

Document downloaded from the institutional repository of the University of Alcala: <u>https://ebuah.uah.es/dspace/</u>

This is a postprint version of the following published document:

Puchalska, P, Marina, M.L & García, M.C, 2015. Isolation and Characterization of Peptides with Antihypertensive Activity in Foodstuffs. Critical Reviews in Food Science and Nutrition, 55, pp.521-551

Available at https://doi.org/10.1080/10408398.2012.664829

© 2015 Taylor and Francis **Description Description Descript**

(Article begins on next page)

This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

1 2	ISOLATION AND CHARACTERIZATION OF PEPTIDES WITH ANTIHYPERTENSIVE ACTIVITY IN FOODTUFFS
3	
4	Patrycja Puchalska, M. Luisa Marina Alegre, M. Concepción García López*
5	
6	Department of Analytical Chemistry, Faculty of Chemistry, University of Alcalá. Ctra.
7	Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares (Madrid), Spain.
8	
9 10	*Corresponding author (e-mail; concepcion.garcia@uah.es; telephone + 34-91-8854915; fax + 34-91-8854971).
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
25	
26	
27	

1 Abstract

2 Hypertension is one of the main causes of cardiovascular diseases. Different drugs have been employed in the treatment of hypertension being ACE inhibitors those showing the 3 4 highest effectiveness. Synthetic drugs inhibiting ACE activity present high effectiveness but cause undesirable side effects. Recently, great attention was paid to peptides with 5 6 antihypertensive activity. Antihypertensive peptides are naturally present in some foods and 7 do not show adverse effect. Since hypertension is closely related to modern diet habits, the interest for this kind of foods is increasing. In most cases, antihypertensive peptides are 8 encrypted in a parent protein from which they are released during gastrointestinal digestion or 9 10 during food processing. In other occasions, antihypertensive peptides are added to certain foods to improve its functionality. There has been a great development of methodologies for 11 the purification, isolation, and characterization of antihypertensive peptides in foods. Despite 12 13 this wide literature, there is no revision work trying to summarize and compare the different strategies that have been employed. The aim of this work has been to review all the strategies 14 employed with this purpose. 15

16

17

18 **Keywords**: ACE, chromatography, bioactivity, protein, enzyme

1 **1. Introduction**

2 Traditionally, the dietetic value of a protein was evaluated from its nutritional quality, mainly presence of antinutrients and availability of essential amino acids. A new aspect to 3 take into account is the possibility of generating bioactive peptides. Bioactive dietary 4 components are defined as `food components that can affect biological processes or 5 substrates and hence have an impact on body function or condition and ultimately health' 6 7 (Schrezenmeir et al., 2000). Since any consumed dietary component in enough quantity could be described by this definition, two caveats should be added: the component should impart a 8 measurable effect at a realistic physiological level and the measured 'bioactivity' has to show 9 10 a potential beneficial health affect (Moller et al., 2008; Schrezenmeir et al., 2000). Bioactive 11 peptides can be naturally occurring in foods but the most usual they are in parent proteins (Iwaniak and Minkiewicz, 2008; Korhonen and Pihlanto, 2003; Moller et al., 2008; Wang and 12 de Mejia, 2005). 13

Several bioactive peptides from different origins such as milk (Hernandez-Ledesma et al., 14 2008; Madureira et al., 2010; Zimecki and Kruzel, 2007) and soybean (Wang and de Mejia, 15 2005) have been released, isolated, characterized, and briefly reviewed. Moreover, peptides 16 showing numerous bioactivities such as antihypertensive, antilipemic, anticariogenic, 17 18 antioxidative, antimicrobial, antiamnestic, opiate, antithrombotic, osteoprotective, vasodilatative, immunomodulating were thoroughly described (Iwaniak and Minkiewicz, 19 2008; Kitts and Weiler, 2003; Korhonen and Pihlanto, 2003; Wang and de Mejia, 2005). 20 According to the BIOPEP database, 37 different types of bioactivities have been gathered for 21 more than 1950 peptides (Minkiewicz et al., 2008). Among them, peptides with 22 antihypertensive activity are the most prevalent. 23

Hypertension or high blood pressure is attributed by World Health Organization (WHO) as
the fundamental source of cardiovascular mortality. Worldwide high blood pressure was

estimated to be the cause of 7.6 million premature deaths (13.5% of the total premature 1 2 deaths) (Lawes et al., 2008). Additionally, hypertension along with other cardiovascular risk factors (high cholesterol, high BMI (Body Mass Index), low fruit and vegetable intake, 3 smoking, and alcohol intake) were established to be the cause of about 83-89% ischaemic 4 heart disease and 70-76% of stroke in the world (Ezzati et al., 2003). Furthermore, 5 hypertension can lead to cardiac arrhythmia, coronary heart disease, heart and renal failure, 6 7 disability and death (Murray and FitzGerald, 2007) and, in accordance to the World Hypertension League (WHL), over 50% of the hypertension population are unaware of their 8 9 condition (Chockalingam, 2008). Hypertension can be treated with distinct medications such 10 as nitrates, diuretics, β -blockers, α -adrenergic antagonist, vasodilators, dopamine agonists calcium channel blockers (CCBs), and angiotensin converting enzyme (ACE) inhibitors 11 (Perez and Musini, 2008). Among them, ACE inhibitors (e.g. captopril) are mostly employed 12 for showing greater effectiveness and lower side effects (Souza et al., 2009). 13

First ACE inhibitor was described by Ferreira et al. (1970). It was a bradykinin potentiator 14 and was isolated from snake (Bothrops jararaca) venom (Ferreira et al., 1970). The first 15 synthetic ACE inhibitor adopted for hypertension therapy was [2S]-1-[3-mercapto-2-16 methylpropionyl]-L-proline (captopril) (Cushman and Ondetti, 1991). Afterwards, several 17 18 other synthetic ACE inhibitors were employed for treatment of hypertension (enalapril, lisinopril, alecepril or fosinopril) although they provoked adverse effects such as skin rashes, 19 cough, angioedema, taste disturbances, hypotension, reduced renal function, increased 20 21 potassium levels, and fetal abnormalities (Atkinson and Robertson, 1979; FitzGerald et al., 2004). Unlike these drugs, antihypertensive peptides do not yield any adverse effect but are 22 usually less potent in comparison to synthetic substances (Lee et al., 2010). Indeed, seven 23 dipeptides isolated from garlic showed decreasing systolic blood pressure (SBP) after oral 24 administration of 200 mg/kg in spontaneously hypertensive rats (SHRs). However, none of 25

these peptides lowered SBP as much as captopril which was used as a positive control test (Suetsuna, 1998). There are some exceptions to this fact such as a peptide isolated from tuna frame protein peptic hydrolysate and the milk peptides VPP and IPP that exert antihypertensive effects comparable with captopril (Lee et al. 2010; Pina and Roque, 2009).

5 Since hypertension is closely related to modern diet habits, interest in functional foods with 6 antihypertensive activity is having a great consideration. Therefore, the aim of this work has 7 been to review the methodologies used to isolate, purify, identify, and characterize food 8 peptides with antihypertensive activity.

9

10 **2.** ACE and blood pressure (BP)

11 Several interacting biochemical pathways are associated to the control of blood pressure 12 (BP) in living organisms being the *renin-angiotensin* system the most important. 13 Additionally, kinin-nitric oxide system, endothelin converting enzyme system, and neutral 14 endopeptidase system are also recognized to have influence on BP.

Renin-angiotensin system is shown in Figure 1. Angiotensinogen is the first link of the 15 reaction chain in the renin-angiotensin system. It is the precursor of Angiotensin I (Ang I-16 DRVYIHPFHL). In fact, it converts to Ang I in the presence of renin (E.C. 3.4.23.15) in the 17 18 bloodstream. On the other hand, Ang I hydrolyzes by removing of C-terminal dipeptide HL to Angiotensin II (Ang II- DRVYIHPF) by the action of angiotensin I converting enzyme (ACE; 19 kinases II peptidyldipeptide hydrolase). Afterwards, Ang II is distributed in the blood until its 20 inactivated by aminopeptidase A (E.C. 3.4.11.7) or N (E.C. 3.4.11.2) enzymes and its 21 converted to Angiotensin III and IV (RVYIHPF and VYIHPF, respectively). Ang II peptide 22 causes vasoconstriction by activation of AT1 receptor (AT1R) which leads to raise the BP. 23 Furthermore, Ang II negatively affects to kidney retaining salts and water, causing raise of 24

extracellular fluid volume and, in a consequence, increasing BP (Chen et al., 2009; FitzGerald
 et al., 2004; Schmieder et al., 2007).

Moreover, ACE also removes a dipeptide from C-terminus of bradykinin (RPPGFSPFR) resulting in the inactivation of this vasodilator. Therefore, ACE inhibitors decrease BP not only by lowering the level of Ang II but also by increasing the level of bradykinin. Since the inhibition of ACE causes an effective decrease of BP, most antihypertensive drugs employ this mechanism for the treatment of hypertension.

8

9 **3.** Release of antihypertensive peptides from foodstuffs

Antihypertensive peptides used to be encrypted in a parent protein from which they need to be released to exert its ability to inhibit ACE. Two main proteolytic pathways can be distinguished, *in vivo* and *in vitro*. First one involves the *in vivo* digestion of parent protein by the action of gastrointestinal enzymes while the second one involves food processing or protein processing before its ingestion. Moreover, some bioactive peptides cannot be liberated by gastrointestinal enzymes and have to be synthetically produced, added to foods, and supplied as functional foods (Meisel, 1997).

First antihypertensive peptide isolated and identified from food was described in 1982 by 17 18 Maruyama and Suzuki (1982). Casein from bovine milk was subjected to hydrolysis by trypsin and purified following several chromatographic steps. A peptide with 12 amino acids 19 and sequence FFVAPFPEVFGK was identified. The knowledge about preparation, 20 21 purification, and identification of antihypertensive peptides from food steadily increased since this first discovery, especially in the case of milk derived peptides (Lopez-Fandino et al., 22 2006; Ricci et al., 2010; Yamamoto and Takano, 1999). In this case, advances have even 23 enabled the development of commercial milk products enriched with antihypertensive 24 peptides (Table 1) (Ricci et al., 2010; Sirtori et al., 2009). 25

In addition to milk and dairy products, several others foodstuffs have been examined as 1 2 potential sources of peptides with ACE inhibition activity. Marine foods (shrimps, sea cucumber, blue mussel), fishes (alaska pollock, bonito, salmon, pacific hake), meat (pork, 3 pork loin, bullfrog, porcine, chicken), vegetable foods (soybean, wheat products, rice, garlic, 4 aramanth grain), mushrooms or processed products (miso paste, douche, wakame, royal jelly, 5 soy sauce or paste) are some examples. The most common ways to in vitro release of 6 antihypertensive peptides are enzymatic digestion (hydrolysis) and fermentation with 7 bacterial organisms. 8

Regarding enzymatic digestion, the composition of hydrolysate depends on several 9 10 parameters such as the enzyme to substrate ratio, hydrolysis time, pH and temperature of hydrolysis, etc. but it mostly depends on the kind of proteolytic enzyme. Most commonly 11 used enzymes are pepsin (Lee et al., 2010; Qian et al., 2007a), thermolysin (Arihara et al., 12 2001; Yokoyama et al., 1991), and alcalase (Chiang et al., 2006; Qian, Z.J., 2007b; Yang et 13 al., 2007). They cleave peptide bonds near to hydrophobic amino acid residues resulting in 14 peptides with the most favorable amino acid residues for antihypertensive activity at the C-15 terminal position (Otte et al., 2007a, Qian et al., 2007b). 16

17 Different strategies have been followed to increase antihypertensive activity. Pepsin 18 treatment followed by digestion with pancreatin (Escudero et al., 2010; Majumder and Wu, 2009; Yang et al., 2003), corolase PP (Gomez-Ruiz et al., 2007) or trypsin (E.C. 3.4.21.4) 19 with chymotrypsin (E.C. 3.4.21.1) (Gomez-Ruiz et al., 2007; Matsui et al., 2002; Li et al., 20 21 2002) has usually been employed to obtain smaller peptides with greater antihypertensive effects. Moreover, since these enzymes are present during gastrointestinal digestion, it is 22 possible to assess that these peptides will not be inactivated during this process. Ouiros et al. 23 (2007a) attempted to promote the release of bioactive peptides from ovalbumin with 24 chymotrypsin, trypsin, and pepsin using high hydrostatic pressures observing that 25

antihypertensive effect of certain peptides improved when pressures of 200-400 MPa were 1 2 employed. Another strategy for increasing antihypertensive activity was explored by Jia et al. (2010). They evaluated the effect of ultrasonic irradiation on the hydrolysis and the ACE 3 inhibitory activity of defatted wheat germ protein (DWGP). Results suggested that this 4 approach improved enzymatic hydrolysis by promoting the release of peptides. Moreover, 5 some authors have demonstrated an increase in antihypertensive activity of foodstuffs by the 6 7 combination of bacterial fermentation and enzymatic digestion. Tonouchi et al. (2008) observed these results when digesting with different enzymes a Danish skim milk-cheese 8 previously fermented with Lactococcus. Similarly, Hernandez-Ledesma et al. (2004) found a 9 10 higher number of antihypertensive peptides when a milk sample fermented with Lactobacillus rhamnosus was submitted to simulated gastrointestinal digestion. Chobert et al. (2005) 11 compared the antihypertensive activity of peptides obtained from ovine milk by tryptic 12 digestion and fermentation with different bacterial strains. Fermentation yielded higher ACE 13 inhibitory activity than digestion probably because fermentation yielded peptides with lower 14 molecular masses (Chobert et al., 2005). 15

In some occasions, the foodstuffs contain antihypertensive peptides that are not encrypted 16 in any protein, not being necessary any fermentation of digestion. For example, few peptides 17 18 which exerted antihypertensive activity were detected in garlic (allium sativum L) (Suetsuna, 1998), in various kind of mushrooms (Pholiota adiposa, Tricholoma giganteum) (Hyoung et 19 al., 2004; Koo et al., 2006), in soypaste (Shin, et al., 2001) and in different kind of cheeses 20 21 (gouda, manchego and varieties of Spanish and Swiss cheeses) (Gomez-Ruiz et al. 2002; Gomez-Ruiz et al., 2006; Meyer, et al., 2009; Saito et al., 2000). These peptides can simply be 22 extracted with water or alcohols like ethanol or methanol. At this regard, it is possible to 23 differentiate between processed and unprocessed products. Unprocessed products are garlic or 24 mushrooms while processed products comprised soypaste and cheese. The manufacture of 25

these products involves the use of enzymes or bacterial organisms but, in no case, they are
 added to release antihypertensive peptides.

The other way to release peptides without addition of bacterial organisms or enzymes is 3 autolyzation. Autolyzation involves the employment of proteolytic enzymes which already 4 are ingredients of foodstuffs. This approach was followed for the preparation of hydrolyzates 5 of bonito bowels (Fujii et al., 1993; Matsumura et al., 1993), pacific hake fish (Samaranayaka 6 7 et al., 2010) or wheat bran (Nogata et al., 2009). A similar approach was also used when proteins of oyster and blue mussel were fermented without any addition of bacterial organism 8 for 6 months at 20°C in salty conditions. In both cases, antihypertensive peptides were 9 10 obtained from hydrolysate after long-term fermentation (Je et al. 2005a; Je et al., 2005b).

11

12 4. Determination of ACE inhibitory activity of food peptides

General framework of experimental investigation for production, purification, and identification of antihypertensive peptides is presented in **Figure 2**. Work strategies commonly consist of releasing of peptides, isolation, purification, identification, and determination of amino acid sequence. After each step, screening of ACE inhibitory activity is crucial to select those experimental conditions or fractions with the most potential antihypertensive abilities.

ACE inhibition activity is expressed using IC_{50} index which is the concentration required of a particular substance to inhibit 50% of the ACE activity. Different assays have been developed to determinate the ACE inhibition value *in vitro*. First assays underwent with errors related to peptidases interferences. Then, assays using artificial substrate started to play considerable role since they were inexpensive, easy to obtain, not liable to be hydrolyzed by peptidases and presented higher dissociation constant for ACE (Meng and Oparil, 1996). Released compounds by the action of ACE could be quantified by spectrophotometric

(Holmquist et al., 1979), fluorometric (Alves et al., 2005), HPLC (Wu et al., 2002), CE (Van
 Dyck et al., 2003) or by a radiometric method (Rohzabach, 1978).

Nowadays, the most broadly spread method for the determination of ACE inhibition 3 activity is that developed by Cushman and Cheung (1971). It is based on the reaction between 4 hippuryl-L-histydyl-L-leucine (HHL) used as substrate and ACE and the subsequent 5 formation of hippuric acid (HA). The ACE activity is directly related to the extent of HA 6 7 liberated from HHL. The extent of this reaction in the presence or absence of inhibitory peptides is evaluated by measuring the amount of formed HA from its absorbance at 228 nm. 8 In this first approach ACE was firstly acetone extracted from rabbit lung. Further 9 10 modification of this procedure employed pure ACE from rabbit lung in place of their acetone extract (Nakamura et al., 1995; Vermeirssen et al., 2002). Despite the high selectivity of this 11 reaction, the assay had low sensitivity since unhydrolyzed HHL was co-extracted with HA 12 (Meng and Oparil, 1996; Lopez-Fandino et al., 2006). Furthermore, long incubation times 13 (around 30 min) were required to obtain enough product amounts to be quantified. Hence, 14 numerous modifications appeared in the literature, as a consequence obtained IC₅₀ values 15 differed significantly among them being not possible their comparison (Kodera and Nio, 16 2006). In fact, the IC₅₀ of hydrolysates obtained by digestion of an insect protein with four 17 18 different enzymes were determined by applying two different ACE assays. One method was based on the spectrophotometric measurement of FAPGG [2-furanacryloyl-phenylalanyl-19 glycyl-glycine] used as substrate while an HPLC method which adopted DTG 20 21 [dansyltriglycine] as substrate was employed in the second approach. When using FAPGG method, IC₅₀ values were 3.935 ± 0.014 and 0.214 ± 0.179 mg/mL for the nonhydrolyzed and 22 hydrolyzed extract, respectively. The HPLC method yielded IC₅₀ values of 22.465 ± 0.615 23 and 4.969 ± 0.622 mg/mL (with 50 µL of ACE extract) and 43.220 ± 12.66 and 1.253 ± 0.120 24

mg/mL (with 25 μL of ACE extract), respectively, for the nonhydrolyzed and hydrolyzed
 extract (Vercruysse et al., 2005).

3 In addition to the *in vitro* determination of the IC₅₀ values, additional experiments are very frequently included to confirm ACE inhibitory activity. Indeed, experiments using 4 spontaneously hypertensive rats (SHR) have also been used for assaying ACE inhibition in 5 living organisms. This kind of experiments is usually focused on short and/or long-term 6 7 administration studies. Nevertheless, results obtained by in vivo studies significantly differ from the results observed by in vitro assays. These differences could be justified by the 8 bioavailability of peptides (Lopez-Fandino et al., 2006; Ricci et al., 2010). In fact, a peptide 9 10 $(\beta$ - lactosin B, ALPM) derived from a commercial whey product that presented weak ACE inhibitory activity (IC₅₀=928 µM) showed a noticeable decrease of SBP after 8 h oral 11 administration (2 mg/mL) to SHRs (Murakami et al., 2004). Fujita and Yoshikawa (1999) 12 compared the ACE inhibitory activity of LKPNM and LKP peptides (obtained by digestion 13 from dried bonito with thermolysin) with captopril using an *in vitro* and an *in vivo* study. The 14 in vitro study yielded much lower ACE inhibitory activity for peptides while the in vivo study 15 demonstrated that peptides were more effective for reducing BP than captopril (Fujita and 16 Yoshikawa, 1999). The differences between two approaches to assess the ACE inhibitory 17 18 activity appeared also when Yamamoto et al. (1999) purified and characterized a dipeptide from a yoghurt-like product. The IC₅₀ value of the dipeptide was estimated at 720 μ M which 19 would classify it as a peptide with moderate antihypertensive activity. However, the same 20 21 peptide provoked similar in vivo antihypertensive activity as IPP and VPP which are generally categorized as peptides with very high activity (IC₅₀ values, 5 and 9 µM, respectively) 22 (Yamamoto et al., 1999). 23

In addition to the estimation of IC_{50} value, some authors pay also attention to additional measurements such as simulated gastrointestinal digestion or caco-2 cell monolayer transport.

These experiments can yield information on bioavailability of target compounds and will be 1 2 discuss later. Additionally, the activity of peptides may be affected by factors such us stability, processing or mechanism of action (Yamamoto et al., 2003). In fact, ACE inhibition 3 activity is significantly influenced by the position of proline in the amino acid sequence, by 4 protein hydrophobicity, and by size of released peptides. Next examples can show these facts. 5 Different protein sources were hydrolyzed in the same conditions: soybean protein, wheat 6 7 gluten, caseinate, and whey proteins. IC_{50} for these hydrolyzates were 180, 340, 100, and 200 µg/mL, respectively. High antihypertensive activity of casein (100 µg/mL) could be attributed 8 as much for their high hydrophobicity as for the high amount of encrypted prolines in its 9 10 primary structure. Despite wheat gluten also contain high amount of proline residues, its lower hydrophobicity caused a significant increase of its IC₅₀ value (340 µg/mL) (Kodera and 11 Nio, 2006). In addition to the IC₅₀, another important parameter to take into account is the 12 degree of hydrolysis (DH). This parameter is commonly calculated by the o-phtaldialdehyde 13 (OPA) method (Chiang et al., 2006; Jiang et al., 2007) neverthless other methods and 14 techniques have also been employed for this purpose as SDS-PAGE (Jang and Lee, 2005), 15 calculation of α-amino nitrogen and total nitrogen (Mao et al., 2007) or calculation of relative 16 peak area in regard to whole protein (Chobert et al., 2005). Yak milk casein was hydrolyzed 17 18 by alcalase at pH 8 and 55°C in 0, 60, 120, 180, 240, 300, and 340 min. It was observed that at 240 min of hydrolyzing, ACE inhibitory activity reached the maximum level and DH was 19 correlated with it. After this time, DH was too high and inhibition activity decreased due to 20 21 the hydrolysis of small peptides with antihypertensive activity (Mao et al., 2007). However, when the same yak milk casein was hydrolyzed with various enzymes (trypsin, pepsin, 22 alcalase, flavourzyme, papain, and neutrase) at their optimal pH and temperature and at 23 different times till 12 h, the DH was not correlated with the ACE inhibition activity. ACE 24 inhibition activity was the poorest when using flavourzyme despite its high DH. Inversely, the 25

most promising antihypertensive activities were obtained with papain and neutrase which
showed low DH (Jiang et al., 2007). Similar results were also observed when milk was
fermented by 13 different strains of lactic acid bacteria (Nielsen et al., 2009) and when a
soybean protein isolate was hydrolyzed by different enzymes (alcalase, flavourzyme, trypsin,
chymotrypsin, and pepsin) (Chiang et al., 2006).

6

7

5. Isolation and purification of bioactive peptides from foodstuffs

The purification of a hydrolyzate showing antihypertensive activity is one of the most 8 important steps in the framework presented in Figure 2. The purification path could 9 10 significantly influence the number of identified peptides, their activity and characteristic (e.g. size of the peptide and their composition), and their properties. Generally, Liquid 11 Chromatography (LC) is the most employed technique. Different chromatographic modes can 12 be selected on the base of the properties of ACE inhibitory peptides. After each 13 chromatographic step, fractions with the highest in vitro ACE inhibitory activity are 14 lyophilized and subjected to the next chromatographic step till pure peptide/s are obtained. 15

Table 2 summarizes the methods that have been employed for releasing and purifying peptides with antihypertensive properties. Despite there are some general approaches that are more or less common in all procedures, the number of purification steps in every case depends on the complexity of the sample and the dynamic range and abundance of peptides (Gomez-Ruiz et al., 2004; De Simone et al., 2009).

Generally, first step in the purification is a separation based on peptide size using either ultrafiltration (UF) or size-exclusion chromatography (SEC). UF is a low-pressure technique where solution is processed through a semipermeable membrane and molecules are isolated by molecule size. Moreover, UF also enables the concentration and enrichment of fractions by removal of solvent, it is quite easy to use, it does not require special equipment, and can be

used at cold room temperature (Schratter, 2004). UF enables the separation of small 1 2 antihypertensive peptides from bigger molecules such as unproteolyzed proteins and other interferences being the first purification step in many cases. Despite membranes with Mw in 3 the range 1-30 kDa have been tried, smaller cut-off membranes are preferred. As example, an 4 hydrolyzate of sea cucumber gelatin was subjected to UF using membranes with cut-offs of 5 10, 5, and 1 kDa observing IC₅₀ values of 0.72, 0.47, and 0.35 mg/mL, respectively. On the 6 7 base of ACE inhibition activity, the fraction containing molecules smaller than 1 kDa was purified (Zhao et al., 2007). However, very low Mw cut-off membranes can sometimes result 8 in a loss of activity (Miguel et al., 2009; Rho et al., 2009; Samaranayaka et al., 2010; Zhang et 9 10 al., 2009). In fact, results obtained when a pacific hake protein hydrolysate was ultrafiltrated 11 through membranes of 10, 3, and 1 Mw cut-off indicated that the fraction with the highest ACE inhibition activity was that obtained when the hydrolysate passed through the 3 kDa cut-12 off membrane (Samaranayaka et al., 2010). 13

SEC (also known as Gel-Filtration Chromatography (GFC) when an aqueous solution 14 system is used and Gel-Permeation Chromatography (GPC) with non-aqueous solution 15 system) is also very used for the purification of peptides. SEC tends to be used at the 16 beginning of the purification path similarly as UF, as well as in the middle of protocols for 17 removing interferences. SEC is quick, easy to use, universal, and compatible with 18 physiological conditions. SEC is also useful for estimating the Mw range or for desalting. 19 Nevertheless, the separation of a target peptide from a closely related peptide mixture is 20 21 practically impossible and additional SEC separations using stationary phases with different pore diameters are needed (Sewald and Jakubke, 2009). Among SEC columns, porous silica 22 base TSK-gel SW (Katayama et al., 2007; Katayama et al., 2008; Nakade et al., 2008) and 23 polyhydroxymethacrylate base OHpak (Jung et al., 2006) are preferred. For low and medium 24 pressure SEC, dextran base Sephadex or agarose/dextran base Superdex columns are mainly 25

employed. Among Superdex columns, those with Mw ranging from 100 to 7000 like Peptide 1 2 10/300 GL column (Hatanaka et al., 2009; Rho et al., 2009; Majumder and Wu, 2009) and Peptide HR 10/30 column (Abubakar et al., 1998; Cheng et al., 2009; Matsui et al., 2002; Li 3 et al., 2002; Saito et al., 2000; Tonouchi et al., 2008) were mostly chosen. Regarding 4 Sephadex columns, most used were Sephadex G-25 (Mw range, 1000-5000) and Sephadex G-5 15 (Mw \leq 1500). Other less used Sephadex columns are G-50 (Mw range, 1500–30000) (Je et 6 7 al. 2005a), G-75 (Mw range, 30000-80000) (Je et al., 2005b), and G-200 (Mw range, 5000-250000) (Tovar-Perez et al., 2009). Tovar-Perez et al. (2009) purified alcalase aramanth 8 albumin and globulin protein hydrolysates using sequentially Sephadex G-200 and G-15 9 10 columns. Albumin hydrolysate eluted in 18 h in one broad peak (Mr<1.35 kDa) using the G-200 column while globulin hydrolysate eluted in 5 h in two separated fractions. Afterwards, 11 fractions were individually separated in a G-15 column observing signals corresponding to 12 molecules of 4.70 and 0.55 kDa for the albumin hydrolysate and signal corresponding to Mw 13 of 7.50, 4.70, 0.55, and 0.40 kDa for the globulin hydrolysate (Tovar-Perez et al., 2009). 14

An alternative and complementary chromatographic mode for the purification of ACE 15 inhibitory peptides is Ion Exchange Chromatography (IEC). IEC is mainly employed as a 16 further purification step after or between UF or SEC purification. Cation exchange resins with 17 negatively charged groups like sulfopropyl (SP), methyl sulfonate (S), and carboxymethyl 18 (CM) and anion exchange resins positively charged with quaternary ammonium (Q), 19 quaternary aminoethyl (QAE) or DEAE (diethylaminoethyl) are mostly employed (Selkirk, 20 21 2004). Since antihypertensive peptides contain mainly hydrophobic amino acid whose pI's are between 5-7, both cation exchange (CEC) and anion exchange (AEC) can be employed. When 22 AEC is used, pH tends to be around 7.5 and binding peptides are negatively charged, while in 23 CEC pH is maintained at acidic level (4.0) to retain positively charged peptides. AEC 24 purification methods focus rather on column with weak ion-exchange ligands as DEAE (Lee 25

et al., 2010; Qian et al., 2007a) or DE (Katayama et al., 2008; Katayama et al., 2007; Mao et
al., 2007) while CEC methods mainly prefer strong ion-exchange ligands as SP. In both cases,
peptides are eluted by increasing the eluent ion strength using NaCl gradients at constant pH
(Herraiz, 1997). CEC with isocratic elution has also been possible by using of sodium
succinate buffer in 20% ACN (Shin et al., 2001), 2 N NH₄OH (Suetsuna, 1998; Suetsuna et
al., 2004), ammonia solution (Chen et al. 2002; Suetsuna and Nakano, 2000) or ammonium
carbonate buffer (Majumder and Wu, 2009).

Reserved-Phase Chromatography (RPC) is the dominate technique in the purification of
peptides with antihypertensive activity (Herraiz, 1997). Generally, RPC is employed at the
end of the purification protocol after UF, SEC or IEC separations. However, there are also
examples in which this has been the only technique employed in the purification (Chobert et
al., 2005; Fujita et al., 2000; Gouda et al., 2006; Lee et al., 2006ab; Maeno et al., 1996; Pan
et al., 2005; Papadimitriou et al., 2007; Yano et al., 1996; Yokoyama et al., 1991).

There is a large number of RPC columns that can be used in the separation and purification 14 of peptides where column support, bonded phase, pore size, particle size, and column 15 dimension should be taken into consideration. Porous silica-based supports are the first choice 16 since they offer good mechanical stability and wide range of selectivity by bonding of 17 18 different phases. C_4 - C_{12} phases are typically used with high hydrophobic samples like large peptides and small hydrophilic proteins, while C_{18} phases prefers slightly more hydrophilic 19 analytes and are the perfect choice for small peptides. Moreover, phases such as cyano, hexyl, 20 21 phenyl, hexyl/phenyl, perfluorinated are also available (Neville, 2004). Alternatively, polymeric reserved phases such as polystyrene divinylbenzene standing a wide range of pHs 22 have also been employed. 23

Mobile phases consist of mixtures of water with and organic modifier being acetonitrile followed by alcohols such us methanol, ethanol or isopronanol as the most popular options

(Neville, 2004). Gradient elution by the increasing concentration of the organic modifier is 1 2 the most usual. Mobile phases are usually set up at acidic pH. Moreover, the addition of ionpairing agents is also very usual to increase hydrophobicity of peptides by complexing with 3 positively charged peptides. Trifluoroacetic acid (TFA) is usually the first choice because it is 4 transparent to UV light, does not block amino groups (therefore, derivatization of peptides is 5 possible), is highly volatile (therefore, easy to remove by lyophylization), and easily miscible 6 7 with most organic mobile phases. Other ion-pairing agents like acetic acid, formic acid, phosphoric acid, heptafluorobutyric acid (HFBA) or quaternary ammonium salts can be 8 alternatives to TFA. 9

Online detection during purification was performed by UV absorption at the following wavelengths: 210-220 nm (corresponding to the absorption of peptide bonds), and/or 254 and 280 nm (specific absorption of aromatic amino acids as tryptophan, phenylalanine and tyrosine) (Herraiz, 1997).

Moreover, additional steps involving liquid-liquid extraction, desalination or dialysis are also employed for the purification of antihypertensive peptides. Desalination of samples is usually conducted by electrodialysis (Je et al., 2005ab; Kodera and Nio, 2006; Nakahara et al., 2010) or by solid-phase extraction (Katayama et al., 2007; Katayama et al., 2008; Muguruma et al., 2009).

19

20 6. Identification and characterization of bioactive peptides from foodstuffs

Isolated and purified peptides possessing the most potential antihypertensive activity at the end of the framework (see **Figure 2**) are identified and characterized. Characterization mostly involved the determination of the amino acid sequence and the IC_{50} value. Moreover, in some cases additional information like the amino acid composition, molecular weight, molecular weight distribution, peptide content, molecular structure, and purity are also determined. Table 3 summarizes all peptides that have been identified from foodstuffs and the kind of
 characterization that has been performed.

3 Amino acid sequence determination can be carried out by mass spectrometry (MS) or by Edman degradation sequencing. Edman degradation is based on the sequential elimination of 4 N-terminal amino acids by chemical procedures. However, this method is time consuming 5 and requires highly purified samples (free of salts, detergents, and nonvolatile additives such 6 7 as urea). Edman degradation can be performed manually or fully automated using special automated protein/peptide sequencers (Gouda et al., 2006; Kuba et al., 2009; Lee et al., 8 2006ab; Papadimitriou et al., 2007; Rho et al., 2009). An alternative technique to determine 9 10 molecular structure is NMR. NMR has been used for tripeptides of salmon muscle hydrolysate (¹H NMR) (Enari et al., 2008) and dipeptides of steamed soybean mixed with 11 roasted wheat hydrolysate (¹H NMR and ¹³C NMR) (Nakahara et al., 2010). 12

MS is a powerful technique widely employed for the characterization of bioactive peptides. 13 In addition to the amino acid sequence, MS can also yield accurate information on molecular 14 masses, peptide purity or post-translational modifications, etc. (Herraiz, 1997). MALDI 15 (matrix assisted laser desorption and ionization), ESI (electrospray ionization) and, less 16 frequently, FAB (Fast Atom Bombardment) have been the ionization sources employed. LC 17 18 and, less frequently, capillary electrophoresis (CE) are sometimes needed previously to the MS analysis. In fact, a CE-IT-MS system has enabled the identification of 28 different 19 peptides from an ovine casein hydrolysate. Neverthless, the separation of peptides by CE 20 21 requires special attention to avoid peptides are adsorbed on the wall of the capillary (Gomez-Ruiz et al., 2007). 22

Antihypertensive peptides are mainly short peptides with 2-12 amino acid residues. In fact,
active sites of ACE cannot accommodate big molecules (Murray and FitzGerald, 2007).

Amino acid composition is determined by the chemical hydrolysis of peptides and amino acid analysis using an automatic analyzer. Other options for the amino acid analysis have been peptide hydrolysis with HCl and phenol, followed by RPC separation and UV detection (Murakami et al., 2004; Saito et al., 2000).

Although full relationship between structure and ACE inhibitory properties of 5 antihypertensive peptides is still not established, it is important to highlight some common 6 7 features for antihypertensive peptides. In addition to low molecular weight and short sequences, antihypertensive peptides contain a significant amount of hydrophobic amino 8 acids especially at C-terminal position (Meisel, 1997). The presence at C-terminal of proline 9 10 (P) or positive charge of lysine (K) (ε- amino group) or arginine (R) (guanidine group) enhances the potency of antihypertensive peptides (Hernandez-Ledesma et al., 2008; Kitts, 11 and Weiler, 2003; Meisel, 1997; Murray and FitzGerald, 2007). This fact could be related 12 with the bioavailability of antihypertensive peptides since it has been demonstrated that 13 peptides including proline at the end of the sequence are particularly resistant to in vivo 14 proteolysis (Quiros et al., 2008). 15

Nevertheless, the presence in vitro antihypertensive activity of isolated peptide does not 16 involve the activity in vivo. In fact, orally administered peptide need to reach the target 17 18 cardiovascular system in an active form. Before that, orally delivered peptides have to resist the gastrointestinal tract digestion and be transported in bioactive form (Vermeirssen et al., 19 2004). Primary digestion of peptides starts in the stomach by the action of pepsin in acidic 20 21 conditions. Following, peptides are digested in the luminal phase of small intestine at alkaline pH by the action of pancreatic proteases like trypsin, a-chymotrypsin, elastase, and 22 carboxypeptidase A and B (Vermeirssen et al., 2004). Next, peptides resisting gastrointestinal 23 digestion are subjected to the intestinal brush border membrane where a variety of peptidases 24

can further hydrolyze ACE inhibitory peptide. Generally, peptides resisting this step can be
 transported to the blood circulation (Pihlanto-Leppala, 2000).

3 In order to demonstrate peptide bioavailability, additional (bio)chemical characterization is needed. Several measurements of stability of purified antihypertensive peptides against 4 gastrointestinal enzymatic digestion can be carried out. Pure peptide can be submitted to a 5 simulated gastrointestinal digestion using different enzyme systems. Combination of trypsin-6 7 chymotrypsin (Rizzello et al., 2008), pepsin-pancreatin (Robert et al., 2004), pepsin-corolase PP (Quiros et al., 2005), pepsin-trypsin (Koo et al., 2006) or pepsin-trypsin-protease N 8 (Hyoung et al., 2004) enzymes have been employed for this purpose. This procedure has been 9 10 assayed with peptides isolated from sea cucumber (Zhao et al., 2009), rice (Kuba et al., 2009), oyster (Wang et al., 2008a), porcine hemoglobin (Yu et al., 2006) and wakame (Sato et al., 11 2002) hydrolysates. Resistance to intestinal digestion can also be demonstrated by the use of a 12 model system such as Caco-2 cells. Caco-2 cells in monolayers format express a variety of 13 intestinal enzymes and transporters and have been employed as a model of intestine 14 epithelium (Lopez-Fandino et al., 2006). Geerling et al. purified three peptides (TGPIPN, 15 SLPQ, and SQPK) from goat milk hydrolysate with similar IC₅₀ values. All peptides were 16 subjected to the Caco-2 monolayer experiment but only TGPIPN was found to pass intact in 17 18 small amount. Nevertheless, intake of goat milk hydrolysate by SHR for 12 weeks had resulted in a decrease of SBP (Geerlings et al., 2006). The reason for this disagree could be 19 that Caco-2 model is tighter than intestinal mammalian tissue and some molecules which do 20 21 not show sufficient absorption in the model can exert in vivo effect (Vermeirssen et al., 2005). Furthermore, since ACE cleaves the C-terminal of oligopeptides with wide specificity, 22 antihypertensive peptides reaching the cardiovascular system also need to resist ACE action. 23 In relation to this fact, peptides can be divided into three groups: inhibitor type, substrate type, 24 and pro-drug type (Fujita et al., 2000). 'Inhibitor type' peptides are not affected when they are 25

preincubated with ACE. 'Substrate type' peptides show a decrease in activity when they are exposed to ACE where '*Pro-drug type*' peptides are transformed to true inhibitor by ACE or gastrointestinal proteases (Li et al., 2004; Vermeirssen, et al., 2004). True inhibitor type (Tonouchi et al., 2008; Yang et al., 2007; Zhao et al., 2009), substrate type (Katayama et al., 2007; Katayama et al., 2008), and pro-drug inhibitor (Lee et al., 2006c) peptides have been found in different hydrolysates.

7 One of the attempts to understand the inhibition site and to explore the inhibition mechanism of antihypertensive peptides is the measurement of inhibition mode of peptides. 8 Overall pattern for ACE inhibition was investigated by the incubation of inhibitory peptides 9 10 with different concentrations of HHL and the measurement of the ACE inhibitory activity. The majority of antihypertensive peptides inhibit ACE following a competitive mode 11 although noncompetitive inhibition has also been found (Li et al., 2004). Structure- activity 12 correlation is influenced by the three C-terminal residues of antihypertensive peptide where 13 substrate or competitive inhibitors containing at all positions hydrophobic (aromatic or 14 branched-side chains) residues are preferred. However, the most favorable are aromatic amino 15 acid residues and proline (Li et al., 2006). Competitive ACE inhibitor peptides have been 16 found inter alia in porcine skeletal muscle troponin (Katayama et al., 2008), glycinin from 17 18 soybean (Gouda et al., 2006), Pholiota adiposa (Koo et al., 2006), oyster (Je et al., 2005a), mushroom tricholoma giganteum (Hyoung et al., 2004) and porcine hemoglobin (Yu et al., 19 2006) hydrolysates. Noncompetitive ACE inhibitor peptides have been found in oyster (Wang 20 21 et al., 2008a), tuna dark muscle (Qian et al., 2007a), bullfrog muscle (Qian et al., 2007b), pork loin (Katayama et al., 2007), bovine lactoferrin (Lee et al., 2006a), and hen ovotransfferin 22 hydrolysates (Lee et al,. 2006b). 23

24

7. Quantification of peptides with antihypertensive activity

Since first discover of antihypertensive peptide from foodstuff, studies in the area of ACE 1 2 inhibitory peptides were mainly focused on the area of isolation, purification, identification, and characterization of these peptides. In last year new trend can be observed where 3 additional quantitative analysis of particular peptides with high IC_{50} value is added. This fact 4 can be related to variety of causes. First of all recent rapid development of functional foods 5 which contain antihypertensive peptides require established standardized methodologies for 6 7 quantification of peptides including stability studies in complex biological matrices. Continuously due to the high dosage dependent of some antihypertensive activity, the 8 9 quantification of peptide in functional food to assess the safety, activity of the final product 10 and health claims is essential (Contreras et al., 2008; Gilani et al., 2008). The amount of encrypted peptide in different crops varieties or amount of released peptides in slightly 11 different conditions of hydrolysate preparation like time of storage (Papadimitriou et al., 12 2007) or supporting of hydrolysis by high pressure (Quiros et al., 2007a) can fluctuate 13 drastically. Moreover considering that functional food become more widespread (including 14 genetically modified organism) and probably in a future will be a crucial diet supplement for 15 hypertensive population, cited information are necessary for regulatory agencies to expand 16 policy and regulations of adding particular peptides to commercial foodstuff (Contreras et al., 17 18 2008; Gilani et al., 2008).

In the majority quantification of selected antihypertensive peptide was done by the use of mass spectrometry with previous HPLC separation, however some other attempts also can be found in the literature. The quantification of particular peptides which posses antihypertensive activity was made on the standard calibration curve of corresponding synthetic peptide injected to LC-MS system. By this methodology the concentration of seven dipeptides in the wakame (Sato et al., 2002) and eight dipeptides in salmon muscle (Enari et al., 2008) hydrolysates was estimated. **Figure 3** shows the chromatograms and the mass spectra

corresponding to the antihypertensive peptide FY in a synthetic standard and in the 1 2 hydrolysate of wakame. Since mass spectrum obtained with the synthetic peptide was identical to that observed in hydrolysate, this was used for the quantitation of the peptide in 3 4 wakame by LC-MS (Sato et al., 2002). A similar approach has also been used for the determination of three peptides in goat milk hydrolysate (Geerlings et. al., 2006). 5 Ouantification of LHLPLP peptide in fermented milk has been performed by HPLC-MS and 6 7 HPLC-MS/MS. Developed method was validated by the determination of repeatability, reproducibility, linearity, and recovery. Calibration was performed base on the peak area of 8 the precursor and it adducts in the MS experiments and on peak area of the most abundant 9 10 product ions after fragmentation of precursor in MS/MS analysis. Limits of detection and quantification determined by MS/MS were 7 µg/mL and 25 µg/mL, respectively (Quiros et 11 al., 2006). Similarly, method for determination of LKPNM antihypertensive peptide in bonito 12 muscle hydrolysate was evaluated by use of HPLC-MS and HPLC-MS/MS system. 13 Validation of method by measuring specificity, linearity, accuracy, precision and 14 reproducibility was presented (Curtis et al., 2002). Next, quantification of nine 15 antihypertensive dipeptides in fermented soybean seasoning and soybean sauce was 16 performed by LC-MS/MS (Nakahara et al., 2010). A comparative study of the concentration 17 of IPP and VPP in Swiss cheeses and non Swiss cheeses (Butikofer et al., 2007) and in 18 chesses with different ripening time (Meyer et al., 2009) using HPLC-MS³ and PPPP as 19 internal standard revealed that large variations were obtain among individual loaves from 20 21 various producers and high concentration of both peptides often occurred in long-term ripened cheeses produced from raw milk. The same peptides were quantified in miso paste by LC-MS 22 using also internal standard methodology, whereas isotopes (13C5)Val(13C5)Pro-Pro and Ile-23 (¹³C₅)Pro-Pro were involved (Inoue et al., 2009). HPLC with UV detection has also been 24 employed for the quantitation of antihypertensive peptides in foodstuffs. Yamamoto et al. 25

(1999) used it for the quantitation of YP in yoghurt like products using a synthetic peptide for
 the calibration (Yamamoto et al., 1999). The same methodology was employed in
 quantification of IY, VY and IVY in Protease N treated Royal Jelly (Tokunaga et al., 2004).

4

5 **8.** Conclusions

The role of antihypertensive peptides derived from foodstuff becomes increasingly 6 7 appreciated since hypertension is a grave problem, especially, in highly-developed countries. Possibility of partly substitution and support of synthetic ACE inhibitor treatment or 8 prevention and mitigation of hypertension by functional food consisting antihypertensive 9 10 peptides, can be significant. The knowledge about ACE inhibitory peptides in last year improved such as the specification of their biochemistry, bioavailability, properties or 11 mechanism of inhibition. As well, the number of identified peptides with certain ACE 12 inhibition activity from various sources noteworthy increased. However due to the high 13 interest in supplementation of food by some peptides the development of standardized 14 methodologies for isolation, purification and identification is needed. Next, selection of 15 appropriate source of protein with suitable releasing technique is crucial in production of 16 antihypertensive peptides. The most frequently involve technique is enzyme digestion where 17 18 the use of biomolecules with low specificity or their combination to produce small antihypertensive peptides is essential. The techniques such as fermentation, autolysis or 19 simple extraction in a case of naturally presented antihypertensive peptides was also found in 20 21 the literature as an alternative. Also the varieties of ACE assays to evaluate IC₅₀ value is presented where the need of standardized method for measuring antihypertensive activity 22 should be underline since significant differences between used methods appears. The 23 purification path for separation of antihypertensive peptides is a difficult task. Even if the 24 number of employed steps generally depends on the complexity of hydrolysate, some general 25

features in purification can be extracted. For production of peptides with probably the highest 1 2 ACE inhibitory activity as a first step UF or SEC is mainly in use. Both techniques are on the base of partial exclusion of molecules by the mass. Since peptides with antihypertensive 3 activity are small molecules which posses from 2-12 amino acid residues, overall the 4 technique should use suitable conditions to remove bigger molecules and in the same time not 5 exclude peptides of interest. Next IEC, where as much CEC as AEC frequently was used in 6 7 the purification path, where the first one with much higher repeatability. The most powerful technique RP-HPLC appears both at finalization of purification path of peptide as also as the 8 unique used technique. Since antihypertensive peptides contain significant amount of 9 10 hydrophobic amino acid and the standard conditions for separation of peptides are mainly in 11 use, it is quite easy to predict where high potent peptides should elute. Some others methods as desalination, liquid-liquid extraction, solid phase extraction or capillary electrophoresis 12 also randomly appears in purification of antihypertensive peptides. Furthermore for 13 identification mainly two methods namely, mass spectrometry or Edman degradation method 14 appeared, where the first one in last time gain special attention since is quick, reliable and 15 some additional information as accurate molecular weight can be obtain in the same time. 16 After identification frequently additional (bio)chemical tests for antihypertensive peptides are 17 18 made since habitually ACE inhibition activity in vitro does not provide in vivo activity. Namely, gastrointestinal digestion, Caco-2 monolayer, preincubation with ACE or inhibition 19 mode are employed to check inter alia the bioavailability of peptide. Following the 20 21 quantitative analysis of some particular peptides starts to play important role since future trend of functional food supplemented with ACE inhibitory peptides can be observe. In this 22 area standard calibration curve with synthetic analogs measured by HPLC-MS system 23 domain, however UV detection also randomly was employed. 24

25 9. Bibliography

- Abubakar, A., Saito, T., Kitazawa, H., Kawai, Y., and Itoh, T. (1998). Structural analysis of
 new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. *J. Dairy Sci.* 81: 3131-3138.
- Alves, M.F., Araujo, M.C., Juliano, M.A., Oliveira, E.M., Krieger J.E., Casarini, D.E.,
 Juliano, L., and Carmona, A.K. (2005). A continuous fluorescent assay for the determination
 of plasma and tissue angiotensin I-converting enzyme activity. *Braz. J. Med. Biol. Res.* 38:
 861-868.
- Arihara, K., Nakashima, Y., Mukai, T., Ishikawa, S., and Itoh, M. (2001). Peptide inhibitors
 for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle
 proteins. *Meat Sci.* 57: 319-324.
- Atkinson, A.B., and Robertson, J.I. (1979). Captopril in the treatment of clinical
 hypertension and cardiac failure. *Lancet.* 2: 836-839.
- Butikofer, U., Meyer, J., Sieber, R., and Wechsler, D. (2007). Quantification of the
 angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard,
 semi-hard and soft cheeses. *Int. Dairy J.* 17: 968-975.
- 16 Byun, H.G., and Kim, S.K. (2001). Purification and characterization of angiotensin I
- 17 converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma)
- 18 skin. *Process Biochem.* **36:** 1155-1162.
- 19 Chen, J.R., Okada, T., Muramoto, K., Suetsuna, K., and Yang, S.C. (2002). Identification of
- 20 angiotensin I-converting enzyme inhibitory peptides derived from the peptic digest of
- soybean protein . J. Food Biochem. 26: 543-554.
- 22 Chen, Z.Y., Peng, C., Jiao, R., Wong, Y.M., Yang, N., and Huang, Y. (2009). Anti-
- 23 hypertensive nutraceuticals and functional foods. J. Agric. Food Chem. 57: 4485-4499.

- Cheng, F.Y., Wan, T.C., Liu, Y.T., Chen, C.M., Lin, L.C., and Sakata, R. (2009).
 Determination of angiotensin-I converting enzyme inhibitory peptides in chicken leg bone
 protein hydrolysate with alcalase. *Anim. Sci. J.* 80: 91-97.
- Chiang, W.D., Tsou, M.J., Tsai, Z.Y., and Tsai, T.C. (2006). Angiotensin I-converting
 enzyme inhibitor derived from soy protein hydrolysate and produced by using membrane
 reactor. *Food Chem.* 98: 725–732.
- 7 Chobert, J.M., El-Zahar, K., Sitohy, M., Dalgalarrondo, M., Metro, F., Choiset, Y., and
 8 Haertle, T. (2005). Angiotensin I-converting-enzyme (ACE)-inhibitory activity of tryptic
 9 peptides of ovine beta-lactoglobulin and of milk yoghurts obtained by using different starters.
 10 *Lait.* 85: 141-152.
- Chockalingam, A. (2008). World Hypertension Day and global awareness. *Can. J. Cardiol.*24: 441-444.
- Contreras, Mdel. M., López-Expósito, I., Hernández-Ledesma, B., Ramos ,M., and Recio, I.
 (2008). Application of mass spectrometry to the characterization and quantification of foodderived bioactive peptides. *J. AOAC Int.* 91: 981-994.
- Contreras, Mdel. M., Carron, R., Montero, M.J., Ramos, M., and Recio, I. (2009). Novel
 casein-derived peptides with antihypertensive activity. *Int. Dairy J.* 19: 566-573.
- Curtis, J.M., Dennis, D., Waddell, D.S., MacGillivray, T., and Ewart, H.S. (2002).
 Determination of angiotensin-converting enzyme inhibitory peptide Leu-Lys-Pro-Asn-Met
 (LKPNM) in bonito muscle hydrolysates by LC-MS/MS. *J. Agric. Food Chem.* 50: 39193925.
- Cushman, D.W., and Cheung, H.S. (1971). Spectrophotometric assay and properties of the
 angiotensin-converting enzyme of rabbit lung. *Biochem. Pharmacol.* 20: 1637-1648.
- 24 Cushman, D.W., and Ondetti, M.A. (1991). History of the design of captopril and related
- 25 inhibitors of Angiotensin Converting Enzyme. *Hypertension*. **17:** 589-592.

- 1 De Simone, C., Picariello, G., Mamone, G., Stiuso, P., Dicitore, A., Vanacore, D., Chianese,
- L., Addeo, F., and Ferranti, P. (2009). Characterisation and cytomodulatory properties of
 peptides from Mozzarella di Bufala Campana cheese whey. *J. Pept. Sci.* 15: 251-258.
- 4 Donkor, O.N., Henriksson, A., Singh, T.K., Vasiljevic, T., and Shah, N.P. (2007). ACE5 inhibitory activity of probiotic yoghurt. *Int. Dairy J.* 17: 1321-1331.
- 6 Enari, H., Takahashi, Y., Kawarasaki, M., Tada, M., and Tatsuta, K. (2008). Identification of
- angiotensin I-converting enzyme inhibitory peptides derived from salmon muscle and their
 antihypertensive effect, *Fisheries Sci.* 74: 911-920.
- 9 Escudero, E., Sentandreu, M.A., Arihara, K., and Toldra, F. (2010). Angiotensin I-converting
- 10 enzyme inhibitory peptides generated from in vitro gastrointestinal digestion of pork meat. J.
- 11 Agric. Food Chem. **58:** 2895-2901.
- 12 Ezzati, M., Hoorn, S.V., Rodgers, A., Lopez, A.D., Mathers, C.D., and Murray, C.J. (2003).
- 13 Comparative risk assessment collaborating group, estimates of global and regional potential
- 14 health gains from reducing multiple major risk factors. *The Lancet.* **362:** 271-280.
- Ferreira, S.H., Bartelt, D.C., and Greene, L.J. (1970). Isolation of bradykinin-potentiating
 peptides from Bothrops Jararaca venom. *Biochemistry*. 9: 2583-2593.
- FitzGerald, R.J., Murray, B.A., and Walsh, D.J. (2004). Hypotensive peptides from milk
 proteins. J. Nutr. 134: 980S–988S.
- 19 Fujii, M., Matsumura, N., Mito, K., Shimizu, T., Kuwahara, M., Sugano, S., and Karaki, H.
- 20 (1993). Antihypertensive effects of peptides in autolysate of bonito bowels on spontaneously
- 21 hypertensive rats. *Biosci. Biotech. Biochem.* **57:** 2186-2188.
- 22 Fujita, H., and Yoshikawa, M. (1999). LKPNM: a prodrug-type ACE-inhibitory peptide
- 23 derived from fish protein. *Immunopharmacology*. **44:** 123–127.

- Fujita, H., Yokoyama, K., and Yoshikawa, M. (2000). Classification and antihypertensive
 activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. *J. Food Sci.* 65: 564-569.
- Geerlings, A., Villar, I.C., Zarco, F.H., Sanchez, M., Vera, R., Gomez, A.Z., Boza, J., and
 Duarte, J. (2006). Identification and characterization of novel angiotensin-converting enzyme
 inhibitors obtained from goat milk. *J. Dairy Sci.* 89: 3326-3335.
- Gilani, G.S., Xiao, C., and Lee, N. (2008). Need for accurate and standardized determination
 of amino acids and bioactive peptides for evaluating protein quality and potential health
 effects of foods and dietary supplements. *J. of AOAC Int.* 91: 894-900.
- Gomez-Ruiz, J.A., Ramos, M., and Recio, I. (2002). Angiotensin-converting enzymeinhibitory peptides in Manchego cheeses manufactured with different starter cultures. *Int. Dairy J.* 12: 697–706.
- Gomez-Ruiz, J.A., Ramos, M., and Recio, I. (2004). Identification and formation of
 angiotensin-converting enzyme-inhibitory peptides in Manchego cheese by high-performance
 liquid chromatography-tandem mass spectrometry. *J. Chromatogr. A.* 1054: 269-277.
- 16 Gomez-Ruiz, J.A., Taborda, G., Amigo, L., Recio, I., and Ramos, M. (2006). Identification of
- ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry. *Eur. Food Res. Technol.* 223: 595-601.
- Gomez-Ruiz, J.A., Ramos, M., and Recio, I. (2007). Identification of novel angiotensinconverting enzyme-inhibitory peptides from ovine milk proteins by CE-MS and
 chromatographic techniques. *Electrophoresis*. 28: 4202-4211.
- 22 Gouda, K.G.M., Gowda, L.R., Rao, A.G.A., and Prakash, V. (2006). Angiotensin I-converting
- enzyme inhibitory peptide derived from glycinin, the 11S globulin of soybean (Glycine max).
- 24 J. Agric. Food Chem. 54: 4568-4457.

- Haileselassie, S.S., Lee, B.H., and Gibbs, B.F. (1999). Purification and identification of
 potentially bioactive peptides from enzyme-modified cheese. *J. Dairy Sci.* 82: 1612-1617.
- 3 Hatanaka, A., Miyahara, H., Suzuki, K.I., and Sato, S. (2009). Isolation and identification of
- 4 antihypertensive peptides from Antarctic krill tail meat hydrolysate. J. Food Sci. 74: 116-120.
- Hernandez-Ledesma, B., Amigo, L., Ramos, M., and Recio, I. (2004). Application of highperformance liquid chromatography-tandem mass spectrometry to the identification of
 biologically active peptides produced by milk fermentation and simulated gastrointestinal
 digestion. *J. Chromatogr. A.* 1049: 107-114.
- 9 Hernandez-Ledesma, B., Recio, I., and Amigo, L. (2008) beta-Lactoglobulin as source of
 10 bioactive peptides. *Amino Acids*. 35: 257–265.
- Herraiz T. (1997). Sample preparation and reversed phase-high performance liquid
 chromatography analysis of food-derived peptides. *Anal. Chim. Acta.* 352: 119-139.
- Holmquist, B., Bünning, P., and Riordan, J.F. (1979). A continuous spectrophotometric assay
 for angiotensin converting enzyme. *Anal. Biochem.* 95: 540-548.
- 15 Hyoung, Lee D., Ho, Kim J., Sik, Park J., Jun, Choi Y., and Soo, Lee J. (2004). Isolation and
- 16 characterization of a novel angiotensin I-converting enzyme inhibitory peptide derived from
- the edible mushroom Tricholoma giganteum. *Peptides*. **25:** 621–627.
- 18 Inoue, K., Gotou, T., Kitajima, H., Mizuno, S., Nakazawa, T., and Yamamoto, N. (2009).
- 19 Release of antihypertensive peptides in miso paste during its fermentation, by the addition of
- 20 casein. J. Biosci. Bioeng. 108: 111-115.
- 21 Iwaniak, A., and Minkiewicz, P. (2008). Biologically active peptides derived from proteins -
- 22 A review. Pol. J. Food Nutr. Sci. 58: 289-294.
- Jang, A., and Lee, M. (2005). Purification and identification of angiotensin converting
 enzyme inhibitory peptides from beef hydrolysates. *Meat Sci.* 69: 653–661.

- Je, J.Y., Park, J.Y., Jung, W.K., Park, P.J., and Kim, S.K. (2005a). Isolation of angiotensin I
 converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas. *Food Chem.* 90: 809–814.
- Je, J.Y., Park, P.J., Byun, H.G., Jung, W.K., and Kim, S.K. (2005b) Angiotensin I converting
 enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus
 edulis. *Bioresour. Technol.* 96: 1624-1629.
- Jia, J.Q., Ma, H.L., Zhao, W.R., Wang, Z.B., Tian, W.M., Luo, L., and He, R.H. (2010). The
 use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ
 protein. *Food Chem.* 119: 336-342.
- Jiang, J.L., Chen, S.W., Ren, F.Z., Luo, Z., and Zeng, S.S. (2007). Yak milk casein as a
 functional ingredient: Preparation and identification of angiotensin-I-converting enzyme
 inhibitory peptides. *J. Dairy Res.* 74: 18–25.
- Jung, W.K., Mendis, E., Je, J.Y., Park, P.J., Son, B.W., Kim, H.C., Choi, Y.K., and Kim, S.K.
 (2006). Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. *Food Chem.* 94: 26–32.
- Kapel, R., Rahhou, E., Lecouturier, D., Guillochon, D., and Dhulster, P. (2006).
 Characterization of an antihypertensive peptide from an Alfalfa white protein hydrolysate
 produced by a continuous enzymatic membrane reactor. *Process Biochem.* 41: 1961-1966.
- Katayama, K., Jamhari, Mori, T., Kawahara, S., Miake, K., Kodama, Y., Sugiyama, M.,
 Kawamura, Y., Nakayama, T., Muruyama, M., and Muguruma, M. (2007). Angiotensin-I
 converting enzyme inhibitory peptide derived from porcine skeletal muscle myosin and its
 antihypertensive activity in spontaneously hypertensive rats. *J. Food Sci.* 72: 702-706.
- 24 Katayama, K., Anggraeni, H.E., Mori, T., Ahhmed, A.A., Kawahara, S., Sugiyama, M.,
- 25 Nakayama, T., Maruyama, M., and Mugurumat, M. (2008). Porcine skeletal muscle troponin

is a good source of peptides with angiotensin-I converting enzyme inhibitory activity and anti
 hypertensive effects in spontaneously hypertensive rats. *J. Agric. Food Chem.* 56: 355–360.

3 Kitts, D.D., and Weiler, K. (2003). Bioactive proteins and peptides from food sources.

4 Applications of bioprocesses used in isolation and recovery. *Curr. Pharm. Des.* **9:** 1309-1323.

5 Kodera, T., and Nio, N. (2006). Identification of an angiotensin I-converting enzyme

- 6 inhibitory peptides from protein hydrolysates by a soybean protease and the antihypertensive
- 7 effects of hydrolysates in spontaneously hypertensive model rats. J. Food Sci. 71: C164-173.
- 8 Koo, K.C., Lee, D.H., Kim, J.H., Yu, H.E., Park, J.S., and Lee, J.S. (2006). Production and
- 9 characterization of antihypertensive angiotensin I-converting enzyme inhibitor from Pholiota
- 10 adipose. J. Microbiol. Biotechnol 16: 757-763.

Korhonen, H., and Pihlanto, A. (2003). Food-derived bioactive peptides - Opportunities for
designing future foods. *Curr. Pharm. Des.* 9: 1297-1308.

- Kuba, M., Tanaka, K., Sesoko, M., Inoue, F., and Yasuda, M. (2009). Angiotensin Iconverting enzyme inhibitory peptides in red-mold rice made by Monascus purpureus. *Process Biochem.* 44: 1139-1143.
- Lawes, C.M., Vander Hoorn, S., and Rodgers, A. (2008). Global burden of blood-pressurerelated disease, 2001. *Lancet.* 371: 1513–1518.
- Lee, N.Y., Cheng, J.T., Enomoto, T., and Nakamura, I. (2006a). The antihypertensive activity
 of angiotensin-converting enzyme inhibitory peptide containing in bovine lactoferrin. *Chin. J. Physiol.* 49: 67-73.
- Lee, N.Y., Cheng, J.T., Enomoto, T., and Nakamura, I. (2006b). Antihypertensive effect of
 angiotensin-converting enzyme inhibitory peptide obtained from hen ovotransferrin. *J. Chinese Chem. Society.* 53: 495-501.

Lee, N.Y., Cheng, J.T., Enomoto, T., and Nakano, Y. (2006c). One peptide derived from hen
 ovotransferrin as pro-drug to inhibit angiotensin converting enzyme. *J. Food Drug Analysis*.
 14: 31-35.

- Lee, S.H., Qian, Z.J., and Kim, S.K. (2010). A novel angiotensin I converting enzyme
 inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in
 spontaneously hypertensive rats. *Food Chem.* 118: 96-102.
- 7 Li, C.H., Matsui, T., Matsumoto, K., Yamasaki, R., and Kawasaki, T. (2002). Latent
 8 production of angiotensin I-converting enzyme inhibitors from buckwheat protein. *J. Pept.*9 *Sci.* 8: 267-274.
- Li, G.H., Le, G.W., Shi, Y.H., and Shrestha, S. (2004). Angiotensin I-converting enzyme
 inhibitory peptides derived from food proteins and their physiological and pharmacological
 effects. *Nutr. Res.* 24: 469-486.
- Li, G.H., Wan, J.Z., Le, G.W., and Shi, Y.H. (2006). Novel angiotensin I-converting enzyme
 inhibitory peptides isolated from Alcalase hydrolysate of mung bean protein. *J. Pept. Sci.* 12:
 509-514.
- 16 Li, G.H., Qu, M.R., Wan, J.Z., and You, J.M. (2007). Antihypertensive effect of rice protein
- hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously
 hypertensive rats. *Asia Pac. J. Clin. Nutr.* 16: 275-280.
- Lopez-Fandino, R., Otte, J., and van Camp, J. (2006). Physiological, chemical and
 technological aspects of milk-protein-derived peptides with antihypertensive and ACEinhibitory activity. *Int. Dairy J.* 16: 1277–1293.
- 22 Madureira, A.R., Tavares, T., Gomes, A.M.P., Pintado, M.E., and Malcata, F.X. (2010).
- 23 Invited review: Physiological properties of bioactive peptides obtained from whey proteins. J.
- 24 Dairy Sci. 93: 437–455.

- Maeno, M., Yamamoto, N., and Takano, T. (1996). Identification of an antihypertensive
 peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus
 CP790. J. Dairy Sci. 79:1316-1321.
- Majumder, K., and Wu, J. (2009). Angiotensin I converting enzyme inhibitory peptides from
 simulated in vitro gastrointestinal digestion of cooked eggs. *J. Agric. Food Chem.* 57: 471477.
- Mao, X.Y., Ni, J.R., Sun, W.L., Hao, P.P., and Fan, L. (2007). Value-added utilization of yak
 milk casein for the production of angiotensin-I-converting enzyme inhibitory peptides. *Food Chem.* 103: 1282–1287.
- Maruyama, S. and Suzuki, H. (1982). A peptide inhibitor of angiotensin-I converting enzyme
 in tryptic hydrolysate of casein. *Agric. Biol. Chem.* 46: 1393-1394.
- 12 Matsui, T., Yukiyoshi, A., Doi, S., Sugimoto, H., Yamada, H., and Matsumoto, K. (2002).
- Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their
 antihypertensive ability in SHR. *J. Nutr. Biochem.* 13: 80-86.
- Matsumura, N., Fujii, M., Takeda, Y., Sugita, K., and Shimizu, T. (1993). Angiotensin Iconverting enzyme inhibitory peptides derived from bonito bowels autolysate. *Biosci. Biotech. Biochem.* 57: 695-697.
- Meisel, H. (1997). Biochemical properties of regulatory peptides derived from milk proteins. *Biopolymers*. 43: 119-128.
- 20 Meng, Q,C., and Oparil, S. (1996). Purification and assay methods for angiotensin-21 converting enzyme. *J. Chromatogr. A.* **743**: 105-122.
- 22 Meyer, J., Butikofer, U., Walther, B., Wechsler, D., and Sieber, R. (2009). Changes in
- 23 angiotensin-converting enzyme inhibition and concentrations of the tripeptides Val-Pro-Pro
- and Ile-Pro-Pro during ripening of different Swiss cheese varieties. J. Dairy Sci. 92: 826-836.

- Miguel, M., Contreras, M.M., Recio, I., and Aleixandre, A. (2009). ACE-inhibitory and
 antihypertensive properties of a bovine casein hydrolysate. *Food Chem.* 112: 211-214
- Minkiewicz, P., Dziuba, J., Iwaniak, A., Dziuba, M., and Darewicz, M. (2008). BIOPEP and
 other programs processing bioactive peptide sequences. *J. of AOAC Int.* 91: 965-980.
- Miyoshi, S., Ishikawa, H., Kaneko, T., Fukui, F., Tanaka, H., and Maruyama, S. (1991).
 Structures and activity of angiotensin-converting enzyme inhibitors in an alpha-zein
 hydrolysate. *J. Agric. Biol. Chem.* 55: 1313-1318.
- Moller, N.P., Scholz-Ahrens, K.E., Roos, N., and Schrezenmeir, J. (2008). Bioactive peptides
 and proteins from foods: indication for health effects. *Eur. J. Nutr.* 47: 171-182.
- Motoi, H., and Kodama, T. (2003). Isolation and characterization of angiotensin I-converting
 enzyme inhibitory peptides from wheat gliadin hydrolysate. *Nahrung-Food*. 47: 354-358.
- 12 Muguruma, M., Ahhmed, A.M., Katayama, K., Kawahara, S., Maruyama, M., and Nakamura,
- 13 T. (2009). Identification of pro-drug type ACE inhibitory peptide sourced from porcine
- 14 myosin B: Evaluation of its antihypertensive effects in vivo. *Food Chem.* **114:** 516-522.
- 15 Murakami, M., Tonouchi, H., Takahashi, R., Kitazawa, H., Kawai, Y., Negishi, H., and Saito,
- 16 T. (2004). Structural analysis of a new anti-hypertensive peptide (beta-lactosin B) isolated
- 17 from a commercial whey product. *J. Dairy Sci.* **87:** 1967–1974.
- Murray, B.A., and FitzGerald, R.J. (2007). Angiotensin converting enzyme inhibitory
 peptides derived from food proteins: Biochemistry, bioactivity and production, *Curr. Pharm. Des.* 13: 773-791.
- 21 Nakade, K., Kamishima, R., Inoue, Y., Ahhmed, A., Kawahara, S., Nakayama, T.,
- 22 Maruyama, M., Numata, M., Ohta, K., Aoki, T., and Muguruma, M. (2008). Identification of
- an antihypertensive peptide derived from chicken bone extract. Anim. Sci. J. 79: 710-715.
- 24 Nakahara, T., Sano, A., Yamaguchi, H., Sugimoto, K.R.I., Chikata, H., Kinoshita, E., and
- 25 Uchida, R. (2010). Antihypertensive effect of peptide-enriched soy sauce-like seasoning and

- identification of its angiotensin I-converting enzyme inhibitory substances. J. Agric. Food
 Chem. 58: 821–827.
- Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S., and Takano, T. (1995).
 Purification and characterization of angiotensin I-converting enzyme inhibitors from sour
 milk. J. Dairy Sci. 78: 777-783.
- 6 Nakano, D., Ogura, K., Miyakoshi, M., Ishii, F., Kawanishi, H., Kurumazuka, D., Kwak, C.J.,
- 7 Ikemura, K., Takaoka, M., Moriguchi, S., Jino, T., Kusumoto, A., Asami, S., Shibata, H.,
- 8 Kiso, Y., and Matsumura, Y. (2006). Antihypertensive effect of angiotensin I-converting
- 9 enzyme inhibitory peptides from a sesame protein hydrolysate in spontaneously hypertensive
- 10 rats. Biosci. Biotechnol. Biochem. 70: 1118-1126.
- Neville, W.A. (2004). Reversed-Phase Chromatography of Proteins. In: Protein purification
 protocols. Second edition. Methods in molecular biology. Vol.: 244, pp. 259-281. Cutler, P.,
 Ed., Humana Press, Totowa, NJ.
- Nielsen, M.S., Martinussen, T., Flambard, B., Sorensen, K.I., and Otte, J. (2009). Peptide
 profiles and angiotensin-I-converting enzyme inhibitory activity of fermented milk products:
 Effect of bacterial strain, fermentation pH, and storage time. *Int. Dairy J.* 19: 155-165.
- Nogata, Y., Nagamine, T., Yanaka, M., and Ohta, H. (2009). Angiotensin I converting
 enzyme inhibitory peptides produced by autolysis reactions from wheat bran. *J. Agric. Food Chem.* 57: 6618–6622.
- Ono, S., Hosokawa, M., Miyashita, K., and Takahashi, K. (2003). Isolation of peptides with
 angiotensin I-converting enzyme inhibitory effect derived from hydrolysate of upstream chum
 salmon muscle. *J. Food Sci.* 68: 1611-1614.
- Otte, J., Shalaby, S.M., Zakora, M., Pripp, A.H., and EI-Shabrawy, S.A. (2007a).
 Angiotensin-converting enzyme inhibitory activity of milk protein hydrolysates: Effect of
 substrate, enzyme and time of hydrolysis. *Int. Dairy J.* 17: 488-503.

Otte, J., Shalaby, S.M.A., Zakora, M., and Nielsen, M.S. (2007b). Fractionation and
 identification of ACE-inhibitory peptides from alpha-lactalbumin and beta-casein produced
 by thermolysin-catalysed hydrolysis. *Int. Dairy J.* 17: 1460–1472.

Pan, D., Luo, Y.K., and Tanokura, M. (2005). Antihypertensive peptides from skimmed milk
hydrolysate digested by cell-free extract of Lactobacillus helveticus JCM1004. *Food Chem.*91: 123-129.

- Papadimitriou, C.G., Vafopoulou-Mastrojiannaki, A., Silva, S.V., Gomes, A.M., Malcata,
 F.X., and Alichanidis, E. (2007). Identification of peptides in traditional and probiotic sheep
 milk yoghurt with angiotensin I-converting enzyme (ACE)-inhibitory activity. *Food Chem.*105: 647–656.
- Perez, M.I., and Musini, V.M. (2008). Pharmacological interventions for hypertensive
 emergencies: a Cochrane systematic review. *J. Hum. Hypertens.* 22: 596–607.
- Pihlanto-Leppala, A. (2000). Bioactive peptides derived from bovine whey proteins: opioid
 and ACE-inhibitory peptides. *Trends. Food Sci. Technol.* 11: 347-356.
- Pina, A.S., and Roque, A.C.A. (2009). Studies on the molecular recognition between
 bioactive peptides and angiotensin-converting enzyme. *J. Mol. Recognit.* 22: 162–168.
- Qian, Z.J., Je, J.Y., and Kim, S.K. (2007a). Antihypertensive effect of angiotensin I
 converting enzyme-inhibitory peptide from hydrolysates of bigeye tuna dark muscle, Thunnus
 obesus. J. Agric. Food Chem. 55: 8398–8403.
- Qian, Z.J., Jung, W.K., Lee, S.H., Byun, H.G., and Kim, S.K. (2007b). Antihypertensive
 effect of an angiotensin I-converting enzyme inhibitory peptide from bullfrog (Rana
 catesbeiana Shaw) muscle protein in spontaneously hypertensive rats. *Process Biochem.* 42:
 1443-1448.

- Quiros, A., Hernandez-Ledesma, B., Ramos, M., Amigo, L., and Recio, I. (2005).
 Angiotensin-converting enzyme inhibitory activity of peptides derived from caprine kefir. *J. Dairy Sci.* 88: 3480-3487.
- Quiros, A., Ramos, M., Muguerza, B., Delgado, M.A., Martin-Alvarez, P.J., Aleixandre, A.,
 and Recio, I. (2006). Determination of the antihypertensive peptide LHLPLP in fermented
 milk by high-performance liquid chromatography-mass spectrometry. *J. Dairy Sci.* 89: 45274535.
- 8 Quiros, A., Chichon, R., Recio, I., and Lopez-Fandino, R. (2007a). The use of high 9 hydrostatic pressure to promote the proteolysis and release of bioactive peptides from 10 ovalbumin. *Food Chem.* **104:** 1734-1739.
- 11 Quiros, A., Ramos, M., Muguerza, B., Delgado, MA., Miguel, M., Aleixandre, A., and Recio,
- I. (2007b). Identification of novel antihypertensive peptides in milk fermented with
 Enterococcus faecalis. *Int. Dairy J.* 17: 33-41.
- Quiros, A., Davalos, A., Lasuncion, M.A., Ramos, M., and Recio, I. (2008). Bioavailability of
 the antihypertensive peptide LHLPLP: Transepithelial flux of HLPLP. *Int. Dairy J.* 18: 279286.
- 17 Rho, S.J., Lee, J.S., Il Chung, Y., Kim, Y.W., and Lee, H.G. (2009). Purification and
 18 identification of an angiotensin I-converting enzyme inhibitory peptide from fermented
 19 soybean extract. *Process Biochem.* 44: 490-493.
- Ricci, I., Artacho, R., and Olalla, M. (2010). Milk protein peptides with angiotensin Iconverting enzyme inhibitory (ACEI) activity. *Crit. Rev. Food Sci. Nutr.* 50: 390-402.
- Rizzello, C.G., Cassone, A., Di Cagno, R., and Gobbetti, M. (2008). Synthesis of angiotensin
 I-converting enzyme (ACE)-inhibitory peptides and gamma-aminobutyric acid (GABA)
 during sourdough fermentation by selected lactic acid bacteria. *J. Agric. Food Chem.* 56:
 6936-6943.

- Robert, M.C., Razaname, A., Mutter, M., and Juillerat, M.A. (2004). Peptides derived from
 sodium caseinate hydrolysates produced by Lactobacillus helveticus NCC 2765. *J. Agric. Food Chem.* 52: 6923-693.
- 4 Rohzabach, M.S. (1978). [Glycine-1'4C]hippurylhistidylleucine: A Substrate for the
 5 radiochemical assay of angiotensin-converting enzyme. *Anal. Biochem.* 84: 272-276.
- 6 Saiga, A., Iwai, K., Hayakawa, T., Takahata, Y., Kitamura, S., Nishimura, T., and Morimatsu,
- F. (2008). Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken
 collagen hydrolysate. *J. Agric. Food Chem.* 56: 9586-9591.
- 9 Saito, T., Nakamura, T., Kitazawa, H., Kawai, Y., and Itoh, T. (2000). Isolation and structural
 10 analysis of antihypertensive peptides that exist naturally in Gouda cheese. *J. Dairy Sci.* 83:
 11 1434–1440.
- Samaranayaka, A.G.P., Kitts, D.D., and Li-Chan, E.C.Y., (2010). Antioxidative and
 Angiotensin-1-converting enzyme inhibitory potential of a pacific hake (Merluccius
 productus) fish protein hydrolysate subjected to simulated gastrointestinal digestion and
 Caco-2 cell permeation *J. Agric. Food Chem.* 58: 1535–1542.
- Sato, M., Hosokawa, T., Yamaguchi, T., Nakano, T., Muramoto, K., Kahara, T., Funayama,
 K., Kobayashi, A., and Nakano, T. (2002). Angiotensin I-converting enzyme inhibitory
 peptides derived from wakame (Undaria pinnatifida) and their antihypertensive effect in
 spontaneously hypertensive rats. *J. Agric. Food Chem.* 50: 6245-6252.
- Schmieder, R.E., Hilgers, K.F., Schlaich, M.P., and Schmidt, B.M.W. (2007). Reninangiotensin system and cardiovascular risk. *Lancet.* 369: 1208-1219.
- 22 Schratter, P. (2004). Purification and concentration by ultrafiltration. In: Protein purification
- protocols. Second edition. Methods in molecular biology. Vol.: 244, pp. 101-116. Cutler, P.,
- Ed., Humana Press, Totowa, NJ.

- Schrezenmeir, J., Korhonen, H., Williams, Ch., Gill, H.S., and Shah , N. (2000). Foreword,
 Br. J. Nutr. 84: S1-1.
- Selkirk, C. (2004). Ion-Exchange Chromatography. In: Protein purification protocols. Second
 edition. Methods in molecular biology. Vol.: 244, pp. 125-131. Cutler, P., Ed., Humana Press,
 Totowa, NJ.
- Sewald, N., and Jakubke, H.D. (2009). Fundamental Chemical and Structural Principales. In:
 Peptides: the Chemistry and Biology, pp. 13-17. Wiley-VCH Verlag GmbH & Co. KGGaA,
 Weinheim.
- 9 Shin, Z.I., Yu, R., Park, S.A., Chung, D.K., Ahn, C.W., Nam, H.S. Kim, K.S., and Lee, H.J.
 10 (2001). His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from
 11 Korean soybean paste, exerts antihypertensive activity in vivo. *J. Agric. Food Chem.* 49:
 12 3004-3009.
- Sirtori, C.R., Galli, C., Anderson, J.W., and Arnoldi, A. (2009). Nutritional and nutraceutical
 approaches to dyslipidemia and atherosclerosis prevention: Focus on dietary proteins. *Atherosclerosis.* 203: 8–17.
- Souza, L.M., Riera, R., Saconato, H., Demathé, A., and Atallah, A.N. (2009). Oral drugs for
 hypertensive urgencies: systematic review and meta-analysis. *Sao Paulo Med. J.* 127: 366372.
- Suetsuna, K. (1998). Isolation and characterization of angiotensin I-converting enzyme
 inhibitor dipeptides derived from Allium sativum L (garlic), *J. Nutr. Biochem.* 9: 415-419.
- Suetsuna, K., and Nakano, T. (2000). Identification of an antihypertensive peptide from peptic
 digest of wakame (Undaria pinnatifida). *J. Nutr. Biochem.* 11: 450-454.
- Suetsuna, K., Maekawa, K., and Chen, J.R. (2004). Antihypertensive effects of Undaria
 pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. *J. Nutr. Biochem.* 15: 267-272.

- Tauzin, J., Miclo, L., and Gaillard, J.L. (2002). Angiotensin-I-converting enzyme inhibitory
 peptides from tryptic hydrolysate of bovine alpha(S2)-casein. *FEBS Lett.* 531: 369-374.
- Tokunaga, K.H., Yoshida, C., Suzuki, K.M., Maruyama, H., Futamura, Y., Araki, Y., and
 Mishima, S. (2004). Antihypertensive effect of peptides from Royal Jelly in spontaneously
 hypertensive rats. *Biol. Pharm. Bull.* 27: 189-192.
- Tonouchi, H., Suzuki, M., Uchida, M., and Oda, M. (2008). Antihypertensive effect of an
 angiotensin converting enzyme inhibitory peptide from enzyme modified cheese. *J. Dairy Res.* 75: 284–290.
- 9 Tovar-Perez, E.G., Guerrero-Legarreta, I., Farres-Gonzalez, A., and Soriano-Santos, J.
 10 (2009). Angiotensin I-converting enzyme-inhibitory peptide fractions from albumin 1 and
 11 globulin as obtained of amaranth grain. *Food Chem.* 116: 437–444.
- Van Dyck, S., Vissers, S., Van Schepdael, A., and Hoogmartens, J. (2003). Kinetic study of
 angiotensin converting enzyme activity by capillary electrophoresis after in-line reaction at
 the capillary inlet. *J. Chromatogr. A.* 986: 303-311.
- 15 Vercruysse, L., Smagghe, G., Herregods, G., and Van Camp, J. (2005). ACE inhibitory
- activity in enzymatic hydrolysates of insect protein. J. Agric. Food Chem. 53: 5207-5211.
- 17 Vermeirssen, V., Van Camp, J., and Verstraete, W. (2002). Optimisation and validation of an
- 18 angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides J.
- 19 Biochem. Biophys. Methods. 51: 75-87.
- Vermeirssen, V., Van Camp, J., and Verstraete, W. (2004). Bioavailability of angiotensin I
 converting enzyme inhibitory peptides. *Br. J. Nutr.* 92: 357-366.
- 22 Vermeirssen, V., Augustijns, P., Morel, N., Van Camp, J., Opsomer, A., and Verstraete, W.
- 23 (2005). In vitro intestinal transport and antihypertensive activity of ACE inhibitory pea and
- 24 whey digests. Int. J. Food Sci. Nutr. 56: 415-430.

- Wang, W., and de Mejia, E.G. (2005). A new frontier in soy bioactive peptides that may
 prevent age-related diseases. *Comp. Rev. Food Sci. Food Safety.* 4: 63-78.
- Wang, J.P., Hu, J.E., Cui, J.Z., Bai, X.F., Du, Y.G., Miyaguchi, Y., and Lin, B.C. (2008a).
 Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate
 and the anti hypertensive effect of hydrolysate in spontaneously hypertensive rats. *Food Chem.* 111: 302–308.
- Wang, Y.K., He, H.L., Chen, X.L., Sun, C.Y., Zhang, Y.Z., and Zhou, B.C. (2008b).
 Production of novel angiotensin I-converting enzyme inhibitory peptides by fermentation of
 marine shrimp Acetes chinensis with Lactobacillus fermentum SM 605. *Appl. Microbiol. Biotechnol.* 79: 785-791.
- Wu. J., Aluko, R.E., and Muir, A.D. (2002). Improved method for direct high-performance
 liquid chromatography assay of angiotensin-converting enzyme-catalyzed reactions. *J. Chromatogr. A.* **950**: 125-130.
- Yamamoto, N., and Takano, T. (1999). Antihypertensive peptides derived from milk proteins. *Nahrung*. 43: 159-164.
- 16 Yamamoto, N., Maeno, M., and Takano, T. (1999). Purification and characterization of an
- antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus
 CPN4. *J. Dairy Sci.* 82: 1388-1393.
- Yamamoto, N., Ejiri, M., and Mizuno, S. (2003). Biogenic peptides and their potential use. *Curr. Pharm. Des.* 9: 1345-1355.
- Yang, Y.J., Marczak, E.D., Yokoo, M., Usui, H., and Yoshikawa, M. (2003). Isolation and
 antihypertensive effect of angiotensin I-converting enzyme (ACE) inhibitory peptides from
 spinach Rubisco. *J. Agric. Food Chem.* 51: 4897-4902.
- 24 Yang, Y., Tao, G., Liu, P., and Liu, J. (2007). Peptide with angiotensin I-Converting enzyme
- inhibitory activity from hydrolyzed corn gluten meal. J. Agric. Food Chem. 55: 7891–7895.

- Yano, S., Suzukim K., and Funatsum G. (1996). Isolation from α-zein of thermolysin peptides
 with angiotensin I-converting enzyme inhibitory activity. *Biosci. Biotech. Biochem.* 60: 661 663.
- Yokoyama, K., Chiba, H., and Yoshikawa, M. (1991). Peptide inhibitors for angiotensin-Iconverting enzyme from thermolysin digest of dried bonito. *Biosci. Biotech. Biochem.* 56:
 1541-1545.
- Yu, Y., Hu, J.N., Miyaguchi, Y.J., Bai, X.F., Du, Y.G., and Lin, B.C. (2006). Isolation and
 characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine
 hemoglobin. *Peptides.* 27: 2950-2956.
- Zhang, J.H., Tatsumi, E., Ding, C.H., and Li, L.T. (2006). Angiotensin I-converting enzyme
 inhibitory peptides in douchi, a chinease traditional fermented soybean product. *Food Chem.*98: 551-557.
- Zhang, C.H., Cao, W.H., Hong, P.Z., Ji, H.W., Qin, X.M., and He, J. (2009). Angiotensin Iconverting enzyme inhibitory activity of Acetes chinensis peptic hydrolysate and its
 antihypertensive effect in spontaneously hypertensive rats. *Int. J. Food Sci. Technol.* 44: 20422048.
- Zhao, Y.H., Li, B.F., Liu, Z.Y., Dong, S.Y., Zhao, X., and Zeng, M.Y. (2007).
 Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber
 gelatin hydrolysate. *Process Biochem.* 42: 1586-1591.
- Zhao, Y.H., Li, B.F., Dong, S.Y., Liu, Z.Y., Zhao, X., Wang, J.F., and Zeng, M.Y. (2009). A
 novel ACE inhibitory peptide isolated from Acaudina molpadioidea hydrolysate. *Peptides*.
 30: 1028-1033.
- Zhu, X.L., Watanabe, K., Shiraishi, K., Ueki, T., Noda, Y., Matsui, T., and Matsumoto, K.
 (2008). Identification of ACE-inhibitory peptides in salt-free soy sauce that are transportable
 across caco-2 cell monolayers. *Peptides*. 29: 338-344.

Zimecki, M., and Kruzel, M.L. (2007). Milk-derived proteins and peptides of potential
 therapeutic and nutritive value. *J. Exp. Ther. Oncol.* 6: 89-106.

3

4 ACKNOWLEDGEMENTS

The authors thank the Ministry of Science and Innovation (Spain) for projects CTQ2009-09022 and CTQ2009-11252. Patrycja Puchalska thanks the University of Alcala for her research grant.

Figure 2. Framework of production, purification and identification of bioactive peptides with
 antihypertensive activity.

Figure 3. Chromatograms (A,C) and mass spectra (B, D) obtained by LC-MS and corresponding to FY: (A,B) synthetic FY; (C,D) FY in the hydrolysate of wakame. LC conditions: Column, Xterra MS C18, 150 x 2.1 mm; gradient, 3-20% in 40 min; mobile phases, A: water + 0.05% TFA; B: ACN+0.05% TFA; flow-rate, 0.2 mL/min; MS conditions: cone voltage: +30V; capillary voltage: 3 kV; desolvation temp.: 300 °C; source block temp.: 100°C; desolvation gas flow: 350 L/min; cone gas flow: 50 L/min (Sato et al., 2002).

- 1 Table 1. Commercialy available milk products enriched with antihypertensive peptides (Ricci et
- 2 al., 2010; Sirtori et al., 2009).

	Brand name	Company, country	Bioactive peptide
	Ameal S ®	Calpis Co., Japan	VPP, IPP
	BioZate ®	Davisco, USA	
	Calpis ®	Calpis Co., Japan	VPP, IPP
	Casein DP ®	Kanebo Ltd., Japan	FFVAPFEVFGK
	C12 peptide ®	DMV International, Holland	FFVAPFEVFGK
	Danten ®	Danone, France	
	Evolus ®	Valio, Finland	VPP, IPP
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

		Employed		
Source of peptide	Release of peptides	enzyme(s) or	Purification steps	Ref.
		bacterial strains		
			MILK AND DAIRY PRODUCTS	
Milk	Fermentation or sequentially fermentation and digestion	Several bacterial strains or <i>Lactbacillus</i> <i>rhamnosus</i> and pepsin, corolase Pl	UF: M _{wco} 3 kDa RPC: Widepore C18, 250 x 4.6 mm; 0-45% B in 60 min; A: 0.037% TFA; B: ACN + 0.027% TFA; 0.8 mL/min; UV detection (220 nm)	Hernandez- Ledesma et al., 2004
Milk	Fermentation	Strains Enterococcus faecalis	Centrifugation (20,000g, 10 min, 10°C) / filtration (Whatman no. 40) RPC: Widepore C18, 250 x 4.6 mm; 0-45% B in 60 min; A: 0.037% TFA; B: ACN + 0.027% TFA; 0.8 mL/min; MS detection	Quiros et al., 2006
Milk	Fermentation	Strains Enterococcus faecalis	Extraction followed by centrifugation (20000g, 10 min, 10°C) and filtration (Whatman no. 40) UF: Mwco 3 kDa RPC: Prep Nova Pak [®] HR C18, 300 x 7.8 mm; 0-35% B in 70 min; A: 0.1% TFA; B: ACN + 0.08% TFA; 4 mL/min; UV detection (214 nm) RPC: Prep Nova Pak® HR C18, 300 x 7.8 mm; 20-35% B in 40 min; A: 0.1% TFA; B: ACN + 0.08% TFA; 4 mL/min; UV detection (214 nm)	Quiros et al., 2007b
Goat milk*	Digestion	Alcalase	RPC: Resource RP; linear gradient of 0.05% TFA and 84% ACN+0.05% TFA, 40 min; 1 mL/min; UV detection (220 nm) Caco-2 cell RPC: Zorbax 5 C18, 2.1 x 250 mm; 0-30% in 60 min; 30-80% in 10 min; A: 0.05% TFA; B: ACN + 0.04% TFA; 350 μL/min; UV detection (220 nm)	Greelings et al., 2006
Ovine milk	Simulated gastrointestinal digestion	Pepsin, trypsin wit chymotrypsin or pepsin and corolas PP	hUF: Centrifugation/ filtration (Whatman no. 40); Mwco 3 kDa RPC: Prep Nova Pak® HR C18, 300 x 7.8 mm; 0-40% B in 70 min; A: 0.1% TFA; B: ACN + 0.08% TFA; 4 mL/min; UV edetection (214 nm) CE: bare fused silica capillary, 76 cm x 50 μm; 0.9 M HFo, pH=2.0; 18 kV; MS detection	Gomez-Ruiz et al., 2007
Ovine β- lactoglobulin from skimmed milk	Digestion	Trypsin	RPC: Nucleosil C18, 250 x 4 mm; 10-100% B in 23 min; A: 0.11% TFA; B: 80% ACN + 0.09% TFA; 0.6 mL/min	Chobert et al., 2005
Yak milk casein	Digestion	Trypsin, pepsin, alcalase, flavourzyme, papain or neutrase	UF: Mwco 10 kDa and 6 kDa SEC: Sephadex G- 25, 26 x 800 mm; elution with water; 0.6 mL/min; UV detection (215 nm); RPC: Shim-pack PREP-ODS C18, 20 x 250 mm; 10-60% B in 35 min; A: 0.05% TFA; B: ACN + 0.05% TFA; 6 mL/min; UV detection (215 nm) RPC: C18, 4.6 x 250 mm; 20-50% B in 20 min; A: 0.05% TFA; B: ACN + 0.05% TFA; 1 mL/min; UV detection (215 nm)	Jiang et al., 2007
Yak milk casein	Digestion	Alcalase	UF: Mwco 10 kDa and 6 kDa IEC: DE-52, 1.6 x 30 cm; 0-0.4 mM NaCl in 5 mM PBS, pH 8.0; 24 mL/h; UV detection (220 nm) SEC: Sephadex G-25, 2.5 x 100 cm; elution with water; 16 mL/h; UV detection (220 nm) RPC: Zorbax Eclipse XDB-C18, 10 x 400 mm; 0–60% B (B: ACN + 0.1% TFA) in 45 min; 1 mL/min; UV detection (214 nm) RPC: Zorbax Eclipse XDB-C18, 2.1 x 150 mm; A: 0.1% TFA; B: ACN + 0.1% TFA; 0.4 mL/min; UV detection (214 nm)	Mao et al., 2007

1 Table 2. Purification of peptides with antihypertensive activity

Casein	Fermentation	Lactobacillus helveticus CP790	RPC: μ-Bondashere C18, 3.9 x 150 mm; 0-40% B in 60 min; A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm) RPC: μ-Bondashere C18, 3.9 x 150 mm; 90-30% B in 60 min; A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm)	Maeno et al., 1996
Skimmed milk	Fermentation	Strains Lactobacillus helveticus JCM1004	RPC: YMC-Pack ODS-AP-303, 4.6 x 250 mm; 0-100% B; A: 10% ACN + 0.1% TFA; B: 90% ACN + 0.8% TFA; 1 mL/min; UV detection (215 nm) RPC: ODS-100S, 3.9 x 150 mm; 0-40% B in 40 min, 40-70% B in 28 min, 70-100% B in 22 min; A: 10% ACN + 0.1% TFA; B: 90% ACN + 0.8% TFA; 1 mL/min; UV detection (215 nm) RPC: μBondasphere C18, 3.9 x 150 mm; 0-30% B in 45 min, 30-65% B in 25 min, 65-100% B in 20 min; A: 10% ACN + 0.1% TFA; B: 90% ACN + 0.8% TFA; 1 mL/min; UV detection (215 nm)	Pan et al. 2005
Sheep milk yoghurt	Fermentation	Different bacterial cultures	RPC: Nucleosil C18, 250 x 4 mm; 0% B in 10 min; 0-80% B in 80 min; 100% B in 10 min; A: 0.1% TFA; B: 60% ACN + 0.09% TFA; 0.8 mL/min; UV detection (214 nm) RPC: Nucleosil C18, 250 x 4 mm; 0% B in 10 min; 0-80% B in 80 min; 100% B in 10 min; A: 0.1% TFA; B: 60% ACN + 0.09% TFA; 0.2 mL/min; UV detection (278 nm)	Papadimitriou et al., 2007
Yoghurt	Fermentation	Different bacterial cultures	RPC: C-18 monomeric, 250 x 4.6 mm; 0-100% B in 90 min; A: 0.1% TFA; B: 90% ACN + 0.1% TFA; 0.75 mL/min; UV detection (214 nm) CE: Coated capillary, 50 cm x 50 μm; 30 mM Na ₃ BO ₃ and 17 mM PBS, pH=8.2; 15 kV, 30 min; 20°C; UV detection (214 nm)	Donkor et al., 2007
Yoghurt- like produc	t Fermentation	Lactobacillus helveticus CPN4	Extraction in Sep-pak C-18 cartridges; elution with different ACN ratios 10-50% B (ACN + 0.1% TFA) RPC: μ-Bondasphere C18, 3.9 x 150 mm; 100-60% in 60 min; A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm) RPC: μ-Bondasphere C18, 3.9 x 150 mm; 5-20% B in 60 min; A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm)	Yamamoto et al., 1999
Caprine Kefir*	Fermentation	Different bacteria strains	Centrifugation/ filtration/ UF 12,000 x g, 10 min, 5°C/ filter Whatman no. 40/ Mwco 3 kDa RPC: 0-30% B in 70 min; A: 0.1% TFA; B: ACN + 0.08% TFA; UV detection (214 nm) RPC: 8-20% B in 45 min; A: 0.1% TFA; B: ACN + 0.08% TFA; UV detection (214 nm)	Quiros et al., 2005
Cheese	Fermentation/ digestion	Lactococcus starter culture (MM100)/ protease N amino, Umamizyme and Flavourzyme	 rDialysis: Molecular porous membrane tubing (Spectra/Por 3; M_{WCO} 3.5) against water; 48 h; 4°C RPC: YMC-Pack R&D ODS, 20 x 250 mm; 0-70% B (B: ACN + 0.1% TFA) in 50 min; 7.5 mL/min; UV detection (214 nm) RPC: TSK-gel ODS 80Ts, 20 x 250 mm; 0-30% B (B: ACN + 0.1% TFA) in 50 min; 7.5 mL/min; UV detection (214 nm) SEC: Superdex Peptide HR 10/30, 10 x 300 mm; elution with water + 0.1% TFA; 0.5 mL/min; UV detection (214 nm) RPC: CAPCELL PAK C18 MG, 4.6 x 250 mm; elution with 12% ACN + 0.1% TFA; 0.4 mL/min; UV detection (214 nm) 	Tonouchi et al., 2008
Gouda cheese	Extraction		Hydrophobic chromatography in Wakogel LP-40c18 resin; 15-90% ACN RPC: Superiorex ODS, 4.6 x 150 mm; 0-100% B in 30 min; A: 10% ACN + 0.05% TFA; B: 60% ACN + 0.05% TFA; 0.5 mL/min; UV detection (214 nm) SEC: Superdex Peptide HR 10/30, 1 x 30 cm; elution with 0.1% TFA; 0.5 mL/min; UV detection (214 nm) CE: Coated capillary, 24 cm x 25 μm; BGE: 0.1 M PBS, pH=2.5; 10 kV, 15 min; UV detection (200 nm)	Saito et al., 2000
Several spanish cheeses	Extraction		UF: Mwco 1 kDa RPC: Hi-Pore C18, 250 x 4.6 mm; 0-40% B in 60 min; 40-70% B in 5 min; A: 0.037% TFA; B: ACN + 0.027% TFA; 0.8 mL/min; UV detection (214 nm)	Gomez-Ruiz et al., 2006
Manchego cheese	Fermentation /ripening	Different bacterial strains	Extraction/ centrifugation/ filtration/ centrifugation/ filtration UF: M _{WCO} 3 kDa	Gomez-Ruiz et al., 2002

			CEC: HiLoadt 26/10 SP Sepharose Fast Flow; 0% B in 20 min; 0- 30% B in 40 min; 30-100% B in 10 min; 100% B in 10 min;	
			RPC:C18 Prep-Nova Pak HR, 300 x 7.8 mm; 5- 50% B in 60 min; 60- 100% B in 10 min; 100% B in 10 min; A: 0.1% TFA; B:	
			80% ACN + 0.08% TFA; 6 mL/min; UV detection (214, 280 nm)	
			RPC: Hi-Pore C18, 250 x 4.6 mm; 10- 25% B in 30 min or 18-23% B in 25 min or 20-24% B in 25 min; A: 0.1% TFA; B: 80%	
			ACN + 0.08% TFA; 0.8 mL/min; UV detection (214, 280 nm)	
		Several bacterial	UF: Mwco 3 kDa	Gomez-Ruiz et
Manchego cheese	Fermentation	strains	RPC: Widepore C18, 250 x 4.6 mm; 0-40% A in 60 min; A: 0.037% TFA; B: 80% ACN + 0.027% TFA; 0.8 mL/min; UV	al., 2004
		Stums	detection (220 nm)	un, 2001
F 1'C 1		Neutrase,		
Enzyme –modified	Digestion	Lactobacillus case	1 RPC: Delta Pak C18, 30 x 150 mm; 20-40% B in 15 min; 40-60% B in 15 min; 60-100% B in 5 min; 100-20% B in 35 min; A:	Haileselassie
cneese	Ū.	enzyme or	0.1% IFA; B: 40% ACN + 0.08% IFA; 0.5 mL/min; UV detection (214 nm)	et al., 1999
		Trunsin proteines	0 a Hydronhobia chromatography in LiChropen PD 18 racin (25 40 µm): 0 00% MatOH	
		K actinase E	Hydrophobic chromatography in LiChropep RP-18 resin (25-40 µm); 30-42% MetOH	
		thermolysin	RPC: Superiores ODS 4.6 x 150 mm; 0.100% B in 30 min; 100% B in 10 min; Δ : 10% Δ CN + 0.05% TEA: B: 60% Δ CN +	Abubakar et
Cheese whey protein	Digestion	Digestion papain, chymotrypsin or pepsin	0.05% TFA: 0.5 ml /min: IV detection (214 nm)	al 1998
			SEC: Superdex peptide HR 10/30, 1 x 30 cm; elution with 0.1% TFA: 0.5 mL/min; UV detection (214 nm)	ul., 1990
			CE: Coated capillary. 24 cm x 25 um: 0.1 M PBS. $pH=2.5$: 10 kV: UV detection (200 nm)	
		I · I ·	Extraction with Wakogel LP-40C18 resin (20-40 µm); elution with 90% EtOH	
C			SEC: Sephadex G-15, 2.6 x 90 cm; 0.05% TFA; 0.5 mL/min; UV detection (214 nm)	Mailanta
Commercial whey	Not shown	Not shown	RPC: Wakosil-II 5C18, 4.6 x 150 mm; 0- 80% B in 15 min; A: 10% ACN + 0.05% TFA; B: 60% ACN + 0.05% TFA; 0.5	Murakami et
product*			mL/min; UV detection (214 nm)	al., 2004
			CE: Coated capillary, 17 cm x 25 µm; 0.1 M PBS, pH=2.5; 10 kV, 15 min; 20°C; UV detection (200 nm)	
		Lactobacillus (Lb.) SEC: Superdex 75 HR 10/30; 50 mM NH ₄ Ac (pH 7) for 65 min; 0.5 mL/min; UV detection (215, 280 nm)	Robert et al
Sodium caseinate	Fermentation	helveticus NCC	RPC: C8 208TP54; 0% B in 5 min, 0-50% B in 60 min, 50-100% B in 1 min, 100% B in 4 min; A: 0.05% TFA; B: 80% ACN +	2004
		2765	0.045% TFA; 0.8 mL/min; UV detection (215 nm)	2004
			SEC: Superdex [™] 30 prep grade, 2.6 x 61 cm; 0.1M NH ₄ HCO ₃ , pH 8.0; 2.5 mL/min; UV detection (280 nm)	
α -lactalbumin ¹ and β -			RPC: Nucleosil 300-S C18, 4.6 x 250 mm; ¹ 0-80% B (10-90 min); ² 30-55% B (90 min) or ² 2-40% B (80 min); A: 0.1% TFA; B:	Otte et al
casein ²	Digestion	Thermolysin	60% ACN + 0.1% TFA; 1 mL/min; UV detection (210 and 280 nm)	2007b
			RPC: Nucleosil 300-S C18, 4.6 x 250 mm; $^{-2}$ 20-45% B (80 min) or $^{+2}$ 0-50% B (80 min); A: 0.1% TFA; B: 60% ACN + 0.1%	
			IFA; I mL/min; UV detection (210 and 280 nm)	
			PLANI ORIGIN	
			IEC: Dowex 50 W, 45 x 200 mm; elution with 5 % NH40H	Character 1
Soybean	Digestion	Pepsin	SEC: Sephadex G-25, 20 x 1400 mm; water, 30 mL/min EC: Sephadex G-25, 20 x 500 mm; $0, 20$ McCl; 20 mL/min	2002
			BC. September C-23, 20 x 500 mm, 0- 5% NaCi, 50 mL/mm PC : Develocil ODS 5 4.6 x 250 mm; 0, 16% $P(B: ACN \pm 0.05\% \text{ TEA})$ in 60 min; 1 mL/min; UV detection (220 nm)	2002
			1000000000000000000000000000000000000	
	_	Aspergillus	CEC: HiPreP 16/10 SP FF. 16 x 100 mm: 0-100% B in 40 min: A: 10 mM NaAc, pH 4.0; B: 20 mM NaAc (pH 4.0) in 1 M	Rho et al
Soybean	Fermentation	Fermentation Aspergulus	NaCl: 5 mL/min: UV detection (214 nm)	2009
		~ .) ~	Desalination: Cellulose dialysis membrane, M _{WCO} 100	

RFC: µBondapak ^{WC} (18, 46 x 300 mm; 0-100% B in 40 min; A: 0.1% TFA; B: 40% ACN + 0.1% TFA; I mL/min; UV detection (214 mm) RFC: µBondapak ^{WC} (18, 46 x 300 mm; 0-100% B in 40 min; A: 25 % ACN + 0.1% TFA; B: 35% ACN + 0.1% TFA; B:				SEC: Superdex Peptide 10/300 GL, 10 x 300 mm; elution with 30% ACN in 40 min; 0.36 mL/min; UV detection (214 nm)	
detection (214 nm) RPC: Blondpack MP C18, 4.6 x 300 mm; 0-100% B in 40 min; A: 25 % ACN + 0.1% TFA; B: 35% ACN + 0.1% TFA; I Soybean protein Digestion Mature D3 protease StepCite MR 10/300; elution with 005 % TFA; 0.5 mL/min; UV detection (215 mn) Kodera and No. 2006 Glycinin from soybean* Digestion Protease P. trypsin. RPC: C-18 Shimpak. 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 mm) Gorda et al., 2006 Steamed soybean ** Protease P. trypsin. RPC: C-18 Shimpak. 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 mm) Gorda et al., 2006 Steamed soybean ** Permentation ** Protease P. trypsin. RPC: C-18 Shimpak. 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (220 mm) Nakabara et al., 2006 Weat Matolyzation Perc: Cassinal Shimpak. 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.1% TFA; St mL/min; UV detection (220 mm) Nakabara et al., 2006 Bestination by electrodialyzing Perc: Cassinal Shimpak. 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.1% TFA; St mL/min; UV detection (220 mm) Nakabara et al., 2006 Broce Perc: Singerdsr STBH, 10 x 300 cm; elution with 30% ACN + 0.1% TFA; 0.5 mL/min; UV detection (220 mm) Nakabara et al., 2007 Broce Perc: Singerdsr STHR, 10 x 300 cm; elution with 30% ACN + 0.1% TFA; 0.5 mL/min; UV detection (220 mm) Nogataf et al., 2007				RPC: µBondapak [™] C18, 4.6 x 300 mm; 0-100% B in 40 min; A: 0.1% TFA; B: 40% ACN + 0.1% TFA; 1 mL/min; UV	
RPC: gBondapak ND CB, 46 x 300 mm; 0-100% B in 40 min; A: 25 % ACN + 0.1% TFA; B: 35% ACN + 0.1% TFA; I nullin; UV detection (214 nm) Nulling UV detection (214 nm) Soybean protein Digestion Mature D3 protease SEC: Superdex Septide HR 10/300; cluion with 005 % TFA; 0.5 mL/min; UV detection (215 nm) Kodera and Nio, 2006 Glycinin from soybean Digestion Protease P, trypsin, RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.75 mL/min; UV detection (230 nm) chymotrypsin or RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 nm) Gonda et al., 2006 Steamed soybean Protease P, trypsin, RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (220 nm) Ref: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (220 nm) Ref: c-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (220 nm) Ref: c-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (220 nm) Ref: c-18 Shimpak, 250 x 4.6 mm; 0-35% ACN + 0.1% TFA; B: 70% ACN + 0.0% TFA; 0.7 mL/min; UV detection (220 nm) Nakahara et al., 2006 Wheat bran* Autolyzation Perissing AV C: C-18 AV MIN, DONS MCN + 0.1% TFA; D: 5 mL/min; UV detection (220 nm) Nogata et al., 2009 Wheat gliandin Digestion Perissing AV C: A C-10 X - 0.3% ACN + 0.1% TFA; D: 5 mL/min; UV detection (220 nm) Nogata et al., 2009 White whe				detection (214 nm)	
Soybean protein Digestion Mature D3 protesses (215 nm) Superdex Peptide HR 10/300; clution with 0.05 % TFA; 0.5 mL/min; UV detection (215 nm) Kodera and No, 2006 Glycinin from soybean* Digestion Protease P, trypsin, RPC: C-18 Shimpak, 250 x 4.6 mm; 0.53% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 nm) chymotrypsin or RPC: C-18 Shimpak, 250 x 4.6 mm; 0.53% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 nm) ginger protease Gouda et al., 2006 Steamed soybean mixed with roasted wheat Fermentation RPC: C-18 Shimpak, 250 x 4.6 mm; 0.53% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 nm) ginger protease RPC: C-18 Shimpak, 250 x 4.6 mm; 0.53% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (220 nm) ginger protease RPC: C-18 Shimpak, 250 x 4.6 mm; 0.100% B in 25 h; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) RPC: C-18 Shimpak, 250 x 4.0 mm; 0.100% B in 25 h; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) RPC: C-20 Develosil RPAQUEOUS-AR, 20 x 250 nm; 0.100% B in 90 nim; water-ACN; 5 mL/min; UV detection (220 nm) RPC: C-20 Develosil RPAQUEOUS-AR, 20 x 250 nm; 0.100% B in 90 nim; water-ACN; 5 mL/min; UV detection (220 nm) RPC: C-20 Develosil RPAQUEOUS-AR, 20 x 250 nm; 0.100% B in 90 nim; water-ACN; 5 mL/min; UV detection (220 nm) RPC: C-20 Develosil RPAQUEOUS-AR, 20 x 250 mm; 0.100% B in 90 nim; water-ACN; 5 mL/min; UV detection (220 nm) RPC: Superdex 75HR, 10 x 30 cm; clution with 30% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Superdex 75HR, 10 x 30 cm; clution with 30% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Superdex 75HR, 10 x 30 cm; clution with 30% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Superdex 75HR, 10 x 30 cm; clution with 30% ACN + 0.1% TFA in 30 min; 4				RPC: μBondapak TM C18, 4.6 x 300 mm; 0-100% B in 40 min; A: 25 % ACN + 0.1% TFA; B: 35% ACN + 0.1% TFA; 1	
Soybean proteinDigestionDigestionDesclination by electrodialyzationSocker Peptide HR 10/300; elution with 0.05 % TFA; 0.5 mL/min; UV detection (215 nm)Kodera and Nio, 2006Glycinin from soybean*DigestionProtease P, tryppin, RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 mm) ehymotrypsin or ehymotrypsin or soybean*Protease P, tryppin, RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 mm) ehymotrypsin or soybean*Protease P, tryppin, RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 mm) ehymotrypsin or soybean*RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (220 nm) RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (220 nm) ehymotrypsin or soybean*RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (220 nm) min; UV detection (220 nm)Nakahara et al, 2006Steamed soybean mixed with roasted wheatPermentation sojzeRPC: C-18 Shimpak, 250 x 52 cm; 10.05% EOH Endogenous proteaseRPC: C-18 Shimpak, 250 x 52 cm; 10.05% EOH EC: 30 perdet 75H, 10 X 30 cm; elution with 30% ACN + 0.1% TFA; 0.5 mL/min; UV detection (220 nm) RPC: Jupiter C4, 10 X 250 mm; 0-100% B in 90 min; water, 0.1% TFA; 0.5 mL/min; UV detection (220 nm) RPC: Jupiter C4, 10 X 250 mm; 0-100% B in 90 min; water, 0.1% TFA; 0.5 mL/min; UV detection (220 nm) RPC: Jupiter C4, 10 X 250 mm; 0-30% ACN + 0.1% TFA; 10 30 min; 4 mL/min RPC: Jupiter C4, 10 X 250 mm; 0-35% ACN + 0.1% TFA; 10 30 min; 4 mL/min; RPC: Jupiter C4, 10 X 250 mm; 0-35% ACN + 0.1% TFA				mL/min; UV detection (214 nm)	
Soybean protein Digestion Mature D3 protease SEC: Superdex Peptide HR 10/300; elution with 005 % TFA; 0.5 mL/min; UV detection (215 mm) Koder and No, 2006 Glycinin from soybean* Digestion Protease P, trypsin, RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 nm) Goda et al., 2006 Steamed soybean* Protease P, trypsin, RPC: C-18 Shimpak, 250 x 4.6 mm; 0-100% B; A: 50 mM NHAc; B: 50 mM NH4Ac; ACN (50:50); UV detection (220 nm) RPC: C-18 Shimpak, 250 x 4.6 mm; 0-100% B; A: 50 mM NH4Ac; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (220 nm) Adata et al., 2006 Steamed soybean* Fermentation Protease P, trypsin, RPC: C-18 Shimpak, 250 x 4.6 mm; 0-100% B in 25 h; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) Nakahara et al., 2010 wheat Permentation Protesise R RPC: C-23 Develosit RPAQUEOUS-AR, 20 x 250 mm; 0-100% B in 90 min; water-ACN; 5 mL/min; UV detection (220 nm) Nakahara et al., 2010 Wheat bran* Autolyzation Endogenous proteases RPC: LiChropper RP-18, 2.5 x 42 cm; 10-95% EIOH EC: 30 Develosit RPAQUEOUS-AR, 20 x 250 mm; 0-100% ACN + 0.1% TFA; 0.5 mL/min; UV detection (220 nm) Nogata et al., 2009 Wheat gliandin Digestion Pepsin and protease RPC: Signedex 5, 4 2 cm; 0-05% ACN + 0.1% TFA; 1 mL/min; UV detection (220 nm) Nogata et al., 2009 White wheat, wholemeal wheat, protease Pigesion Different sourdoughs Sec. Signeadex 6, 4 0 cm; 0-05% ACN + 0.1% TFA; in 30 min; 4 mL/m				Desalination by electrodialyzation	
Solycken protection Digestion Initial Corpore (C cosmosil SC18 AR 4.6/250; 0.50% B in 50 min; A: 0.05% TFA; B: 70% ACN + 0.065% TFA; 0.75 mL/min; UV detection (220 nm) Gouda et al., 2006 Glycinin from soybean* Digestion Protease P, trypsin, RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (220 nm) Gouda et al., 2006 Steamed soybean Fermentation <i>Tane koji</i> rich in A sojae RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (220 nm) Nakahara et al., 2006 wheat Fermentation <i>Tane koji</i> rich in A sojae RPC: C-19 Shimpak, 250 x 4.6 mm; 0-100% B in 25 h; water- 0.1% TFA-ACN; 45 mL/min; UV detection (220 nm) Nakahara et al., 2010 Wheat Fermentation <i>Tane koji</i> rich in A sojae RPC: Sc19-204060-ODSE-25, 25 x 25 cm; 10-95% EPCH The A-ACN; 5 mL/min; UV detection (220 nm) Nakahara et al., 2010 Wheat bran* Autolyzation Ferdogenous proteases Proteases Sec Superdex 75HR, 10, x 30 cm; elution with 30% ACN + 0.1% TFA; 0.5 mL/min; UV detection (220 nm) Nogata et al., 2010 Wheat gliandin Digestion Pepsin and protease M Protease M Sec Superdex 75HR, 10, x 30 cm; elution with 30% ACN + 0.1% TFA; n.3 mL/min; UV detection (220 nm) Nogata et al., 2010 White wheat, wholemat, wheat, 'g flours* Digestion Pepsin	Soubean protein	Digestion	Mature D3 proteas	SEC: Superdex Peptide HR 10/300; elution with 0.05 % TFA; 0.5 mL/min; UV detection (215 nm)	Kodera and
(215 nm) (215 nm) Portease P, trypsin, RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 nm) Gouda et al., 2006 soybean* Portease P, trypsin or ginger protease RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 nm) Boulda et al., 2006 Steamed soybean Tane koji rich in A wheta Desalination by electroinallyzing Nakabara et al., 2010 Nakabara et al., 2010 Nakabara et al., 2010 Wheat Fermentation Perfect SP-120-40(60-ODS-B, 150 x 1000 nm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) Nakabara et al., 2010 Wheat Processes Processes RPC: SP-120-40(60-ODS-B, 150 x 1000 nm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) Nakabara et al., 2010 Wheat Processes RPC: UChroprep RP-18, 25 x 25 orm; 10-95% ECH EC: AG MP-1 resin, 3 x 20 cm Nogata et al., 2000 Wheat gliandin Digestion Persin and protease M Persin and protease M RPC: Toryopear1 550C, 2.6 x 40 cm; 0-05% TFA; 0.5 mL/min; UV detection (220 nm) Motoi and Kodama, 2003 White wheat, wholemeal wheat, rge fourts* Persin and protease M Persin and protease M Persin and protease M RPC: TSK-GEL ODS 120T, 4.6 x 250 mm; 0-30% ACN + 0.1% TFA; 1.5 1 mL/min; UV detection (220 nm) <td< td=""><td>soybean protein</td><td>Digestion</td><td>Mature D5 proteas</td><td>[°]RPC: Cosmosil 5C18 AR 4.6/250; 0-50% B in 50 min; A: 0.05% TFA; B: ACN + 0.065% TFA; 0.75 mL/min; UV detection</td><td>Nio, 2006</td></td<>	soybean protein	Digestion	Mature D5 proteas	[°] RPC: Cosmosil 5C18 AR 4.6/250; 0-50% B in 50 min; A: 0.05% TFA; B: ACN + 0.065% TFA; 0.75 mL/min; UV detection	Nio, 2006
Glycinin from soybean*Protease P, trypsin, RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 nm) and M14Ac, CAN (5050); UV detection (230 nm) and M14Ac, CAN (5050); UV detection (230 nm)Gouda et al., 2006Steamed soybean mixed with roasted wheatFermentationTame koji rich in 1 sojateDesalination by electrodialyzing RPC: SP12-04-060-ODDS-B, 150 x 100 mm; 0-100% B in 25 h; water- 0.1% TFA-ACN; 45 mL/min; UV detection (220 nm) RPC: SP12-04-060-ODDS-B, 150 x 100 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) RPC: SP12-04-060-ODDS-B, 150 x 100 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) RPC: SP12-04-060-ODDS-B, 150 x 100 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) RPC: SP12-04-060-ODDS-B, 150 x 100 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) RPC: SP12-04-060-ODDS-B, 150 x 100 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) RPC: SP12-04-060-ODDS-B, 150 x 100 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) RPC: SP12-04-060-ODDS-B, 150 x 100 mm; 0-100% B in 90 min; water- 0.1% TFA, 2006Nakahara et al., 2010 Nakahara et al., 2010Wheat bran*AutolyzationFermentationEndogenous proteasesRPC: SP12-04-060-ODS SP3 ACN + 0.1% TFA; B: 70% ACN + 0.1% TFA; SP12-01460-ODS SP2 C SP12-04060-ODS SP2 C SP2 C SP100 PR2-18 SP2 C SP2 C SP mm; 0-35% ACN + 0.1% TFA; B: 70% ACN + 0.1% TFA; D: 70% SP2 C SP mpiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA; D: 70% SP2 C SP2 C SP				(215 nm)	
ObjectionDigestionDigestionchymotrypsin or ginger proteaseRPC: C-18 Shimpak, 250 x 4.6 mm; 0-100% B; A: 50 mM NH,Ac; B: 50 mM NH,Ac; M: 50 mM; 50 mM NH,Ac; M: 50 mM; 50 mM NH, 50 mM NH,Ac; M: 50 mM; 50 mM NH, 50 mH, 50 mM NH, 50 mH,	Clusinin from		Protease P, trypsin	, RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 nm)	Coudo at al
Styleantginger proteaseRPC: C-18 Shimpak, 250 x 4, 6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 nm)2000Steamed soybean mixed with roasted wheatFermentationTane koji rich in A sojaeDesalination by electrodialyzing RPC: SP-120-40/60-ODS-B, 150 x 1000 mm; 0-100% B in 25 h; water- 0.1% TFA-ACN; 45 mL/min; UV detection (220 nm) RPC: Cosmosil-SC18-ABRI, 20 x 250 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) RPC: Cosmosil-SC18-ABRI, 20 x 250 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) RPC: Cosmosil-SC18-ABRI, 20 x 250 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) RPC: Cosmosil-SC18-ABRI, 20 x 250 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) RPC: Cosmosil-SC18-ABRI, 20 x 250 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) RPC: Cosmosil-SC18-ABRI, 20 x 250 cm; 10-95% EIOH EIC: Sperdex 7SHR, 10 x 30 cm; elution with 30% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: LiChroprep RP-18, 2.5 x 25 cm; 10-95% EIOH EIC: Sperdex 7SHR, 10 x 30 cm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Sperdex 7SHR, 10 x 30 cm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Sperdex 7SHR, 10 x 30 cm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Sperdex 7SHR, 10 x 30 cm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Sperdex 7SHR, 10 x 30 cm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Sperdex 7SHR, 10 x 30 cm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Sperdex 7SHR SPC and elution with water; 0.33 mL/min; UV detection (220 nm)Nogata et al., 2009Wheat gliandin rye flours*Persin and sourdoughsDifferent sourdoughsSperation win 50 on L0 om M Tris-HCL, PH 8.8 at 4 °C and centrifugation at 20,000g, 20 min RPC: Spehaile Petide C2/C		Digestion	chymotrypsin or	RPC: C-18 Shimpak, 250 x 4.6 mm; 0-100% B; A: 50 mM NH ₄ Ac; B: 50 mM NH ₄ Ac/ ACN (50:50); UV detection (230 nm)	2006
Steamed soybean mixed with roasted wheatTane koji rich in A sojaeDesalination by electrodialyzing RPC: SP-120-40/00-ODS-B, 150 x 1000 mm; 0-100% B in 25 h; water- 0.1% TFA-ACN; 45 mL/min; UV detection (220 nm) RPC: Cosmosil-SC1B-ARII, 20 x 250 mm; 0-100% B in 90 min; water- ACN; 5 mL/min; UV detection (220 nm) RPC: Casmosil-SC1B-ARII, 20 x 250 mm; 0-100% B in 90 min; water- ACN; 5 mL/min; UV detection (220 nm) RPC: Casmosil-SC1B-ARII, 20 x 250 mm; 0-100% B in 90 min; water- ACN; 5 mL/min; UV detection (220 nm) RPC: Casmosil-SC1B-ARII, 20 x 250 mm; 0-100% B in 90 min; water- ACN; 5 mL/min; UV detection (220 nm) RPC: Casmosil-SC1B-ARII, 20 x 250 mm; 0-30% MCN + 0.1% TFA; 0.5 mL/min; UV detection (220 nm) RPC: Unprice C4, 10 x 250 mm; 0-35% ACN + 0.1% TFA; in 30 min; 4 mL/min RPC: Jupiter C4, 10 x 250 mm; 0-35% ACN + 0.1% TFA; in 30 min; 4 mL/minNogata et al., 2009Wheat gliandin whole weat, rye flours*DigestionPepsin and protease MIEC: SP-froyopearl 550C, 2.6 x 40 cm; 0-0.5M NaCl in 5 mM NaAc, pH 3.5; 1 mL/min; UV detection (220 nm) SEC: Bio-gel P-2, 1.6 x 100 cm; elution with water; 0.33 mL/min; UV detection (220 nm) SEC: Bio-gel P-2, 1.6 x 100 cm; elution with water; 0.33 mL/min; UV detection (220 nm) SEC: Bio-gel P-2, 1.6 x 100 cm; elution with water; 0.30% ACN + 0.1% TFA; 1 mL/min; UV detection (220 nm) SEC: Bio-gel P-2, 1.6 x 100 cm; elution with water; 0.30% ACN + 0.01% TFA; 1 mL/min; UV detection (214 nm) 2008Motoi and Kodama, 2003Whete weat, rye flours*Different sourdoughsDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4° C and centrifugation at 20,000g, 20 min RPC: Sephasil Peptide C15, 1.8 x 60 cm; 2.00m NAAc, pH 4.0; 0.4 mL/min; UV detection (214 nm)2008Weat rye flours*DigestionAlcalaseSEC: Se	soybean		ginger protease	RPC: C-18 Shimpak, 250 x 4.6 mm; 0-35% B; A: 0.1% TFA; B: 70% ACN + 0.05% TFA; 0.7 mL/min; UV detection (230 nm)	2000
Steamed soybean mixed with roasted wheatFermentationTank koji rich in A sojaeRPC: SP-120-40/60-ODS-B, 150 x 1000 mm; 0-100% B in 25 h; water- 0.1% TFA-ACN; 45 mL/min; UV detection (220 nm) RPC: Cosmosil-SCI8-ARLI 20 x 250 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) al., 2010Nakahara et al., 2010Wheat wheatAutolyzationRPC: SP-120-40/60-ODS-B, 150 x 1000 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm) al., 2010Nakahara et al., 2010Wheat bran* wheat wheat gliandin rye flours*AutolyzationRPC: LiChroprep RP-18, 2.5 x 25 cm; 10-95% EIOH IEC: Superdex 7J5HR, 10 x 30 cm; elution with 30% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/minNogata et al., 2009Wheat gliandin rye flours*DigestionPepsin and protease MIEC: SP-Toyopearl 550C, 2.6 x 40 cm; 0-0.5M NaCl in 5 mM NaAc, pH 3.5; 1 mL/min; UV detection (220 nm) SEC: Bio-gel P.2, 1.6 x 100 cm; elution with water; 0.33 mL/min; UV detection (220 nm) SEC: Bio-gel P.2, 1.6 x 100 cm; elution with water; 0.33 mL/min; UV detection (220 nm)Motoi and Kodama, 2003White wheat, wholemeal wheat, rye flours*FermentationDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4° C and centrifugation at 20,000g, 20 min RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm)Li et al., 2007Rice*DigestionAlcalaseDifferent Sec: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 0-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV det	0. 1 1			Desalination by electrodialyzing	
mixed wheat wheatFermentationsoldeRPC: Cosmosil-SC18-ARII, 20 x 250 mm; 0-100% B in 90 min; water- 0.1% TFA-ACN; 5 mL/min; UV detection (220 nm)al., 2010Wheat bran*AutolyzationEndogenous proteasesRPC: Cosmosil-SC18-ARII, 20 x 250 mm; 0-100% B in 90 min; water- ACN; 5 mL/min; UV detection (220 nm)Nogata et al., 2009Wheat bran*AutolyzationEndogenous proteasesPCC: LiChroprep RP-18, 2.5 x 25 cm; 10-95% EtOH EC: Superdex 75HR, 100 x 30 cm; elution with 30% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/minNogata et al., 2009Wheat gliandinDigestionPepsin and proteaseEC: Superdex 75HR, 100 x 30 cm; elution with 30% ACN + 0.1% TFA in 30 min; 4 mL/minMotoi and Kodama, 2003White wheat, wholemeal wheat, rye flours*FermentationDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4° C and centrifugation at 20,000g, 20 min RPC: TSK-GEL ODS 120T, 4.6 x 250 mm; 0-30% ACN + 0.1% TFA; B: ACN+0.05%; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0-60% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm)Li et al., 2007 Li et al., 2007Rice*FermentationSeparation in SEPABEADS SP825 and elution with different EtOH percentages: 10-70% SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with different EtOH percentages: 10-70% SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with different EtOH percentages: 10-70% SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with different EtOH percentages: 10-70% SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with different EtOH percentages: 10-70% SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with different EtOH percentag	Steamed soybean		<i>Tane koji</i> rich in A.	RPC: SP-120-40/60-ODS-B. 150 x 1000 mm: 0-100% B in 25 h: water- 0.1% TFA-ACN: 45 mJ/min: UV detection (220 nm)	Nakahara et
wheatRPC: C30 Develosil RPAQUEOUS-AR, 20 x 250 mm; 0-100% B in 90 min; water-ACN; 5 mL/min; UV detection (220 nm)Wheat bran*AutolyzationEndogenous proteasesRPC: L1Chroprep RP-18, 2.5 x 25 cm; 10-95% EtOH SEC: Superdex 75HR, 10 x 30 cm; elution with 30% ACN + 0.1% TFA; 0.5 mL/min; UV detection (220 nm) RPC: Lupiter C4, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Lupiter C4, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/minNogata et al., 2009Wheat gliandinDigestionPepsin and protease MEC: SP-Toyopearl 550C, 2.6 x 40 cm; 0-0.50% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Lupiter C4, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/minMotoi and Kodama, 2003White wheat, wholemeal wheat, rye flours*FermentationDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCL, pH 8.8 at 4 °C and centrifugation at 20,000g, 20 min RPC: Stylater C18 ST 4.6/250, 4.6 x 250 mm; 0-30% ACN + 0.1% TFA; in L/min; UV detection (210 nm)Motoi and Kodama, 2003White wheat, wholemeal wheat, rye flours*FermentationDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCL, pH 8.8 at 4 °C and centrifugation at 20,000g, 20 min RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0-60% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm)Li et al., 2007 Li et al., 2007 RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 0-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm)Li et al., 2007 Li et al., 2007 RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 0-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm)Li et al., 2007 Li et al., 2007 RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 0-30% B (B: ACN + 0.1% TFA) in 40 m	mixed with roasted	Fermentation	sojae	RPC: Cosmosil-5C18-ARII 20 x 250 mm: 0-100% B in 90 min: water- 0.1% TFA-ACN: 5 mL/min: UV detection (220 nm)	al., 2010
Wheat bran*AutolyzationEndogenous proteasesRPC: LiChroprep RP-18, 2.5 x 25 cm; 10-95% EtOH IEC: AG MP-1 resin; 3 x 20 cm Sec: Superdex 75HR, 10 x 30 cm; elution with 30% ACN + 0.1% TFA; 0.5 mL/min; UV detection (220 nm)Nogata et al., 2009Wheat bran*DigestionPepsin and protease MIEC: SP-7oyopearl 550C, 2.6 x 40 cm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Jupiter C18, 100 z250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Jupiter C18, 100 z250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Jupiter C18, 100 z250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min White wheat, wholemeal wheat, rye flours*Pepsin and protease MIEC: SP-7oyopearl 550C, 2.6 x 40 cm; 0-0.5M NaCl in 5 mM NaAc, pH 3.5; 1 mL/min; UV detection (220 nm) SEC: Biorgel P-2, 1.6 x 100 cm; elution with water; 0.33 mL/min; UV detection (220 nm)Motoi and Kodama, 2003White wheat, wholemeal wheat, rye flours*FermentationDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCl, PH 8.8 at 4°C and centrifugation at 20,000g, 20 min Motoi sourdoughsRizzello et al., 2008Rice*DigestionAlcalaseAlcalaseExtraction with 30 mL 50 mM Tris-HCl, PH 8.8 at 4°C and centrifugation at 20,000g, 20 min Motoi and condex GL 20 mm)Li et al., 2007 Li et al., 2008Rice*DigestionAlcalaseAlcalaseSephasil Peptide C15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 mm) Li et al., 2007 RPC: Sephasil Peptide C16 RS T 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 mm)Li et al., 2007 Li et al., 2007 RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (wneat			RPC: C30 Develosil RPAOUEOUS-AR, 20 x 250 mm; 0-100% B in 90 min; water-ACN; 5 mL/min; UV detection (220 nm)	
Wheat bran*AutolyzationEndogenous proteasesIEC: AG MP-1 resin, 3 x 20 cm SEC: Superdex 75HR, 10 x 30 cm; elution with 30% ACN + 0.1% TFA; 0.5 mL/min; UV detection (220 nm) RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min; UV detection (220 nm) SEC: Bio-gel P-2, 1.6 x 100 cm; elution with water; 0.33 mL/min; UV detection (220 nm) RPC: TSK-GEL ODS 120T, 4.6 x 250 mm; 0-30% ACN + 0.01% TFA; 1mL/min; UV detection (220 nm) RPC: Sephasin Portection RPC: Jupiter C18, 10 x 250 mm; 0-30% ACN + 0.01% TFA; 1mL/min; UV detection (220 nm) RPC: Sephasin Portection RPC: TSK-GEL ODS 120T, 4.6 x 250 mm; 0-30% ACN + 0.01% TFA; 1mL/min; UV detection (220 nm) RPC: Sephasin Portection RPC: TSK-GEL ODS 120T, 4.6 x 250 mm; 0-30% ACN + 0.01% TFA; B: ACN +0.05%; 1 mL/min; UV detection (214 nm)Nogata et al., 2007 REZEI oet al., 2008White wheat, wholemeal wheat, rye flours*FermentationDifferent sourdoughsExtraction with 30 m L 50 mM Tris-HCl, pH 8.8 at 4°C and centrifugation at 20,000g, 20 min RPC: Sephasin Poptide C18 ST 4.6/250, 4.6 x 250 mm; 0-06% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm) RPC: Sephasin Poptide C18 ST 4.6/250, 4.6 x 250 mm; 0-06% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm) RPC: Sephasin Poptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 mm) RPC: Sephasin Poptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 mm) RPC: Sephasin Poptide C2/C18 ST 4.6/250, 4.6 x 250 m				RPC: LiChroprep RP-18, 2.5 x 25 cm; 10-95% EtOH	
Wheat bran*AutolyzationEndogenous proteasesSEC: Superdex 75HR, 10 x 30 cm; elution with 30% ACN + 0.1% TFA; 0.5 mL/min; UV detection (220 nm) RPC: Jupiter C4, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/minNogata et al., 2009Wheat gliandinDigestionPepsin and protease MPepsin and protease MEC: SP-Toyopearl 550C, 2.6 x 40 cm; 0-0.5M NA2CI in 5 MM NA2c, PH 3.5; 1 mL/min; UV detection (220 nm) SEC: Bio-gel P-2, 1.6 x 100 cm; elution with water; 0.33 mL/min; UV detection (220 nm) SEC: Bio-gel P-2, 1.6 x 100 cm; elution with water; 0.33 mL/min; UV detection (220 nm)Motoi and Kodama, 2003White wheat, wholemeal wheat, rye flours*FermentationDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4 °C and centrifugation at 20,000g, 20 min RPC: TSK-GEL ODS 120T, 4.6 x 250 mm; 0-30% ACN + 0.01% TFA; 1 mL/min; UV detection (214 nm)Rizzello et al., 2008Rice*DigestionDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4 °C and centrifugation at 20,000g, 20 min RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0-30% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm)Li et al., 2007Rice*DigestionAlcalaseSec: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm)Li et al., 2007RiceFermentationMonascus strainsSec: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm) RPC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm)Kuba et al., 2007RiceFermentationMonascus strainsSec: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (2			F 1	IEC: AG MP-1 resin. 3 x 20 cm	
ProteasesProteasesRPC: Jupiter C4, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min tPC: SP-Toyopearl 550C, 2.6 x 40 cm; 0-0.5M NaCl in 5 mM NaAc, pH 3.5; 1 mL/min; UV detection (220 nm) Motoi and Kodama, 2003Wheat gliandin wholemeal wheat, rye flours*DigestionDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4 °C and centrifugation at 20,000g, 20 min RP-FPLC: 5% B 16 min; 5-46% B 46 min; A: 0.05% TFA; B: ACN+0.05%; 1 mL/min; UV detection (214 nm)Rizzello et al., 2008Rice*DigestionDigestionAlcalaseDesalination with an ion exchange resin SEC: Sephades G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0-60% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4	Wheat bran*	Autolvzation	Endogenous	SEC: Superdex 75HR, 10 x 30 cm; elution with 30% ACN + 0.1% TFA; 0.5 mL/min; UV detection (220 nm)	Nogata et al.,
Image: RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/minWheat gliandinDigestionPepsin and protease MIEC: SP-Toyopearl 550C, 2.6 x 40 cm; 0-0.5M NaCl in 5 mM NaAc, pH 3.5; 1 mL/min; UV detection (220 nm) SEC: Bio-gel P-2, 1.6 x 100 cm; elution with water; 0.33 mL/min; UV detection (220 nm) RPC: TSK-GEL ODS 120T, 4.6 x 250 mm; 0-30% ACN + 0.01% TFA; 1 mL/min; UV detection (220 nm)Motoi and Kodama, 2003White wheat, wholemeal wheat, rye flours*FermentationDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4 °C and centrifugation at 20,000g, 20 min RP-FPLC: 5% B 16 min; 5-46% B 46 min; A: 0.05% TFA; B: ACN+0.05%; 1 mL/min; UV detection (214 nm)Rizzello et al., 2008Rice*DigestionAclealaseSEC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) RPC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) RPC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) RPC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) RPC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) RPC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0-60% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm) Representation in SEPABEADS SP825 and elution with water; UV detection (220 nm) Representation (220 nm) Separation in SEPABEADS OF 0.5 mL/min; UV detection (220 nm) Representation (220 nm) Representati		5	proteases	RPC: Jupiter C4, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min	2009
Wheat gliandinDigestionPepsin and protease MIEC: SP-Toyopearl 550C, 2.6 x 40 cm; 0-0.5M NaCl in 5 mM NaAc, pH 3.5; 1 mL/min; UV detection (220 nm)Motoi and Kodama, 2003White wheat, wholemeal wheat, rye flours*FermentationDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4 °C and centrifugation at 20,000g, 20 minRizzello et al., 2008Rice*DigestionAlcalaseAlcalaseDesalination with an ion exchange resin SEC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm)Desalination with an ion exchange resin SEC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm)Li et al., 2007Rice*DigestionAlcalaseRP-FPLC: 5% B 16 min; 5-46% B 4.6/250, 4.6 x 250 mm; 0- 60% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm)Li et al., 2007RiceFermentationMonascus strainsSEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm)Kuba et al., 2009RiceFermentationMonascus strainsSEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm)Kuba et al., 2009				RPC: Jupiter C18, 10 x 250 mm; 0-35% ACN + 0.1% TFA in 30 min; 4 mL/min	
Wheat gliandinDigestionPepsin and protease MSEC: Bio-gel P-2, 1.6 x 100 cm; elution with water; 0.33 mL/min; UV detection (220 nm)Motor and Kodama, 2003White wheat, wholemeal wheat, rye flours*FermentationDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4 °C and centrifugation at 20,000g, 20 minRizzello et al., 2008Rice*DigestionDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4 °C and centrifugation at 20,000g, 20 minRizzello et al., 2008Rice*DigestionAlcalaseExtraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4 °C and centrifugation at 20,000g, 20 minLi et al., 2007 2008Rice*DigestionAlcalaseDesalination with an ion exchange resin SEC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0-60% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Cosmosil 5 C18-AR-300; 0-50% B (B: ACN + 0.05% TFA) in 50 min; 0.5 mL/min; UV detection (220 nm) RPC: Cosmosil 5 C18-AR-300; 0-50% B (B: ACN + 0.05% TFA) in 50 min; 0			D	IEC: SP-Toyopearl 550C, 2.6 x 40 cm; 0-0.5M NaCl in 5 mM NaAc, pH 3.5; 1 mL/min; UV detection (220 nm)	Mathemat
White wheat, wholemeal wheat, rye flours*FermentationDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4 °C and centrifugation at 20,000g, 20 min RP-FPLC: 5% B 16 min; 5-46% B 46 min; A: 0.05% TFA; B: ACN+0.05%; 1 mL/min; UV detection (214 nm)Rizzello et al., 2008Rice*DigestionAlcalaseDesalination with an ion exchange resin SEC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0- 60% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm)Li et al., 2007 Li et al., 2007 Kuba et al., 2007 RPC: Sephadex G-25, 1.2 x 142.5 cm; elution with different EtOH percentages: 10-70% SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm) RPC: Cosmosil 5 C18-AR-300; 0-50% B (B: ACN + 0.05% TFA) in 50 min; 0.5 mL/min; UV detection (220 nm) 2009	Wheat gliandin	Digestion	Pepsin and	SEC: Bio-gel P-2, 1.6 x 100 cm; elution with water; 0.33 mL/min; UV detection (220 nm)	Motol and
White wheat, wholemeal wheat, rye flours*FermentationDifferent sourdoughsExtraction with 30 mL 50 mM Tris-HCl, pH 8.8 at 4 °C and centrifugation at 20,000g, 20 min RP-FPLC: 5% B 16 min; 5-46% B 46 min; A: 0.05% TFA; B: ACN+0.05%; 1 mL/min; UV detection (214 nm)Rizzello et al., 2008Rice*DigestionAlcalaseDesalination with an ion exchange resin SEC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0- 60% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm)Li et al., 2007 Li et al., 2007 Li et al., 2007 Et al., 2007 Li et al., 2007 RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm)RiceFermentationMonascus strainSeparation in SEPABEADS SP825 and elution with different EtOH percentages: 10-70% SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm) RPC: Cosmosil 5 C18-AR-300; 0-50% B (B: ACN + 0.05% TFA) in 50 min; 0.5 mL/min; UV detection (220 nm) 2009	-	-	protease M	RPC: TSK-GEL ODS 120T, 4.6 x 250 mm; 0-30% ACN + 0.01% TFA; 1 mL/min; UV detection (220 nm)	Kodama, 2003
wholemeal wheat, rye flours*FermentationDifferent sourdoughsExtraction with 30 mill 50 mill	White wheat,		Different	Extraction with 30 mL 50 mM Tris HCl nH 8.8 at 4 °C and contribugation at 20,000 g, 20 min	Dizzello et al
rye flours*SourdodigitsKP-FFEC: 5% B TO finit, 5-40% B 40 finit, X. 0.05% FFA, B. AC(V+0.05%, FEA, B. AC(V+0.05\%, FEA, B. AC(V+0.05\%	wholemeal wheat,	Fermentation	Different	Extraction with 50 fills 50 fills 10 first fills, prior $\Delta = 0.05\%$ TEA: $D_{12} \Delta = 0.05\%$, $T = M_{12} (m)_{12} (M_{12} + 0.05\%)$ (214 nm)	2008
Rice*DigestionAlcalaseDesalination with an ion exchange resin SEC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0- 60% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm)Kuba et al., 2007 Li et al., 2007 Sec: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm) RPC: Cosmosil 5 C18-AR-300; 0-50% B (B: ACN + 0.05% TFA) in 50 min; 0.5 mL/min; UV detection (220 nm) 2009	rye flours*		sourdoughs	KF-IFLC. 5% B 10 min, 5-40% B 40 min, A. 0.05% IFA, B. ACN+0.05%, 1 mL/min, 0 V detection (214 min)	2008
Rice*DigestionAlcalaseSEC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0- 60% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm) RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm)Li et al., 2007 Li et al., 2007RiceFermentationMonascus strainisSeparation in SEPABEADS SP825 and elution with different EtOH percentages: 10-70% SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm) RPC: Cosmosil 5 C18-AR-300; 0-50% B (B: ACN + 0.05% TFA) in 50 min; 0.5 mL/min; UV detection (220 nm) 2009Kuba et al., 2009				Desalination with an ion exchange resin	
Rice* Digestion Alcalase RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0- 60% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection (220 nm) Li et al., 2007 Rice* Permentation Alcalase RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 0- 60% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) Li et al., 2007 Rice Fermentation Monascus strains Separation in SEPABEADS SP825 and elution with different EtOH percentages: 10-70% Kuba et al., 2007 Rice Fermentation Monascus strains Separation in SEPABEADS SP825 and elution with water; UV detection (220 nm) Kuba et al., 2009				SEC: Sephadex G-15, 1.8 x 60 cm; 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm)	
Rice Digestion Alcalase (220 nm) Ref et al., 2007 RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) Rice Fermentation Monascus strains Separation in SEPABEADS SP825 and elution with different EtOH percentages: 10-70% Rice Fermentation Monascus strains SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm) Kuba et al., 2009	D:*	Discretion	A1	RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0- 60% B (B: ACN + 0.1% TFA) in 60 min; 1 mL/min; UV detection	L: at al. 2007
RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection (220 nm) Rice Fermentation Monascus strainin SEPABEADS SP825 and elution with different EtOH percentages: 10-70% SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm) Kuba et al., 2009	Rice*	Digestion	Alcalase	(220 nm)	Li et al., 2007
(220 nm) Rice Fermentation Monascus strains Separation in SEPABEADS SP825 and elution with different EtOH percentages: 10-70% Rice Fermentation Monascus strains SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm) Kuba et al., 2009 Rice Fermentation Monascus strains RPC: Cosmosil 5 C18-AR-300; 0–50% B (B: ACN + 0.05% TFA) in 50 min; 0.5 mL/min; UV detection (220 nm) 2009				RPC: Sephasil Peptide C2/C18 ST 4.6/250, 4.6 x 250 mm; 10-30% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min; UV detection	
RiceFermentationMonascus strainsSeparation in SEPABEADS SP825 and elution with different EtOH percentages: 10-70% SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm)Kuba et al., 2009RiceFermentationMonascus strainsSEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm)Kuba et al., 2009				(220 nm)	
RiceFermentationMonascus strainsSEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm)Kuba et al., 2009RiceMonascus strainsSEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm)Kuba et al., 2009				Separation in SEPABEADS SP825 and elution with different EtOH percentages: 10-70%	
Rice Fermentation Monascus strains RPC: Cosmosil 5 C18-AR-300; $0-50\%$ B (B: ACN + 0.05% TFA) in 50 min; 0.5 mL/min; UV detection (220 nm) 2009	D'	F		SEC: Sephadex G-25, 1.2 x 142.5 cm; elution with water; UV detection (220 nm)	Kuba et al.,
	Rice	Fermentation	Monascus strains	RPC: Cosmosil 5 C18-AR-300; 0–50% B (B: ACN + 0.05% TFA) in 50 min; 0.5 mL/min; UV detection (220 nm)	2009
RPC: Cosmosil 5 C18-AR-300 or Cosmosil 5Ph-AR-300; ACN + 0.05% TFA; 0.25 mL/min; UV detection (220 nm)				RPC: Cosmosil 5 C18-AR-300 or Cosmosil 5Ph-AR-300; ACN + 0.05% TFA; 0.25 mL/min; UV detection (220 nm)	
DEAE-Tyopearl 650 M, 2.6 x 100 cm; 0-0.3 M NaCl in 5mM Tris-HCl (pH 8); 3 mL/min; UV detection (254 nm)				DEAE-Tyopearl 650 M, 2.6 x 100 cm; 0-0.3 M NaCl in 5mM Tris-HCl (pH 8); 3 mL/min; UV detection (254 nm)	
Miyoshi et al.,	*	Discotion	The sume slow ' a	Desalination with Sephadex LH-20, 1.6 x 100 cm	Miyoshi et al.,
α -zein ^w Digestion Inermotysin RPC: C-18 Capcellpak, 1.5 x 25 cm; 10-60% B (B: ACN + 0.1% TFA); 8 mL/min; UV detection (210 nm) 1991	α-zein*	Digestion	Inermolysin	RPC: C-18 Capcellpak, 1.5 x 25 cm; 10-60% B (B: ACN + 0.1% TFA); 8 mL/min; UV detection (210 nm)	1991
RPC: C-18 Capcellpak, 1.5 x 25 cm; ACN + 0.1% TFA; 8 mL/min; UV detection (210 nm)				RPC: C-18 Capcellpak, 1.5 x 25 cm; ACN + 0.1% TFA; 8 mL/min; UV detection (210 nm)	

			CEC: Senshupak SCN-1251, 0.46 x 25 cm; 20 mM/pH 4.0- 50 mM/pH 6.3 NH ₄ Ac	
			SP-Toyopearl 650 M, 2.6 x 100 cm; 20 mM/pH 4.0- 50 mM/pH 6.3 NH ₄ Ac; 3 mL/min; UV detection (254 nm)	
			RPC: C-18 Capcellpak, 1.5 x 25 cm; 10-60% B (B: ACN + 0.1% TFA); 8 mL/min; UV detection (210 nm)	
			RPC: C-18 Capcellpak, 1.5 x 25 cm; 5-30% B (ACN + 0.1% TFA); UV detection (210 nm)	
Urea denaturated Z19			RPC: YMC-GEL C4, 4.6 x 110 mm; 0 -30% B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (220 nm)	N7 (1
α-zein	D'	TT1	RPC: YMC-GEL C18, 4.6 x 250 mm; 0-15% or 0-25% B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (220 nm)	Y ano et al.,
Urea denaturated total α-zein	Digestion	Thermolysin	RPC: YMC-GEL C18, 4.6 x 250 mm; 0-30% B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (220 nm)	1996
		Protamey neutrase	UF: Mwco 5 kDa	Vang et al
Corn gluten meal*	Digestion	alcalase or trynsin	'SEC: Bio-Rad P-2, 700 x 15 mm; 2 mM PBS, pH 8.0; 0.25 mL/min; UV detection (220 nm)	2007
		alcalase of trypsin	RPC: μ-Bondapak C 18, 300 x 7.8 mm; 0–40% B (B: ACN + 0.1% TFA); 3 mL/min; UV detection (220 nm)	2007
	Simulated		RPC: Cosmosil 5C18-AR-II, 20 x 250 mm; 1%/min B (B: ACN + 0.1% TFA); 10 mL/min; UV detection (230 nm)	
Spinach Rubisco	gastrointestinal	Pepsin and	RPC: 5PE-MS, 4.6 x 250 mm; 1%/min B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (230 nm)	Yang et al.,
Spinaen Rubiseo	digestion	pancreatin	RPC: Cosmosil 5 CN-R, 4.6 x 250 mm; 1%/min B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (230 nm)	2003
	urgestion		RLC: 5NPE, 4.6 x 150 mm; 1%/min B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (230 nm)	
Amaranth			SEC: Sephadex G-200, 1.4 x 29 cm; 0.4 M NaCl + 20 mM 2-MER; 0.4 mL/min; UV detection (280 nm)	
(Amaranthus	Digestion	Alcalase	SEC: Sephadex G-15, 14 x 29 cm; 0.4 M MaCl + 20 mM 2 MER; 0.4 mL/min; UV detection (204 mm)	Tovar-Perez et
hypochondriacus)	Digestion	7 Houlube	RPC: Nucleosil 100 C18 RP 4.6 x 250 mm; 0.30% R (R: ACN + 0.1% TFA) in 60 min; 2 mJ/min; UV detection (214 nm)	al., 2009
grain				
			UF: M _{WCO} 6 kDa	
			SEC: Sephadex G-15, 1.8 x 60 cm; elution with 20 mM NaAc, pH 4.0; 0.4 mL/min; UV detection (220 nm)	
Mung bean protein	Digestion	Alcalase	RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 0-100% B in 60 min; A: 0.1% TFA; B: 60% ACN + 0.1% TFA;	¹ Lietal 2006
Mang bean protein	Digestion	Thealase	mL/min; UV detection (220 nm)	Li et ul., 2000
			RPC: Sephasil Peptide C18 ST 4.6/250, 4.6 x 250 mm; 10-80% B in 40 min; A: 0.1% TFA; B: 60% ACN + 0.1% TFA;	1
			mL/min; UV detection (220 nm)	
			SEC: Bio-Gel P-2, 15 x 820 mm; elution with 10% EtOH; 0.18 mL/min; UV detection (210 nm)	
Sesame protein			RPC.: Develosil ODS-10, 20 x 250 mm; 5% B in 20 min; 5-40% B in 60 min; B, ACN + 1% TFA; 10 mL/min; UV detectio	ⁿ Nakano et al
hydrolysate	Hydrolysis	Thermolysin	(210 nm)	2006
nyurorysate			RPC: Develosil C-30-UG-5, 10 x 250 mm; ACN + 1% TFA; 4 mL/min; UV detection (210 nm)	2000
			RPC: Develosil Ph-UG-5, 10 x 250 mm; 6% ACN + 1% TFA; 4 mL/min; UV detection (210 nm)	
Alfalfa white	Hydrolyzation at	pilot plant scale by	SEC: Superdex Peptide HR 10/300, 10 x 300 mm; elution with 30% ACN + 0.1% TEA: 0.2 mL/min; UV detection (226 nm)	Kanel et al
nrotein*	Delvolase® in en	zymatic membrane	BPC: C18 4.6 x 250 mm; 0.28% B in 50 min; 24.7% B in 20 min; B $ACN \pm 0.1\%$ TEA: LIV detection (226 mm)	2006
protein	rea	ctor	Ri C. C10, 4.0 x 250 min, 0-2070 D m 50 min, 20-4770 D m 20 min, D, RCIV + 0.170 TFR, 0 V detection (220 min)	2000
			ANIMAL ORIGIN	
			SEC: TSK gel G2000SWXL, 7.8 x 300 mm; elution with 0.2 M PBS, pH 7.0; 1 mL/min; UV detection (225 nm)	
Chielen hone	Direction	Danain	RPC: Inertsil ODS-2;0-35% B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (225 nm)	Nakade et al.,
Unicken bone	Digestion	Pepsin	RPC: Inertsil ODS-2; 8-14% B (B: ACN + 0.1% TFA); 0.5 mL/min; UV detection (225 nm)	2008
			RPC: Cosmosil 5PE-MSI; elution with 10% ACN and 5% ACN; 0.5 mL/min; UV detection (215 nm)	

Chicken leg	Digestion	Aspergillus oryzae protease, protease FP/ protease A amano G/ protease N, pepsin and trypsin/ chymotrypsin	UF: Mwco 3 kDa e RPC: C18 ODS, 22 x 250 mm and 4.6 x 250 mm; 8-40% B in 40 min or 8-40 % B in 64 min (B: ACN + 0.1% TFA); 1 mL/min; UV detection (220 nm)	Saiga et al., 2008
Chicken leg bone	Digestion	Alcalase	UF: Mwco 5 kDa SEC: Superdex TM Peptide HR 10/30, 10 x 300 mm; elution with water; 0.5 mL/min; UV detection (220 nm)	Cheng et al., 2009
Chicken muscle ¹ and ovalbumin ²	Digestion	Thermolysin ¹ and pepsin, trypsin, chymotrypsin or thermolysin ²	RPC: Cosmosil 5C18-AR, 20 x 250 mm; 0-50% B (B: ACN + 0.1% TFA) in 50 min; 10 mL/min; UV detection (215 ¹ or 230 ² nm) RPC: Cosmosil 5 Ph, 4.6 x 250 mm; 0-40% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min RPC: Cosmosil 5CN-R, 4.6 x 250 mm; 0-40% B (B: ACN + 0.1% TFA) in 40 min; 1 mL/min RPC: Cosmosil 5C18-AR, 20 x 250 mm; 0-40% B (B: ACN + 10 mM PBS, pH 7.0) in 40 min; 1 mL/min	Fujita et al., 2000
Porcine skeletal muscle	Digestion	Trypsin, α- chymotrypsin, pronase E, proteinase K, thermolysin, ficin, papain or pepsin	RPC: CAPCELL PAK C18 UG120, 4.6 x 150 mm; 0-100% B; A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm) RPC: CAPCELL PAK C18 UG120, 4.6 x 150 mm; 0-100% B; A: 0.015% NH ₄ OH; B: ACN + 0.015% NH ₄ OH; 1 mL/min; UV detection (215 nm)	Arihara et al., 2001
Porcine skeletal muscle troponin	Digestion	Pepsin	AEC: DE53, 16 x 150 mm; 0–300 mM NaCl in 20 mM Tris-acetate, pH 7.5; 1.13 mL/min; UV detection (215 nm) Desalination: Sep-Pak Plus C18; elution with 50% ACN RPC: Cosmosil 5C18 ARII, 4.5 x 150 mm; 1–80% B (B: ACN + 0.1% TFA); 0.5 mL/min; UV detection (215 nm) RPC: Cosmosil 5C18 ARII, 4.5 x 150 mm; elution with 12 or 16% ACN + 0.1% TFA); 0.5 mL/min; UV detection (215 nm) SEC: TSK-gel G2000SWXL, 7.8 x 300 mm; elution with 20 mM PBS, pH 7.0; 0.5 mL/min; UV detection (215 nm) RPC: Cosmosil 5PEMS, 4.6 x 250 mm; elution with 12 or 15% ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm);	Katayama et al., 2008
Porcine hemoglobin	Digestion	Pepsin, trypsin or papain	 SEC: Sephadex LH-20, 2.6 x 90 cm; elution with 30% MetOH; 0.5 mL/min; UV detection (280 nm) RPC: Hypersil BDS C18, 4.6 x 250 mm; 0% B in 5 min; 0-50% B in 40 min; 100% B in 10 min; A: 10% ACN + 0.1% TFA; B: 90% ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm) RPC: Hypersil BDS C18, 4.6 x 250 mm; 0% B in 3 min; 0-40% B in 15 min; 100% B in 10 min; A: 10% ACN + 0.1% TFA; B: 90% ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm) 	Yu et al., 2006
Porcine myosin B	Digestion	Pepsin	SEC: Superdex TM 30, 1.6 x 90 cm; elution with 20 mM NaAc (pH 7.0) + 150 mM NaCl; 0.45 mL/min Desalination: SEP-PAK Plus C18; elution with 50% ACN RPC: Inertsil ODS-2, 4.6 x 250 mm; 1–80% B and:1-50% B (ACN + 0.1% TFA); 0.5 mL/min; UV detection (225 nm) RPC: Comosil 5PE-MS, 4.6 x 250 mm; elution with ACN at different proportions and flow-rates (0.1-0.5 mL/min); UV detection (225 nm)	Muguruma et al., 2009
Pork loin	Digestion	Pepsin	AEC: DE53, 16 x 150 mm; 0- 300 mM NaCl in 20 mM Tris-acetate, pH 7.5; 1.13 mL/min; UV detection (215 nm) Desalination with Sep-Pak Plus C18; elution with 50% ACN RPC: Cosmosil 5C18 AR-II, 4.5 x 150 mm; 1-80% B (B: ACN + 0.1% TFA); 0.5 mL/min; UV detection (215 nm) RPC: Cosmosil 5C18 AR-II, 4.5 x 150 mm; elution with 12% ACN + 0.1% TFA; 0.5 mL/min; UV detection (215 nm) SEC: TSK-gel G2000 SWXL, 7.8 x 300 mm; elution with 20 mM PBS, pH 7.0; 0.5 mL/min; UV detection (215 nm)	Katayama et al., 2007

			RPC: Cosmosil 5PE-MS, 4.6 x 250 mm; elution with 12% ACN + 0.1 % TFA; 1 mL/min; UV detection (215 nm)	
Pork meat	Simulated gastrointestinal digestion	Pepsin and pancreatin	RPC: Symmetry C18, 4.6 x 250 mm; 1% B in 5 min and 1-100% B in 80 min; water-0.1-0.085% TFA-ACN; 0.8 mL/min;	Escudero et al., 2010
Bullfrog (<i>Rana catesbeiana</i> <i>Shaw</i>) muscle	Digestion	Alcalase, α- chymotrypsin, neutrase, papain, pepsin or trypsin	IEC: HiPrep 16/10 CM FF; 0–2 M NaCl in 20 mM PBS, pH 4.0; 62 mL/ h; UV detection (215 nm) RPC: Primesphere 10 C18, 10 x 250 mm; 0–35% B (B: ACN + 0.1% TFA) in 35 min; 1.2 mL/ min; UV detection (215 nm) RPC: SynChropak RP-P-100, 4.6 x 250 mm; elution with 15% ACN + 0.1% TFA in 20 min; 1.2 mL/min; UV detection (215 nm) nm)	Qian et al., 5 2007b
Beef rump	Digestion	Thermolysin, proteinase A or protease type XIII and their combination	UF: Mwco 10 kDa SEC: Sephadex G-25, 2.6 cm x 1 m; elution eith 20 mM PBS, pH 7.4; 1.6 mL/min RPC: C18, 25 x 0.46 cm; 0% B in 10 min, 0-65% B in 20 min, 100% B in 10 min; A: 0.1% TFA; B: ACN + 0.07% TFA; 0.8 mL/min; UV detection (214 nm)	Jang and Lee, 3 2005
Bovine α _{S2} - casein	Digestion	Trypsin	RPC: XTerra C18, 4.6 x 250 mm; 1.6% B in 3 min; 1.6-40% B in 87 min (B:ACN + 0.1% TFA); 1 mL/min; UV detection (210-300 nm)	- Tauzin et al., 2002
Bovine lactoferrin	Direction	Pepsin or trypsin	RPC: Capcell PAK C18, 4.6 x 150 mm; 0-45% B in 25 min; A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection (230 nm)) Lee et al., 2006a;
Hen ovotransfferin	Digestion	and chymotrypsin	RPC: TSK gel ODS 80-Ts, 4.6 x 150 mm; 0-45% B in 25 min; A: 0.1% TFA; B: ACN + 0.1% TFA; 1 mL/min; UV detection (230 nm)	Lee et al., 2006b
			SEAFOOD	
Antarctic krill (<i>Euphausia superba</i>) tail meat	Digestion	Thermoase PC10F	CEC: HiPrep 16/10 SP XL, 16 x 100 mm; 0-1 M NaCl + 26.5 mM HFo; 2 mL/min; UV detection (214 nm) SEC: Superdex Peptide 10/300 GL, 10 x 300 mm; 0.9 mL/min; UV detection (214 nm); RPC: ODS-80TM, 4.6 x 75 mm; 0- 40% ACN + 0.1% TFA; 0.5 mL/min; UV detection (214 nm) RPC: μRPC C2/C18 SC 2.1/10, 2.1 x 100 mm; 7-13% ACN in 35 min; UV detection (214 nm)	Hatanaka et al., 2009
Blue mussel (Mytilus edulis)	Fermentation	Salty conditions fo 6 months	SEC: Sephadex G-75, 2.5 x 90 cm; elution with 50 mM PBS, pH 7.0; 60 mL/h; UV detection (280 nm) r IEC: SP-Sephadex C-25, 2.5 x 45 cm; 0-1 M NaCl in 20 mM NaAc, pH 4.0; UV detection (280 nm) RPC: Nucleosil 100-7 ODS C18, 10 x 250 mm; 0-40% B (B: ACN + 0.1% TFA); 2 mL/min; UV detection (215 nm) RPC: Nucleosil 100-7 ODS C18, 10 x 250 mm; 0-25% B (B: ACN + 0.1% TFA); 2 ml/min; UV detection (215 nm)	Je et al., 2005b
Marine shrimp (Acetes chinensis)	Fermentation	Labtobacillus fermentum SM 605	UF: M _{WC0} 3 kDa SEC: Sephadex G-15, 1.6 x 80 cm; elution with water; 25 mL/min; UV detection (220 nm) RPC: HIQ sil C18-10, 4.6 x 250 mm; 0-50% B (B: MetOH + 0.1% TFA) in 50 min; 0.8 mL/min; UV detection (214 nm)	Wang et al., 2008b
Gelatin of sea cucumber	Digestion	Bromelain and alcalase	UF: M _{wCo} 1, 5, 10 kDa IEC: SP Sephadex C-25, 16 x 300 mm; 0-0.15 M NaCl in 20 mM NaAc (pH 4); 0.4 mL/min; UV detection (220 nm) SEC: Sephadex G-15, 16 x 300 mm; elution with water; 0.3 mL/min; UV detection (220 nm) RPC.: Zorbax C18, 1 x 250 mm; 0-10% ACN in 15 min; 0.8 mL/min; UV detection (220 nm) RPC: Zorbax SB C18, 4.6 x 250 mm; 0-10% ACN in 10 min; 0.8 mL/min; UV detection (220 nm)	Zhao et al., 2007
Sea cucumber (Acaudina molpadioidea)	Digestion	Bromelain and alcalase	UF: Mwco 2 kDa SEC: Sephadex G-25, 1.6 x 30 cm; elution with water; 0.6 mL/min; UV detection (220 nm)	Zhao et al., 2009
			IEC: SP Sephadex C-25, 2.6 x 30 cm; 0–1 M NaCl in 20 mM NaAc, pH 4.0; 0.6 mL/min; UV detection (220 nm) SEC: Sephadex G-25, 1.6 x 100 cm	

Oyster* Fermentation Salty conditions for 6 months Self sephadases C-25, 4 0 x 40 cm; 0-24 N NaCli n 20 M NAAs, pH 4.0; 60 mL/h; UV detection (215 nm) Jet al., 2005a Oyster* 6 months SEC: Sephadase C-50, 5 x 95 cm; cluiton with water; 60 mL/h; UV detection (215 nm) Jet al., 2005a Oyster International pole control of mL/h; UV detection (215 nm) Rec: Nucleosil 100-3 ODS CH8, 0-11% B (B; ACN + 0.1% TAA; 1 mL/min; UV detection (220 nm) Wang et al., 2005a (Crassortren corsset) Digestion Peptin SEC: Sephadase LH-20, 2.7 x 80 cm; cluiton with 30% MROH9, 0.5 mL/min; UV detection (220 nm) Wang et al., 2005a Wakame (Undurin pinnatifido) Digestion Peptin SEC: Sephadase LH-20, 2.7 x 80 cm; cluiton with 1.5% NACL; 70 mL/n Nucleosil 100 Nakamo, 2000 Sec: Sephadase LH-20, 2.7 x 80 cm; cluiton with 1.5% NACL; 70 mL/n Nucleosil 100 Nakamo, 2000 Nucleosil 100 Nakamo, 2000 Wakame (Undurin pinnatifido) Digestion Peptin Fer. Bookasphere CL8, 300 x 30 nm; 0.55% Bi 140 min; A: 0.1% TA; B: ACN + 0.0% TA; B: ACN + 0.0% Sate et al., 2004 Wakame (Undurin pinnatifido) Digestion Protease S* mannog Nucleosil 100 nmin, 2.50 (M N Hi, AC (PH 10) + 1% ACN; B: 50 mM Sate et al., 2004 Wakame (Undurin pinnatifido) Extraction Protease S* manno				RPC: Zorbax C18, 9.4 x 250 mm; 5–40% B (B: ACN + 0.1% TFA) in 40 min; 0.8 mL/min; UV detection (220 nm)	
Oyster (Crassoff tablewhanensis DigestionFiltration: Mage 10 kDaFiltration: Mage 10 kDaWang et al., 2008a(Crassoff crosse)DigestionPepsinPSC: Sephadex L+20, 2.7 x 80 cm; duiton with 30% MetOH: 0.5 mL/min; UV detection (280 nm)Wang et al., 2008aWakame (Undaria pinnadifida)DigestionPepsinDialysis against water in cellulose tubing for 2 days. EC: Deves 50W, 26 x 20 cm; duiton with 1.5% NACI; 70 mL/h RFC: Develoal CIS (DDex 5, 46 x 250 cm; 0.25% B (B; ACN + 0.05% TFA) in 2 h; 1 mL/min; UV detection (220 nm)Suetsuna and Nakano, 2000Wakame (Undaria pinnadifida)DigestionProteises S "amano", ARC: TerraRP18, 150 x 4.6 mm; 0% B in 10 min; A: 0.1% TFA; B: ACN + 0.07% TFA; 30 mL/min; UV detection (220 nm)Suetsuna and Nakano, 2000Wakame (Undaria pinnadifida)Proteises S "amano", ARC: C: TerraRP18, 150 x 4.6 mm; 0% B in 10 min; A: 0.1% TFA; B: ACN + 0.07% TFA; 30 mL/min; UV detection (220 nm)Suetsuna and Nakao (P) H) + 1% ACN; B: 50 mMSato et al., 2002Wakame (Undaria pinnadifida)Proteises S "amano", ARC: MC: MPS, ACN: H. D.Drim; UV detection (220 mm)RC: C: C: OPS0-401, 150 x 4.6 mm; 0% B in 10 min; A: 50 mM NH ₄ OH (PI 10) + 1% ACN; B: 50 mMSato et al., 2002Wakame (Undaria pinnadifida)ExtractionRC: C: Copers0-40, 150 x 4.6 mm; 0% B in 10 thin; UV detection (220 mm)Sato et al., 2002Wakame (Undaria pinnadifida)ExtractionRC: C: Copers0-42, 25, 2, 6 x 140 cm, P2, 20, 20 mL/min; UV detection (220 mm)Sato et al., 2004Wakame (Undaria pinnadifida)ExtractionRC: C: Sephadex C-25, 2, 6 x 140 cm, HAAO (P)H; B: 0.1% TFAA, In ACN (SP5); 1 mL	Oyster*	Fermentation	Salty conditions fo 6 months	IEC: SP-Sephadex C-25, 4.0 x 40 cm; 0-2 M NaCl in 20 mM NaAc, pH 4.0; 60 mL/h; UV detection (215 nm) Desalination by electrodialyzation SEC: Sephadex G-50, 2.5 x 98 cm; elution with water; 60 mL/h; UV detection (215 nm) SEC: elution with water; 60 mL/min; UV detection (215 nm) RPC: Nucleosil 100-3 ODS C18; 0-11% B (B: ACN + 0.1% TFA); 1 mL/min; UV detection (215 nm)	Je et al., 2005a
Wakame (Undaria pinnatifida) Digestion Pepsin Dialsysis against water in cellulose tubing for 2 days (EC: Dower, elution with 3.5% NHAOH SEC: Sephadex C-25, 2 x 50 cm; elution with 1.5% NACI; 70 mL/h RPC: Develoali C18 ODS-5, 4.6 x 250 cm; 0-25% B (B: ACN + 0.05% TFA) in 2 h; 1 mL/min; UV detection (220 nm) Suetsuna and Nakano, 2000 Wakame (Undaria pinnatifida) Digestion Protease S "anno" Furnation with 1-5tranol RPC: Bondasphere C18, 300, 30 nm; 0-35% B in 140 min; A: 01% TFA; B: ACN + 0.07% TFA; 30 mL/min; UV detection (220 nm) Sato et al., 2002 Wakame (Undaria pinnatifida) Protease S "anno" RPC: XTerraRP18, 150 x 4.6 mm; 0% B in 10 min; A: 50 mM NH ₄ AC (pH 10) + 1% ACN; B: 50 mM Sato et al., 2002 Wakame (Undaria pinnatifida) Protease S "anno" RPC: CVCTOPE0ADD, 150 x 4.6 mm; 0% B in 10 min; A: 50 mM NH ₄ AC (pH 10) + 1% ACN; B: 50 mM Sato et al., 2002 Wakame (Undaria pinnatifida) Extraction RPC: CVCTOPE0ADD, 150 x 4.6 mm; 0% COM min; UV detection (220 nm) Sato et al., 2002 Wakame (Undaria pinnatifida) Extraction C: C: ODP50-4D, 150 x 4.6 mm; 0% COM min; UV detection (220 nm) Suetsuna et al., 2004 Wakame (Undaria pinnatifida) Extraction E: Convectorial ODP + 5% ACN; 0.5 mL/min; UV detection (220 nm) Suetsuna et al., 2004 Tuna dark muscle Digestion Alcalase, neutrase, UF: Mwco 3 kDa pepsin, papan, et convectorial ODS + 4.6 x 250 mm; elution with 25% ACN + 0.1% TFA) in 50 min; 1 mL/min; UV detection (215 mm) Qian et al., 2007 Tuna <td< td=""><td>Oyster (Crassostrea talienwhanensis crosse)</td><td>Digestion</td><td>Pepsin</td><td>Filtration: M_{wco} 10 kDa SEC: Sephadex LH-20, 2.7 x 80 cm; elution with 30% MetOH; 0.5 mL/min; UV detection (280 nm) RPC: Hypersil BDS C18, 4.6 x 210 mm; 0–100% B in 40 min; 100% B in 10 min; A: 0.1% TFA; B: ACN; 1 mL/min; UV detection (215 nm)</td><td>Wang et al., 2008a</td></td<>	Oyster (Crassostrea talienwhanensis crosse)	Digestion	Pepsin	Filtration: M _{wco} 10 kDa SEC: Sephadex LH-20, 2.7 x 80 cm; elution with 30% MetOH; 0.5 mL/min; UV detection (280 nm) RPC: Hypersil BDS C18, 4.6 x 210 mm; 0–100% B in 40 min; 100% B in 10 min; A: 0.1% TFA; B: ACN; 1 mL/min; UV detection (215 nm)	Wang et al., 2008a
Wakame (Undaria pinnatifida)DigestionFestimation with 1-butanol RPC: Biodasphere C18, 300 x 30 mm; 0-35% B in 140 min; A: 0.1% TFA; B: ACN + 0.07% TFA; 30 mL/min; UV detection (220 nm) RPC: C: ODES04D, 150 x 4.6 mm; 0% B in 10 min, 0-20% B in 40 min; A: 50 mM NH ₄ Ac (pH 10) + 1% ACN; B: 50 mM State et al., 2002Wakame (Undaria pinnatifida)Protease S "amamo" RPC: C: ODES04D, 150 x 4.6 mm; 0% B in 10 min, 0-20% B in 30 min; A: 50 mM NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 5% ACN; 1 mL/min; UV detection (220 nm) RPC: C: ODES04D, 150 x 4.6 mm; 0.20% B in 30 min; A: 50 mM NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 10 + 10 (pH 10) + 10 (p	Wakame (Undaria pinnatifida)	Digestion	Pepsin	Dialysis against water in cellulose tubing for 2 days IEC: Dowex 50W, 2.6 x 20 cm; elution with 3.7% NH4OH SEC: Sephadex C-25, 2 x 50 cm; elution with 1.5% NaCl; 70 mL/h RPC: Develosil C18 ODS-5, 4.6 x 250 cm; 0-25% B (B: ACN + 0.05% TFA) in 2 h; 1 mL/min; UV detection (220 nm)	Suetsuna and Nakano, 2000
Wakame (Undaria pinnatifida)ExtractionDialysis against water (10 L) in cellulose tubular membrane (90 cm) IEC: Dowex 50W, 45 x 450 mm; elution with NH40H SEC: Sephadex G-25, 2.6 x 140 cm; elution with 0.1 M PBS, pH 7.0; 30 mL/min RPC: Develosil ODS-5, 4.6 x 250 mm; 0-25% B (B; ACN + 0.05% TFA) in 180 min; 1 mL/min; UV detection (220 nm) RPC: Asahipack CG-320HQ, 7.6 x 300 mm; elution with 0.1 M PBS, pH 7.0; 30 mL/min RPC: Develosil ODS-5, 4.6 x 250 mm; 0-25% B (B; ACN + 0.05% TFA) in 180 min; 1 mL/min; UV detection (220 nm) RPC: Asahipack CG-320HQ, 7.6 x 300 mm; elution with 0.1 M PBS, pH 7.0; 30 mL/minSuetsuna et al., 2004Tuna dark muscleDigestionAlcalase, neutrase, epsin, papain, a- chymotrypsin rypsinEC: HiPrep 16/10 DEAE FF; 0-2 M NaCl in NaAc (pH 4); 2.0 mL/min; UV detection (280 nm) 0.0 x 250 mm; 0-50% B (B; ACN + 0.1% TFA) in 55 min; 2.0 mL/min; UV detection (215 nm)Qian et al., 2007aTunaDigestionAlcalase, neutrase, epsin, neutrase, papain, neutrase, trypsinUF: Nwco 3 kDa pepsin, papan, a- epsin, papain, a- icc: HiPrep 16/10 DEAE FF; 0-2 M NaCl in NaAc (pH 4); 2.0 mL/min; UV detection (215 nm)Qian et al., 2007aTunaDigestionAlcalase, neutrase, echymotrypsin, papain pepsin, neutrase prepsin, neutrase trypsinUF: Nwco 1, 5, 10 kDa EC: Hiprep 16/10 DEAE FF; 0-2 M NaCl in 20 mM NaAc, pH 4.0; 62 mL/h; UV detection (215 nm)Lee et al., 2010Upstream chum salmon muscleDigestionThermolysin repsin, neutrase of trypsinRPC: ODS, Comsoil 140,C18- OPN, 44 x 370; elution with 15% ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm)Ono et al., 2003Salmon muscleDigestionPapainPapainRPC: ODS, Comsoil 1	Wakame (Undaria pinnatitida)	Digestion	Protease S "amanc	Extraction with 1-butanol RPC: μBondasphere C18, 300 x 30 mm; 0-35% B in 140 min; A: 0.1% TFA; B: ACN + 0.07% TFA; 30 mL/min; UV detectior (220 nm) ,,RPC: XTerraRP18, 150 x 4.6 mm; 0% B in 10 min, 0-20% B in 40 min; A: 50 mM NH ₄ Ac (pH 10) + 1% ACN; B: 50 mM NH ₄ Ac (pH 10) + 95% ACN; 1 mL/min; UV detection (220 nm) RPC: ¹ C.: ODP50-4D, 150 x 4.6 mm; 0-20% B in 30 min; A: 50 mM NH ₄ OH (pH 10) + 1% ACN; B: 50 mM , NH ₄ OH NH ₄ OH (pH 10) + 95% ACN; 0.5 mL/min; UV detection (220 nm); ² C.: XTerra RP18, 150 x 4.6 mm; 0-30% B in 40 min; A 0.1% TFA/0.07% TFA in ACN (99/1); B: 0.1% TFA/0.07% TFA in ACN (5/95); 1 mL/min; UV detection (220 nm)	1 Sato et al., 2002 I
FISHESTuna dark muscleDigestionAlcalase, neutrase, UF: Mwco 3 kDa pepsin, papain, α- ictypsin or trypsinAlcalase, neutrase, UF: Mwco 3 kDa pepsin, papain, α- trypsinQian et al., 2007aTunaDigestionAlcalase, α- chymotrypsin or papain pepsin, neutrase or trypsinIEC: HiPrep 16/10 DEAE FF; 0-2 M NaCl in NaAc (pH 4); 2.0 mL/min; UV detection (280 nm) elution with 20% ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm)Qian et al., 2007aTunaDigestionAlcalase, α- chymotrypsin, papain pepsin, neutrase or trypsinUF: Mwco 1, 5, 10 kDa IEC: Hiprep 16/10 DEAE FF; 0-2 M NaCl in 20 mM NaAc, pH 4.0; 62 mL/h; UV detection (280 nm) EC: Hiprep 16/10 DEAE FF; 0-2 M NaCl in 20 mM NaAc, pH 4.0; 62 mL/h; UV detection (215 nm)Lee et al., 2010Upstream chum salmon muscleDigestionThermolysin SEC: Sphadex G-25, 16 x 650 mm; elution with 15% ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm)Ono et al., 2003Salmon muscleDigestionPapain PapainRPC: ODS, Comsoil 140,C18- OPN, 44 x 370; elution with 10% ACN + 0.1% TFA; 1 mL/min; UV detection (220 nm)Ono et al., 2003	Wakame (Undaria pinnatifida)	Extraction		Dialysis against water (10 L) in cellulose tubular membrane (90 cm) IEC: Dowex 50W, 45 x 450 mm; elution with NH4OH SEC: Sephadex G-25, 2.6 x 140 cm; elution with 0.1 M PBS, pH 7.0; 30 mL/min RPC: Develosil ODS-5, 4.6 x 250 mm; 0-25% B (B: ACN + 0.05% TFA) in 180 min; 1 mL/min; UV detection (220 nm) RPC: Asahipack CG-320HQ, 7.6 x 300 mm; elution with 25 % ACN in 50 mM NH4Ac, pH 6.8; 0.5 mL/min	Suetsuna et al., 2004
Alcalase, neutrase, UF: Mwco 3 kDaQian et al., chymotrypsin or chymotrypsin or hermolysinTuna dark muscleDigestionDigestionIEC: HiPrep 16/10 DEAE FF; 0-2 M NaCl in NaAc (pH 4); 2.0 mL/min; UV detection (280 nm) RPC: ODS C18 Primesphere 10, 20 x 250 mm; 0-50% B (B: ACN + 0.1% TFA) in 55 min; 2.0 mL/min; UV detection (215 nm)Qian et al., 2007aTunaDigestionAlcalase, a- chymotrypsin, papain pepsin, neutrase or trypsinUF: Mwco 1, 5, 10 kDa IEC: Hiprep 16/10 DEAE FF; 0-2 M NaCl in 20 mM NaAc, pH 4.0; 62 mL/h; UV detection (280 nm) LEe et al., RPC: ODS, Comsosil 140,C18- OPN, 44 x 370; elution with 10, 25, 50, 99.5% EtOHLee et al., 2010Upstream chum salmon muscleDigestionThermolysin RPC: ODS, Comsosil 140,C18- OPN, 44 x 370; elution with 10% ACN + 0.1% TFA; 1 mL/min; UV detection (220 nm) Sec. Sephadex G-25, 16 x 650 mm; elution with 10% ACN + 0.1% TFA; 1 mL/min; UV detection (220 nm)Ono et al., 2003Salmon muscleDigestionPapain PapainExtraction with 1-butanolEnari et al.,				FISHES	
TunaDigestionAlcalase, α- chymotrypsin, papain pepsin, neutrase or trypsinUF: Mwco 1, 5, 10 kDa EC: Hiprep 16/10 DEAE FF; 0–2 M NaCl in 20 mM NaAc, pH 4.0; 62 mL/h; UV detection (280 nm) EC: Might 20 min; 2 mL/min; UV detection (215 nm)Lee et al., 2010Upstream chum salmon muscleDigestionThermolysinRPC: ODS, Comsosil 140,C18- OPN, 44 x 370; elution with 10, 25, 50, 99.5% EtOH SEC: Sephadex G-25, 16 x 650 mm; elution with 10% ACN + 0.1% TFA; 1 mL/min; UV detection (220 nm)Ono et al., 2003Salmon muscleDigestionPapainExtraction with 1-butanolEnari et al.,	Tuna dark muscle	Digestion	Alcalase, neutrase pepsin, papain, α- chymotrypsin or trypsin	 e, UF: Mwco 3 kDa IEC: HiPrep 16/10 DEAE FF; 0–2 M NaCl in NaAc (pH 4); 2.0 mL/min; UV detection (280 nm) RPC: ODS C18 Primesphere 10, 20 x 250 mm; 0–50% B (B: ACN + 0.1% TFA) in 55 min; 2.0 mL/min; UV detection (215 nm) RPC: Synchropak RPP-100, 4.6 x 250 mm; elution with 20% ACN + 0.1% TFA; 1 mL/min; UV detection (215 nm) 	Qian et al., 2007a
Upstream chum salmon muscleDigestionThermolysinRPC: ODS, Comsosil 140,C18- OPN, 44 x 370; elution with 10, 25, 50, 99.5% EtOH SEC: Sephadex G-25, 16 x 650 mm; elution with water RPC: Mightysil RP-18, 4.6 x 250 mm; elution with 10% ACN + 0.1% TFA; 1 mL/min; UV detection (220 nm)Ono et al., 2003Salmon muscleDigestionPapainExtraction with 1-butanolEnari et al.,	Tuna	Digestion	Alcalase, α- chymotrypsin, papain pepsin, neutrase o trypsin	UF: Mwco 1, 5, 10 kDa IEC: Hiprep 16/10 DEAE FF; 0–2 M NaCl in 20 mM NaAc, pH 4.0; 62 mL/h; UV detection (280 nm) RPC: Primesphere 10 C18, 20 x 250 mm; 0–50% B (B: ACN + 0.1% TFA) in 20 min; 2 mL/min; UV detection (215 nm) r RPC: Synchropak RPP-100, 4.6 x 250 mm; elution with 15% ACN + 0.1% TFA; 1.2 mL/min; UV detection (215 nm)	Lee et al., 2010
Salmon muscleDigestionPapainExtraction with 1-butanolEnari et al.,	Upstream chum salmon muscle	Digestion	Thermolysin	RPC: ODS, Comsosil 140,C18- OPN, 44 x 370; elution with 10, 25, 50, 99.5% EtOH SEC: Sephadex G-25, 16 x 650 mm; elution with water RPC: Mightysil RP-18, 4.6 x 250 mm; elution with 10% ACN + 0.1% TFA; 1 mL/min; UV detection (220 nm)	Ono et al., 2003
	Salmon muscle	Digestion	Papain	Extraction with 1-butanol	Enari et al.,

			Separation in silica gel; PSQ 100B, 1380 x 100 mm; elution with CHCl ₃ : MetOH: water: CH ₃ COOH (65:25:4:1, 31 L)	2008	
			Separation in silica gel, 400 x 80 mm; elution with CHCl ₃ :2-propanol:water: CH ₃ COOH		
			IEC: Amberlite CG50-type, 400 x 80 mm; elution with water; water:MetOH; MetOH; MetOH:2M HCl		
			RPC: XTerra MS C18, 100 x 4.6 mm; 5–30% B (B: ACN + 0.1% HFo) in 30 min; 0.2 mL/min		
			Methylation: 10% sodium methoxide in MetOH (50 mL); 16 h, RT; refluxing (4.5 h)		
			Separation in Silica gel 60, 600 x 20 mm; elution with CHCl ₃ :2-propanol at different ratios		
			RPC: YMC-Pack ODS-AQ, SH-343-5, 20 x 250 mm; 1-41% B (B: ACN + 0.1% TFA) in 40 min; 10 mL/min; UV detection	n	
		Pepsin,	(230 nm)	V.1	
Dried bonito	Digestion	chymotrypsin,	RPC: Cosmosil 5Ph, 4.6 x 250 mm; 0-40% B (B: ACN + 0.1 % TFA) in 40 min; 1 mL/min; UV detection (215 nm)	Y okoyama et	
	-	trypsin, thermolysin	nRPC: Cosmosil 5CN-R, 4.6 x 250 mm; 0-40% B (B: ACN + 0.1 % TFA) in 40 min; 1 mL/min; UV detection (215 nm)	al., 1991	
			RPC: Cosmosil 5C18, 4.6 x 150 mm; 0-40% B (B: ACN + 0.1 % TFA) in 40 min; 1 mL/min; UV detection (215 nm)		
			UF: M _{wco} 6 kDa		
			Purification with Sep-Pak Plus C18; elution with 15% ACN		
			Purification with Toyopak IC-SP M; elution with 10 mM PBS, pH 9.0	Matana at	
Denite hermale	A	Endogenous	RPC: RP-18(e), 100 mm x 250 mm; 0-30% B (B: ACN + 0.05% TFA); 4 mL/min; UV detection (210 nm)	Matsumura et	
Bonito dowers	Autolyzed	Autolyzed proteases	RPC: RP-18(e), 4 mm x 250 mm; 0-30% B (B: ACN + 0.05% TFA); 1 mL/min; UV detection (210 nm)	al., 1993	
			SEC: Asahipak GS-220 and GS-320, 7.6 mm x 500 mm; 50 mM NH ₄ Ac; 1 mL/min; UV detection (210 nm)		
			IEC: SP-2SW, 4.6 mm x 250 mm; 0-0.5 M NaCl in 20 mM PBS, pH 6.0; UV detection (210 nm)		
			RPC: RP-18(e), 4 mm x 250 mm; elution with 7% ACN + 0.05% TFA; UV detection (210 nm)		
			SEC: Sephadex G-25, 2.5 x 90 cm; elution with water; 0.5 mL/min; UV detection (220, 280 nm)		
Alaska pollack		Alaslass muonoss I	CEC: SP-Sephadex C-25, 2.5 x 45 cm; 0-1 M NaCl in 20 mM NaAc, pH 4.0; 2 mL/min; UV detection (220, 280 nm)	Dram and Vim	
(Theragra	Digestion	Alcalase, prollase i	SEC: Sephadex G-15; elution with water; 0.5 mL/min; UV detection (220, 280 nm)		
<i>chalcogramma</i>) skin		and conagenase	RPC: ODS C18; 10-50% B in 40 min; A: 0.1% TFA; B: ACN + 0.1% TFA; 2 mL/min; UV detection (215 nm)	2001	
			CE: Coated capillary, 24 cm x 25 µm; 0.1 M PBS, pH=2.5; 10 kV; UV detection (200 nm)		
			UF: Mwco 5, 10, 30 kDa		
			IEC: SP-Sephadex C-25, 35 x 350 mm; 0-2 M NaCl in 20 mM NaAc, pH 4.0; 1 mL/min; UV detection (215 and 280 nm)	Jung et al	
Yellowfin sole frame	Digestion	α-chymotrypsin	SEC: OHpak SB-803 HQ, 8.0 x 300 mm; 20 mM NaAc, pH 4.0; 1 mL/min; UV detection (215 nm)	2006	
				RPC: SP Nucleosil 100- 7 C18, 1 x 250 mm; 0-19% B (B: ACN + 0.1% TFA) in 40 min; 2.0 mL/min; UV detection (215 nm)	2000
			RPC: Zorbax SB C18, 4.6 x 250 mm; 0-19% B (B: ACN + 0.1% TFA) in 30 min; 0.5 mL/min; UV detection (215 nm)		
		Endogenous	UF: Mwco 1, 3, 10 kDa	Samanavaka et	
Pacific hake fish	Autolyzation	proteases	RPC: Jupiter C12 Proteo 90 Å, 250 x 4.6 mm; 0-25% B in 25 min and 25- 80% B in 5 min; water- 0.05% TFA-ACN; 1 mL/min	n; al 2010	
		proteuses	UV detection (214 nm)	ul., 2010	
			PROCEED PRODUCTS AND OTHERS		
			UF: Mwco 5 kDa		
Mushroom			SEC: Sephadex G-25, 3.0 x 35 cm; elution with water; 12 mL/min	Hyoung et al	
Tricholoma	Extraction		RPC: μBondapack C18; 0-100 % B; A: 0.1% TFA; B: ACN	2004	
giganteum			RPC: μBondapack C18; 0- 100% B; A: 0.1% TFA; B: ACN	2004	
			RPC: Nova-pak C18; 0- 100% B; A: 0.1% TFA; B: ACN		
Mushroom	_		UF: M _{WCO} 5 kDa	Koo et al	
Pholiota adiposa*	Extraction		SEC: Sephadex G-25, 3.0 x 80 cm; elution with water; 24 mL/min	2006	
			RPC: µBondapack C18; 0-100% B; A: 0.1% TFA; B: ACN	2000	

			RPC: µVydac protein/peptide 218Tp; 0-100% B; A: 0.1% TFA; B: ACN	
Fermented soybean paste	Extraction		RPC: JAIGEL-A-343-10, 250 x 20 mm; 98% B in 5 min; 96% B in 20 min; 65% B in 30 min; 5 mL/min; B, ACN; UV detection (214 nm) IEC: JAIGEL-ES-502CP, 20 x 100 mm; elution with 0.01M sodium succinate buffer (pH 4.3) in 20% ACN; 4 mL/min; UV detection (214 nm) RPC: JAIGELODS-A-343-10, 250 x 20 mm; elution with 0.05% TFA/ACN (95:5, v/v); 5 mL/min; UV detection (214 nm) IEC: Shodex Asahipak ES-2502N-7C, 100 x 7.6 mm; elution with 20 mM Tris-HCl (pH 7.5) + 125 mM NaCl; 1 mL/min; UV detection (214 nm)	1 7 Shin et al., 2001
Salt-free soy sauce	Fermentation	Aspergillus oryzae	Extraction: Sep-Pak Plus C18; elution with 35% ACN + 0.1% TFA PRC: Cosmosil 5C18-ARII, 4.6 x 250 mm; 5–35% B (B: ACN + 0.1% TFA) in 65 min; 0.4 mL/min; UV detection (220 nm) RPC: Cosmosil 5C18-AR300, 4.6 x 250 mm; 5–35% B (B: ACN + 0.1% TFA) in 65 min; 0.3 mL/min; UV detection (220 nm)	Zhu et al., 2008
Douchi	Fermentation and ripening	Aspergillus egypticus culture	Extraction/centrifugation (3,000g, 10 min)/filtration SEC: Sephadex- G25, 10 x 750 mm; elution with PBS; 0.2 mL/min; UV detection (220 and 280 nm) RPC: Vydac 218TP54; 0-60% B (B: ACN + 0.1 % TFA) in 60 min; 1 mL/min; UV detection (220 nm)	Zhang et al., 2006
Miso paste with addition of casein	Digestion	Porcine pepsin A	UF: Mwco 3 kDa RPC: Prep Nova Paks HR C18, 300 x 7.8 mm; 0- 21% B in 30 min, 21- 35% B in 40 min, 35-70% B in 5 min; A: 0.1% TFA; B ACN + 0.08% TFA; 4 mL/min; UV detection (214 nm)	Contreras et al., 2009
Buckwheat ^a		Densin	SEC: Superdex Peptide HR 10/30, 1 x 30 cm; elution with 30% ACN + 0.1% TFA; 0.3 mL/min; UV detection (220 nm)	Li et al., 2002
Royal jelly ^b	Digestion	chymotrypsin and trypsin	RPC: Cosmosil 5Ph, 4.6 x 250 mm; ^a 5-35% B (B: ACN + 0.1% TFA) in 30 min and ^b 1-40% B (B: ACN + 0.1% TFA) in 60 min; 0.3 mL/min; UV detection (220 nm) RPC: Cosmosil 5C18-ARII, 4.6 x 250 mm; 5-35% B (B: ACN + 0.1% TFA) in 60 min; 0.3 mL/min; UV detection (220 nm)	Matsui et al., 2002
Garlic (Allium sativum L)	Extraction		CEC: Dowex 50WX4, 2.5 x 30 cm; elution with 2 N NH4OH SEC: Sephadex G-25, 2.5 x 150 cm; elution with 0.1 M PBS, pH 7.0; 30 mL/min RPC: Develosil ODS-5, 4.6 x 150 cm; 0-8% B (B: ACN + 0.05% TFA) in 1 h; 1 mL/min; UV detection (220 nm)	Suetsuna, 1998
Egg	Simulated gastrointestinal digestion	Pepsin and pancreatin	UF: M _{WCO} 3 kDa CEC: HiPreP 16/10 SP FF, 16 x 100 mm; Eq.: 10 mM NH ₄ Ac pH 4; Elution: 0.5 M NH ₄ HCO ₃ ; 5 mL/min SEC: Superdex peptide 10/300GL, 10 x 300-310 mm	Majumder and Wu, 2009

2 *- indicate articles in which not all data was shown

3 Abbreviations:

4 M_{WCO} -membrane with molecular weight cutoffs; Eq.- equilibration; UF- ultrafiltration; IEC- Ion Exchange Chromatography; RPC- Reserved- Phase High Performance

5 Liquid Chromatography; FPLC- Fast Protein Liquid Chromatography; CEC- Cation Exchange Chromatography; AEC- Anion Exchange Chromatography; SEC- Size

6 Exclusion Chromatography; ACN- acetonitryl; TFA-trifluoroacetic acid; MetOH- methanol; EtOH-ethanol; RT-room temperature; PBS- phosphate buffer solution.

7

1 Table 3. Characterization of purified peptides with antihypertensive activitiy

Source of peptide(s)	Identified peptide(s)	IC ₅₀ [units]	Characterization	Ref.
Goat milk	TGPIPN, SLPQ, SQPK	316, 330, 354 [µM]	Edman degradation sequencing	Geerlings et al., 2006
Bonito bowels	YRPY, GHF, VRP, IKP, LRP, IRP	320, 1100, 2.2, 2.5, 1.0, 1.8 [µM]	Automated protein sequencing by Edman degradation	Matsumura et al., 1993
Yoghurt	8 peptides	1.56- 12.41 [µg/mL]	Automated protein/peptide sequencing by Edman degradation	Donkor et al., 2007
Beef rump	VLAQYK	23.2 [µg/mL]	Peptide sequencing by Edman degradation	Jang and Lee, 2005
Spinach Rubisco	MRWRD, MRW, LRIPVA, IAYKPAG	2.1, 0.6, 0.38, 4.2 [µM]	Automated protein sequencing by Edman degradation	Yang et al., 2003
Cheese whey protein	VYPFPG, GKP, IPA, FP, VYP, TPVVVPPFLQP	221, 352, 141, 315, 288, 749 [µM]	Automated protein sequencing by Edman degradation	Abubakar et al., 1998
Rice	IY, VVY, VF, VW	4.0, 22.0, 49.7, 3.1 [μM]	Gas/liquid phase protein sequencing by Edman degradation	Kuba et al., 2009
Porcine myosin B	KRVIQY, VKAGF	6.1, 20.3 [μM] or 4.9, 10.6 [μg/mL]	Protein sequencing	Muguruma et al., 2009
Porcine skeletal muscle troponin	EKERERQ, KRQKYDI	552.5, 26.2 [µM]	Protein sequencing	Katayama et al., 2008
Salt-free soy sauce	AF, FI, IF	165, NI, 65.8 [μmol/L]	Protein sequencing	Zhu et al., 2008
Chicken bone	YYRA	33.9 [µg/mL]	Protein sequencing	Nakade et al., 2008
Pork loin	VKKVLGNP	28.5 [µM]	Protein sequencing	Katayama et al., 2007
Casein	10 peptides	22-> 1000 [µM]	Protein sequencing	Maeno et al., 1996
Dried bonito	8 peptides	3.7- 62 [µM]	Protein sequencing	Yokoyama et al., 1991
Chicken muscle	LKA, LKP, LAP, IKW, FQKPKR, FKGRYYP, IVGRPRHQG	0.32- 14 [µM]		Fujita et al.,
Ovalbumin	FGRCVSP, ERKIKVYL, FFGRCVSP, LW, FCF, NIFYCP	0.4- 15 [μM]	Protein sequencing	2000
Bovine lactoferrin	LRPVAA	4.14 [μM]	Gas-phase sequencing	Lee et al., 2006a
Hen ovotransferrin	KVREGTTY	102.8 [µM]	Gas-phase sequencing	Lee et al., 2006b
Sheep milk yoghurt	12 peptides		Liquid-phase protein/peptide sequencing	Papadimitriou

	1			
Miso paste with casein	RYLGY; AYFYPEL; YQKFPQY	0.71, 6.58, 20.08 [µM]	Amino acid sequencing by RP-HPLC-MS/MS	et al., 2007 Contreras et
Caprine Kefir	PYVRYL, LVYPFTGPIPN	2.4, 27.9 [µM]	Amino acid sequencing by RP-HPLC-MS/MS	al., 2009 Quiros et al., 2005
Milk	LHLPLP		Amino acid sequencing by HPLC-MS/MS	Quiros et al., 2006
Manchego cheese	75 peptides	13.4->1000 [µM]	Amino acid sequencing by HPLC-MS/MS	Gomez-Ruiz et el., 2004
Milk	40 peptides *		Amino acid sequencing by HPLC-MS/MS	Hernandez- Ledesma et al., 2004
White wheat, wholemeal wheat, rye flours	14 peptides	0.19 - 0.45 [mg/mL]	Amino acid sequencing by nano LC-ESI-MS/MS	Rizzello et al., 2008
Ovine β-lactoglobulin from skimmed milk	21 peptides**	30-71.2 [%]	Amino acid sequencing by LC-MS/MS	Chobert et al., 2005
Fermented milk	27 peptides		Amino acid sequencing by LC-MS/MS	Nielsen et al., 2009
Soybean protein	8 peptides	21->10000 [µM]	Amino acid sequencing by ESI-MS/MS	Kodera and Nio, 2006
Sodium caseinate	21 peptides	39- > 1000 [µM] and 15-650 [µM]	Amino acid sequencing by ESI- MS/MS	Robert et al., 2004
Marine shrimp (acetes chinensis)	DP, GTG, ST	2.15, 5.54, 4.03 [µM]	Mw determination and amino acid sequencing by ESI-MS/MS	Wang et al., 2008b
Yak milk casein	YQKFPQY, LPQNIPPL, SKVLPVPQK, LPYPYY, FLPYPYY		Mw determination and amino acid sequencing by ESI-MS/MS	Jiang et al., 2007
Egg	VDF, LPF, MPF, YTAGV, ERYPI, IPF, TTI	6.59-27.38 [μM]	Amino acid sequencing by LC-ESI- MS/MS	Majumder and Wu, 2009
Several Spanish cheeses	41 major peptides**	113.1- 2419.4 [µM]	Amino acid sequencing by RPC and off-line MS/MS	Gomez-Ruiz et al., 2006
Ovine milk	IAK,VR, EKDERF, KDERF, YIPIQY, LPYPY	10.0- 848.0 [µM]	Amino acid sequencing by CE-ESI-IT-MS	Gomez-Ruiz et al., 2007
Milk	8 peptides	5.2->1500 [µM]	Amino acid sequencing by ESI-Q-IT-MS	Quiros et al., 2007
Porcine hemoglobin	LGFPTTKTYFPHF, VVYPWT	4.92, 6.02 [µM]	Amino acid sequencing by MALDI-TOF/MS and ESI-MS/MS	Yu et al., 2006
Enzyme –modified cheese	13 peptides		Mw and amino acid sequencing by API-MS	Haileselassie et al. 1999
Salmon muscle	20 di- and tri-peptides	Dipeptides: 1.2- 86 % Tripeptides: 7.5- 59%	Amino acid sequencing by LC-ESI-MS and ¹ H NMR	Enari et al., 2008

Chicken leg bone	GAVGPSG, AVKQPAVVTrYP, AATENM, DMSVF, EGGPKP, ANSSIL, AITAKL, IGNTLI, NLAPFL, EIAKLM		Amino acid sequencing by LC/MS/MS	Cheng et al., 2009
Gelatin of sea cucumber		0.0142 [mg/mL]	Hydrolysis/derivatization/Automatic amino acid analysis, Mw distribution by ESI-IT-MS	Zhao et al., 2007
Corn gluten meal	AY	14.2 [μM]	Amino acid sequencing by HPLC-ESI-MS and determination of amino acid composition by hydrolysis/OPA derivatization/fluorescence detection	Yang et al., 2007
Rice	TQVY	18.2 [µM]	Determination of amino acid composition by hydrolysis/OPA derivatization/automatic amino acid analysis and amino acid sequencing by MALDI-TOF-MS/MS	Li et al., 2007
Garlic (Allium sativum L)	SY, GY, FY, NY, SF, GF, NF	66.3, 72.1, 3.74, 32.6, 130.2, 277.9, 46.3 [μM]	Determination of amino acid composition by hydrolysis/amino acid analysis and automatic protein sequencing by Edman degradation and FAB-MS	Sutsuna et al., 1998
Wakame (Undaria pinnatifida)	AIYK, YKYY, KFYG, YNKL	213, 64.2, 90.5, 21 [µM]	Determination of amino acid composition by hydrolysis/amino acid analysis and automated protein sequencing by Edman degradation and FAB-MS	Suetsuna and Nakano, 2000
α-zein	Among 3 with high activity: LRP, LSP, LQP	0.29, 1.7, 2.0 [µM]	Determination of amino acid composition by hydrolysis/amino acid analysis and automated protein sequencing by Edman degradation and FAB-MS	Miyoshi et al., 1991
Soybean	IA , YLAGNQ, FFL, IYLL, VMDKPQG	153, 14, 37, 42, 39 [μM]	Determination of amino acid composition by hydrolysis/amino acid analysis and automated protein sequencing by Edman degradation	Chen et al., 2002
Wheat gliadin	IAP	2.7 [µM]	Determination of amino acid composition by hydrolysis/amino acid analysis and automated protein sequencing by Edman degradation	Motoi and Kodama, 2003
Royal jelly	FY, KF, IF, IVY, IMY, DGL, TKY, LTF, FNF, AVL, GLY	1.67-930 [μM]	Determination of amino acid composition by hydrolysis/amino acid analysis and automatic protein sequencing by Edman degradation	Matsui et al., 2002
Yoghurt- like product	YP	720 [µM]	Determination of amino acid composition by hydrolysis/amino acid analysis and automated protein sequencing by Edman degradation	Yamamoto et al., 1999
Buckwheat	VK, FY, AY, LF, YV, YQ, YQY, PSY, LGI, ITF, INSQ	4-628 [μM]	Determination of amino acid composition by HPLC and automated protein sequencing by Edman degradation	Li et al., 2002
Urea denaturated Z19 α-zein	17 peptides**	1.9- 57 [μM]	Determination of amino acid composition and automated protein	Yano et al.,
Urea denaturated total α-zein	27 peptides**	3.9- 100 [μM]	sequencing by Edman degradation	1996
Mung bean protein	KDYRL, VTPALR, KLPAGTLF	26.5, 82.4, 13.4 [µM]	Determination of amino acid composition by hydolysis/derivatization/automatic amino acid analysis, determination of Mw and amino acid sequencing by MALDI- TOF MS	Li et al., 2006
Oyster		0.0874 [mg/mL]	Mw determination by SEC	Je et al.,

				2005a
Yak milk casein	PPEIN, PLPLL	0.29, 0.25 [mg/mL]	Mw determination by LC-MS and amino acid sequencing by LC- ESI-MS/MS	Mao et al., 2007
Soybean	LVQGS	22 [μg/mL] (43.7 [μM])	Mw determination by MALDI-TOF-MS and liquid-phase peptide sequencing by Edman degradation	Rho et al., 2009
Porcine skeletal muscle	MNPPK, ITTNP	945.5, 549 [µM]	Mw determination by FAB-MS and automated protein sequencing by Edman degradation	Arihara et al., 2001
Manchego cheese	22 peptides	23.7- 100 [%]	Mw determination and amino acid sequencing by ESI-MS/MS	Gomez-Ruiz et al., 2002
Alfalfa white protein	VW	1.1 [µM]	Mw determination and amino acid sequencing by ESI-MS	Kapel et al., 2006
Tuna dark muscle	WPEAAELMMEVDP	21.6 [µM]	Mw determination and amino acid sequencing by ESI-MS	Qian et al., 2007a
Bullfrog (<i>Rana catesbeiana Shaw</i>) muscle	GAAELPCSADWW	0.95 [µM]	Mw determination and amino acid sequencing by ESI-MS	Qian et al., 2007b
Sea cucumber (<i>Acaudina molpadioidea</i>)	MEGAQEAQGD	15.9 [μM]	Mw determination and amino acid sequencing by (nano) ESI- MS/MS	Zhao et al., 2009
Tuna	GDLGKTTTVSNWSPPKYKDTP	11.28 [µM]	Mw determination and amino acid sequencing by ESI-Q-TOF- MS	Lee et al., 2010
	ER, EPR, PER, KLP, AGLP, GPR, NVR, PGR, VGPR, RPR, PAGPR, PAGPVG	382->1000 [μM]	Amino acid identification by nano LC-ESI-MS/MS	Earnedance of
Pork meat	MMVPI, IGGSI, KAPVA, PTPVP, YPGIA, NIIPA, MYPGIA, VIPEL, INDPF, VLPEI	46.56- >1000 [μM]	Amino acid sequencing and Mw determination by MALDI- TOF/TOF	al., 2010
Wheat bran	LQP, IQP, LRP, VY, IY, TF	2.2, 3.8, 0.21, 21, 3.4, 18 [µM]	Mw determination by MALDI-TOF-MS and automatic protein sequencing-HPLC	Nogata et al., 2009
Pholiota adiposa	GEGGP	254 [µM]	Mw determination by MALDI-MS and automated protein sequencing by Edman degradation	Koo et al., 2006
Yellowfin sole frame	MIFPGAGGPEL	28.7 [µg/mlL	Mw determination by SEC and automated protein sequencing by Edman degradation	Jung et al., 2006
Blue mussel (Mytilus edulis)	EVMAGNLYPG	19.34 [µg/mL]	Mw determination by SEC and automated protein sequencing by Edman degradation	Je et al., 2005b
Oyster (Crassostrea talienwhanensis Crosse)	VVYPWTQRF	66 [µmol/L]	Mw determination by LC-MS (LC-APCI-QQQ-MS) and automated protein sequencing by Edman degradation	Wang et al., 2008a
Chicken leg	GA(Hyp)GLHypGP, GA(Hyp)GPAGPGGI(Hyp)GERG, GL(Hyp)GSRGE RGL(Hyp)G, GI(Hyp) GERGPVGPSG	29.4, 45.6, 60.8, 43.4 [µM]	Mw determination by LC-ESI-Q-MS and protein sequencing	Saiga et al., 2008

Skimmed milk	VPP, IPP	9.13, 5.15 [µM]	Determination of peptide content, amino acid content by hydrolysis/amino acid analysis and automated protein sequencing by Edman degradation	Pan et al., 2005
Steamed soybean mixed with roasted wheat	AW, GW, AY, SY, GY, AF, VP, AI, VG	10- 1100 [μg/mL]	Amino acid analysis and determination of molecular structure by ¹ H NMR; ¹³ C NMR; LC-MS	Nakahara et al., 2010
Antarctic krill (<i>Euphausia superba</i>) tail meat	VW, LKY, ITRY, VFER	12.9, 10.1, 236.9, 152.8 [μM] or 2.75, 4.26, 130.7, 84 [μg/mL]	Mw determination by SEC, quantitation of peptides by UPLC- ESI-MS, and protein sequencing	Hatanaka et al., 2009
α -lactalbumin and β -casein	9 peptides	1->76 [µM]	Amino acid sequencing by LC-MS/MS and automatic Edman degradation	Otte et al., 2007b
Glycinin from soybean	VLIVP	1.69 [µM]	Determination of amino acid composition by hydrolysis/derivatization/HPLC, Mw by MALDI-TOF, and gas- phase protein sequencing by Edman degradation	Gouda et al., 2006
Alaska pollack (<i>Theragra chalcogramma</i>) skin	GPM, GPL	17.13, 2.65 [µM]	Determination of Mw distribution by SEC, amino acid composition by hydrolysis/amino acid analysis, and automated protein sequencing by Edman degradation	Byun and Kim, 2001
Cheese	LQP, MAP	3.4, 0.8 [µM]	Determination of Mw by LC/MSD, amino acid composition by hydrolysation/inspissation/amino acid analysis, and automated protein sequencing by Edman degradation	Tonouchi et al., 2008
Gouda cheese	RPKHPIKHQ, RPKHPIKHQGLPQ, YPFPGPIPN, MPFPKYPVQPF	13.4, , 14.8, [µM]	Determination of Mw by FAB-MS, amino acid composition by hydrolysis/HPLC and protein sequencing	Saito et al., 2000
Sesame protein hydrolysate	LVY, LSA, LQP, LKY, IVY, VIY, MLPAY	0.33-5.80 [µg/ mL]	Determination of amino acid composition by hydrolysis/amino acid analysis, peptide content by LC/MS/MS and protein sequencing by TOF-MS/MS	Nakano et al., 2006
Wakame (Undaria pinnatifida)	10 dipeptides YH, KW, KY, KF, FY, VW, VF, IY, IW, VY	2.7- 43.7 [µmol/l]	Determination of Mw by FAB-MS, amino acid composition by hydrolysis/amino acid analysis, and automated protein sequencing by Edman degradation	Suetsuna et al., 2004
Commercial whey product	ALPM	928 [µM]	Determination of Mw by FAB-MS, amino acid composition by hydrolysis/HPLC, and protein sequencing by automatic Edman degradation	Murakami et al., 2004
Mushroom Tricholoma giganteum	GEP	0.04 [mg]	Determination of Mw by LC-MS, amino acid composition by hydrolysis/fluorometric analysis, and automated protein sequencing by Edman degradation	Hyoung et al., 2004
Fermented soybean paste	HHL	2.2 [µg/mL]	Determination of Mw by SEC, amino acid composition by HPLC, protein sequencing	Shin et al., 2001
Upstream chum salmon muscle	WA, VW, WM, MW, IW, LW	2.5- 277.3 [μM]	Determination of Mw by ESI-MS, amino acid composition by hydrolysis/amino acid analysis and automated protein sequencing by Edman degradation	Ono et al., 2003

1 Abbreviations:

2 IEC-Ion Exchange Chromatography; SEC- Size Exclusion Chromatography; MSD- mass selected detector; NI- no inhibition; OPA- O-phthalaldehyde;

3 (*)- in article authors did not show which peptides are antihypertensive although optimization of fermentation procedure in order to obtain them was on a base of ACE

4 inhibitory activity; (**)- among identified peptides only for selected the ACE inhibitory activity were measured; (***)- in review one letter abbreviations for amino acids

5 were adopted, however due to the lack of abbreviation for a non-protein amino acid in this system, three letter abbreviation was used: hydroxyproline (Hyp).