
Capítulo 6

Predicción de la diversidad de árboles y priorización de sitios para la con-
servación

Este capítulo reproduce el texto del siguiente manuscrito, a excepción de la sección de Métodos, que apare-
ce resumida:

Cayuela, L., Rey Benayas, J.M., Justel, A. & Salas Rey, J. 2006d. Modelling tree diversity in a highly fragmen-
ted tropical montane landscape for conservation prioritisation. Global Ecology and Biogeography, under
review.

Resumen

Los bosques tropicales están desapareciendo en muchas regiones del mundo debido a la deforestación y al
uso no sostenible de los recursos forestales. Ello exige la implementación de estrategias de conservación que
persigan la conservación de la biodiversidad forestal. Los Altos de Chiapas, en el sureste mexicano, tiene una
de las tasas de deforestación más altas descritas hasta el momento a nivel mundial. En este estudio se inten-
ta explicar y predecir la diversidad local de árboles y la complementariedad de los distintos tipos de vegeta-
ción existentes en la zona. Uno de los principales objetivos que se persigue es ilustrar la potencialidad de un
método que combine información procedente de distintas fuentes (datos de campo, imágenes de satélite,
SIG) para evaluar y monitorear la diversidad forestal a nivel de paisaje.

Para ello registramos la composición de especies arbóreas en 204 inventarios forestales (de 1000 m2 cada
uno) y medimos distintas variables ambientales, espaciales y relacionadas con la perturbación humana a par-
tir de información contenida en SIG e imágenes de satélite. Se utilizaron los siguientes procedimientos ana-
líticos: (1) modelos generalizados lineales (GLM) para predecir la diversidad local de árboles (alpha de
Fisher); (2) tests de Mantel para averiguar si las similitudes en composición florística entre pares de inventa-
rios se correlacionan con las similitudes en las distintas variables explicativas; y (3) un método que combina
la diversidad local y la complementariedad para definir áreas prioritarias para la conservación.

El modelo final explicaba el 44% de la variabilidad total en diversidad local, que estaba relacionada principal-
mente con la precipitación, la temperatura, el NDVI, y la apertura del dosel arbóreo (todas las relaciones fue-
ron positivas, y cuadráticas para la temperatura y el NDVI). La similitud en composición florística estaba posi-
tivamente correlacionada con las variables climáticas y el NDVI.

Estos resultados fueron usados para: (1) localizar y priorizar áreas que no han sido exploradas con valores
altos de diversidad de árboles para su conservación; y (2) mostrar la contribución de diversas formaciones
vegetales en la configuración de la biodiversidad regional. Este método puede ser de gran utilidad para eva-
luar estrategias de conservación a nivel regional y local en áreas tropicales amenazadas y de difícil acceso
en cualquier parte del mundo.
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Abstract

Aim There is an urgent need for conservation interventions in threatened tropical forest regions.
We explain and predict the spatial variation of local tree diversity and complementarity in a tro-
pical montane landscape under a high deforestation rate. A major goal was to illustrate the
potentiality of a method that combines data from different sources (field data, remote sensing
imagery, and GIS) for evaluating and monitoring forest diversity over broad scales in large
unexplored areas.

Location The study covered an area of ca. 3500 km2 in the Highlands of Chiapas, southern
Mexico.

Methods We field inventoried tree species composition in 204 field plots (1000 m2 each) and
measured different environmental, human disturbance-related, and spatial variables  based on
remote sensing data and GIS. We used: (1) GLM with a gamma error distribution to obtain a
predictive model of local tree diversity (Fisher's alpha) based on selected explanatory varia-
bles; (2) Mantel tests of matrix correspondence to find out whether similarities in floristic com-
position correlated with similarities in the explanatory variables; and (3) an approach that com-
bines local tree diversity and complementarity to define priority areas for conservation.

Results The final model for local tree diversity explained 44% of the total variability, which was
mainly related to precipitation, temperature, NDVI, and canopy openness (all relationships
were positive, and quadratic for T and NDVI). There were not spatially structured regional fac-
tors that had been ignored. Similarity in tree composition correlated positively with climate and
NDVI.

Main conclusions These results were used to: (1) locate and prioritise non-explored areas with
high values of tree diversity for their conservation; and (2) show the importance of several
vegetation formations in the configuration of the region's biodiversity. This method can be par-
ticularly useful to assess regional and local conservation strategies in poorly surveyed and
often at risk tropical areas anywhere in the world, where accessibility is usually limited.

Keywords: complementarity; conservation prioritisation; Fisher's alpha; generalised linear
model; Highlands of Chiapas; hotspot; Mantel test; spatial autocorrelation; tree diversity. 
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1. Introduction

The current scale of deforestation in tropical regions
and the large areas of degraded lands now present
underscore the urgent need for interventions to res-
tore and protect biodiversity, ecological functioning,
and the supply of goods and ecological services pre-
viously used by poor rural communities (Lamb et al.
2005). One of the main responses to this process of
degradation has been to create or expand networks
of protected areas to help protect the remaining bio-
diversity. In this response, the focus has largely been
on making selection of candidate sites as represen-
tative and comprehensive as possible (Willliams et
al. 1996, Araújo 1999, Justus & Sarkar 2002). The
quantification of species-environment relationships
has recently gained importance as a tool to assist
decision-making related to nature conservation at the
landscape level (Stockwell & Peterson 2003). This
task is not simple because diversity can be measured
in a variety of ways and at different scales. The pro-
cesses that determine patterns of diversity can be
also varied, including phylogenetic, historical, bioge-
ographic, and environmental processes (Brown &
Lomolino 1998, Rey Benayas & Scheiner 2002).
Human activities may also play a role in shaping geo-
graphical patterns of diversity in intensively managed
regions (Lawton et al. 1998). At large spatial scales,
factors related to the entry of energy in the system
(e.g. productivity and evapotranspiration) have emer-
ged as primary predictors of species diversity (Wright
et al. 1993, Pausas & Austin 2001, González-
Espinosa et al. 2004). At finer-grained scales, howe-
ver, it is the history and frequency of disturbance,
land use, and heterogeneity of different landscape
features (e.g. topography and habitat types) that may
become more relevant for explaining patterns of spe-
cies diversity (Kerr & Packer 1997, Wohlgemuth
1998, Rahbek & Graves 2001).

Geographic Information Systems (GIS) and remotely
sensed data are useful to extrapolate information
from ground-based ecological studies to large and
non-explored areas. Mapping of plant diversity esti-
mates can be accomplished by analysing variation of
some spectral signals (e.g. the Normalized
Difference Vegetation Index, NDVI), and correlating

this variation with measures of landscape or taxa
diversity (Rey Benayas & Pope 1995, Jørgenson &
Nøhr 1996, Gould 2000, Luoto et al. 2002, Tuomisto
et al. 2003). Climate, biophysical, land cover data, as
well as factors related to human disturbance, can be
also used to predict and explain patterns of species
diversity (Lobo & Martín-Piera 2002).

Point diversity, however, is not the solely valuable
property to be evaluated for conservation purposes.
Some habitats may contain a low number of species
but being still relevant due to the presence of species
or species assemblages that are not found in highly
diverse habitats. Representativeness of habitats is
therefore also a desirable property of conservation
networks (Araújo 1999). 

In this study we propose a methodology that is
applied to predict the spatial variation of local tree
diversity and complementarity in a tropical montane
region. Our models include information obtained at
different spatial scales from field sampling, satellite
imagery, and GIS. As an illustrative example, we stu-
died the Highlands of Chiapas, southern Mexico.
This region is notable because of its high biodiversity
and environmental heterogeneity (Ceballos et al.
1998, Wolf & Flamenco 2003, González-Espinosa et
al. 2004). Chronic intensification of land use, particu-
larly after occurrence of a violent conflict in 1994 (the
Zapatista riot), has caused much deforestation and
forest disturbance and hence may have a negative
impact on biodiversity (González-Espinosa 2005). 

The specific objectives of this study are: (i) to ascer-
tain the determinants of the spatial variation of local
tree diversity; (ii) to propose a predictive model which
enables us to identify less surveyed areas of high
local tree diversity; (iii) to explore the factors that
determine complementarity among floristic groups;
and (iv) to prioritise areas for conservation using both
diversity and complementarity criteria and informa-
tion from different sources. Our study makes no
mechanistic hypotheses about the processes that
shape the spatial patterns of tree diversity and com-
plementarity, but seeks to provide post hoc explana-
tions of such processes. The models we propose can
be the basis for detecting tracts of land worthy for
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conservation, establishing protected areas and con-
duct forest restoration programs. By identifying pat-
terns of tree diversity and complementarity, and
understanding the effect of their possible determi-
nants at this scale, this study may contribute to foster
conservation and land management tools and
actions in other tropical regions of the world (Lamb et
al. 2005).

2. Material and methods

Study area

The study area covers the Highlands of Chiapas,
Mexico (Figure 4.1). A detailed description can be
found in chapter 4.

Field sampling and tree diversity estimation

Floristic inventories were accomplished for 204 circu-
lar plots of 1000 m2 each distributed in different forest
fragments (Figure 2.2, chapter 2); 168 plots were
sampled by us from January 2003 to May 2004.
Extra data from 36 plots collected in 1998 following
the same sampling protocol (Galindo et al. 2002, L.
Galindo, unpublished data) were also analysed in
this study. In each plot, all trees with dbh larger than
10 cm were identified to species and counted.
Access to forests required permission from local
inhabitants, which was not always given. Despite this
fact, the study fragments were well spaced over the
broader landscape and provide a valuable descrip-
tion of the regional diversity. The number of observed
tree species per plot ranged between 2 and 28 and
averaged 13.3 ± 5.2. The number of stems per plot
ranged between 22 and 211 and averaged 97.2 ±
36.5. All locations were geo-referenced. Mean dis-
tance between plots was 25.2 km (SD = ±15.3 km).
The final database included 230 native tree species
(see Appendix 6.1). Fisher's alpha was calculated
for each sample. This estimator of diversity was
highly correlated with the observed number of spe-
cies (r = 0.91, p-value < 0.0001). Nonetheless
Fisher's alpha was selected because it is indepen-
dent of sample size and assumes a parametric distri-
bution of relative abundances for the population from
which the sample is drawn (Rosenzweig 1995).

Explanatory variables

For practical reasons, we will use the term 'explana-
tory' to refer to those variables (e.g. slope, elevation,
precipitation, soil type) used as surrogates of proces-
ses and factors that may have a direct effect on spe-
cies diversity and composition (e.g. incoming radia-
tion, water vapour deficit in the air, soil drought, avai-
lable pool of nutrients). The explanatory variables
were selected to take into account relevant informa-
tion to explain patterns of tree diversity at both local
and regional scales, but also with regard to their avai-
lability and degree of coverage for the study area.
The selected set included 15 continuous variables
(Table 6.1): two climatic variables (mean temperatu-
re and precipitation); a soil fertility/quality index; two
spectral variables (Normalized Difference Vegetation
Index (NDVI) and Normalized Difference Infrared
Index (NDII)); two variables of environmental hetero-
geneity (NDVI and NDII in-site heterogeneity); two
topographical variables (elevation and slope); four
variables related to human disturbance (road density,
canopy openness, human population density, and
distance to forest edge); and two spatial variables
(latitude and longitude).

Climatic variables were generated for 1x1 km cells
using interpolation techniques (Golicher et al. 2006).
Measurements of maximum and minimum tempera-
ture, and precipitation were available on a daily basis
since 1950 for 212 climate stations in the state of
Chiapas. Monthly precipitation values were obtained
using a method that involves iterated universal kri-
ging. Surfaces of monthly maximum and minimum
temperature were generated by using linear models
and fitting the residuals by universal kriging after
accounting for altitudinal effects (D.J. Golicher, unpu-
blished data). Mean precipitation and temperature
were then calculated by averaging monthly data. 

An index of soil fertility/quality following González-
Espinosa et al. (2004) was generated based on inter-
pretation of physical and chemical properties of soil
taxa as described in the legend of FAO-UNESCO
map (Duchaufour 1987), in addition to information of
soil texture and physical phases available from the
maps.
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The Normalized Difference Vegetation Index (NDVI)
was calculated from the visible and near-infrared
bands of Landsat Enhanced Thematic Mapper
(ETM+) images acquired in 2000, during the peak of
the dry season (path 21 row 48, path 21 row 49, path
22 row 48). NDVI is sensitive to photosynthetically
active biomass, correlated with leaf area index, and
related to net primary productivity (Cramer et al.
1999). The Normalized Difference Infrared Index
(NDII) was calculated from the near-infrared and mid-
dle-infrared bands of the ETM+ images. This index is
related to the relative water content of leaves (Gao
1996). Both indices were averaged using a 3x3 pixel
size window centred over each pixel. Based on NDVI
and NDII, we obtained measures of heterogeneity
around the plots sampled for trees by applying a
standard deviation filter with a 5x5 pixel size window
centred over each pixel. All calculations were perfor-
med with Idrisi 32 (Eastman 2001).

Elevation and slope were extracted from a 1:50000
digital elevation model. Four variables were used as
measures of human disturbance (Table 6.1). Road

density was calculated in a 500 m radius from each
plot using relative weights for paved and unpaved
roads. Canopy openness was calculated as the pro-
portion of forest cells in a 500 m-radius circle centred
on each plot based on classified ETM+ Landsat ima-
gery. Human population density was obtained by divi-
ding up the study area according to the location of
human settlements into a meaningful tessellation of
Thiessen polygons. Population density was then cal-
culated by dividing total population in each settle-
ment by the area of its corresponding polygon.
Distance to forest edge was computed based on the
classified ETM+ Landsat imagery.

Modelling local tree diversity

We used generalized linear models (GLM, see
Crawley 1993) to obtain a predictive model of local
tree diversity based on selected explanatory varia-
bles (Pausas 1994, Austin et al. 1996). An advantage
of GLM with respect to linear models is that they can
deal with a range of distributions for the error compo-
nent. We assumed a gamma error distribution for

Variable Origin of data 

Normalised Difference Vegetation Index (NDVI) 2000 ETM+ images, bands 3 and 4 

Normalised Difference Infrared Index (NDII) 2000 ETM+ images, bands 3 and 5 

NDVI in-site heterogeneity 2000 ETM+ images, bands 3 and 4 

NDII in-site heterogeneity 2000 ETM+ images, bands 3 and 5 

Mean annual precipitation Interpolated maps of meteorological data 

Mean annual temperature Interpolated maps of meteorological data 

Elevation 1:50,000 digital elevation model 

Slope 1:50,000 digital elevation model 

Soil quality/fertility 1:250,000 digitised map 

Road density 1:50,000 digitised road map 

Canopy openness Classified 2000 ETM+ images 

Human population density Digitised 2000 population censuses 

Distance to forest edge Classified 2000 ETM+ images 

Latitude UTM x-coordinates 

Longitude UTM y-coordinates 

Table 6.1. Variables used for the analysis of determinants of local tree diversity.
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local tree diversity related to the set of predictor
variables via a logarithmic link function. Because the
Fisher's alpha index is a rather artificial tool, it is dif-
ficult to define an appropriate model that contains a
hypothesis about the way in which randomness
enters into the system. The gamma distribution is
very useful in these cases due to its flexibility.

The measure of discrepancy used by GLM to assess
the model goodness of fit is called the deviance.
Deviance reduction or explained deviance (D2) is
estimated as:

We followed a step-by-step model building procedu-
re. Before starting building the model, some explana-
tory variables that were highly correlated (|r| > 0.8)
were discarded for further analyses to avoid multico-
llinearity. NDVI and NDII were highly correlated (r =
0.88, p-value < 0.0001), as well as NDVI and NDII in-
site heterogeneity (r = 0.91, p-value < 0.0001). We
selected NDVI because it is universally used and
because it is more closely related to a gradient that
arises debate in the scientific literature (the diversity
-productivity relationship). Elevation also showed a
high correlation with mean temperature (r = 0.87, p-
value < 0.0001). We selected mean temperature
because it has a direct physiological effect whereas
elevation has no direct relevance for species' perfor-
mance (Guisan & Zimmermann 2000, Pausas &
Austin 2001). 

In the first step of model building, tree diversity was
related separately with each of the explanatory varia-
bles. Because the relationships between species
richness and environmental variables are often curvi-
linear (Austin 1980), we explored the effects of qua-
dratic and cubic terms of the explanatory variables in
tree diversity. Spatial coordinates were incorporated
to the model by adding all terms for a cubic trend sur-
face regression (Legendre 1993, Legendre &
Legendre 1998). This ensures that complex features
like patches or gaps are correctly described. We
selected either the linear, quadratic, or cubic function
of each explanatory variable by statistically testing
their reduction in the Akaike Information Criterion

(AIC) as compared to the null model (Akaike 1973).
AIC represents a measure of model optimality, tra-
ding off complexity and fit to the data. The percenta-
ge of explained deviance was also calculated for
each model.

In a second step of the analysis, all selected terms of
the variable that accounted for the most important
change in deviance were entered into the model.
Next, all remaining variables were tested for signifi-
cance by adding them one by one. After each new
variable inclusion, the significance of the terms pre-
viously selected was tested by a backward stepwise
selection procedure, using exact AIC, to avoid multi-
collinearity with other variables. The procedure was
repeated iteratively until no more significant explana-
tory variables remained (p-value =  0.05). Finally, the
selected terms of spatial variables were included in
the model and tested for statistical significance.

In each of the steps of model building, we examined
the reduction in the corrected deviance from the null
model, the significance of coefficients, the probability
plot of the standardised residuals, the Cook statistic
and the standardised leverage. Those observations
displaying simultaneously large values for the Cook
statistic and the standardised leverage were discar-
ded from the analysis to avoid over-influence of
outliers in the regression procedure.

After the model was reduced for optimality, a spatial
correlogram based on Moran´s Index of autocorrela-
tion was used to explore the autocorrelation of the
raw diversity data and the residuals of the model at
different geographic distances (Diniz-Filho et al.
2003). We used the Moran´s test for statistical signi-
ficance of spatial autocorrelation (Cliff & Ord 1981). If
detectable spatial autocorrelation existed in a distan-
ce class, then we can assume that there are still
some spatially patterned variables not included in the
model that were contributing to the patterns of local
tree diversity.

To validate the model we applied a leave-one-out
cross-validation procedure. Given a data set of size
n, we recalculated the model n-1 times, leaving out
one data in turn. Each one of the generalised linear

deviance Null
deviance Residualdeviance Null −=2D
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models based on the n-1 data was then applied to
that excluded data in order to produce a predicted
Fisher´s alpha score. We checked the predictive
power of the model by

where E is the mean of the percentage absolute
errors of prediction, yi is the observed species rich-
ness, and yi the predicted value for yi when the ith
observation is excluded (Davidson & Hinkley 1997).

Patterns of floristic similarity

Mantel tests of matrix correspondence were run to
find out whether similarities in floristic composition
correlated with similarities in climatic variables, eda-
phic conditions, NDVI, spectral variability (NDVI in-
site heterogeneity), topography, human disturbance-
related variables, and geographic distance. We used
the standardized form of the Mantel test, which com-
putes the Pearson correlation coefficient between the
cell values of two resemblance matrices. The statisti-
cal significance of each correlation was determined
by a Monte Carlo permutation test to avoid problems
related to autocorrelation and non-normal distribu-
tions of the measured variables. In all cases, 1000
permutations were used, which allows testing of the
statistical significance at p-values < 0.001 for each
individual correlation.

In order to find the subset of variables with the maxi-
mum correlation with community dissimilarities, we
selected the combinations of explanatory variables
that contributed most to explain the variability in the
floristic resemblance matrix. Initially, all the variables
used for modelling local tree diversity were included.
Then the function finds the best correlation between
community dissimilarities and distance matrices
based on different combinations of explanatory varia-
bles, and for each size of subsets, outputs the best
result. We reported the correlation coefficients for the
final models. These analyses were run with the R
vegan package (Oksanen et al. 2005) based on the
work by Clarke & Ainsworth (1993).

Selecting sites for conservation

Hierarchical clustering was performed using the
matrix of dissimilarity distances for the best subset of
explanatory variables selected to maximize correla-
tion with floristic dissimilarities. We used Ward´s
method because it makes more compact and repre-
sentative clusters. Based on the height distances of
the hierarchical clustering we classified the plots in
an increasing number of clusters, from three to ten.
We then used analyses of similarities (ANOSIM) to
select the number of clusters that maximize floristic
differences between groups. ANOSIM operates
directly on a dissimilarity matrix by using the rank
order of dissimilarity values (Clarke 1993). The ANO-
SIM statistic R is based on the differences of mean
ranks between groups and within groups. R will be in
the interval -1 to 1, value 0 indicating completely ran-
dom grouping. The statistical significance of obser-
ved R was assessed by permuting the grouping vec-
tor to obtain the empirical distribution of R under null-
model (Oksanen et al. 2005). 

Finally, classification and regression trees (CART)
were used to predict membership of plots in the
selected clusters from their measurements on the
explanatory variables (i.e. those selected to maximi-
ze correlation with floristic dissimilarities). CART has
the ability to perform univariate splits, examining the
effects of predictors one at a time. Splitting rules were
further used to classify all pixels in the study area.
This allowed us to define non-explored areas of com-
plementary floristic composition based on inference
made from the best subset of explanatory variables,
and select sites of high predicted tree diversity within
each floristic region. All statistical analyses were per-
formed with the R environment (R Development Core
Team 2004).

3. Results

Predicting spatial patterns of local tree diversity

All explanatory variables, with the exception of soil
fertility/quality, were significant when tested separa-
tely as either linear, quadratic, or cubic functions
(Table 6.2). Variability in local tree diversity (Fisher's

∑
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alpha) depended on the geographical position of the
plot. Sites close together in the space tend to be
more similar in their diversity than those that are fur-
ther away, but this model on its own has little predic-
tive utility. NDVI, mean precipitation, and mean tem-
perature were the non-spatial variables that accoun-
ted for the most important change of deviance. NDVI
was consequently the first variable to be included in
the model; next, the linear and cubic terms of mean
precipitation; then all the terms of mean temperature
and so on until the model was iteratively fitted and all
the selected variables were statistically tested for sig-
nificance (Table 6.3). Finally, significant spatial terms
were added. The final model accounted for 44% of
the observed variability in local tree diversity, which
was mainly related to mean precipitation, mean tem-
perature, NDVI, and canopy openness (Table 6.3).

Spatial autocorrelation for the raw diversity data was
significant for most lag distances, though the pattern
revealed very erratic (Figure 6.1a). The inclusion of
spatially structured variables in the model such as
mean annual precipitation reduced the spatial auto-
correlation in most distance classes (Figure 6.1b).

The mean of the percentage absolute errors of pre-
diction obtained in the cross-validation test was
45.6%, and the examination of the residuals did not
show aberrant features.

Correlations between distance matrices

Correlations between the floristic similarity matrix
and the similarity matrices based on different sets of
environmental, human disturbance-related, and spa-
tial variables are shown in Table 6.4. Climatic varia-
bles showed the highest correlation with floristic com-
position. Correlations between the floristic similarity
matrix and matrices based on geographical distance
and topographical features were also high. NDVI
showed a low significant correlation with species
similarity. Correlations between the floristic similarity
matrix and the similarity matrices of soil conditions,
spectral variability and human disturbance-related
variables were generally close to zero, despite some
of them were statistically significant. Statistical signi-
ficance, however, must be interpreted with caution,
as correlations were based on a large number of data
(i.e. all the possible combinations of sample pairs).

Variable Selected terms Deviance AIC df 2D  Sign 

Null model  70.6 931.3 203   

      Mean temperature (T) T+T2+T3 63.3 914.0 200 0.10 + + - 

      Mean precipitation (Pr) Pr+Pr3 63.2 911.5 201 0.10 + - 

      Soil fertility/quality (SFQ)   934.3    

      NDVI NDVI2+NDVI3 59.9 900.1 201 0.15 + + 

      NDVI in-site heterogeneity (Het) Het 68.6 927.1 202 0.02 - 

      Slope (Sl) Sl 66.2 919.6 202 0.06 + 

      Road density (RD) RD2+RD3 67.8 926.7 201 0.04 + - 

      Canopy openness (CO) CO 69.0 928.4 202 0.02 + 

      Human population density (PD) PD+PD2 67.0 924.3 201 0.05 + - 

      Distance to edge (DE) DE+DE2 69.0 930.4 201 0.02 + - 

      Longitude (Lon) 

      Latitude (Lat) 
Lat+Lat3+Lon*Lat2 52.3 873.3 200 0.26 + - - 

Table 6.2. Explanatory variables (abbreviation in parentheses) considered in the 204 sampled plots in the Highlands of
Chiapas. 'df' are the degrees of freedom, 'D2' is the deviance reduction, 'AIC' is the Akaike Information Criterion, and 'Sign'
represents the sign of the significant terms of each function (p-value = 0.01).
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The selection of different subsets of explanatory
variables with best correlation to community data
indicated that a high proportion of the variation in flo-
ristic similarity could be explained by 1-3 variables
(Table 6.5). As predicted by Mantel tests, mean pre-

cipitation and temperature explained 51% of the
variation in species composition. Models with more
than three variables progressively decreased their
correlation with floristic similarity.

Variable Terms Deviance df AIC 2D  t value Coefficient SE 

Null model  67.8 199 911.0     

   Intercept       23.17*** 1.193 0.051 

   Mean precipitation Pr 61.7 198 893.2 0.09  5.94***  0.236 0.040 

   Mean temperature T2 51.6 197 857.6 0.15  4.50***  0.180 0.040 

NDVI3 48.2 196 845.3 0.05  2.34*  0.061 0.026 
   NDVI 

NDVI2 44.4 195 830.6 0.06  3.12**  0.144 0.046 

   Canopy openness CO 41.1 194 816.6 0.05  3.59***  0.141 0.039 

   Slope Sl 40.1 193 813.3 0.02  2.12*  0.071 0.034 

   NDVI in-site heterogeneity Het 38.7 192 808.0 0.02  1.97*  0.078 0.039 

   Spatial variables Lon*Lat2 37.9 191 805.6 0.01 -2.10*** -0.071 0.034 

Final model  37.9 191 805.6 0.44    

 *** p < 0.001, ** 0.001 < p < 0.01, * 0.01 < p < 0.05. 

Table 6.3. Summary of the step-by-step model selection for prediction of local tree diversity.

Figure 6.1. Spatial correlograms based on Moran's index of spatial autocorrelation for Fisher's alpha values (a), and for
residuals after fitting the significant variables in the model shown in Table 3. Dashed lines represent 95% standard error
intervals for Moran's test.
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Prioritising areas for conservation

We took a varying number of clusters, from three to
ten, and compared floristic dissimilarities between
the groups at each clustering. The results revealed
that five clusters maximized floristic differences bet-
ween groups (ANOSIM R-statistic = 0.59, p-value <
0.001). These floristic groups showed also some dif-
ferences regarding local tree diversity (ANOSIM R-
statistic = 0.26, p-value < 0.001) (Figure 6.2).
However, these differences were lower than floristic

dissimilarities. This is a desirable property as we
want to use a single model for predicting tree diver-
sity across the landscape and not one model for each
of the floristic groups.

Figure 6.3 shows the classification and regression
tree (CART) developed for the five groups defined in
the hierarchical clustering. Variables in CART models
are selected to create splits that maximize the resul-
ting node homogeneity, and the variables used in
early splits can be considered as more important.

 Floristic similarities 

Variable r1 95% CI 

Climatic variables 0.50*** ± 0.05 

Soil fertility/quality 0.07* ± 0.03 

NDVI 0.17*** ± 0.03 

NDVI in-site heterogeneity -0.02 ± 0.05 

Topographical features 0.40*** ± 0.04 

Human disturbance 0.07* ± 0.05 

Geographical distance 0.43*** ± 0.04 
            1 *** p < 0.001, ** 0.001 < p < 0.01, * 0.01 < p < 0.05. 

Table 6.4. Mantel test correlations of floristic similarities with similarities in environmental, human disturbance-related, and
spatial variables.

Size Best subsets of explanatory variables r 

1 T 0.50 

2 Pr + T 0.51 

3 Pr + T + NDVI 0.50 

4 Pr + T + NDVI + Sl 0.49 

5 Pr + T + NDVI + Sl + CO 0.47 

6 Pr + T + NDVI + Sl + RD + CO 0.43 

7 Pr + T + SFQ + NDVI + Sl  + RD + CO 0.39 

8 Pr + T + SFQ + NDVI + Het + Sl  + RD + CO 0.35 

9 Pr + T + SFQ + NDVI + Het + Sl  + PD + RD + CO 0.30 

10 Pr + T + SFQ + NDVI + Het + Sl  + PD + RD + DE + CO 0.27 

 

Table 6.5. Mantel tests for best possible subsets of explanatory variables (from one to ten) that maximize correlation to
floristic dissimilarities.
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Mean temperature was selected in the first split. This
variable was also used to define the membership to
groups labelled D and E in Figure 6.2, whereas
mean precipitation was used in splitting groups A, B
and C. All plots but one (belonging to group A but
misclassified in group E) were correctly classified. 

Using these simple classification rules, all pixels
within our study area were assigned to one of the five
floristic groups (Figure 6.4a). Local tree diversity was
forecasted by applying the final reduced GLM
(Figure 6.4b). In the last step, pixels within each flo-
ristic region were ranked from higher to lower local
diversity, and reclassified into five groups of decrea-
sing diversity (all covering an area equivalent to 5000
ha except for the last group that was formed by all the
remaining pixels, Figure 6.4c). Because groups C
and D were much smaller than the others, all their
pixels were classified as having the highest priority
for conservation. This exercise exemplifies the man-
ner in which our results may be used to prioritise
sites for conservation.

4. Discussion

The assessment of biodiversity in managed landsca-
pes poses several methodological difficulties for dif-
ferent reasons: 1) Diversity measures strongly
depend on the chosen spatio-temporal scale, and the

scaling functions applicable to transfer results from
one scale to another are not completely satisfactory
(Waldhardt 2003); 2) It is impracticable to consider all
the different ecological, historical and human-related
factors that may contribute to patterns of species
diversity (Lobo & Martín-Piera 2002); 3) Field data
are often scarce, particularly in tropical regions, due
to limited accessibility to the forests (Stockwell &
Peterson 2003). Although our study suffers of these
caveats, we obtained models of the determinants of
local tree diversity and complementarity that were
satisfactory. The results of the GLM-diagnostic
methods and the lack of autocorrelation in the resi-
duals suggest that the model assumptions are reaso-
nable. The analyses show that variation in tree diver-
sity was mostly related to climatic variables and the
NDVI. Climatic variables were also responsible for
the main differences in floristic composition. This allo-
wed to divide the study area into five major floristic
regions and prioritise areas of high local tree diversity
within each of them. 

Patterns of local tree diversity

Climatic variables showed the strongest relationship
with local tree diversity (Table 6.3). Climate has been
typically defined as a strong descriptor of broad-scale
diversity patterns (Wright et al. 1993, Austin et al.
1996, Hawkins et al. 2003). Our findings may be

Figure 6.3. Classification and regression tree (CART) for the five groups of vegetation defined in the hierarchical clustering
using mean precipitation and temperature as predictor variables. 
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dependent on the spatial scale of analysis (Willis &
Whittaker 2002), but they show that local diversity
can be explained to some extent by climatic gra-
dients. This indicates that broad-scale patterns can
be replicated across an altitudinal gradient at finer
spatial scales. Precipitation and temperature contri-
bute to define actual evapotranspiration, which may
be related to plant growth. Positive correlations bet-
ween tropical lowland tree species richness and
annual precipitation have been interpreted as sup-
porting the diversity-energy hypothesis (Gentry 1982,
1988, Givnish 1999). Yet, using this variable separa-
tely from temperature has been recently criticized
(Francis & Currie 2003).

If the NDVI is interpreted as a surrogate of the
amount of biologically available energy (Rosenzweig
1995), we can assume that greater biomass increa-
ses biological heterogeneity which, in turn, favours
specialisation and promotes the local coexistence of
species (Wright et al. 1993, Scheiner & Rey Benayas
1994, Mittelbach et al. 2001, González-Espinosa et
al. 2004, Seto et al. 2004). Correlations between
NDVI and species diversity, however, have been
mostly highlighted in areas with vegetation that is
relatively structurally homogeneous (Jakubauskas &
Price 1997). In areas where vegetation structure is
heterogeneous, structural rather than species diffe-
rences may predominate in imagery (Nagendra
2001). Thus the difficulty to predict spatial patterns of
tree diversity based solely on remotely sensed data
(see also Tuomisto et al. 2003). Further, NDVI must
be interpreted with caution as it summarises the
energy use and storage (plant biological activity) in a
particular period of time. Multi-temporal data might
thus provide further information on intra- and inter-
annual shifts in vegetation and support more detailed
models with the incorporation of time lags and tem-
poral changes in productivity (Oindo & Skidmore
2002). 

Soil fertility/quality did not explain a significant
amount of variability of local tree diversity. Other stu-
dies have highlighted different relationships (positive,
negative, hump-shaped) between soil characteristics
and plant diversity at meso- and landscape scales
(e.g. Huston 1980, Clinebell et al. 1995, Clark et al.
1999, Rey Benayas & Scheiner 2002, González-

Espinosa et al. 2004). The lack of relationship in our
study may be, at least partially, a consequence of the
low resolution of the regional soil maps from which
our soil fertility/quality index was derived.
Nevertheless, our results are consistent with those of
Tuomisto et al. (2003), who found no correlation at
finer grained scales between plant species richness
and different soil characteristics such as texture or
cation content.

In-site heterogeneity is positively related to local tree
diversity (Table 6.3) but it accounts for a very small
percentage of its variation. This might be because
the effect of environmental heterogeneity is highly
scale-dependent (Phillips et al. 2003, Seto et al.
2004). At large spatial scales the existence of envi-
ronmental or resource heterogeneity may create high
niche diversity (e.g. Pollock et al. 1998, Gould 2000,
Pausas et al. 2003); at the local scale it may be
secondary in importance to resources and conditions
(Pausas & Austin 2001).

Canopy openness, a surrogate of human disturban-
ce, and slope were also positively associated with
tree diversity. Canopy openness may indicate a buf-
fering effect of the surrounding forest on local tree
diversity through a reduction of edge effects. Other
human disturbance-related variables were excluded
from the final model; yet, they did not provide a direct
measure of the type and intensity of human impacts
(e.g. number of stumps, logs, etc.). The relationship
with slope may reflect the consequence of lower
accessibility to these areas and, thereby, to less
intensive human disturbance regimes.

The reduction of spatial autocorrelation in the resi-
duals as compared to the raw diversity data (Figure
6.1) indicates that correlations of diversity with
metrics of space were reflecting the collinearity of
other variables with space (Currie et al. 1999).
Climatic variables were mostly responsible for this
reduction. Because diversity measurements are
based on the distribution of the abundance and/or the
number of species, local non-spatially structured bio-
tic factors such as interspecific competition may be
accounting for part of the unexplained variability of
tree diversity.
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Patterns of floristic similarity

Similarity in tree composition correlated mainly with
climatic variables and NDVI (Table 6.4). Given the
existing correlation of mean annual precipitation and
temperature with elevation, and the spatially structu-
red component of these variables, it is not rare that
both topographical features and geographical distan-
ce were also highly correlated with similarity in tree
composition. Tuomisto et al. (2003) found that reflec-
tance patterns in satellite images could be efficiently
used to predict landscape-scale patterns in
Amazonian rain forests. Our results do not fully sup-
port their results. In our study area there was a strong
altitudinal and climatic gradient and different vegeta-
tion types could be recognized (Cayuela et al.
2006a); thus, spectral variation in the satellite images
was a poor predictor of floristic differences at the
landscape scale as compared to climatic variation.

Identifying priority areas for conservation

Mexico is a megadiverse country but has high rates
of deforestation and ecological impoverishment
(CONABIO 1999). In recent decades, the Highlands
of Chiapas have undergone one of the most rapid
process of deforestation worldwide, at average rates
of 2-5% per year (Ochoa-Gaona & González-
Espinosa 2000; Cayuela et al. 2006c). This poses
severe threats to conservation of forest habitats and
a risk to local welfare (Costanza et al. 1997).
Mapping of diversity and complementarity can aid
conservation of natural resources by helping identify
species-rich hotspots and areas that include as many
of the species as possible (Myers 1990, Gentry 1992,
Araújo 1999, Rey Benayas & de la Montaña 2004).
Further research should be made on patterns of spe-
cies endemicity (Gentry 1992) and rarity (Williams et
al. 1996, Rey Benayas et al. 1999, Rey Benayas &
de la Montaña 2004) because they are largely non-
coincident with patterns of point diversity.

Our modelling represents an approximation to the
spatial configuration of local tree diversity and com-
plementarity in south-eastern Mexico. Spatial predic-
tion of floristic patterns indicated that there are three
dominant floristic regions (Figure 6.4a) matching
major climatic trends: a north-eastern one with abun-

dant precipitation and a mild winter season (group A),
a central one with a cold and dry winter season
(group E), and a south-western one with a dry but
warm winter season (Group B). Hotspots chiefly
occur on ridge-top montane forests in the central and
northern ranges, and in transitional forests towards
the lower depression in the south-western range of
the study area  (Figure 6.4b). Overall, our study pro-
vides a first step towards identification of sites that
maximise the representation of tree diversity.
Prioritisation of areas of high diversity within each flo-
ristic region identified the location of tree diversity
hotspots across the study region (Figure 6.4c).
Given the accelerate pace of habitat loss, at least a
small portion of the prioritised areas should be reser-
ved for some maintenance of the original vegetation.
Unfortunately, no environmental policy is being
implemented in the region at the moment. 

In conclusion, we found that: (1) climatic variation is
a good predictor of both local tree diversity and floris-
tic differences at the landscape scale; (2) NDVI is a
good descriptor of local tree diversity but not of floris-
tic differences over the study area; (3) both local tree
diversity and complementarity show different spatial
patterns and are thus needed for effective conserva-
tion prioritisation. Studies like the one that we have
presented here will help to promote regional and
local conservation strategies. 
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Appendix 6.1

Species included in the present analysis. Nomenclature follows the Index Kewensis, except for those cases in
which no record was found, for which the Gray Herbarium Card Index (*)(http://www.ipni.org) and the Missouri
Botanical Garden Databases (†)(www.mobot.org) were used.

Family Species 

Actinidiaceae Saurauia oreophila Hemsl.† 
 S. scabrida Buscal.* 
Anacardiaceae Pistaceae mexicana H.B. & K. 
 Rhus schiedeana Schltdl. 
 Tapirira mexicana Marchand 
Annonaceae Malmea depressa (Baill.) R.E.Fr. 
 Undetermined sp1 
Aquifoliaceae Ilex macfadyenii Rehder 
 I. sp1 
 I. vomitoria Aiton 
Araliaceae Dendropanax populifolius (Marchal) A.C. Sm. 
 D. arboreus (L.) Decne. & Planch.* 
 Oreopanax arcanus A.C. Sm. 
 O. capitatus Steyerm.* 
 O. liebmannii Marchal 
 O. peltatum Linden 
 O. xalapense Decne. & Planch. 
Asteraceae Lasianthaea aff. fruticosa (L.) K.M. Becker 
Betulaceae Alnus acuminata H.B. & K. 
Bignonaceae Tecoma stans (L.) H.B. & K. 
Boraginaceae Ehretia luxiana Donn. Sm. 
 E. tinifolia L. 
 Tournefortia acutifolia Willd. ex Roem. & Schult. 
Brunelliaceae Brunellia mexicana Standl. 
Buddlejaceae Buddleja cordata H.B & K. 
 B. nítida Benth. 
 B. skutchii Morton 
Burseraceae Bursera simaruba Sarg. 
Caprifoliaceae Sambucus canadensis L. 
 S. mexicana Presl ex DC. 
 Viburnum acutifolium Benth. 
 V. aff. lautum Morton 
 V. discolor Benth. 
 V. elatum Benth. 
 V. hartwegi Benth. 
 V. jucundum Morton 
Celastraceae Crossopetalum parviflorum (Hemsl.) Lundell 
 C. sp1 
 Perrottetia ovata Hemsl. 
 Quetzalia contracta (Lundell) Lundell 
 Rhacoma standleyi (Lundell) Standl. & Steyerm. 
 R. tonduzii (Loes.) Standl. & Steyerm. 
 Undetermined sp1 
 Undetermined sp2 
 Zinowiewia rubra Lundell 
Clethraceae Clethra macrophylla M.Martens & Galeotti 
 C. oleoides L.O.Williams 
 C. sp1 
 C. suaveolens Turcz.  
Chloranthaceae Hedyosmum mexicanum Cordem. Ex Baill. 
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Appendix 6.1. Continued.

Family Species 

Compositae Baccharis vaccinoides H.B. & K. 
 Eupatorium areolare DC. 
 E. ligustrinum DC. 
 E. nubigenum Benth. 
 E. pittieri Klatt* 
 Montanoa leucantha S.F.Blake 
 M. leucantha var. arborescens (DC.) B.L.Turner  
 Perymenium grande Hemsl. 
 Roldana sp1 
 Telanthophora cobanensis (Coulter) H.Rob. & Brettell 
 T. grandiflora (Less.) H.Rob & Brettell 
 Undetermined sp1 
 Verbesina perymenioides Sch.Bip. ex Klatt 
 Vernonia canescens Sch.Bip 
 V. leiocarpa DC.  
 V. scorpioides Pers. 
Cornaceae Cornus disciflora Moc. & Sessé ex DC. 
 C. excelsa H.B. & K. 
 Nyssa sylvatica Marsh. 
Corylaceae Carpinus caroliniana Walter 
Cupressaceae Cupressus lusitanica Mill. 
Cupuliferae Ostrya virginiana K.Koch 
Cyatheaceae Cyathea fulva Fée 
Ericaceae Arbutus xalapensis H.B. & K. 
 Comarostaphylis discolor (Hooker) G.M.Diggs 
 Vaccinium breedlovei L.O. Williams 
Euphorbiaceae Croton aff. fragilis Schltdl. 
 C. aff. glabellus Heyne ex Wall. 
 C. guatemalensis Lotsy 
 Sebastiania cruenta (Standl. & Steyerm.) Miranda  
 Stillingia zelayensis Müll.Arg. 
Fagaceae Quercus acatenangensis Trel. 
 Q. benthami A.DC. 
 Q. candicans Nee 
 Q. crassifolia Benth. 
 Q. crispipilis Trel. 
 Q. lancifolia Liebm. ex A.DC. 
 Q. laurina Liebm. Ex. A.DC. 
 Q. peduncularis Nee 
 Q. polymorpha Schlecht. & Cham. 
 Q. rugosa Nee 
 Q. sapotaefolia Liebm. 
 Q. segoviensis Liebm. 
 Q. skutchii Trel. 
 Q. sp1 
Flacourtiaceae Xylosma flexuosum Hemsl. 
Garryaceae Garrya laurifolia Benth. 
Guttiferae Clusia mexicana Vesque 
 C. rosea Jacq. 
Hamamelidaceae Liquidambar styraciflua L. 
Lamiaceae Cornutia grandiflora Steud. 
Lauraceae Cinnamomum zapatae F.G.Lorea-Hernández 
 C. sp1 
 Licaria campechiana (Standl.) Kosterm. 
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Family Species 

Lauraceae Litsea glaucescens H.B. & K. 
 Nectandra longicaudata (Lundell) C.K.Allen 
 N. salicifolia Nees 
 N. sp1 
 Ocotea efusa Hemsl. 
 O. helicterifolia Hemsl. 
 O. sp1 
 Persea americana Mill. 
 P. liebmannii Mez* 
 Undetermined sp1 
Leguminosae Acacia angustissima Kuntze 
 Calliandra houstoniana Standl. 
 Cojoba arborea Britton & Rose 
 Dalbergia glomerata Hemsl. 
 D. sp1 
 Diphysa americana (Miller) M.Sousa S. 
 Erythrina chiapasana Krukoff 
 Inga oerstediana Benth. 
 I. sp1 
 Lonchocarpus rugosus Benth. 
 Lysiloma divaricata MacBride 
 Undetermined sp1 
 Undetermined sp2 
Magnoliaceae Magnolia sharpii Miranda 
Malpighiaceae Bunchosia lanceolata Turcz. 
Melastomataceae Miconia glaberrima Naud. 
 M. minutiflora DC. 
Meliaceae Cedrela odorata L. 
Meliosmaceae Meliosma dentata Urban 
 M. dives Standl. & Steyerm. 
 M. sp1 
 Undetermined sp1 
Moraceae Trophis chiapensis Brandegee 
 T. chorizantha Standl. 
Myricaceae Myrica cerifera Bigelow 
Myrsinaceae Ardisia densiflora Krug & Urb. 
 A. sp1 
 Parathesis belizensis Lundell 
 P. chiapensis Fernald 
 P. leptopa Lundell 
 Rapanea juergensenii Mez 
 R. myricoides (Schltdl.) Lundell1 
 Synardisia venosa (Mast. ex Donn.Sm.) Lundell 
Myrtaceae Calyptranthes pallens Griseb. 
 Eugenia acapulcensis Steud. 
 E. capuli Schlecht. 
 E. capulioides Lundell* 
 Undetermined sp1 
Olacaceae Ximenia americana L. 
Oleaceae Forestiera reticulata Torr.* 
 Fraxinus uhdei (Wenzig) Lingelsh. 
 F. vellerea Standl. & Steyerm. 
Onagraceae Fuchsia paniculata Lindl. 
 Hauya elegans ex DC. 
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Family Species 

Palmae Brahea edulis H.Wendl. ex S.Wats. 
Papaveraceae Bocconia arborea S.Watson 
Pinaceae Juniperus gamboana Martinez 
 Pinus ayacahuite Ehrenb. ex Schlecht. 
 P. chiapensis (Martinez) Andresen 
 P. devoniana Lindl. 
 P. maximinoi H.E.Moore 
 P. montezumae Lamb. 
 P. oocarpa Schiede 
 P. pseudostrobus Lindl. 
 P. tecunumanii T.Eguiluz Piedra & J.P.Perry 
Piperaceae Piper psilorhachis C.DC. 
Podocarpaceae Podocarpus matudae Laub. & Silba 
Polygalaceae Monnina xalapensis H.B. & K. 
Rhamnaceae Ceanothus caeruleus Lag. 
 Colubrina aff. arborescens Sargent 
 Rhamnus capreaefolia Schlecht. 
 R. sharpii M.C.Johnst. & L.A.Johnston 
Rosaceae Amelanchier nervosa Standl. 
 Crataegus pubescens Steud. 
 Holodiscus argenteus Maxim. 
 Photinia microcarpa Standl. 
 Prunus brachybotrya Zucc. 
 P. lundelliana Standl. 
 P. rhamnoides Koehne 
 P. serotina Poir. 
Rubiaceae Chiococca aff. alba (L.) Hitchc. 
 Deppea grandiflora Schlecht. 
 Psychotria aff. minarum Standl. & Steyerm. 
 P. costivenia Griseb. 
 P. marginata Schlecht. 
 Randia aculeata L. 
 Rondeletia cordata Benth. 
 R. stenosiphon Hemsl. 
Rutaceae Zanthoxylum melanostictum Schlecht. & Cham. 
Sapindaceae Cupania dentata Moc. & Sessé 
 Dodonaea viscosa Jacq. 
 Turpinia occidentalis G.Don 
Sapotaceae Pouteria lundellii (Standl.) L.O.Williams 
Saxifragaceae Phyllonoma laticuspis Engl. 
 Weinmannia pinnata Ruiz ex. Engl. 
Simaroubaceae Picramnia quaternaria Donn.Sm. 
Solanaceae Cestrum aurantiacum Lindl. 
 C. guatemalense Francey 
 Solanum hispidum Pers. 
 S. nigricans M.Martens & Galeotti 
 S. nudum Humb. & Bonpl. ex Dun. 
Sterculiaceae Chiranthodendron pentadactylon Larreat 
Styracaceae Styrax argenteus var. ramirezii (Greenm.) Gonsoulin 
 Symplocos limoncillo Humb. & Bonpl. 
 S. longipes Lundell 
 S. sp1 
Tiliaceae Trichospermum mexicanum Baill. 
Theaceae Cleyera theoides Choisy 
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Family Species 

Theaceae Symplococarpon purpusii (Brandegee) Kobuski 
 Ternstroemia lineata DC. 
 T. oocarpa Melch. 
Thymelaeaceae Daphnopsis selerorum Gilg. 
Turneracea Erblichia odorata Seem. 
Urticaceae Morus celtidifolia H.B. & K. 
 Myriocarpa longipes Liebm. 
 Olmediella betschleriana Loes. 
 Undetermined sp1 
 Urera aff. caracasana Griseb. 
Verbenaceae Citharexylum donnell-smithii Greenm. 
 C. mocinnii var. longibracteolatum Moldenke 
 C. sp1 
 Lippia substrigosa Turcz. 
Winteraceae Drimys granadensis var. mexicana (DC.) A.C. Sm. 
Undetermined Undetermined sp1 
 Undetermined sp2 
 Undetermined sp3 

 


