
Capítulo 3

Clasificación de un paisaje complejo utilizando la teoría de la evidencia de
Dempster-Shafer

Este capítulo reproduce íntegramente el texto del siguiente manuscrito:

Cayuela, L., Golicher, J.D., Salas Rey, J. & Rey Benayas, J.M. 2006a. Classification of a complex landscape
using Dempster-Shafer theory of evidence. International Journal of Remote Sensing, in press.

Resumen

El proceso de clasificación de las coberturas y usos del suelo en paisajes complejos y heterogéneos puede
plantear problemas de discriminación entre categorías cuando se dispone sólo de la información espectral
obtenida a partir de imágenes satelitales. Investigamos el uso de un método alternativo para mejorar la cla-
sificación de la vegetación basado en la teoría de la evidencia de Dempster-Shafer. El clasificador Dempster-
Shafer permite combinar de una manera formal la información contenida en las bandas multi-espectrales de
imágenes de satélite con el conocimiento experto.

Con objeto de comparar la precisión de la clasificación Dempster-Shafer con otros clasificadores se definie-
ron seis categorías: cuatro categorías forestales (bosque mesófilo, bosque de encino, bosque de pino-enci-
no y bosque de pino), una urbana y otra agrícola. Sobre una imagen Landsat ETM+ corregida geométrica y
radiométricamente se llevaron a cabo las siguientes clasificaciones: (1) clasificación supervisada siguiendo el
método de máxima probabilidad; (2) clasificación de máxima probabilidad usando un filtro modal de 3x3 píxe-
les; y (3) clasificación Dempster-Shafer. Para la clasificación Dempster-Shafer se propusieron cinco líneas de
evidencia distintas: (1) información multiespectral (bandas 1, 2, 3, 4, 5 y 7) generada a partir de una clasifi-
cación bayesiana supervisada; (2) altitud; (3) pendiente; (4) distancia a asentamientos humanos; y (5) per-
cepción de los tipos dominantes de vegetación expresado mediante el uso de polígonos de Thiessen. Cada
línea de evidencia quedó formalizada en uno o varios mapas de probabilidad (con valores entre 0 y 1) que
apoyaban una o varias de las categorías conjuntamente. Para la verificación de las clasificaciones se utiliza-
ron 136 puntos de control tomados en el campo. 

Este estudio demuestra que la inclusión del conocimiento experto mejora los resultados de la clasificación en
comparación con los clasificadores tradicionales (máxima probabilidad) y operadores de contexto (filtro
modal), permitiendo una mejor discriminación entre clases y una reducción del error de omisión y comisión
para todas las categorías de bosque (hasta un 30%), así como del error total en, aproximadamente, un 7.5%.
El clasificador Dempster-Shafer permite una clasificación más precisa en este tipo de paisajes y también pro-
porciona información adicional sobre la incertidumbre asociada al proceso de clasificación.
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Complex mosaic landscapes in which heterogeneity
is apparent at very fine grained level of resolution are
frequent in many tropical regions around the world
(Imbernon & Branthomme 2001, Pedroni 2003). Two
major determinants of this complexity are land use
and abrupt topography. Land use frequently includes
timber extraction, slash and burn agriculture, fuel
wood production and cattle ranching, all of which are
associated with fragmentation of natural forests and
the initiation of complex succesional stages of vege-
tation development (Meyer & Turner II 1992,
Imbernon 1999a, b, Imbernon & Branthomme 2001,
Ramírez-Marcial et al. 2001). Additionally, population

growth and the social structure of communities lead
to the division of land into extremely small units, often
less than one hectare in extent (Ochoa-Gaona 2001).

Remotely sensed information is an important tool for
documenting and understanding the resulting pat-
terns of land cover. However, landscape complexity
poses particular challenges for image classification.
There is an inevitably high degree of misclassifica-
tion, particularly if various categories are intersper-
sed within a small spatial area (Foody 2002b) or
some of the land cover categories have overlapping
spectral signatures (Pedroni 2003). In such circums-
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Abstract

The landscape of the Highlands of Chiapas, in southern Mexico, is covered by a highly complex
mosaic of anthropogenic, natural and semi-natural vegetation. This complexity challenges land
cover classification based on remotely sensed data alone. Spectral signatures do not always
provide the basis for an unambiguous separation of  pixels into classes. Expert knowledge
does, however, provide additional lines of evidence that can be employed to modify the belief
that a pixel belongs to a certain coverage class. We used Dempster-Shafer (DS) weight of evi-
dence modelling to incorporate this information into the classification process in a formal man-
ner. Expert knowledge-based variables were related to: (1) altitude; (2) slope; (3) distance to
known human settlements; and (4) landscape perceptions regarding dominance of vegetation
types. The results showed an improvement of classification results compared to traditional clas-
sifiers (maximum likelihood) and context operators (modal filters), leading to better discrimina-
tion between categories and a decrease in: (i) omission and commission errors for almost all
classes; and (ii) total error in ca. 7.5%. The DS approach led not only to a more accurate clas-
sification but also to a richer description of the inherent uncertainty surrounding it.

Keywords: Classification; Dempster-Shafer; expert knowledge; land cover; maximum likelihood;
uncertainty.

1. Introduction
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tances, subjective image interpretation or time con-
suming photo-interpretation (Dirzo & García 1992,
Turner et al. 1996, Ochoa-Gaona & González-
Espinosa 2000, Peralta & Mather 2000) has traditio-
nally been preferred to automated supervised or
unsupervised image classification. This has several
drawbacks. It takes time to classify images manually,
and skilled interpreters may not always be available.
Furthermore such classification is inevitably subjecti-
ve, making independent replication and verification of
the results extremely difficult. Context operators have
also been used to improve classification by removing
errors caused by signal noise (Booth & Oldfield
1989). However in heterogeneous landscapes they
can smooth out genuine landscape features.

In attempting to solve the problem of misclassifica-
tion in fine-grained complex landscapes, soft classi-
fiers have become increasingly popular (Foody 1996,
2002a, Ji 2003). In addition, some researchers have
investigated the possibility of including environmental
data into the classification process, often through
prior probabilities (Mather 1985, Cibula & Nyquist
1987, Frigessi & Stander 1994, Maselli et al. 1995,
McIver & Friedl 2002, Pedroni 2003). We investiga-
ted a method for the classification of land cover by
the fusion of multi-spectral data and expert knowled-
ge based on Dempster-Shafer (DS) theory of eviden-
ce. The DS approach has the advantage of integra-
ting different pieces of information through formal
probabilistic reasoning in a well documented manner.
We applied this method to a case study, the
Highlands of Chiapas, Mexico. Our study asked whe-
ther the inclusion of field knowledge-based lines of
evidences could improve classification accuracy at
least as much as noise reduction through context
based filtering.

2. Material and Methods

The study area

The Highlands of Chiapas extend over 11,000 km2

(Figure 3.1). They form a biologically diverse region
which includes 30% out of the approximately 9,000
vascular plant species of the flora of Chiapas
(Breedlove 1981). Several forest formations are

found in the Highlands, including oak, pine-oak, pine-
oak-liquidambar, pine, and evergreen cloud forests
(Miranda 1952, Rzedowski 1988, González-
Espinosa et al. 1991). The region is densely popula-
ted by Mayan peasants who have cleared forest both
permanently and temporarily for shifting cultivation
and used firewood and other forest resource since
pre-Columbian times (Cowgill 1962, Collier 1975).

Our study area was the San Cristóbal de las Casas
watershed, located in the central Highlands of
Chiapas (Figure 3.1). The area covers 542 km2 and
extends mainly over the municipalities of San
Cristóbal de las Casas and Chamula. Maximum tem-
peratures are between 16-22 ºC. Minimum tempera-
tures can fall below freezing. Rainfall is between 800
and 1,200 mm with moist summers and dry winters.
Elevations range from 1,600 to 2,900 m.a.s.l. The
underlying geology of the area is carboniferous
limestone with many rocky outcroppings. San
Cristóbal and Chamula are two of the most populated
districts of the Highlands. Most of the rural population
belong to the Maya Tzotzil ethnic group. The main
economical activities are agriculture and forestry,
with oak forest coppicing being a common manage-
ment practice.

Preliminary data processing

A subset from a Landsat ETM+ (Enhanced Thematic
Mapper) image (path 21 row 48, taken on 3 April
2000) was used in this study. Geometrical correc-
tions were performed using control points from a digi-
tal 1:50,000 roadway map (LAIGE 2000) with a
second-order polynomial algorithm (root mean squa-
re error: x-axis = 0.53 pixels; y-axis = 0.52 pixels).
Removal of atmospheric effects and variations in
solar irradiance were achieved using an algorithm
based on the Chavez reflectivity model (Chavez
1996). Digital numbers were then transformed to
reflectivity values. Effects on shaded slopes were
accounted for by performing topographic corrections
using a C model (Teillet et al. 1982), which is recom-
mended for high solar angles as it was the case of
our image (solar angle = 58.82º). Most of the proces-
sing work was performed using PCI 7.0 software pac-
kage (PCI 2001).
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Classification categories were defined following
Miranda (1952), Breedlove (1981), González-
Espinosa et al. (1997), Ochoa-Gaona & González-
Espinosa (2000), and Ochoa-Gaona (2001). We dis-
tinguished the following categories: (i) non-classified
(NA); (ii) cloud forest (CF); (iii) oak forest (OF); (iv)
pine-oak forest (POF); (v) pine forest (PF); (vi) deve-
loped areas (DA); and (vii) agriculture and pasture-

lands (AP). As we will make constant references to
these abbreviations throughout the text we advise
the reader to refer to Table 3.1 when necessary.
Water bodies were not included as a separate class
as there were no large rivers, dams or ponds within
the study area. Most small water bodies were dry at
the time the satellite image was taken.

Figure 3.1. (A) The state of Chiapas, southern Mexico, and northern Central America. (B) Geographical allocation of the
highlands of Chiapas and the central Highlands within the state. (C) Characteristics of the study area: municipalities, rivers,
principal towns and topographical features.

Identification of land cover categories
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The Dempster-Shafer classification procedure

The DS theory of evidence is a generalisation of the
Bayesian theory of subjective probability which
allows for combination of different independent lines
of evidence derived from various sources in order to
obtain degrees of belief for different hypotheses
(Kontoes et al. 1993, Mertikas & Zervakis 2001). It is
based on Dempster-Shafer's rule for combining
degrees of belief (Shafer 1982). The procedure cons-
tructs and stores the current state of knowledge for
the full hierarchy of hypotheses. For example, for
three hypotheses {CF, OF, POF}, the possible combi-
nations are [CF], [OF], [POF], [CF, OF], [CF, POF],
[OF, POF], [CF, OF, POF]. This allows evidence to be
incorporated in favour of occurrence of compound
hypotheses when knowledge is not sufficient to dis-
criminate between single hypotheses. It is a poten-
tially powerful approach for aggregating indirect evi-
dence and incomplete information into the classifica-
tion process. Detailed applications to remote sensing
can be found in Srinivasan & Richards (1990),
Kontoes et al. (1993), and Mertikas & Zervakis
(2001).

In our study, the DS classification procedure was
implemented by combining different probability ima-
ges from the evidence derived from both multi-spec-
tral data and expert knowledge-based lines of evi-
dence (Table 3.2). After combining all evidences by
means of the Dempster-Shafer algorithm, results
were obtained in the form of layers that defined the
degree of belief or probability of each pixel belonging
to each of the hypotheses or classification categories
(Figure 3.2). A land cover classification map was
then obtained by assigning each pixel to the category
that was the most probable after the spectral and
ancillary information had been combined.

Additionally, a layer containing the uncertainty asso-
ciated to the classification procedure was produced.

Multi-spectral data was incorporated into the analysis
in the form of Bayesian probabilities based on the
variance/covariance matrix derived from training
sites using equal prior probabilities (Table 3.2).
Training sites were created by on-screen digitising
polygons from control points taken in the field using
as pure a sample of the information class as possi-
ble. Training sites were selected to account for at
least 10 times as many pixels for each training class
as bands were used in the image classification.
Spectral signatures for each training class were then
extracted using information on bands 1, 2, 3, 4, 5 and
7. Bayes classification procedure outputs a separate
image for each considered class containing the pro-
bability of each pixel of belonging to that class
(Figure 3.2). Bayes is a confident classifier. Lack of
evidence for an alternative hypothesis constitutes
support for the hypotheses that remain. Thus, a pixel,
for which reflectance data only very weakly support a
particular class, is treated as belonging to that class
if no support exists for any other interpretation.

In addition to multi-spectral information, probability
images were derived from expert knowledge-based
evidences and included into the classification pro-
cess in support of singleton or compound hypotheses
(Table 3.2). Expert knowledge represented the for-
malised opinion of local scientists with regard to the
occurrence of different land covers according to
various characteristics of the landscape such as alti-
tude or slope. The lines of evidence used were based
on: (i) altitude; (ii) slope; (iii) proximity to human set-
tlements; and (iv) landscape perceptions regarding
dominance of vegetation types through Thiessen's
polygons.

Table 3.1. Classification categories and their corresponding abbreviations used throughout the text.

Abbreviation Class 
CF Cloud forest 
OF Oak forest 
POF Pine-oak forest 
PF Pine forest 
DA Developed areas 
AP Agriculture and pasturelands 
NC Non classified 
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i.    Altitude indirectly referred to the hypothesis cloud
forest [CF]. CF in the central Highlands of
Chiapas is known to occur at humid crests mostly
above 2400 m (González-Espinosa et al. 1997).
As altitude is a necessary but not sufficient condi-
tion for occurrence of CF, this evidence only sup-
ports negation of the primary hypothesis of con-
cern. Current evidence therefore relates to occu-
rrence of the compound hypothesis [OF, POF, PF,
DA, AP] below 2,400 m.a.s.l. This knowledge was
incorporated using a linear function (Figure 3.3a)
where the probability for occurrence of any hypo-
thesis but CF decreases with altitude above
2,400 m.a.s.l.

ii.   Slope was used in support of two groups of hypo-
theses. On steep slopes a higher probability of
occurrence for hypotheses [CF, OF, POF] was
assumed (Figure 3.3b). On the contrary, gentle
slopes supported the hypotheses [PF, DA, AP]

(Figure 3.3c). Inclusion of PF in the latter group
is due to the fact that most PF in the study area
are plantations and have typically been establis-
hed on gentle slopes near valley bottoms.

iii.  Proximity to known human settlements referred to
the single hypothesis [DA]. This information was
derived from a map of localities containing data
from population censuses (INEGI 1995). As the
map did not specify the size of the settlements,
only the geographical position of the settlement
centre, a map representing the effect of settle-
ment size was derived based on a function infe-
rred from population data. As human settlements
are easily discernable in satellite images, an
empirical relationship was produced that related
average distance from settlement centre to popu-
lation number, according to the following equa-
tion:

Figure 3.2. Dempster-Shafer classification allows combine different lines of evidences derived from satellite imagery and
expert knowledge to produce a set of layers (belief surfaces) that define the probability of each pixel belonging to each of
the classification categories. In addition a layer showing the uncertainty associated to the classification process is
generated.
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where:
y = average distance from settlement centre 
x = number of inhabitants

This approach was thought to be more accurate
than a simple distance measure as it incorporates
an estimation of the settlement size as a function
of its population. The area close to settlements
was given a probability of 0.8 for the hypothesis
[DA] leaving the remaining area with a probability
value of 0 (i.e. complete uncertainty for the consi-
dered hypothesis). 

iv.  Landscape perceptions regarding dominance of
vegetation types were introduced into the analy-
sis by means of Thiessen's polygons. Thiessen's
polygons divide space in such a way that each
pixel is assigned to the nearest control point, defi-
ning regions which are dominated by each point
(Eastman 2001). Seventy control points were
recorded on the field according to expert kno-
wledge-based perceptions of dominant vegeta-
tion types. Main hypotheses were referred to OF,
POF and PF. Since DA and AP do not apparently

follow any pattern of appearance within the study
area, these categories were not considered sepa-
rately but in combination with different vegetation
types. CF was ascribed to similar probabilities of
occurrence as OF and POF. Thus, landscape per-
ceptions supported three groups of compound
hypotheses: (a) [OF, CF, DA, AP]; (b) [POF, CF,
DA, AP]; and (c) [PF, DA, AP]. Probability in sup-
port of the different hypotheses within the poly-
gons was set to 0.6. This left more room for
uncertainty than for all the other lines of evidence,
where maximum probability of occurrence for a
certain hypothesis or group of hypotheses was
set to 0.8. 

Different combinations of lines of evidence derived
from expert knowledge were used to check their
separate effect in reducing classification error. These
results were then compared with those obtained with
a maximum likelihood classifier based only on spec-
tral information, with and without the use of a 3x3
modal filter. In addition, maximum likelihood classifi-
cations were performed using multi-spectral informa-
tion plus: (i) digital elevation model (DEM) data; (ii)
slope; and (iii) both DEM and slope. This approach

Table 3.2. Lines of evidence in support of different single or compound hypotheses (CF = Cloud forest; OF = Oak forest;
POF = Pine-oak forest; PF = Pine forest; DA = Developed area; AP = Agriculture and pastureland) used in Dempster-Shafer
classification procedure. Function type refers to the manner in which the knowledge regarding a certain hypothesis was
shaped. Note that maximum probability for evidences derived from expert knowledge was set at 0.8 and 0.6, thus leaving
sufficient room for uncertainty regarding these hypotheses.

Source Line of evidence Supported hypothesis Function type Prob. range 
[CF] 0.0-1.0 
[OF] 0.0-1.0 

[POF] 0.0-1.0 
[PF] 0.0-1.0 
[DA] 0.0-1.0 S
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Bayes probabilities based on 
spectral signatures extracted 
from bands 1, 2, 3, 4, 5 and 7 

[AP] 

Variance/Covariance 
matrix 

0.0-1.0 

Elevation [OF, POF, PF, DA, AP] Linear 0.0-0.8 

[CF, OF, POF] Linear 0.0-0.8 Slope [PF, DA, AP] Linear 0.0-0.8 

Distance to human 
settlements [DA] Distance-based 0.0-0.8 

[OF, CF, DA, AP] Fixed probability 0.0/0.6 
[POF, CF, DA, AP] Fixed probability 0.0/0.6 
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Landscape perception 
regarding dominance of 
vegetation types [PF, DA, AP] Fixed probability 0.0/0.6 
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basically differed from the Dempster-Shafer procedu-
re in that the characteristics of each classification
category regarding the ancillary data were automati-
cally selected from the training sites (as with the
multi-spectral data) and not based on expert kno-

wledge. Finally, surface estimations were calculated
for each individual class under the three main proce-
dures. All these procedures were implemented using
Idrisi32 (Eastman 2001).

Figure 3.3. By means of linear functions, field knowledge is converted into probability layers. These relate: (a) lower
altitudes to presence of any class but cloud forest [OF, POF, PF, DA, PA]; (b) increasingly larger slopes to presence of forest
classes [CF, OF, POF]; and (c) lower slopes to presence of non-forest areas and pine forests [PF, DA, PA]. CF = Cloud
forest; OF = Oak forest; POF = Pine-oak forest; PF = Pine forest; DA = Developed areas; AP = Agriculture/pastureland.
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Accuracy assessment

The final stage of the classification process involved
an accuracy assessment. Traditionally this is done by
generating a random set of locations to visit on the
ground for verification of the true land cover types
(Foody 2002b). However, land tenure and accessibi-
lity within the study area makes this process difficult.
136 verification points were collected on the ground
(geo-referenced with a Garmin GPS III Plus) through
pre-defined transects along principal and secondary
roadways. A minimum of 10 points was recorded for
each class. Criteria used in the selection of verifica-
tion points were independency and representativity.
For CF it was not possible to find completely inde-
pendent points due to the low proportion of land sur-
face covered by this class (19 points taken in three
different forest stands). Another criteria applied was
that the areas where points were taken had, at least,
an extension of 90x90 m and were located at least 30
m from the border. This was done to avoid positional
errors in geo-referencing control points (Foody
2002b).

A confusion matrix was then generated and three
kinds of errors were calculated: (i) error of omission
for each category, which indicates how well the trai-
ning points were classified; (ii) error of commission
for each category, indicating the probability that a
classified pixel actually represents that category in
reality; and (iii) overall error with confidence intervals.
In addition, producer's, user's and overall accuracy
with 95% confidence intervals were calculated as the
complementary of the omission, commission and
overall errors, respectively. A Kappa Index of
Agreement (KIA) with 95% confidence intervals was
used to estimate consistency of classification accu-
racy (Rosenfield & Fitzpatric-Lins 1986). KIA repre-
sents the proportion of agreement obtained after
removing the proportion of agreement that could be
expected to occur by chance. Thus, the lower the dif-
ference with accuracy values the lower the proportion
of pixels correctly classified by chance. Finally, esti-
mated errors and accuracies were compared betwe-
en DS, maximum likelihood and filtered maximum
likelihood classifications.

3. Results

Classification accuracies

Confusion matrixes for maximum likelihood classifi-
cation with and without the use of context operators
and DS classification are shown in Table 3.3. The
addition of expert knowledge reduces overall error
from 33.1% to 25.7% (Figure 3.4). The Kappa Index
of Agreement (KIA) follows quite closely overall accu-
racy results, with an increase in accuracy from 59.8%
for maximum likelihood [95% confidence intervals
between [50.4-69.3]) to 68.6% for DS (95% confiden-
ce intervals between [59.7-77.6]). The use of a 3x3
modal filter on the maximum likelihood classification
increases overall error up to 39.7% (Figure 3.4).

In addition to overall classification accuracies, we
examined the classification performance of each of
the classifiers with respect to individual classes.
There was an improvement in accuracy in almost all
individual classes when DS classifier is compared
with maximum likelihood (Table 3.3, Figure 3.4). For
the non-forest classes, there was a slightly decrease
in user's accuracy for DA and AP and in producer's
accuracy for AP. As for all the forest classes, both
user's and producer's accuracies were improved
when combining expert knowledge with remote sen-
sing data through DS theory of evidence. Accuracy
was greatly improved for some classes, such as POF
and PF, whereas for others, such as CF and OF,
improvement was lower than 10%. Modal filtered
maximum likelihood classification, on the other hand,
decreased user's and producer's accuracy for almost
all individual classes except for PF, DA and AP.

The upper section of Table 3.4 shows the errors deri-
ved from maximum likelihood classification when
adding DEM and/or slope data to multi-spectral infor-
mation. This approach is typically used in remote
sensing and we thus included it for comparative pur-
poses. The inclusion of the DEM data increased ove-
rall error for most of the forest classes. There were
two exceptions to this trend. Firstly, error of commis-
sion was largely reduced for CF. This was because
training sites for CF were mainly at high altitude thus
the inclusion of  DEM data reduced the extension of
this category and few pixels were misclassified
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Verification points (a) 
 

Maximum likelihood 
classified land cover 

CF OF POF PF DA AP Total 
User’s 

accuracy 
(%) 

Error of 
commission 

(%) 
NC 0 0 1 0 2 1 4 0.0 100.0 
CF 15 0 2 2 0 0 19 78.9 21.0 
OF 4 20 4 0 0 0 28 71.4 28.6 

POF 0 3 12 6 0 0 21 57.1 42.9 
PF 0 2 2 4 0 0 8 50.0 50.0 
DA 0 0 0 0 16 5 21 76.2 23.8 
AP 0 3 2 1 5 24 35 68.6 31.4 

Total 19 28 23 13 23 30 136   

Producer’s accuracy (%) 78.9 71.4 52.2 30.8 69.6 80.0  OA 66.9 [58.3-74.6]  
Error of omission (%) 21.0 28.6 47.8 69.2 30.4 20.0  OE 33.1 [25.2-41.0] 
          

Verification points  (b) 

 

3x3 modal filtered ML 
classified land cover 

CF OF POF PF DA AP Total 
User’s 

accuracy 
(%) 

Error of 
commission 

(%) 

NC 0 0 0 0 2 0 2 0.0 100.0 
CF 11 1 2 1 0 0 15 73.3 26.7 
OF 7 17 5 0 0 1 30 56.7 43.3 

POF 0 2 9 5 0 0 16 56.2 43.7 
PF 0 0 3 5 0 0 8 62.5 37.5 
DA 0 0 0 1 12 1 14 85.7 14.3 
AP 1 8 4 1 9 28 51 54.9 45.1 

Total 19 28 23 13 23 30 136   

Producer’s accuracy (%) 57.9 60.7 39.1 38.5 52.2 93.3  OA 60.3 [52.1-68.5] 
Error of omission (%) 42.1 39.3 60.9 61.5 47.8 6.7  OE 39.7 [31.5-47.9] 
          

Verification points  (c) 

 

DS classified land cover 
CF OF POF PF DA AP Total 

User’s 
accuracy 

(%) 

Error of 
commission 

(%) 
NC 0 0 0 0 0 0 0 100.0 0.0 
CF 15 0 1 1 0 0 17 88.2 11.8 
OF 4 22 2 0 0 1 29 75.7 24.1 

POF 0 1 16 3 1 0 21 76.2 23.8 
PF 0 2 2 8 0 0 12 66.7 33.3 
DA 0 0 0 0 17 6 23 73.9 26.1 
AP 0 3 2 1 5 23 34 67.6 32.3 

Total 19 28 23 13 23 30 136   

Producer’s accuracy (%) 78.9 78.6 69.6 67.5 73.9 76.7  OA 74.3 [65.9-81.2] 
Error of omission (%) 21.0 21.4 30.4 38.5 26.1 23.3  OE 25.7 [18.4-33.1] 

Table 3.3. Confusion matrix for: (a) maximum likelihood (ML) classifier; (b) ML classifier with 3x3 modal filter; and (c) DS
classifier using remote sensing in combination with expert knowledge. 95% confidence intervals are shown for overall
accuracy (OA) and error (OE). Bold numbers in (b) and (c) indicate an increase in accuracy with regard to ML classification.
NC = Non-classified; CF = Cloud forest; OF = Oak forest; POF = Pine-oak forest; PF = Pine forest; DA = Developed areas;
AP = Agriculture and pastureland.



34

Capítulo 3

through commission to this class. Secondly, error of
omission for PF was also considerably reduced. This
can be explained using the opposite argument. PF
training sites were recorded along a broad altitudinal
range. Thus including DEM data led to an increase in
PF extension and a consequent reduction in error of
omission. With regard to slope, overall error is some-
what reduced. However, errors for most forest clas-
ses increased with the exception of error of commis-
sion for CF. The explanation for this observation is
similar to that mentioned for the case of DEM data. In
combination, DEM and slope do not lead to better
results, causing an increase in error in most forest
classes as well as overall error.

The contrast between results obtained through sim-
ple inclusion of DEM and slope data in the maximum
likelihood classification and the inclusion of the same
information when shaped by expert knowledge and
combined using the DS method is apparent when
Table 3.4 is considered in its entirety. The relative
importance of different combinations of lines of evi-

dence in improving classification accuracy can be
seen in the lower section of Table 3.4. When combi-
ned separately with multi-spectral data, only landsca-
pe perceptions regarding vegetation types succee-
ded in reducing total error (by around 4%). The use
of this line of evidence also led to a reduction of
errors of omission and commission for OF, POF and
PF and did not increase error for any other individual
class. Evidence regarding altitude slightly increased
error of omission for CF but decreased its error of
commission. Likewise it hardly increased error of
commission for POF but decreased error of omission
for this class. Evidence concerning slope decreased
error of commission for CF and error of omission and
commission for PF, but increased error of omission
for POF. All these changes reduced overall error by
about 1%. Distance to known human settlements
reduced error of omission for DA but slightly increa-
sed its error of commission and both error of omis-
sion and commission for AP. Again, overall accuracy
was not improved.

Figure 3.4. Omission, commission and overall error (%) obtained when using maximum likelihood (continuous line with
diamonds), a modal filtered maximum likelihood (dotted line with crosses), and Dempster-Shafer (dashed line with circles)
classification procedures. Overall error is shown (right side) with 95% confidence intervals.
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Increasingly complex combinations of these lines of
evidence showed the same trends, i.e. better perfor-
mance of Thiessen's polygons as compared to other
lines of evidence. Furthermore, classification accu-
racy was considerably improved when all these lines
of evidence were combined. Total error was least
when two combinations of lines of evidence were
used: (i) all lines of evidence; and (ii) all lines of evi-
dence except distance to known human settlements.
When these were used in combination with remote
sensing data total error was reduced by 7.4%. 

Differences were found at the individual class level.
When using all lines of evidence, error of commission
for POF and error of omission for DA were lower,
whereas there was a slightly increase in error of
omission and commission for AP, as compared to
that classification which uses all lines of evidence but
distance to known human settlements. As one of our
objectives was the improvement of classification
accuracy for vegetation types, the former result is
preferred. The thematic map resulting from harde-
ning DS classification using all lines of evidence is
shown in Figure 3.5. A richer description of the clas-
sification process is given by the underlying belief
surfaces and the uncertainty associated to the classi-

fication process (see Figure 3.2). Space restriction
prevent a full presentation of all belief layers The ove-
rall uncertainty image associated with the results is
shown in Figure 3.6. Inspection shows that uncer-
tainty is greatest on steep slopes and within forest
areas where natural vegetation gradients exist. The
pattern of uncertainty is itself fragmented over the
image. The uncertainty image is thus an accurate
representation of the inherent difficulty involved in
assigning pixels to land use classes in this extremely
complex and heterogeneous landscape.

Land cover estimation

From any image classification, the estimated area
associated with each type of land cover can be deri-
ved. Land cover estimates for the three main classi-
fication techniques used in this study are reported in
Table 3.5. The use of a 3x3 modal filter tends to
favour the most frequent class at the expense of the
least frequent or the most fragmented ones. AP, with
a surface of 24,295 ha estimated from the maximum
likelihood classification, increased its area up to
27,026 ha after applying a 3x3 modal filter. On the
contrary, NC, CF, PF and DA decreased their estima-
ted surface in 755, 239, 640, and 1,228 ha, respecti-

Figure 3.5. Hardened Dempster-Shafer classification using all lines of evidence in addition to multi-spectral data.
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vely. OF and POF, the most common categories after
AP, showed no quantitative distinction in estimated
areas with and without the use of modal filters.

DS classification reduced uncertainty where multi-
spectral data is not sufficient to assign a pixel to a
certain category. Thus, as compared to the non-clas-
sified 1,309 ha estimated in the maximum likelihood
classification, we report only 257 ha when using DS
classifier. Similarly, there was a reduction in estima-
ted cover for CF and POF of 431 and 1,187 ha, res-
pectively. On the contrary, there was an increase in
estimated cover for OF, PF, DA and AP, the largest
corresponding to OF with 1,210 ha. PF and DA sho-
wed an increase of 540 and 553 ha, respectively, as

compared to results from maximum likelihood classi-
fication, whereas AP showed the lowest increase
with 365 ha. The relative values of these changes are
important. Whereas a change in the estimated surfa-
ce of 500 ha only represents a 2% for AP, the same
change in the estimated area would imply a ca. 40%
for CF.

4. Discussion

The inclusion of expert knowledge through the DS
procedure leads to better discrimination of some
forest classes and thus an improvement in overall
accuracy of classification. DS does not favour the
most frequent and the least fragmented classes, as

Figure 3.6. Overall uncertainty associated to Dempster-Shafer classification of land cover.

 Maximum 
likelihood (ML) 

Modal filtered 
ML 

Dumpster-
Shafer 

Non-classified 1309 554 257 
Cloud forest 1824 1585 1393 
Oak forest 8572 8782 9782 
Pine-oak forest 10593 10513 9406 
Pine forest 1886 1246 2426 
Developed area 5680 4452 6233 
Agriculture and pastureland 24 295 27 026 24 660 

Table 3.5. Estimated areas (ha) for different land covers using three different classification techniques.
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modal filters do. Differences in estimated surface bet-
ween maximum likelihood and DS classification lar-
gely depend on the use of evidences derived from
expert knowledge.

Classification accuracies

Because the decrease of 7.4% in overall error when
using DS procedure as compared to maximum likeli-
hood is within the 95% confidence interval we refer to
a tendency towards DS improving classification with
regard to traditional classifiers rather than a signifi-
cant improvement. A formal test of significance and
associated p-value is not included as we considered
the null hypothesis (no difference between classifica-
tion methods) to be uninformative in the context of
comparing methods of classification that were assu-
med a priori to have some effect (Johnson 1999). 

Although the effect size measured as a reduction in
overall error is not large, we emphasises that omis-
sion and commission errors for some individual clas-
ses were considerably reduced, e.g. PF and POF
(Figure 3.4). Confusion between categories occur
mainly within the group of forest and non-forest clas-
ses separately, although there are few pixels belon-
ging to some forest classes misclassified as AP. CF
is confounded with OF in ca. 20% of the cases.
Addition of expert knowledge did not reduce this error
of omission, probably due to lack of direct evidence
in favour of CF. However, error of commission is
reduced when using DS classifier due to the use of
direct evidence in favour of the hypotheses that are
most commonly confused with CF, e.g. POF and PF.
The classes that are more commonly confused under
maximum likelihood classification are OF, POF and
PF. Since training sites were allocated in sites repre-
senting as pure a sample of the training class as pos-
sible, it is reasonable to expect a high spectral sepa-
rability between these categories. However, these
training classes represent the extremes of a natural
vegetation gradient (González-Espinosa et al. 1991,
Galindo-Jaimes et al. 2002) but do not consider
mixed classes along the gradient. Therefore, despite
high spectral separability among training sites, we
must assume mixing of forest categories under cer-
tain successional conditions (Kent et al. 1997). Some

examples are misclassifications of disturbed CF with
mature OF or POF (see Ramírez-Marcial 2001 for a
plant community study in cloud forests) or pine-domi-
nated canopy POF with PF (e.g. Ramírez-Marcial et
al. 2001). A further additional problem is that complex
topography causes varying spectral responses of
land covers mainly by influencing sun illumination
angles (Helmer et al. 2000).

When performing maximum likelihood classification,
accuracy for some particular classes is quite low but
improves when adding consecutive lines of evidence
in support of different hypotheses. Expert knowledge
in these cases can reduce the number of mixed
pixels more than traditional remote sensing-based
classifiers. Environmental variables per se, however,
do not necessarily lead to an improvement in the
results as shown when combining DEM and slope
data with multi-spectral information through maxi-
mum likelihood procedure. However, once filtered
through our experience and visual perception of
landscape patterns, this information does help to dis-
criminate between certain categories that are particu-
larly challenging to traditional methods.

The varying lines of evidence used in DS procedure
had a different weight in increasing classification
accuracy. Thiessen's polygons, as representations of
landscape perceptions regarding dominant vegeta-
tion types, seemed to have the largest effect.
Thiessen's polygons have been used in previous
works to characterise landscape patterns (Parresol &
McCollum 1997). The use of this line of evidence
reduced omission and commission errors of the three
forest classes that were supported by this line of evi-
dence. The creation of Thiessen's polygons is a par-
tially subjective exercise, that can only be attempted
if good knowledge of the landscape is available. We
feel that the comparative success of the Thiessen's
polygon approach in our case can be attributed to
very reliable knowledge about distribution of the main
vegetation types at the landscape level. We point out
that we used verifiable control points taken in the
field, thus this line of evidence is easily evaluated
objectively. We also included a comparatively high
degree of uncertainty associated with this line of evi-
dence. This means that, giving a high spectral proba-
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bility for any pixel to belong to a certain class, the
inclusion of this new line of evidence in support of a
different hypothesis is not enough to trigger a shift to
a different class. However, when spectral data provi-
des similar probability to belong to more than one
class, our perception regarding dominant vegetation
types helps to tilt the balance to one certain thematic
class and no other. 

The line of evidence slope is also important in redu-
cing error of omission and commission for PF and
error of commission for CF. Altitude and distance to
human settlements simultaneously reduced one kind
of error for some individual classes and increased
other errors for the same or different classes. Overall,
they do not modify total error or accuracy. However,
when combined with other lines of evidence they
contributed positively to increase accuracy for indivi-
dual class as well as total accuracy. In general, there
is no line of evidence derived from expert knowledge
that worsened our results, and all combined reduced
overall error as well as omission and commission
errors for all individual forest classes. The DS proce-
dure did increase some individual errors for DA (error
of commission) and AP (both types of error) as com-
pared to maximum likelihood results, but these chan-
ges are never larger than 4% and were always coun-
terbalanced by reductions in error for individual forest
classes. 

The way in which the lines of evidence derived from
expert knowledge relate to the probability generated
from multi-spectral information is difficult to assess
due to the complexity of the algorithm used. One
suggested approach to explore this question is by
running the DS procedure several times using diffe-
rent thresholds for the various lines of evidence.
Unfortunately the algorithm currently used to imple-
ment the DS procedure is computational intensive.
This currently constrains formal sensitivity analysis.
Our observations suggested that probability derived
from remote sensing data is by far the most decisive
factor when assigning one pixel to a certain class.
There are two reasons for this. Firstly, as mentioned
before, Bayes is a confident classifier. Thus very
weak support for one hypothesis still provides the
most probable classification if no support exists for

any other interpretation. Secondly, probabilities deri-
ved from multi-spectral data support individual clas-
ses whereas evidence derived from expert knowled-
ge mostly support compound hypotheses. As a result
the latter are not as conclusive in assigning a pixel to
a certain class as remote sensing-based probabili-
ties. This effect, however, is highly desirable becau-
se our initial intention was to use expert knowledge to
discriminate categories only in those cases where
multi-spectral information at its own was ambiguous.

The choice of ancillary variables is obviously of great
importance to correctly discriminate between diffe-
rent thematic classes (Pedroni 2003). We observed
from the confusion matrices that there is no reduction
of error of omission for CF. It would be therefore con-
venient to collect more evidence regarding this hypo-
thesis. Although expert knowledge considerably
decreased the error of omission and commission in
the case of PF, this forest type remained the least
well classified of all classes. Thus, it would also be
necessary to either further refine the training sites or
add new lines of evidence to reduce misclassification
of this category.

Land cover estimation

Differences in estimated surfaces from maximum
likelihood to DS classification largely depends on the
use of evidences derived from expert knowledge.
Some lines of evidence tended to favour some hypo-
theses and not others and this would lead to an incre-
ase in the estimated surface of such classes.
However, there is no general trend as occurs with the
use of modal filters that automatically favour the most
frequent and least fragmented classes. CF, for exam-
ple, would be overestimated when using only spec-
tral data. This is due to the fact that most of the
remaining patches of CF extend over steep slopes,
giving this class a closer resemblance to PF. This
occurs despite topographical corrections which can
not fully counterbalance these effects. In consequen-
ce, the spectral signature for this class becomes
mixed with PF, which is more prone to be found at
lower altitudes. Introducing an altitude-based eviden-
ce against CF clearly reduces the estimated surface
for this class in what ground based experience con-
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firmed to be an accurate manner. It is also noticeable
reduced the number of non-classified pixels when
adding expert knowledge to remote sensing data.
Estimation of PF increased after the use of DS clas-
sification chiefly at the expense of reducing the
extension of POF. These classes follow a natural gra-
dient and it is difficult to determine -even in the field-
whether a certain pixel belongs to the former or the
latter. 

Final remarks

The use of contextual techniques is being increa-
singly used with success in a number of different
classification problems (Frigessi & Stander 1994,
Hubert-Moy et al. 2001, McIver & Friedl 2002). This
allows researchers to specify and flexibly manipulate
probability laws over large sets of random variables
that interact with each other on a local basis. In the-
ory the choice of a classification method should be
done according to landscape structure, but in practi-
ce analysts often apply the same classification algo-
rithm to various areas without considering the parti-
cular features of a given landscape (Hubert-Moy et
al. 2001). This can lead to a high level of misclassifi-
cation and low accuracy. DS classification allows the
incorporation of expert knowledge into the classifica-
tion procedure in a formal and well documented man-
ner increasing accuracy with regard to traditional
classifiers based uniquely upon remote sensing data.
Other techniques, such as inclusion of prior probabi-
lities into a maximum likelihood classification (Mather
1985, Cibula & Nyquist 1987, Frigessi & Stander
1994, Maselli et al. 1995, Pedroni 2003), would pro-
bably lead to similar results.

The DS algorithm offers some advantages beyond a
tendency to improve classification accuracy. First
because conflicts of evidence are resolved through
probabilistic reasoning, logical inconsistencies are
avoided. This allows greater flexibility in the use of
evidence. Second the formalised use of probability to
express uncertainty associated with the information
used in the classification procedure reflects the inevi-
tably dynamic nature of landscapes. Uncertainty
associated with the results (Figure 3.6) is of itself of
interest to users of the information. Third, sensibility

analysis can be performed upon estimation of the
area of the varying thematic classes by changing our
levels of belief. An example can be found in Cayuela
et al. (2006b) for the highly threatened cloud forest in
the Highlands of Chiapas (chapter 4). Fourth, the
classification procedure accepts the natural comple-
xity of fine grained mosaic landscapes without smoo-
thing over genuine features. This last point is particu-
larly important in the context of fragmented tropical
forests (Turner & Corlett 1996).

Despite this tendency of DS procedure to improve
classification as compared to traditional classifiers, it
is important to stress that landscape transitions are
rarely sharp. Many boundaries between landscape
units must be subjective, as classification itself is a
subjective exercise. These limits must be considered
as guidelines for further assessing and improving the
classification techniques (Hubert-Moy et al. 2001).
Although a thematic map is often treated as a defini-
tive depiction of a single reality by users of the infor-
mation it contains, it is better regarded as a model
based on our perceptions of reality (Woodcock &
Gopal 2000). The overt use of subjective information
helps to make this clear.

5. Conclusions

Under a natural transitional vegetation gradient, it is
difficult to distinguish between different forest classes
from satellite imagery alone. DS classification and
surface estimations in thematic maps generated
throughout this procedure offer some advantages
with regard to traditional remote-sensing based clas-
sifiers, particularly in complex and heterogeneous
landscapes. Inevitably many difficulties remain, but
we found a decrease in: (i) omission and commission
errors for almost any class; and (ii) a decrease in
total error of around 7.5% when compared to traditio-
nal classifiers. A particular advantage of this classifi-
cation technique over context operators, such as
modal filters, is that it does not distort landscape pat-
terns neither decreases the amount of information
contained in the satellite image. The DS approach
led not only to a more accurate classification but also
to a richer description of the inherent uncertainty
surrounding the classification process.
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