Computer Networks 191 (2021) 107983

journal homepage: www.elsevier.com/locate/comnet

Contents lists available at ScienceDirect

Computer Networks —
p o5

ter
rks

Check for

eHDDP: Enhanced Hybrid Domain Discovery Protocol for network topologies [’
with both wired/wireless and SDN/non-SDN devices™

Isaias Martinez-Yelmo ¥, Joaquin Alvarez-Horcajo, Juan Antonio Carral, Diego Lopez-Pajares

University of Alcald, Pza. San Diego, s/n, 28801, Alcald de Henares (Madrid), Spain

ARTICLE INFO ABSTRACT

Keywords: Handling efficiently both wired and/or wireless devices in SDN networks is still an open issue. eHDDP comes
Hybrid as an enhanced version of the Hybrid Domain Discovery Protocol (HDDP) that allows the SDN control plane
SDN to discover and manage hybrid topologies composed by both SDN and non-SDN devices with wired and/or
WSN wireless interfaces, thus opening a path for the integration of IoT and SDN networks. Moreover, the proposal
IO.T is also able to detect both unidirectional and bidirectional links between wireless devices. eHDDP has been
Discovery . . . . o . .

Performance thoroughly evaluated in different scenarios and exhibits good scalability properties since the number of
Protocol required messages is proportional to the number of existing links in the network topology. Moreover, the
Unidirectional obtained discovery and processing times give the opportunity to support scenarios with low mobility devices
Bidirectional since the discovery times are in the range of hundreds of milliseconds.

1. Introduction

Data communication networks are a hot topic since the birth of
Internet which have been on continuous evolution until now. Nowa-
days, this evolution is even stronger, and embraces many different
aspects such as the definition of new networking paradigms like the
SDN architecture or the Internet-of-Things (IoT). Although SDN net-
works have many advantages and functionalities [1], the cost of the
necessary investments to replace previous deployments is preventing
a faster penetration in current networks. On the other hand, the IoT is
growing very fast due to its use in new services, appliances and personal
devices. However, IoT devices have important hardware and software
constraints which limit its integration with SDN networks despite the
promised benefits regarding availability of new services and ease of
management of the whole network.

Hybrid Domain Discovery Protocol (HDDP) [2] is the first work
capable of fully discovering hybrid SDN network topologies with both
wired SDN devices (those capable of direct interaction with the SDN
control plane via OpenFlow, P4Runtime, etc.) and non-SDN devices
(those unable to interact with the SDN control plane in anyway) by
using a lightweight agent that implements HDDP and sends indirectly
the topological information to the SDN control plane. HDDP follows
the network exploration paradigm based on controlled flooding of mes-
sages to discover non-SDN devices and the same approach as OpenFlow

Discovery Protocol version 2 (OFDPv2) [3] to discover neighbour SDN
devices. Moreover, the work in HDDP envisions different approaches to
allow its use in wireless scenarios which is the main objective of this
paper.

This paper presents eHDDP, an enhanced version of HDDP, which
allows its use not only in wired interfaces but also in wireless interfaces,
including low powered wireless technologies, in an efficient way. Due
to the proposed enhancements, eHDDP is the first proposal offering
a general solution to the problem of discovering fully hybrid SDN
network topologies comprised of both SDN and non-SDN devices with
wired and/or wireless interfaces to the best of our knowledge. Some
interesting use cases of the discovery of wireless hybrid SDN networks
are the integration of Wireless Sensor Networks (WSNs) or the IoT
networks by the SDN control plane to manage and supervise them in a
more accurate way. The main contributions of this paper are:

» The upgrade of the HDDP header in the control messages to
support different types of wireless interfaces. The header fields
have been revised to minimise its size to support technologies
with small Maximum Transfer Unit (MTU) size.

+ The definition of an additional protocol logic to deal with wire-
less interfaces considering the number of neighbours is always
unknown and may change with time (the protocol logic for wired
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interfaces is the same as the one proposed for wired interfaces in
HDDP).

The detection of uni and bidirectional links in wireless scenarios.
A reference implementation of eHDDP comprised of a network
agent in non-SDN devices and an application in the SDN control
plane by using Open Network Operating System (ONOS) and the
OpenFlow protocol.

The enhancement of previously existing network emulation tools
to properly deploy and perform experiments with wireless Ad-Hoc
networks with multiple devices.

A thorough evaluation of eHDDP under different types of net-
work topologies: wired, wireless and both wired and wireless
topologies.

The rest of the paper is structured as follows. Section 2, Related
Work, presents previous works related to topology discovery solutions
in SDN and legacy networks as well as in wireless networks. Section 3
is devoted to providing a detailed explanation of the new proposal and
is followed by Section 4, which presents the protocol logic and details
on the prototype implementation developed for evaluation purposes.
Section 5 describes the testbed that has been used to conduct the
different experiments as well as all the enhancements that has been de-
veloped to adapt existing tools, such as Mininet, to setup the evaluation
platform for wired and wireless hybrid SDN networks. Finally, Section 6
presents the exhaustive evaluation conducted on eHDDP and Section 7
summarises the conclusions derived from this work and envisions the
future work.

2. Related work

This section is structured as follows. First, we provide an overview
of discovery protocols for wired networks, focusing on those used
in the SDN context. Second, we review the literature that tackled
the discovery in wired hybrid SDN networks. Third, we summarise
the proposals to support SDN capabilities in wireless devices, which
include network discovery mechanisms in Software-Defined Wireless
Sensor Networks (SDWSNs) to provide the necessary information to the
SDN control plane in order to perform its duties in wireless scenarios.
Finally, we conclude explaining the aims of eHDDP.

The design of network topology discovery protocols is a classical
topic in the field of wired switched networks and the Internet. Probably,
the most popular discovery protocols for legacy distributed networks
are the standardised Link Layer Discovery Protocol (LLDP) [4], or
Cisco Discovery Protocol (CDP). Nevertheless, discovery protocols are
specially relevant in SDN networks because the control plane usually
requires a full knowledge of the underlying network topology to ac-
complish its entrusted tasks. Among the different existing proposals, it
is worth to mention OpenFlow Discovery Protocol (OFDP) [5], which
is an adaption of LLDP for topology discovery in SDN networks but it
presents scalability issues [6]. OFDP is enhanced by secure OpenFlow
Topology Discovery Protocol (sOFTDP) [6] but it requires modifica-
tions in the OpenFlow protocol to work properly. Other works that
enhance OFDP are OFDPv2 [3], which reduces the control plane load
by slightly modifying LLDP control frames and preinstalling certain
rules in SDN devices, whereas Software Defined - Topology Discovery
Protocol (SD-TDP) [7] enhances OFDP by ordering SDN devices in a
hierarchical structure. Additionally, there is an interesting survey on
topology discovery solutions for SDN networks [8] but it does not
include the most recent proposals such as Tree Exploration Discov-
ery Protocol (TEDP) [9] or enhanced Topology Discovery Protocol
(eTDP) [10]. TEDP is a topology discovery protocol that also provides
latency-based paths among the SDN devices in a network by consuming
a similar amount of control packets as OFDPv2. To conclude, eTDP
outperforms OFDPv2 in packet consumption by taking advantage of the
shortest control path towards each switch.

None of the previous proposals tackles the problem of hybrid SDN
networks in which SDN and other devices coexist. Nevertheless, this
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can happen due to several factors, e.g., partial migration to SDN
technology because of high costs and/or lack of resources (CPU, power,
memory) in certain devices. Therefore, if the non-SDN devices and
their connectivity were known in hybrid SDN network topologies, the
SDN control plane could manage of all existing devices including those
without SDN support by using other mechanisms, e.g., via Simple
Network Management Protocol (SNMP). The first work in addressing
this problem is [11], which combines LLDP and Broadcast Domain
Discovery Protocol (BDDP) to discover legacy devices (devices before
the definition of the SDN architecture with distributed functionalities)
in a hybrid SDN network. This solution is not valid for topologies
containing loops of non-SDN devices. It is also worth mentioning [12]
since it makes use of Forwarding and Control Element Separation
(ForCES) [13] to detect non-SDN neighbour devices. Non-SDN devices
do not need to be modified if they already support ForCES, but the
proposal can find problems in large or heterogeneous networks since
its passive mechanism based on LLDP and Address Resolution Proto-
col (ARP) cannot deal with topologies containing loops of non-SDN
devices.

Moreover, there is a relevant research line focusing on integrating
SDN networks with IoT and Wireless Sensor Network (WSN) net-
works named as Software-Defined Wireless Sensor Network (SDWSN)s.
Although there are proposals such as FlowSensor [14] or Sensor Open-
Flow [15], they only simply integrate OpenFlow in wireless devices but
do not solve the existing scalability [16] or mobility [17] issues. Some
proposals in the same line are TinySDN [18] and SD-Wise [19], but they
lack support for unidirectional wireless links, and other proposals have
important design constraints [20,21]. One of the first works supporting
the discovery of unidirectional links in SDWSNs is the work in [22].
However, it is limited to only wireless links, and its design may limit
its applicability to track device mobility.

eHDDP enhances HDDP by supporting wireless interfaces and net-
works (the operation in wired networks is exactly the same as HDDP).
Furthermore, it solves most of the aforementioned open issues. It fo-
cuses on the support of fully hybrid SDN heterogeneous network topolo-
gies featuring both wired and wireless links including even topologies
with loops since it does not infer topological information from legacy
protocols. It uses a proactive method based on network exploration
instead. Although the obtained results allow the tracking of low mobil-
ity devices, a precise management of device mobility remains an open
issue.

3. eHDDP: extended hybrid domain discovery protocol

The main objective of this work is to enhance HDDP to seamlessly
deal with wireless interfaces and/or devices, as well as wired ones,
in order to provide the SDN controller with a complete view of the
underlying topology. As with HDDP, it requires the installation of
a lightweight eHDDP agent on non-SDN devices since they cannot
establish direct connection with the SDN control plane. eHDDP only
requires an SDN control protocol that allows user data forwarding
between the SDN control plane and the SDN devices of the data plane.
The OpenFlow terminology is used along the paper since it is the most
widely used protocol and the one used in the experiments. It is assumed
that an out-of-band control channel between the SDN devices and the
SDN control plane exists, which allows the discovery of SDN devices via
southbound interfaces, e.g., the standard exchange of OpenFlow Hello
messages.

eHDDP works in two phases: an exploration phase, started at the
network controller, which relies on the broadcast of a Request control
message to explore the whole network, and, a confirmation phase,
based on Reply messages, designed to convey the information discov-
ered, back to the control plane, from network devices. An additional
control message (ACK) is required to confirm link bidirectionality in
wireless mode. By combining the different topology subsets extracted
from Reply messages, the control plane is able to construct a full view of
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Fig. 1. eHDDP Control Message.

the underlying topology. The logic governing the confirmation phase of
the protocol (Reply messages) depends on the type of interface (wired
or wireless) and is thoroughly explained in the next subsections after a
brief description of the control message structure.

3.1. eHDDP control message structure

eHDDP control messages follow the message structure shown in
Fig. 1. It is composed of a Common Header followed by as many Device
Group tuples (depicted in bold in the figure) as devices previously
visited in Reply messages.

The eHDDP message structure has been redesigned to support fields
of variable length for Media Access Control (MAC) addresses, Identifiers
(IDs) or Types in order to decrease the size of the embedded topological
information in low powered wireless technologies with small MTU and
small MAC/ID/Type fields. Moreover, it considers some optional flags
to only include those fields that are necessary in each case.

The different fields of the Common Header depicted in the figure
are used as follows:

+ Flags: this is a 4-bit field. The first 2 bits are Reserved bits, the

third one shows whether exists the Acknowledgement field (Ac-

knowledgement On), and the fourth one indicates if the control
message has the Previous MAC field activated (Previous MAC On).

Version: this is a 4-bit field. It indicates the protocol version being

used.

Option Code: this is an 8-bit field. It indicates the eHDDP message

type. It can be a Request (an exploration packet), a Reply (a

response from devices towards the controller), or an ACK (a spe-

cial confirmation message designed to check link bidirectionality
between neighbours in wireless interfaces).

* Num Device: this is an 8-bit field. It indicates the number of

devices that the message has visited so far.

Sequence Number: this is a 64-bit field. It is a unique random

number identifying every control message of a discovery process

iteration (Requests, Replies and ACKs). It is set in the original

Request message by the controller when it starts the discovery

process.

* Previous MAC Length, N (Optional field): this is an 8-bit field. It
indicates the Previous MAC field length in bytes.

* Previous MAC (Optional field): this is a variable length field. It is
the MAC address of the last device that sent the message.

+ Acknowledgement Number (Optional field): this is a 64-bit field. It
is a random number linking a Reply/ACK pair of messages. It
is set by the device sending a Reply message and copied in the
corresponding ACK response.

The different fields of a Device Group tuple are as follows:

* Device Type Length, X: this is a 2-bit field. It indicates the Device
Type field length in multiples of 2 bytes.

Device ID Length, K: this is a 3-bit field. It indicates the Device ID
field length in bytes.

* Port Length, M: this is a 2-bit field. It indicates the length of the
In Port and Out Port fields in bytes.

Bidirectional: this is a 1-bit field. It indicates whether the link
identified by In Port is bidirectional.

Device Type: this is a variable length field. It indicates whether
the device is a switch, gateway, sensor or host, and it also
includes some information about its functionality (e.g., gateway
with computing capabilities).

* Device ID: this is a variable length field. It is the DPID for the SDN
devices, the MAC address converted to an unsigned long integer
value for the non-SDN devices with MAC address, and the device
ID in the remaining non-SDN devices.

* In Port: this is a variable length field. It indicates the incoming
interface of the message.

 Out Port: this is a variable length field. It indicates the outgoing
interfaces of the message.

The eHDDP control message uses several fields of variable length
to reduce, as much as possible, the data size of each discovered device
to maximise the number of devices within an eHDDP message. Table 1
summarises the different values of MAC, ID and MTU sizes that have
different wireless technologies and the typical maximum number of
hops that they usually have. The last column shows, considering pre-
vious values, the maximum number of devices that an eHDDP message
can hold, which is enough for most of the cases. Hence, the proposed
variable length of fields allows the support of technologies usually used
in IoT and WSNs such as LoRA, ZigBee or Z-Wave.

3.2. eHDDP operation in wired interfaces

This section describes the behaviour of eHDDP for wired interfaces,
which corresponds with that of HDDP. We consider the wired topology
shown in Fig. 2 to graphically explain the whole process. The hybrid
topology example is composed by three SDN devices (S1, S5 and S6),
three non-SDN devices (e.g., gateways .52, S3 and .S4), and three non-
SDN end devices (e.g., hosts E1, E2 and E3). Fig. 2(a) illustrates the
exploration process triggered by the SDN controller. The controller
creates a Request message with the Num Device equal to one, the Device
ID field to the Data Path ID (DPID) of each SDN device, and finally, the
In Port and Out Port fields to zero. Then, it sends a Packet-Out message,
encapsulating the Request, to each SDN device in the domain (step 1)
and commands them to flood the Request through all its interfaces.

When the Packet-Out message is received by an SDN device (S1,
S5 and S6), it de-encapsulates and broadcasts the Request message as
commanded (step 2). Then, as part of the confirmation phase illustrated
in Fig. 2(b), it forwards the Request message back to the controller via
a Packet-In message, similarly to OFDP (step 3). The controller checks
the Num Device field to ascertain the number of non-SDN devices. If
the number of devices is one, it means that the sending SDN device
is a direct neighbour and no further action is needed. However, if the
number of devices is greater than one, meaning the Request has tra-
versed across non-SDN devices, further actions are needed to discover
the topological information from them. Hence, the controller answers
with a Reply message in a Packet-Out.

This Reply message is designed to collect the topological informa-
tion from non-SDN devices and, guarantees all links between SDN and
non-SDN devices are discovered (the process is later explained as steps
8-9). Going back to Fig. 2(a), the non-SDN devices cannot establish
direct communication with the SDN control plane. Therefore, they
must indirectly provide the topological information by embedding it
in the control messages that will be later processed by the control
plane. This process works as follows: Request messages received at non-
SDN devices are simply broadcast via all their interfaces except the
ingress one after increasing by one unit the Num Device field until an
SDN device is reached (steps 3 and 4 in Fig. 2(a)). Furthermore, non-
SDN devices must implement a locking mechanism similar to the one
proposed in [26] to avoid loops and packet storms. As a result of this
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Table 1
Max. number of devices in an eHDDP message.
Technology MAC ID MTU Typ. max eHDDP max
(Bytes) (Bytes) (Bytes) # of hops # of devs
- 6 8 1500 20 64
WiFL 6 8 2304 20 99
LoRa [23,24] 4 4 255 5 26
. 2 2 128 10 16
Zighee [25] 8 8 128 10 8
2 1 64 4 8
Z-Wave [25] s 6 64 4 4

52\€:: — /84\€== — S5
4) 5) 9) 3)
4) 5) 3

(b) Confirmation phase

SDN Device AEnd Device
O\on SDN Device ‘Locked” Port
Pm Packet In Packet Out

o> Request msg
=> Reply msg (1 Device) = » Reply msg (2 Devices)
= Reply msg (3 Devices)

= > Request msg (Late copy)

Reply msg (End Device)

Fig. 2. Example of eHDDP in wired interfaces. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

process, late copies of the Request message (shown as blue dashed lines
in the figure) arrive at other interfaces of non-SDN devices and trigger
the sending of Reply messages backwards (steps 4 and 5 in red dashed
arrows). A Reply message is built from the received Request message
by changing the Option Code, setting the Num Device data to one and
adding a new Device Group field to convey the required topological
information.

Non-SDN devices that receive a Reply message increase the Num
Device field by one and insert their own Group Device field. In addition,
the In-Port field is set to the incoming interface of the Reply message
and the Out-Port field is set to the locked interface which is the input
interface of the first received Request message at that device (steps 5,
6, and 7) to direct the message towards the controller. Then, the newly
conformed Reply message is sent through the interface specified in the
Out-Port field. When a Reply message arrives to an SDN device, it is
simply forwarded via a Packet-In message to the SDN controller, which

collects all the gathered information across the non-SDN devices. Non-
SDN end devices simply send a Reply message in response to a Request
via their only interface (yellow dashed lines).

Finally, the controller processes the data conveyed in the Reply
messages to build the full hybrid SDN topology.

3.3. eHDDP operation in wireless interfaces

In case of wireless or mixed (both wired and wireless) networks,
such as SDWSNs, there are two main differences to consider regarding
the wired operation in wired interfaces: (1) the locking mechanism,
designed to prevent loops, cannot be applied to a port or interface
since sensors usually have a single wireless interface, and (2) the
number of devices in a wireless scenario is unknown, especially if
device mobility is considered. These differences come from the fact that
a wired interface defines the existence of a neighbour, but this fact does
not hold in wireless networks in which a wireless interface can provide
connectivity to many devices or none of them. This issue is especially
relevant in most wireless technologies since there are usually based on
connection-less communications over a shared physical layer.

The locking mechanism can be adapted to work on the identifier
of the device that first sends a Request message instead of locking
the incoming port. Wireless devices can be identified by their MAC
address, which is embedded in the wireless frames. Hence, the locking
identifiers in wireless networks are the MAC addresses from neighbour
devices.

Regarding the second difference, there are two possible solutions
to discover existing neighbours attached to a wireless interface: (1)
to establish a proactive mechanism in which wireless devices period-
ically broadcast Hello messages and then inform the controller, which
requires certain state depending on the number of neighbours and
an additional packet exchange. Moreover, their use may increase the
energy consumption (especially if the devices must be woken up for
this purpose). (2) to establish a reactive mechanism in which wireless
devices can discover their neighbours by following a request/response
scheme in which any eHDDP message being broadcast acts like a
request and reply messages act as responses. Moreover, a triple hand-
shake Request/Reply/ACK is needed to detect potential unidirectional
links from both sides of two direct neighbours. In such case, a new
ACK control message is necessary, but it removes the need of storing
the discovered neighbours to its later reporting and avoids unnecessary
network activity in other instants of time with respect to the proactive
mechanism. Both advantages reduce the energy consumption; hence,
the second option is preferred in eHDDP since energy consumption is
a key point in WSN and IoT networks.

We name the previously explained triple handshake exchange of
messages as eHDDP message exchange for bidirectional links. The first
two messages allow the discovery of a bidirectional wireless link to the
device initiating the triple-handshake whereas the last two messages
(the second message has a double use) allow the discovering of the
same bidirectional wireless link to the neighbour device. However, if a
device sending a Reply message does not receive the expected response
to confirm a bidirectional link, it broadcasts the original Reply message
to reach any existing neighbour, even across a unidirectional link. In
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Fig. 3. eHDDP operation with only wireless bidirectional links.

this way, the topological information would be transmitted by the
receiver to the control plane if possible. It is important to highlight that
an ACK message must only be sent when a Reply message is received
from a direct neighbour.

The following sections provide a detailed explanation of the pro-
tocol operation using two different case examples, first, a wireless
network made of full bidirectional links, then, a second example mixing
unidirectional and bidirectional wireless links.

3.3.1. Fully bidirectional links scenario

Fig. 3 illustrates an example with a single SDN device (S1) and
three non-SDN wireless sensors (E1, E2, and E3), to clarify how eHDDP
operates in wireless scenarios with only bidirectional links.

As depicted in Fig. 3(a), the SDN controller starts the discovery
process by sending a Request encapsulated in a Packet-Out (step 1).
S1 de-encapsulates the Request message and broadcasts it through its
wireless interface (step 2). When the Request message is received by E1,
it answers with a Reply message, as explained in Section 3.2 (step 3)
that conveys the information of E1. Then, S1 relays the Reply message
to the controller via the corresponding Packet-In (step 4). At this mo-
ment, both the controller and S1 know that the link connecting S1 and
E1 is bidirectional, but E1 only knows that the link is working in the
direction from S1 to E1, so a new message is needed to acknowledge
the reception of the Reply at S1, thus confirming a bidirectional link
between them. To this end, the controller sends an ACK message to
S'1 in another Packet-Out (step 5), which is de-encapsulated by S'1 and
sent to E1, thus completing the triple handshake (step 6). Now, the
controller knows about E1 and the link connecting E1 and S1. If E1 did
not receive the ACK message, it would mark the link as unidirectional
and proceed as explained in the next Section 3.3.2.

The topology exploration process continues in Fig. 3(b). Upon recep-
tion of the ACK message E1 broadcasts the Request message (step 7).
Both E2 and E3 receive the Request and answer with a Reply message
(step 8). At this point, also S1 receives a copy of the Request, but it is
discarded as a late copy of the original. Being E1 a non-SDN sensor,
it directly replies with an ACK message (step 9) to both E2 and E3 to
confirm the bidirectionality of the links. Then, E1 updates each Reply
message with its own information and forwards them to the controller
via S1 (step 10), which encapsulates every Reply in a Packet-In sent to
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Fig. 4. eHDDP operation with some wireless unidirectional links.

the controller (step 11). Now, the controller knows about E2 and E3
and the links between them and E1.

E2 and E3 must also broadcast the Request message after sending
the Reply as shown in Fig. 3(c). This fact implies four different eHDDP
message exchanges for bidirectional links among E2 — E3 (twice in oppo-
site directions), E2— E1 and E3— E1 (step 12). The exchanges between
E2 — El and E3 — E1 exist because the exploration process (Request
messages) is based on broadcast.

Finally, Fig. 3(d) shows how E2 and E3 receive the Reply from E1,
include their own Device Group tuple and forward the updated Reply
to the control plane via E1 (step 13). On the other hand, the figure
also shows how E2 and E3 update the Reply message which comes
from each other and forward the updated messages to the control plane
via E1 (step 14). Then, E1 updates the four Reply messages from E2
and E3 and sends them to S1. Now, two of the messages contain the
information from two devices (step 15) and the other two messages
contain the information from three devices, i.e., the loop E1 — E2— E3
in both directions (step 16). Finally, S1 relays the four Reply messages
to the control plane via Packet-In messages (step 17).

3.3.2. Mixed uni/bidirectional links scenario

Fig. 4 illustrates an example with two SDN devices (S1 and .$2) and
three non-SDN sensors (E1, E2 and E3) to clarify eHDDP operation in
wireless scenarios with unidirectional links. It illustrates what happens
when there are unidirectional links from E1 to E2, from E1 to E3 and
from E3 to E2 as shown in Fig. 4(a).

Fig. 4(b) shows how the controller starts the exploration process
sending as many aceHDDP Request via Packet-Out messages as many
SDN devices exist (step 1). Then, S1 broadcast the Request, which is
received at E1, thus triggering the triple handshake between them
as previously explained (Request/Reply/ACK), note that the ACK is
generated at the controller and relayed via a Packet-Out to S1 (steps
2, 3 & 4). Exactly, the same exchange occurs between S2 and E2.

When the previous exchanges finish, the process represented in
Fig. 4(c) starts. Firstly, both E1 and E2 broadcast the Request message
received from S'1 and S2 respectively. Unfortunately, due to differences
in range, only the Request message from E1 reaches E2 and E3, while
the messages from E2 to E1 and from E2 to E3 get lost (step 5). Hence,
the Request messages received at E2 and E3 from E1 trigger a Reply
message that cannot reach back E1 because of the lack of range in
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that directions, i.e., they are unidirectional links (step 6). Moreover,
the Request messages broadcast from E1 and E2 also reach S1 and 52
respectively (step 7) and both messages are sent to the controller via
Packet-In messages (step 8) that will discard them. After sending a Reply
each sensor starts a timer that is cancelled when the corresponding
ACK is received. Fig. 4(d) illustrates what happens at E2 and E3 after
the timer expiration since the ACK messages are not received due to
lack of range in the directions from E2 to E3 and from E3 to EI.
On the one hand, since E2 is able to reach the controller via S2, it
includes the information regarding the unidirectional link from E1 to
E2 and its own topological information in the Reply and sends it to
the controller via S2 (step 9) and S2 encapsulates the message in a
Packet-In (step 10). Now, the controller knows about the unidirectional
link between E1 and E2. On the other hand, E3 does not know how
to reach the controller, so it includes the information regarding the
unidirectional link E1-E3 in its Reply and sends it in broadcast to
inform about the unidirectional link to any potential neighbour (step
11) but it only reaches E2. Again, E2 knows how to reach the controller
via $2, so it includes the information regarding the unidirectional link
from E3 to E2 and its own topological information in the Reply and
sends in unicast to the controller via S2 (step 12) and, again, and
S2 encapsulates a Reply message in a Packet-In (step 13). Now, the
controller also knows about both unidirectional links from E1 to E3
and from E3 to E2.

4. eHDDP logic and implementation details

The logic of eHDDP has been divided into two different parts
derived from its use in hybrid SDN networks. The first part defines
an eHDDP software agent that implements the protocol functionality
in non-SDN devices while the second part defines the behaviour of
the controller application, which is in charge of processing the eHDDP
control messages received at SDN devices.

4.1. eHDDP agent for non-SDN devices

The eHDDP agent follows a different logic depending on the type of
interface (wired or wireless as shown in Fig. 5) receiving the protocol
messages: Fig. 5(a) presents the logic followed by the eHDDP agent
when the control messages arrive from a wired interface, and Fig. 5(b)
when they come from a wireless one. Hence, the first step in any
eHDDP agent is to check the type of the incoming interface to apply the
appropriated wired or wireless control logic. It is important to highlight
that both wired and wireless interfaces implement a locking mechanism
based on source MAC address to prevent loops and simplify the coding
of both modes. Moreover, if the device has more than one interface, the
eHDDP agent must also store the incoming interface associated with the
locked source MAC address.

The implementation of eHDDP is based on Linux raw sockets and is
coded in Python. This election is chosen for simplicity since it allows
a full development in the Linux user space. Moreover, it can be easily
deployed in the testbed platform described in Section 5.

4.1.1. Processing logic for wired interfaces

Fig. 5(a) summarises the logic applied by the eHDDP agent if a
control message comes through a wired interface.

On the one hand, if the incoming control message is a Request
message, the agent checks if there is a previously locked source MAC. If
it is the first Request message received and the device has more than one
interface, it locks the source MAC, then increases the value of the Num
Device field by one and broadcast the message. Otherwise, if the source
MAC is already locked or the device has only one interface, a Reply
message is created in response following the structure represented in
Fig. 1 and sent through the incoming interface of the Request message.

On the other hand, if the incoming control message is a Reply
message, the device increases the value of the Num Device field by one
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and inserts a new Device Group to include the link traversed at the end
of the control message. Finally, the Reply message is forwarded through
the interface associated to the locked source MAC address. Otherwise,
it is simply discarded.

4.1.2. Processing logic for wireless interfaces

Fig. 5(b) summarises the logic applied by the eHDDP agent if a
control message comes through a wireless interface.

On the one hand, if it is a Request message, the agent processes the
packet increasing by one the Num Device field and changing the value
of previous MAC field for its wireless MAC, and then saves the message
if the source MAC address has not yet been locked which happens
when the first ACK message is received guaranteeing a bidirectional
path to the controller. Additionally, the agent creates a Reply message
including its Device Group tuple and sends it through the incoming
interface of the Request message. Moreover, the agent starts a timer
to wait for the corresponding ACK message, thus confirming the link
works in both directions.

If the ACK message is not received because of a packet loss, the
timer expires and the Reply timeout triggers the retransmission of the
Reply message. The Reply message can be retransmitted up to n times.
Finally, if no ACK is received after the nth retransmission, the Reply
retransmission attempt is finally broadcast to look for potential devices
with a known path to the controller.

On the other hand, if it is a Reply message, the agent creates and
sends back an ACK message if the original Request came from a direct
neighbour (i.e., the value of the Num Device field is one). Moreover,
regardless of the value of the Num Device field, the agent updates the
Reply message by increasing the Num Device by one, replacing the value
of Previous MAC address with its own MAC address and inserting a
new Device Group with the information for the new link (Fig. 1). Later,
the agent checks if an outgoing interface exists to reach the controller.
In such case, the updated Reply message is sent via that interface.
Otherwise, the device broadcasts the Reply message so that it reaches
any potential neighbour with a known path to the controller.

Otherwise, when an ACK message arrives, the agent stops its as-
sociated timer, locks the source MAC address of this message as next
hop towards the controller, and broadcasts the original Request message
linked to the received message. Moreover, the agent starts a timer to
wait for Reply messages from neighbour devices.

If no Reply message is received because of packet losses, the timer
expires and a Request timeout event is triggered. The Request message
can be retransmitted up to n times to mitigate the effect of possible
packet losses.

4.1.3. Applicability of eHDDP in low-powered devices

There are wireless devices with important hardware and software
limitations such as IoT or WSN devices; thus, eHDDP is designed to
use the minimum number of resources in wireless devices. On the one
hand, eHDDP only requires storing the first received Request message
and its input interface to later forward the required Reply messages
towards the controller or to retry “n” times the broadcast of the Request
message if no Reply messages are received due to packet losses. On the
other hand, it is also necessary to temporarily store the Reply messages
generated by a device as response to Request message until an ACK is
received or “n” retries of sending the message are performed. After the
nth retry, if the broadcast timer expires again, the Reply message is sent
in broadcast and it can be safely removed from the device. The number
of retries may be configured depending on the packet error probability
or the Signal-to-Noise Ratio (SNR). See Section 6.3 for further details.
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4.2. eHDDP controller application

The SDN control plane must implement the logic summarised in
Fig. 6 to handle the topological information conveyed by eHDDP con-
trol messages from the data plane. This logic has been implemented in
an Open Network Operating System (ONOS) controller application and
uses the OpenFlow protocol for SDN device-controller communication.
Accordingly, the next paragraphs rely on an OpenFlow agent installed
at SDN devices capable of handling Packet-In and Packet-Out message
exchanges with the controller to better illustrate the behaviour.

The controller is in charge of starting the exploration process by
sending as many Request messages via Packet-Out as SDN devices were
previously discovered by the OpenFlow agent.

If the controller receives a Request message and the value of the
Num Device field is greater than one, it answers with a Reply message
with the corresponding Device Group info via a Packet-In. Otherwise, if
the value of the Num Device field is one, the controller stores the infor-
mation until a Request message in the opposite direction is received
to create the link between both devices. If the controller receives a
Reply message, it extracts the information from the message (devices
and links), saves it in its topological database and, if the Num Device
field has a value of one, replies with the corresponding ACK. Finally,
in case the controller receives an ACK message, it simply discards it.

4.3. Open source code available on GitHub

The implementation of eHDDP for wired devices (based on the BO-
FUSS software switch [27]) and wireless devices (python code) as well
as the controller application developed for the ONOS controller [28]
are available as open source in a GitHub repository [29]. We encourage
any reader interested in the topic to test the implementations and
provide any feedback.

5. Testbed

The testbed for the evaluation of eHDDP is also an important contri-
bution to the work presented in this paper since there was not any tool
fulfilling all necessary requirements. Selecting an appropriated platform
is not a trivial task since it is necessary to evaluate full hybrid SDN
scenarios with both SDN and non-SDN devices in the same topology,
mixing also wired and wireless technologies. These constraints limit the
available tools to carry out the evaluation tests.

5.1. Evaluation platform

There are two possible options to evaluate networking protocols
and architectures different from implementing them in real hardware:
network simulators and emulators. The choice of one or the other will
depend on the required development time speed, the versatility to set
up different scenarios or their capability of modelling real environ-
ments. Network simulators present high scalability but are slightly far
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from real environments and consume much time to carry out the sim-
ulations, whereas network emulators offer scenarios and deployment
closer to real environments at the cost of requiring more computing
resources.

The first category (network simulators) has some alternatives with
good support for wired and wireless scenarios such as ns-3 simula-
tor [30], though the simulation models for SDN networks in these
platforms are usually limited. Although there are simulators specially
focused on WSNs or SDWSNs that allow to evaluate wireless sce-
narios and set up complex topologies, they do not support wired
communications. An example is Cooja [31] under the Contiki Network
Simulator [32] that emulates low-power wireless scenarios with sensors
that run under the Contiki-ng [33] operating system.

Within the network emulators category, the most widely used tool
is the open sourced Mininet [34] emulator which is coded in Python
and runs on Linux based systems. It is based on Open virtual Switch
(OvS) [35] and Basic OpenFlow Software Switch (BOFUSS) [27] virtual
software switches and also on virtual hosts or devices based on Linux
name spaces, which are used in our implementation of the eHDDP
agents. However, it lacks direct support for wireless interfaces which
is provided by additional project forks such as: Mininet-WiFi [36] for
WiFi [37] interfaces, and Mininet-IoT [38] for IEEE 802.15.4 [39]
wireless interfaces commonly supported by IoT devices. The key point
is the fact that both of them allow devices with wired and/or wireless
interfaces. Mininet-WiFji is selected for the experiments because it is a
repository in continuous update and better maintenance than Mininet-
IoT (both of them are the from the same author). If necessary, the
proposed changes to Mininet-WiFi can be ported to Mininet-IoT.

5.2. Mininet-WiFi enhancements for Ad-Hoc networks

Although Mininet-WiFi is an interesting tool, it cannot be used as
it is for the study of complex WSNs or SDWSNs since they usually
work in Ad-Hoc mode, while Mininet-WiFi is mainly focused on pro-
viding an emulation environment for the Infrastructure mode in WiFi
networks [40] based on Access Points (APs). This limitation comes
from the fact that Mininet-WiFi can only define signal ranges between
pairs of nodes, which is implemented between an Access Point (AP)
and a network device or in Ad-Hoc wireless networks with only two
devices. Hence, two new functionalities enhance the support of Ad-
Hoc networks in Mininet-WiFi: a new Ad-Hoc multi-node class and
the addition of a wrapper to the existing mobility module capable
of discarding packets between devices out of range according to the
position and signal ranges setup by the Ad-Hoc multi-node class.

The new Ad-Hoc multi-node class allows the association of any
number of end-devices to a wireless Ad-Hoc network by Mininet-WiFi.
Furthermore, it allows to individually define the signal range for each
device. The new functionality of the mobility module is in charge of
deciding whose devices are in range and the new wrapper, which is
based on eXpress Data Path (XDP) [41], is in charge of discarding
packets received from out-of-range devices. First, the new functionality
of the mobility module obtains the Euclidean distance between two
devices. Then, the mobility module compares the distance obtained
with the maximum range of those devices. If the distance between them
is less than their maximum range, the module updates the XDP program
to discard the packets out of range from the transmitter. This operation
is performed for all the devices of the network and each time that any
device changes its position. Hence, when a packet arrives at a device,
its XDP wrapper reads the source MAC/ID and discards the packet if it
is out of range according to the information previously provided by the
mobility module.

XDP technology is selected because it is the first entry point in the
Linux kernel to filter packets just after receiving them from a network
interface and before its delivery to any of the socket families in the
Linux kernel, including the Linux raw sockets used in our implemen-
tation of the eHDDP agent for non-SDN devices. Hence, this way of
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filtering allows the emulation of a packet loss in a wireless medium
since the packets are discarded previously to their processing in the
TCP/IP Linux stack, which assures that the packets are never processed
by the devices as desired.

5.3. Hardware infrastructure

The customised version of Mininet-WiFi and the ONOS SDN con-
troller run on two machines powered by Intel(R) Core(TM) i7 pro-
cessors with 16 GB of RAM to perform all the experiments in the
evaluation section.

5.4. eHDDP setup

The evaluation platform is based on Mininet-WiFi, which defines the
IEEE 802.11 standard as the link layer in the performed experiments.
Mininet-WiFi is used with its default setup in which there is a one
hop out-of-band control channel with the control plane: an ONOS
controller running the eHDDP controller application logic. The timer to
trigger retries for Request and Reply messages is set to a conservative
value of 300 ms to minimise the effect of packet errors and avoid
the triggering of unnecessary broadcast Reply messages. This value
may be adjusted according to the wireless technology in use. The
experiments are performed without background traffic emulating the
fact that eHDDP messages are transmitted through the highest priority
queue in the network devices. This fact would be equivalent to use
802.11e QoS extensions for the mentioned purpose.

5.5. Measurements

The metrics selected to evaluate the performance of eHDDP are
the number of exchanged packets, the discovery time, the controller
processing time and the maximum number of stored messages dur-
ing an exploration interval. The number of exchanged packets is a
measurement that represents the overload introduced in the network
by eHDDP and gives an overview of its scalability. The discovery
time measures the time required by eHDDP to convey the topological
information, embedded in the Reply messages, to the control plane.
This measurement is a key factor in wireless networks since it defines
how changes in a network topology can be detected in case of device
mobility. The controller processing time measures the time consuming
by the SDN controller to build the topology taken into account the
topological information collected by eHDDP. The controller processing
time always will be higher than the discovery time, since it includes
discovery time. The results obtained from all SDN device topologies
are compared with those obtained by OFDP [42] because it is the
default mechanism implemented by the selected ONOS version in the
experimental setup. Finally, the maximum number of stored messages
represents the required state to support eHDDP.

Measurements in lossy wireless hybrid SDN network topologies are
conducted considering packet losses of 0, 0.5, 1 and 2% at all wireless
interfaces. Note that the packet losses are configured at the eHDDP
level rather than at the PHY level because Mininet-WiFi (the emulation
platform in use) relies on a Linux TC command to generate random
packet losses in ad-hoc scenarios [43]. This setup produces losses at
the transmitter side, thus ignoring the MAC retransmission procedure.
As a result, the corresponding packet losses at the PHY level are much
higher (for instance, 2% packet losses at the eHDDP level corresponds
to 57% at the PHY level for the case of seven failed MAC transmissions
in a row). Moreover, by enforcing the packet losses at the transmitter
side, we neglect the possibility to receive the packet at other nodes
different from the one affected by the faulty link, thus increasing the
effect of packet losses. We study the protocol performance setting the
maximum number of retries for eHDDP Request and Reply messages to
0 (no retries), 1 and 2 retries. Finally, a conservative timeout of 300 ms
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between retries is enforced to minimise the effect of neglecting the MAC
retransmission procedure in the discovery time.

All measurements are calculated with at least ten runs of each ex-
periment. Experiments with random topologies present 95% confidence
intervals while regular topologies show standard deviations since they
are deterministic.

6. Evaluation

This section evaluates the performance of eHDDP under different
topologies. Nevertheless, we perform first a qualitative study based
on the GEANT pan-European network topology [44] (see Fig. 7) but
randomly assigning the type of device (SDN or non-SDN) to each
network node. Fig. 7(a) shows the topology obtained using OFDP while
Fig. 7(b) shows the topology obtained using eHDDP. The SDN devices
are represented in dark blue and non-SDN devices are in light blue.
OFDP is unable to discover non-SDN devices which produces isolated
SDN devices in the discovered topology; whereas eHDDP is capable of
obtaining the full topology with all the existing devices. It can also
be observed how the previously isolated SDN devices in dark blue
are connected now to other SDN devices through non-SDN devices in
light blue. Hence, the functionality of eHDDP is demonstrated in a
well-known complex topology.

After the qualitative study, we carry out different quantitative ex-
periments to measure the performance in wired SDN hybrid networks as
well as on wireless SDN hybrid networks including unidirectional links
in some cases. Finally, full-hybrid networks in which SDN and non-SDN
devices can have wired or wireless interfaces are also considered.

6.1. Wired hybrid SDN network topologies

The evaluation of eHDDP in wired SDN hybrid networks topologies
is based on random topology models (Barabasi—-Albert [45] and Wax-
man [46]) with different number of devices, connectivity degree and
percentage of SDN devices. The aim is to check the behaviour of eHDDP
in several scenarios of diverse nature.

Fig. 8 represents the number of exchanged messages per discovery
process for Barabasi—Albert topologies and Fig. 9 shows the same
information for Waxman topologies. Both figures present the results for
network topologies composed by 20, 40 and 80 devices and different
average node degrees (2, 4 and 6). An important feature that can
be easily observed in both figures is that the number of required
messages (continuous red line with star markers) is close to a linear
increase with the average degree of the network. These means that the
number of messages is proportional to the number of links which is
a good scalability indicator. The number of OpenFlow packets does
not change significantly regarding the variation in the percentage of
SDN devices. Any increment in the number of Packet-In messages
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when the percentage of SDN devices is high, entails a decrease in the
number of Packet-Out messages. Hence, the number of messages that
the control plane must process to obtain hybrid network topologies
and the required processed load do not suffer of important changes
if a network increases its ratio of SDN devices. Obviously, the total
number of eHDDP messages is inversely proportional to the percentage
of SDN devices, the more SDN devices they are, the less message
exchanges are needed to discover the whole topology. This fact is
confirmed by observing the decrease in the number of Reply messages
as the percentage of SDN devices rises. However, that does not hold
for the number of Request messages required. When the number of
SDN devices is small, Request messages are mainly generated by non-
SDN devices to explore the network, while in the opposite case, the
number of Request messages comes from the control plane to initiate
the exploration process from all SDN devices. In this case, the number
of Request messages is very similar but smaller than the number of
OFDP messages if all the devices are SDN because their operation
procedure is almost the same in SDN network topologies. Indeed, if
all the devices are SDN, the number of Packet-Out messages equals the
number of Request messages and the are no Reply messages since there
are no non-SDN devices.

The differences between Barabési-Albert and Waxman topologies
are in the number of messages needed by eHDDP for the same set of
topology parameters, Barabési-Albert topologies are created following
a power-law model whereas Waxman follows a random model. These
model variations provoke that, for the same set of topology parameters,
Barabéasi—Albert topologies feature a smaller network diameter than
Waxman topologies thus, they require a smaller number of exchanged
messages to discover the full topology.

It is worth mentioning that there are ACK messages (as shown in
Figs. 8 and 9). They are generated by our ONOS application because
the OpenFlow specification cannot distinguish if an interface is wired
or wireless. Hence, if a Reply message is received inside a Packet_In,
it must answer with an ACK message inside a Packet_Out. The eHDDP
agent discards the ACK message if it arrives at a wired interface or
process it according to Sections 3.3 and 4.1.2 if it arrives at a wireless
interface.

Fig. 10 shows two types of time measurements (discovery time
and processing time) for both random topology models. The discovery
time is the time elapsed since the controller sends the first Packet-Out
message, until the reception of the last Packet-In message, whereas the
processing time is the time taken by the controller to build the topol-
ogy, it measures the time elapsed since the controller sends the first
Packet-Out message until it has finished processing all the topology-
discovery packets. Therefore, the processing time will always be higher
than the discovery time. Again, as with the number of protocol mes-
sages, the discovery time in Barabasi-Albert topologies is smaller than
in Waxman topologies. The explanation is the same, discovery time
in Barabéasi—Albert networks is smaller than in Waxman networks due
to their smaller network diameter, and the processing time at the
ONOS controller is higher than the discovery time independently of the
topology shape. However, this last fact is especially relevant when the
number of SDN devices is small, and negligible if most of the devices are
SDN. This behaviour is motivated because SDN devices are previously
added to the ONOS database by its OpenFlow agent but non-SDN de-
vices must be added on the fly according to the topological information
conveyed by the Reply messages, which increases the processing time.
To conclude, both times show a proportional increase with respect to
the number of devices and their degree, consuming more time when the
more devices and links exist. This increase is aligned with the behaviour
observed in the number of exchanged messages.

6.2. Lossless wireless hybrid SDN network topologies

This section presents the evaluation of eHDDP in lossless wireless
hybrid SDN topologies. First, a qualitative study is performed to assess
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eHDDP can deal with unidirectional and bidirectional wireless links.
Fig. 11 shows how Mininet-WiFi is configured to define a linear wireless
topology made of unidirectional links (Fig. 11(a)) and the correspond-
ing topology acquired at the ONOS controller by using eHDDP. The
configured topology has two SDN devices (apl and ap2) connected by
six wireless devices conforming a unidirectional wireless path from ap1
to ap2, which is built by chaining wireless devices with decreasing
signal range. Dark blue boxes represent SDN devices and light blue
boxes are wireless devices. ONOS depicts bidirectional links in con-
tinuous lines and unidirectional links in dashed lines. Unfortunately,
ONOS cannot show the direction of unidirectional links, although this
information is stored in its topology database.

On the other hand, Fig. 12 shows a wireless network composed
by two small clusters connected through two unidirectional links with
reverse directions. Although there are no direct bidirectional paths
between both clusters, eHDDP is capable of discovering the whole
topology thanks to the broadcast of Reply messages.

After the previous qualitative study, we present a quantitative study
following the same structure used in the evaluation of eHDDP in wired
network topologies, but in this case for wireless network topologies. In
wireless networks, the connectivity between neighbours is determined
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Fig. 12. WSN clusters connected by unidirectional links.

by the geographical position and the signal range which constraints
the definition of random topologies. We manually built squared meshes
(see Fig. 13) with connectivity degree 4 (Fig. 13(a)), and connectivity
degree 6 (Fig. 13(b)) by individually modifying device positions and
signal ranges.
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The results in terms of number of exchanged messages are collected
in Fig. 14, and their discovery and processing times are summarised
in Fig. 15. Both figures, show the experiments with 1, 2, 3 or 4 SDN
devices, always placed at the corners of the mesh topologies. The
number of exchanged messages shown in Fig. 14 follows the same
behaviour than in wired topologies, growing linearly with the number
of links. Additionally, the number of required messages decreases if
the number of SDN devices increases, since the average distance with
respect to an SDN device and the exploration processes require shorter
paths to convey the information to the control plane.

Although, there are differences between the example topologies
used for wired and wireless topologies, it is interesting to compare
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the results between them. We can compare the results from wired
topologies with 80 devices and average connectivity degrees of 4 and
6, and wireless 9 x 9 squared mesh topologies (81 devices) and also
average connectivity degrees of 4 and 6, the following aspects can
be observed. Regarding the number of exchanged packets, wireless
topologies doubles or triples the results from wired topologies due to
the new ACK message used to confirm link bidirectionality and the
need for some extra Reply messages on wireless devices in which a
wireless interface may have several neighbours attached. Each wireless
neighbour device that receives a Reply message tries to forward it
towards the control plane for reliability which increases the number
of required Reply messages.
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Fig. 15. Discovery and processing times in wireless mesh topologies.

Regarding discovery and processing times, Fig. 15 presents the
results in wireless scenarios, showing a similar trend to those of the
wired ones but the absolute values are far from close. The increase in
discovery time derives from the very nature of wireless interfaces. They
work in semi-duplex mode, so they are slower and less reliable than
wired interfaces that work in full-duplex mode. The difference with
respect to the wired topologies in the ONOS processing time is mainly
due to the controller needs to process more messages. The Fig. 15
only shows the worst-case scenario which is when the number of SDN
devices is small (from 1 to 4 devices). Note how the discovery time and
especially the processing time clearly decrease with the addition of a
single SDN device.

Finally, it is important to highlight that the measured discov-
ery/processing times give an idea on how fast the control plane can
launch contiguous eHDDP discoveries without overlapping in order
to deal with the mobility of the wireless devices by refreshing the
topological data.

6.3. Lossy wireless hybrid SDN network topologies

This section presents the evaluation of eHDDP in lossy wireless
hybrid SDN topologies. The experiments are performed in an adverse
scenario, wireless network topologies of degree 4 (lower connectivity
that degree 6) and a single SDN device (there is a unique point to
reach the SDN controller). Apart from the 7 x 7 square mesh used
in the lossless scenario, we also consider random topologies with 49
wireless devices generated following the Leipzig model of the topology
generator described in [47]. The single SDN device in the topology
is randomly chosen in each experiment. Fig. 16 shows the results
regarding the number of control messages, the network discovery time,
the percentage of links discovered and the maximum number of stored
messages in the devices during the experiments. The experiments are
repeated to consider packet losses at 0, 0.5, 1 and 2% at the eHDDP
level, as it was explained previously in Section 5.5. Moreover, the
maximum number of Request and Reply retries is set to 0 (no retries),
1 and 2.

The number of messages exchanged in each discovery process de-
creases with packet error probability if no retries are used. The use of
retransmissions in Request and Reply messages makes the number of
transmitted control messages slightly higher with respect to the exper-
iments without losses. This fact make sense since the retransmission
overcome the packet losses but the lost packets are included in the
performed measurements. Although it is a small increase on average, it
exhibits high variability (the size of the confidence intervals) in Leipzig
topologies due to their random nature and the random selection of the
single SDN device. Topologies following the Leipzig model feature a
well connected central core spanning several branches that connect
devices almost in line, so choosing a device located in one of the
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branches as the SDN device has a serious impact on its performance.
Obviously, there is no difference regarding the number of retries if there
is no packet error probability.

Regarding the discovery time (the time required to convey all the
topological information), it increases with the packet error probability
and the number of retries. On the one hand, the packet error prob-
ability produces some Reply messages in broadcast, which increases
the required number of messages and the discovery time as a conse-
quence. On the other hand, it can be easily observed the effect of the
conservative 300 ms timer used between retries in the discovery time.
Its increase is proportional to the 300 ms retry timer and the number of
retries in use. Again, the discovery time in Leipzig topologies is higher
because they exhibit a higher network diameter.

The percentage of links discovered decreases as the packet error
probability increases. Nevertheless, the percentage of discovered links
remains high and over 94% for the worst-case scenario of 2% packet
error probability.

Finally, the right column in Fig. 16 shows the average of the
maximum number of control messages stored in memory during the
experiments by any wireless device. We can observe how its value is
small independently of the packet error probability and depends on the
type of topology. Leipzig topologies require a larger number of packet
in memory since their diameter is larger, thus increasing the average
path to the controller and the total number of messages as shown on
the left part of the figure. In any case, the required memory is small
with respect to the number of exchanged messages.

We can conclude that there is a trade-off between the percentage
of discovered links and the number of retries since both the number of
exchanged messages and the discovery time increase with the retries.
The timer between retries may be reduced but depends on the wireless
technology in use, this fact is considered as future work. All in all,
these results demonstrate that eHDDP is suitable for use even on lossy
wireless hybrid SDN networks requiring a limited number of resources
independently of the packet error rate.

6.4. Full-hybrid network topologies

This section assesses eHDDP in a full-hybrid network topology to
conclude the evaluation of the proposal in a complex use-case scenario.
Fig. 17 illustrates a topology composed by a wired backbone connecting
two different wireless networks. This example is selected because the
SDN control plane must control and manage the backbone network as
well as the wireless networks. As in the previous section, Fig. 17(a)
illustrates the topology under study built in Mininet and Fig. 17(b) the
topology represented by ONOS after launching eHDDP. We see how
eHDDP succeeds in discovering the whole topology, showing the link
connections among all the devices and guaranteeing its functionality
both in wired and wireless networks.
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The results in terms of number of exchanged messages and discovery
and processing times are summarised in Fig. 18. The figure shows the
experiments with 1, 2, 3 or 4 SDN devices (devices in dark blue in
Fig. 17) always placed at the core of the topology. The number of
exchanged messages shown in Fig. 18(a) follows the same behaviour
as in wireless topologies, decreasing linearly when the number of
SDN devices increases, due to less hops are required to notify the
information to the control plane. Regarding discovery and processing
times, Fig. 18(b) shows lower values than the wireless scenarios but
higher values than the wired scenarios with similar number of devices.
This is the expected result since the exploration process time is the
combination of the wired zone delay plus the wireless zone delay.

7. Conclusions

This paper presents eHDDP, a novel approach to gather the in-
formation from full-hybrid SDN topologies, which means that is not
only able to discover hybrid SDN topologies with SDN and non-SDN
devices, but also it is able to deal with wired and wireless links. This
fact allows to integrate the whole information from the layer 2 in the
SDN control plane, including devices with both wired and wireless
interfaces. Hence, not only it enables the management of a complex
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core network, but it even allows to gather information from wireless
networks connected to the wired infrastructure. This capability of inte-
grating information from wired and wireless networks is the first step
to combine the IoT world and WSNs with the SDN technology, opening
up a huge market for new applications and services. Moreover, the
information collected from the infrastructure layer allows to distinguish
between bidirectional and unidirectional wireless links, a feature highly
useful for optimal communications in wireless networks. In addition to
eHDDP, this paper also presents an enhanced version of the Mininet-
WiFi framework to properly support wireless Ad-Hoc networks with
several devices that allowed to carry out a deep evaluation of eHDDP.

The obtained results demonstrate the scalability of the protocol
since the required number of messages is proportional to the number
of links in the network topology and always lower than state-of-the-art
solutions such as OFDP in SDN scenarios. Moreover, the discovery time
is in the range of hundreds of milliseconds opening the support for low
mobility devices in SDN networks. Regarding the processing times at
the controller, they are higher but can be reduced by increasing the
computational resources accordingly.

As future work, we are planning to reuse the exploration process
in eHDDP to not only discover any underlying topology but also
for automatically establishing in-band SDN communication channels
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even on wireless SDN networks. This contribution would also help the
deployment of IoT applications and services based on wireless SDN
devices. To the best of our knowledge, there is not any proposal capable
of establishing automatically in-band communication channels in wired
and/or wireless hybrid SDN networks. Moreover, we also plan to study
the security of eHDDP since the use of the Sequence Number and the
ACK number may not be enough protection for all kind of attacks.
Finally, we will continue with the enhancements of Mininet-WiFi and to
study the optimal value of the eHDDP timer between retries depending
on the wireless technology in use or how to include the information
from the wireless channels to optimise its performance, e.g., packet
losses or SNR.
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