrolysis/derivatization/Automatic amino acid analysis, Mw 

distribution by ESI-IT-MS 
Zhao et al., 

2007 

Corn gluten meal AY 14.2 [μM] 
Amino acid sequencing by HPLC-ESI-MS and determination of 

amino acid composition by hydrolysis/OPA 

derivatization/fluorescence detection 

Yang et al., 
2007 

Rice TQVY 18.2 [μM] 
Determination of amino acid composition by hydrolysis/OPA 
derivatization/automatic amino acid analysis and amino acid 

sequencing by MALDI-TOF-MS/MS 
Li et al., 2007 

Garlic (Allium sativum L) SY, GY, FY, NY, SF, GF, NF 
66.3, 72.1, 3.74, 32.6, 130.2, 277.9, 

46.3 [µM] 

Determination of amino acid composition by hydrolysis/amino 
acid analysis and automatic protein sequencing by Edman 

degradation and FAB-MS 

Sutsuna et al., 
1998 

Wakame (Undaria pinnatifida) AIYK, YKYY, KFYG, YNKL 213, 64.2, 90.5, 21 [µM] 
Determination of amino acid composition by hydrolysis/amino 

acid analysis and automated protein sequencing by Edman 
degradation and FAB-MS 

Suetsuna and 
Nakano, 2000 

α-zein 
Among 3 with high activity: 

LRP, LSP, LQP 
0.29, 1.7, 2.0 [µM] 

Determination of amino acid composition by hydrolysis/amino 
acid analysis and automated protein sequencing by Edman 

degradation and FAB-MS 

Miyoshi et al., 
1991 

Soybean IA , YLAGNQ, FFL,  IYLL, VMDKPQG 153, 14, 37, 42, 39 [µM] 
Determination of amino acid composition by hydrolysis/amino 

acid analysis and automated protein sequencing by Edman 
degradation 

Chen et al., 
2002 

Wheat gliadin IAP 2.7 [µM] 
Determination of amino acid composition by hydrolysis/amino 

acid analysis and automated protein sequencing by Edman 
degradation 

Motoi and 
Kodama, 2003 

Royal jelly 
FY, KF, IF, IVY, IMY, DGL, TKY, LTF, 

FNF, AVL, GLY 
1.67-930 [µM] 

Determination of amino acid composition by hydrolysis/amino 
acid analysis and automatic protein sequencing by Edman 

degradation 

Matsui et al., 
2002 

Yoghurt- like product YP 720 [µM] 
Determination of amino acid composition by hydrolysis/amino 

acid analysis and automated protein sequencing by Edman 
degradation 

Yamamoto et 
al., 1999 

Buckwheat 
VK, FY, AY, LF, YV, YQ, YQY, PSY, 

LGI, ITF, INSQ 
4-628 [µM] 

Determination of amino acid composition by HPLC and 

automated protein sequencing by Edman degradation 
Li et al., 2002 

Urea denaturated Z19 α-zein 17 peptides** 1.9- 57 [µM] 
Determination of amino acid composition and automated protein 

sequencing by Edman degradation 

Yano et al., 

1996 Urea denaturated total α-zein 27 peptides** 3.9- 100 [µM] 

Mung bean protein KDYRL, VTPALR, KLPAGTLF 26.5, 82.4, 13.4 [µM] 

Determination of amino acid composition by 
hydolysis/derivatization/automatic amino acid analysis, 

determination of Mw and amino acid sequencing by MALDI-
TOF MS 

Li et al., 2006 

Oyster ------------ 0.0874 [mg/mL] Mw determination by SEC Je et al., 
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2005a 

Yak milk casein PPEIN, PLPLL 0.29, 0.25 [mg/mL] 
Mw determination by LC-MS and amino acid sequencing by LC-

ESI-MS/MS 
Mao et al., 

2007 

Soybean LVQGS 22 [μg/mL] (43.7 [μM]) 
Mw determination by MALDI-TOF-MS and liquid-phase peptide 

sequencing by Edman degradation 
Rho et al., 

2009 

Porcine skeletal muscle MNPPK, ITTNP 945.5, 549 [µM] 
Mw determination by FAB-MS and automated protein 

sequencing by Edman degradation 
Arihara et al., 

2001 

Manchego cheese 22 peptides 23.7- 100 [%] Mw determination and amino acid sequencing by ESI-MS/MS 
Gomez-Ruiz 
et al., 2002 

Alfalfa white protein VW 1.1 [µM] Mw determination and amino acid sequencing by ESI-MS 
Kapel et al., 

2006 

Tuna dark muscle WPEAAELMMEVDP 21.6 [μM] Mw determination and amino acid sequencing by ESI-MS 
Qian et al., 

2007a 

Bullfrog 
(Rana catesbeiana Shaw) muscle 

GAAELPCSADWW 0.95 [μM] Mw determination and amino acid sequencing by ESI-MS 
Qian et al., 

2007b 

Sea cucumber (Acaudina 
molpadioidea) 

MEGAQEAQGD 15.9 [μM] 
Mw determination and amino acid sequencing by (nano) ESI-

MS/MS 
Zhao et al., 

2009 

Tuna GDLGKTTTVSNWSPPKYKDTP 11.28 [μM] 
Mw determination and amino acid sequencing by ESI-Q-TOF-

MS 
Lee et al., 

2010 

Pork meat 

ER, EPR, PER, KLP, AGLP, GPR, NVR, 
PGR, VGPR, RPR, PAGPR, PAGPVG 

382- >1000 [μM] Amino acid identification by nano LC-ESI-MS/MS 

Escudero et 
al., 2010 

MMVPI, IGGSI, KAPVA, PTPVP, 
YPGIA, NIIPA, MYPGIA, VIPEL, 

INDPF, VLPEI 
46.56- >1000 [μM] 

Amino acid sequencing and Mw determination by MALDI-
TOF/TOF 

Wheat bran LQP, IQP, LRP, VY, IY, TF 2.2, 3.8, 0.21, 21, 3.4, 18 [µM] 
Mw determination by MALDI-TOF-MS and automatic protein 

sequencing-HPLC 
Nogata et al., 

2009 

Pholiota adiposa GEGGP 254 [µM] 
Mw determination by MALDI-MS and automated protein 

sequencing by Edman degradation 
Koo et al., 

2006 

Yellowfin sole frame MIFPGAGGPEL 28.7 [µg/mlL 
Mw determination by SEC and automated protein sequencing by 

Edman degradation 
Jung et al., 

2006 

Blue mussel 
(Mytilus edulis) 

EVMAGNLYPG 19.34 [µg/mL] 
Mw determination by SEC and automated protein sequencing by 

Edman degradation 
Je et al., 
2005b 

Oyster (Crassostrea 
talienwhanensis Crosse) 

VVYPWTQRF 66 [μmol/L] 
Mw determination by LC-MS (LC-APCI-QQQ-MS) and 

automated protein sequencing by Edman degradation 
Wang et al., 

2008a 

Chicken leg 

GA(Hyp)GLHypGP, 
GA(Hyp)GPAGPGGI(Hyp)GERG, 

GL(Hyp)GSRGE RGL(Hyp)G, GI(Hyp) 
GERGPVGPSG 

29.4, 45.6, 60.8, 43.4 [μM] Mw determination by LC-ESI-Q-MS and protein sequencing 
Saiga et al., 

2008 
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Skimmed milk VPP, IPP 9.13, 5.15 [µM] 
Determination of peptide content, amino acid content by 

hydrolysis/amino acid analysis and automated protein sequencing 
by Edman degradation 

Pan et al., 
2005 

Steamed soybean mixed with 
roasted wheat 

AW, GW, AY, SY, GY, AF, VP, AI, VG 10- 1100 [μg/mL] 
Amino acid analysis and determination of molecular structure by 

1H NMR; 13C NMR; LC-MS 
Nakahara et 

al., 2010 

Antarctic krill (Euphausia 

superba) tail meat 
VW, LKY, ITRY, VFER 

12.9, 10.1, 236.9, 152.8 [μM] or 

2.75, 4.26, 130.7, 84 [μg/mL] 

Mw determination by SEC,quantitation of peptides by UPLC-

ESI-MS, and protein sequencing 

Hatanaka et 

al., 2009 

α-lactalbumin and β-casein 9 peptides 1->76 [μM] 
Amino acid sequencing by LC-MS/MS and automatic Edman 

degradation 
Otte et al., 

2007b 

Glycinin from soybean VLIVP 1.69 [µM] 
Determination of amino acid composition by 

hydrolysis/derivatization/HPLC, Mw by MALDI-TOF, and gas- 
phase protein sequencing by Edman degradation 

Gouda et al., 
2006 

Alaska pollack (Theragra 
chalcogramma) skin 

GPM, GPL 17.13, 2.65 [µM] 
Determination of Mw distribution by SEC, amino acid 

composition by hydrolysis/amino acid analysis, and automated 
protein sequencing by Edman degradation 

Byun and 
Kim, 2001 

Cheese LQP, MAP 3.4, 0.8 [μM] 
Determination of Mw by LC/MSD, amino acid composition by 
hydrolysation/inspissation/amino acid analysis, and automated 

protein sequencing by Edman degradation 

Tonouchi et 
al., 2008 

Gouda cheese 
RPKHPIKHQ, RPKHPIKHQGLPQ, 

YPFPGPIPN, MPFPKYPVQPF 
13.4, -- , 14.8,- - [µM] 

Determination of Mw by FAB-MS, amino acid composition by 
hydrolysis/HPLC and protein sequencing 

Saito et al., 
2000 

Sesame protein hydrolysate 
LVY, LSA, LQP, LKY, IVY, VIY, 

MLPAY 
0.33-5.80 [μg/ mL] 

Determination of amino acid composition by hydrolysis/amino 
acid analysis, peptide content by LC/MS/MS and protein 

sequencing by TOF-MS/MS 

Nakano et al., 

2006 

Wakame (Undaria pinnatifida) 
10 dipeptides 

YH, KW, KY, KF, FY, VW, VF, IY, IW, 

VY 

2.7- 43.7 [µmol/l] 
Determination of Mw by FAB-MS, amino acid composition by 

hydrolysis/amino acid analysis, and automated protein 

sequencing by Edman degradation 

Suetsuna et 
al., 2004 

Commercial whey product ALPM 928 [µM] 
Determination of Mw by FAB-MS, amino acid composition by 
hydrolysis/HPLC, and protein sequencing by automatic Edman 

degradation 

Murakami et 
al., 2004 

Mushroom Tricholoma 
giganteum 

GEP 0.04 [mg] 
Determination of Mw by LC-MS, amino acid composition by 

hydrolysis/fluorometric analysis, and automated protein 
sequencing by Edman degradation 

Hyoung et al., 
2004 

Fermented soybean paste HHL 2.2 [µg/mL] 
Determination of Mw by SEC, amino acid composition by 

HPLC, protein sequencing 
Shin et al., 

2001 

Upstream chum salmon muscle WA, VW, WM, MW, IW, LW 2.5- 277.3 [µM] 
Determination of Mw by ESI-MS, amino acid composition by 

hydrolysis/amino acid analysis and automated protein sequencing 
by Edman degradation 

Ono et al., 
2003 

 1 
 2 
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Abbreviations: 1 

IEC-Ion Exchange Chromatography; SEC- Size Exclusion Chromatography; MSD- mass selected detector; NI- no inhibition; OPA- O-phthalaldehyde; 2 

(*)- in article authors did not show which peptides are antihypertensive although optimization of fermentation procedure in order to obtain them was on a base of ACE 3 
inhibitory activity; (**)- among identified peptides only for selected the ACE inhibitory activity  were measured; (***)- in review one letter abbreviations for amino acids 4 
were adopted, however due to the lack of abbreviation for a non-protein amino acid in this system, three letter abbreviation was used: hydroxyproline (Hyp). 5 
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