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Universidad de Alcalá, Dep. de F́ısica y Matemáticas,
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Abstract

We present a deterministic algorithm for deciding if a polynomial ideal, with
coefficients in an algebraically closed field K of characteristic zero, of which we
know just some very limited data, namely: the number n of variables, and some
upper bound for the geometric degree of its zero set in Kn, is or not the zero
ideal. The algorithm performs just a finite number of decisions to check whether
a point is or not in the zero set of the ideal. Moreover, we extend this technique
to test, in the same fashion, if the elimination of some variables in the given ideal
yields or not the zero ideal. Finally, the role of this technique in the context of
automated theorem proving of elementary geometry statements, is presented,
with references to recent documents describing the excellent performance of the
already existing prototype version, implemented in GeoGebra.
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1 Introduction

Let us suppose we are given, as a query, an ideal I ⊂ K[x1, . . . , xn], with coefficients
in an algebraically closed field K of characteristic zero, of which we know just some
very limited data: the number n of variables, and some upper bound for the geometric
degree (in the sense of [6], see Definition 1 below) of its zero set in Kn, whether the
ideal is not zero. Moreover, we have an oracle that allows us to check, given a point
in Kn, whether this point is or not in the zero set of I. Our first goal is to present
an algorithm to conclude, by just using this protocol, whether I is the identically zero
ideal or not.

As a trivial example, suppose that we deal with some unknown ideal I ⊆ K[x], i.e.
n = 1, and assume that we know that, if the given ideal is not zero, the cardinal of
its roots (that is, in the one variable case, the geometric degree) will be bounded by
d. Then, choose d + 1 different points in K and, for each of them, check if it is a root
of I. If it is so in all cases, it is obvious that we are going beyond the given number of
roots bound, so the ideal I must be identically zero. Else, if we have found a point in
K which is not a zero of I, it is also obvious to conclude that I can not be zero.

The problem of detecting, by evaluation on a finite number of instances, whether
a polynomial is or not zero, is a classical issue in computer algebra and complexity
theory. It is impossible to summarize in a few references the state of the art. We
can just mention the classical, purely algebraic, statement bounding the number of the
required instances for zero-testing in [24]; the probabilistic approach in the Schwartz-
Zippel Lemma [26], [22], with a curious history behind [16] that shows the wide interest
of the scientific community concerning this problem; the research on questor set related
to the BPP (Bounded error Probability Polynomial) time, as in [7], see also [18] and
[19] for a historical account, etc.

It must be clarified that in most of these contributions the rigurous or deterministic
approach to zero testing is not the relevant goal, since it is considered both well known
(in classical references as [24]) and unpractical, for the involved exponential number of
required tests. Instead, their objective is to find some feasible strategies for zero-testing
with high probability.

Our contribution here goes in a different direction. First of all, a relative novelty
could be the extension of the exact zero-testing protocol, from polynomials to ideals in
polynomial rings of several variables (see [5], Section 2, and [17], Section 4, for related
results). Let us remark that our goal is to find a kind of universal zero-testing set, i.e.
we are looking for a single set to perform the test to all ideals of given bounded degree
and embedded in the same polynomial ring.

In Section 2 we have accomplished this goal by introducing the notion of test-sets
(playing a similar role to a fixed collection of d+ 1 points on a line, for testing the van-
ishing of degree d univariate polynomials), proving that this property can be reduced to
testing hypersurfaces (Theorem 1), that it is kept under bijective affine transformations
(Theorem 3), and providing a general example of test-sets with minimal cardinality (see
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Theorem 2). Moreover, for technical reasons, we have extended this concept to sets
such that any subset of a certain cardinality is also a test-set (what we have called “dis-
junctive test-sets”, c.f. Definition 3). Let us remark that the terminology of “test-sets”
comes from the attempts to mechanizing inductive reasonings [15].

But the final goal of our work is not exactly finding zero-test protocols for given
ideals of a certain degree. It is something closely related, but more general. Assume
we are given a certain ideal I ⊂ K[x1, . . . , xn] of which we just know a bound of the
degree d of its zero set, and the number of variables n. Then we want to decide if the
result of eliminating some variables in the ideal I, say, if Ir = I∩K[x1, . . . , xr], yields or
not to the zero ideal. And this zero-checking for Ir is to be performed only through a
number of tests that, like in the previous situation, will consist in choosing some points
(a1, . . . , ar) ∈ Kr, and then verifying, with an oracle, if they can be (or not) lifted to
a point (a1, . . . , an) in the zero-set defined by I. See Section 4 for details, but let us
illustrate here both the goal and the method we have developed, through the following
example.

Example 1. Imagine we are given an ideal I (of whatever dimension) in K[x1, x2, x3],
and we just know that the degree of its zero set is bounded by 2. Then we would like to
check if the elimination I2 = I∩K[x1, x2] is zero. Roughly speaking, we could argue like
this: this elimination variety V(I2) is, surely, also of degree bounded by 2, as the degree
bound is preserved under affine mappings [6]. And the same happens for the Zariski
closure of V(I2) minus the projection π of V(I) over the (x1, x2)-plane (c.f. proof of
Theorem 4 at Section 3).

Then, take 11 points on the plane (what we will call a “disjunctive test-set” for
degree two varieties over the plane), arranged in such a way that no subset of six points
lies on a conic. Next, consider each one of these 11 points and verify if they can be
lifted to a zero of I in K3, that is, for each of these points (a1, a2), check if there is a
a3 ∈ K so that (a1, a2, a3) ∈ V(I) ⊂ K3. Let A be the subset of the 11 points that can be
lifted and let B its complementary. Obviously, either the cardinal of A or the cardinal
of B must be strictly greater than 5.

Thus, if cardinal of A is 6 or more, we are sure that V(I2), since it is either of
degree 2 or the whole plane, and it contains A, it must be the whole plane, so I2 is
zero. Assume, on the contrary, that B has cardinal greater than 6. Now we consider
the partition of the plane in three different sets of points: those in the projection of
V(I), those in V(I2) but not in this projection, those not in V(I2).

By definition, B is outside the projection, so it must be included in the union of
V(I2) \ π(V(I)) with K2 \ V(I2). Now it happens that not all the points in B can be
within V(I2)\π(V(I)), since it will imply that its Zariski closure, also of degree bounded
by 2, is the whole plane. But this Zariski closure must be strictly contained in V(I2)
(c.f. [2]), which will be impossible in this case.

It follows that B cannot be fully contained in V(I2) \ π(V(I)). Thus there must
be points in B that are neither in the ‘bad set” (i.e. V(I2) \ π(V(I))), nor in the
projection, so outside of V(I2), and we conclude that this variety can not be the whole
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plane, achieving in this way a complete decision protocol.

Thus, in the last Section of this paper we will describe an algorithm for achiev-
ing such a test of the nullity of elimination ideals. Although we estimate that the
theoretical foundations we have developped are already interesting, we will summarily
present, as well, a concrete application of this technique, in the context of automated
reasoning for geometry statements. It has been already implemented in the popular
dynamic geometry and computer algebra program GeoGebra1 (see [1] for a condensed
presentation of this feature in a prototype version, although without technical details;
see also [14], column “Recio”).

We expect to be able to present in a near future, to the scientific community,
complete results concerning the already promising performance of theorem proving
algorithms using this particular approach.

2 Test-Sets

In this section, we introduce the notion of test-set and we state its main properties.
The concept of test-set will depend on two positive integer numbers (d, r). d will denote
the degree of the variety to be tested and r the dimension of the affine space where the
test set, or the tested variety, is included; or equivalently, r is the number of variables
of the polynomial ring.

Definition 1. We recall that the geometric degree of an irreducible affine variety
U ⊂ Kk is the number of intersections of U with a generic affine linear variety of
codimension dim(U). When the variety is reducible, the degree is defined as the sum
of the degrees of the reducible components; for further details we refer to Def. 1. and
Remark 2 in [6].

Definition 2. A finite subset A ⊆ Kr is a (d, r)-test set, with d > 0, if no proper
variety W of Kr of geometric degree less or equal than d contains A.

Let us show a couple of trivial and typical examples of (d, r)-test sets. First example:
d + 1 different points on a line K are a (d, 1)-test set, since there is no non-zero
polynomial in one variable, of degree less or equal than d, with d+1 roots. Another easy
one: r + 1 points in Kr, affinely independent, are a (1, r)-test set, since no hyperplane
in Kr contains them.

Remark. Given a constructible set C ⊆ Kr, let us say it is a proper constructible
set if its closure C is a proper algebraic variety, i.e., if C 6= Kr. Then, an equivalent
definition for (d, r)-test sets can be stated replacing in the above definition the word
“variety” by “constructible set”. In fact, it is enough to recall that the degree of a
constructible set is, by definition, that of its Zariski closure (see [6]).

The next theorem shows that (d, r)-test set candidates need to be verified just for
hypersurfaces, i.e., for single polynomials of degree up to d and r variables.

1http://geogebra.org
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Theorem 1. Let A ⊆ Kr and d ∈ Z>0. Then A is a (d, r)-test set if and only if no
hypersurface of Kr, of geometric degree less or equal than d, contains A.

Proof. Let A ⊆ Kr be a (d, r)-test set. Then, obviously, no proper hypersurface W
of Kr defined by a polynomial of degree less or equal than d contains A. Conversely,
assume that A ⊆ Kr is such that no proper hypersurface {F = 0} ⊆ Kr defined by
a polynomial F (x1, . . . , xr), of degree less or equal than d, contains A. Then, given
any proper variety W of Kr, of degree at most d, let us show that it can not contain
A. In fact, W is always contained in a hypersurface of degree bounded by d: consider
W =W1 ∪ · · · ∪Wm be the irreducible decomposition of W . Let deg(Wi) ≤ di. Then,
d1 + · · · + dm ≤ d. By [6], Prop. 3, pp. 256, each Wi can be defined as the zero-set
of a finite family of polynomials with degree bounded by di. Let F = f1 · · · fm, taking
each fi 6= 0 in the generator set of Wi. Then it is clear that W ⊆ {F = 0}.

In the next part of the section, we will describe a test-set of minimal cardinality.
In the following, for m1,m2 ∈ Z>0, we denote by

Supp(m1,m2) ⊆ Zm2
>0

the set of exponents on the support of a generic polynomial of degreem1 inm2 variables.
We recall that its cardinal is

#(Supp(m1,m2)) =

(
m1 +m2

m2

)
.

We start with some technical lemmas

Lemma 1. Let Π : Kr → Kr−1,Π(x1, . . . , xr) = (x2, . . . , xr). If A is a (d, r)-test set
then Π(A) is a (d, r − 1)-test set.

Proof. Let W∗ be a variety of Kr−1 with deg(W∗) ≤ d and such that Π(A) ⊆ W∗. We
consider the variety W = K×W∗ ⊆ Kr. We observe that

A ⊆ K× Π(A) ⊆ W ⊆ Kr

and deg(W) ≤ d. Since A is a (d, r)-test set, W = Kr. Therefore, W∗ = Kr−1. So, one
concludes that Π(A) is a (d, r − 1)-test set.

Lemma 2. Let Π : Nr → Nr−1,Π(x1, . . . , xr) = (x2, . . . , xr). Then, Π(Supp(d, r)) =
Supp(d, r − 1)

Proof. Let u ∈ Supp(d, r − 1), then (0, u) ∈ Supp(d, r). Conversely, it is obvious that
if v ∈ Supp(d, r) then Π(v) ∈ Supp(d, r − 1).

Lemma 3. If P ∈ K[x1, . . . , xr] has degree less or equal than d and vanishes on
Supp(d, r), then P is the zero polynomial.
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Proof. We prove the statement by induction on r. For r = 1, it follows from the
hypothesis that P (x1) vanishes over Supp(d, 1), of cardinal d+ 1, and thus it has d+ 1
different roots; hence it is identically zero. Let us assume that the lemma is true
for r = s − 1, and that P ∈ K[x1, . . . , xs] is such that deg(P ) ≤ d and P (u) = 0
for all u ∈ Supp(d, r). We consider the linear polynomials Lk(x1) = x1 − k, with
k ∈ {0, . . . , d}. Then, dividing w.r.t. x1 we get that

P (x1, . . . , xs) = Q(x1, . . . , xs)Lk(x1) +M(x2, . . . , xs).

Since , P (u) = 0 for all u ∈ Supp(d, s), then M(Π(u)) = 0. By Lemma 2, we get that
M(v) = 0 for all v ∈ Supp(d, s− 1). So, by the induction hypothesis, M is identically
0. Thus,

∏d
k=0 Lk divides P , which has degree at most d. Hence, P is also identically

zero.

In this situation, we are ready to prove the theorem.
Theorem 2. Supp(d, r) is a (d, r)-test set of minimum cardinality.

Proof. The fact that Supp(d, r) is a (d, r)-test set follows from Lemma 3 and Theorem
1. Let us prove the minimality. Let N = #(Supp(d, r)), and let us assume that there
exists a (d, r)-test set A with #(A) = N∗ < N . A generic polynomial P in K[x1, . . . , xr]
of degree d has as many undetermined coefficients as elements in Supp(d, r); let us call
them {ai}. Now, since A is a (d, r)-test set, evaluating P at each element of A, we
get an homogenous linear system {P (u) = 0}u∈A in the undetermined coefficients {ai}.
Since the rank of this system is at most N∗, that is smaller than N , there exists a
nontrivial solution; in contradiction with the property of being a test set.

Remark. As a consequence of this theorem it follows that, asymptotically, (d, r)-test
sets have cardinality with lower bound O(dr) (if we consider d growing and r fixed)
or O(rd) (if we rather consider r growing and d fixed). Thus, the result in Theorem
2 is, in some sense, not too different from the naive approach yielding (d + 1)r points
(the cartesian product of sets of d + 1 points over each axis in Kr), except if one is
interested in the case of growing dimension and bounded degree, which, by the way,
could be quite useful in automatic geometric reasoning (see, for example, the results
in [12]), since statements therein involve several points (and, thus, many coordinates)
but, generally, construction steps of low degree (involving several simple, linear or
quadratic, operations such as building a line through two given points or intersecting
a line and a circle, etc); note that

lim
r→∞

(d+r
r )

(d+ 1)r
= 0.

The following theorem states that the property of being test-set is invariant under
bijective affine transformations.
Theorem 3. Let A be a (d, r)-test set, and ϕ a bijective affine transformation of Kr.
Then ϕ(A) is a (d, r)-test set.
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Proof. Let us assume that ϕ(A) is not a (d, r)-test set. Then, by Theorem 1, there
exists a hypersurface V = V(H), where H(x) = H(x1, . . . , xr) ∈ K[x], of degree ≤ d
such that ϕ(A) ⊂ V . Let F = H(ϕ−1(x)), and let W = V(F ). Since ϕ is an affine
transformation, deg(F ) = deg(H), and A ⊂ W , which is a contradiction.

In some cases it would be interesting to construct sets having stronger properties
than that of being a test set, namely, such that any subset of cardinal greater than a
fixed size is also a test set. More precisely, we introduce the following definition:

Definition 3. Let d, r ∈ Z>0, and N = #(Supp(d, r)). We say that a finite set A,
with #(A) ≥ N , is a (d, r)-disjunctive test set if any subset of A of cardinal N is a
(d, r)-test set.

The motivation of this notion is the following. Assume that A is disjunctive and
#(A) ≥ 2N − 1 and B ⊆ A, then either B or A \ B is a (d, r)-test set. Indeed,
if #(B) ≥ N , the statement holds by the definition of disjunctive test set. Else,
#(A \B) ≥ N , and thus A \B is a (d, r)-test set.

In this context, the following holds.

Lemma 4. For any given d, r ∈ Z>0, and N = #(Supp(d, r)), the following algorithm
derives a (d, r)-disjunctive test set of any given cardinal M greater or equal to N .

Proof. If M = N then we can take A = Supp(d, r) (see Theorem 2). We assume by
induction that we know how to build a disjunctive test set, B of cardinal M ≥ N , and
let us build another one of cardinal M + 1. In fact, let us first remark that, for every
subset C of B, of N − 1 elements, there exists a unique hypersurface in HC ⊂ Kr of
degree d, through these elements. This hypersurface can be constructed by solving a
linear homogeneous system of N−1 equations in N unknowns, each equation being the
generic polynomial of degree d in r variables, with undetermined coefficients, evaluated
at one of the elements of C.

Notice that the rank of this linear system is N − 1, and thus it defines uniquely
–except for multiplication by a common constant– the coefficients of a hypersurface.
In fact, would the rank be strictly smaller than N − 1, we could add to C an extra
point such that the rank of the extended system with the new equation for the extra
point would be N − 1 or less and, therefore, it would have at least one solution. But
this is a contradiction to the fact that B is disjunctive and all subsets of B with N
elements (such as C plus the added point) must be (d, r)-test sets, implying that there
is no hypersurface of degree d defined by these points.

Now consider all such hypersurfaces HC for all different choices of C ⊂ B. Let
P ∈ Kr be a point not in any of these hypersurfaces. Then we claim that B? = B∪{P}
is also a (d, r)-disjunctive test set. In fact, if A ⊆ B? has cardinal N and is a subset
of B, it is obviously a (d, r)-test set, because B is disjunctive. On the other hand,
if P ∈ A, then A ∩ B ⊆ B is of cardinal N − 1. By construction point P does not
belong to the only hypersurface HA∩B of degree d defined by A ∩ B, and therefore A
is a (d, r)-test set.
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The algorithm described in the proof of Lemma 4 can be outlined as follows.

Algorithm 1. Given d, r ∈ Z>0, and N = #(Supp(d, r)), the following algorithm derives
a (d, r)-disjunctive test set of any given cardinal M greater or equal to N .

1. If M = N Return Supp(d, r).

2. Set B = Supp(d, r).

3. For i from 1 to M −N do

(a) For any subset C of B with #(C) = N−1 determine the unique hypersurface
HC of Kr of degree d.

(b) Compute a point P ∈ Kr not in any of the hypersurfaces obtained in the
previous step.

(c) Set B = B ∪ {P}.

4. Return B.

Example 2. We use the notation as in Algorithm 1. Let us consider d = 2, r = 2 ∈ N,
#(Supp(2, 2)) = 6 and let M = 7. Then a (2, 2)-disjunctive test set of cardinal 7 can
be build as follows.

Supp(2, 2) = {P1, P2, P3, P4, P5, P6}
= {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)}.

Let Hi be the unique conic passing through Supp(2, 2) \ {Pi}. More precisely, H1 =
(x+ y − 2)(x+ y − 1), H2 = x(x+ y − 2), H3 = x(x− 1), H4 = y(x+ y − 2), H5 = xy
and H6 = y(y − 1). Then taking P /∈ ∪Hi, for instance, P = (2/3, 2/3), we have that
Supp(2, 2) ∪ {P} is a (2, 2)-disjunctive test set of cardinal 7.

Remark. Given a (d, r)-disjunctive test set A of cardinal M ≥ N = #(Supp(d, r)),
we have remarked –after Definition 3– that, if M ≥ 2N − 1, it is true that, for every
subset of B ⊆ A, at least one from B or its complement A \ B, must be a (d, r)- test
set. Obviously 2N − 1 is the minimum cardinal of sets A holding this property, since
for M < (2N − 1) we can always find subsets of A such that both the subset and its
complement have cardinal strictly smaller than N . Now, since N is the minimum size
of a (d, r)-test set (cf. Theorem 2), it is obvious that in this case neither A nor A \ B
can be (d, r)-test sets.

3 An application: Testing the nullity of elimination

ideals

In the sequel, we will denote by xi = (x1, . . . , xi) with i ∈ {1, . . . , n}. Let us consider
the ideal I ⊂ K[xn] as well as its associated variety V = V(I) ⊂ Kn. In addition, we

8



also consider the projection

πr : V ⊆ Kn → Kr

xn 7→ xr

and let Ir be the xr-elimination ideal, that is Ir = I ∩K[xr], and Vr = V(Ir) ⊆ Kr. By
the Theorem of the Closure (see Theorem 3 pp. 125 in [2]) it holds that

Vr = πr(V).

We provide an algorithm that decides whether Vr is Kr or, equivalently, whether Ir =<
0 >.

It holds that Vr \πr(V) is a constructible set. LetWr be a subvariety of Vr, of lower
dimension, such that Vr \ πr(V) ⊂ Wr. The existence of Wr is also guaranteed by the
Closure Theorem.

The algorithm is as follows

Algorithm 2. Given a bound d for the geometric degree of V , the algorithm decides
whether the ideal Ir is zero or not.

1. Set N = (d+r
r ).

2. Apply Algorithm 1 to N and (d, r) to get a (d, r)–disjunctive test set of cardinality
2N − 1, say C.

3. Using an oracle, decompose C as C = A ∪ B, where for every P ∈ A it holds
that P ∈ πr(V) and for every P ∈ B it holds that P 6∈ πr(V)

4. If #(A) ≥ N then Return Ir =< 0 > else Ir 6=< 0 >.

Theorem 4. The previous algorithm is correct.

Proof. By Lemma 2 in [6], we know that d also bounds the degree of Vr. Moreover2,
the same bound applies to Wr, that is to the closure of the “bad set” (i.e. the set of
points that are in Vr but can not be lifted to V). Assume #(A) ≥ N . By definition of
disjunctive test set, A contains a (d, r)-test set. Now, since A ⊂ Vr and the degree of
Vr is bounded by d, Vr must be Kr. Thus, Ir =< 0 >.

On the other hand if #(A) < N , we prove that Ir 6=< 0 >. Let us assume that
Ir =< 0 >. Since #(A) < N , then #(B) ≥ N and B contains a (d, r)-test set. Since B
is included in Wr and its degree is also bounded by d, one concludes that Wr must be
Kr. But this is impossible, because, by construction, its dimension is strictly smaller
than r.

2Personal communication by prof. Mart́ın Sombra, ICREA Research Professor at Universitat de
Barcelona, Spain, to whom we would like to express our gratitude. Roughly, the idea is to reduce
the general case to the case of irreducible varieties, then to the case in which both the given variety
and the closure of its projection have the same dimension and, finally, work in a projective setting,
studying the intersection of the variety with the hyperplane at infinity and project (yielding those
points that can not be affinely lifted). See related ideas at [3].
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Remark.

1. In Step 3 of Algorithm 2 we need to check through an oracle whether a point P
is in the projection of the variety. This can be done, for example, by substituting
the variables x1, . . . , xr by the corresponding coordinates of P in the generators of
the ideal I to check afterwards whether the new variety in Kn−r is non-empty; this
can be done by elimination theory techniques. In the context of the applications
of these ideas to automatic theorem proving, the fiber of almost all points P is
finite. Hence, the variety to be tested is zero-dimensional. Thus, the decision is
faster.

2. Note that the disjoint test-set C, appearing in Step 2 of Algorithm 2, only depends
on d and r and not on the ideal I. Therefore, one may have a pre-computed data
basis, for different values of d and r, to be used directly on Algorithm 2. Even,
if one does not have at hand such a basis, one may combine Algorithms 1 and 2
as follows: whenever a point P ∈ C is computed, one decides whether P belongs
or not to πr(V). As soon as the cardinality of either A or B is greater or equal
N , the process can be stopped, and one does not need to determine all elements
in C.

A third option, probably the most efficient, is as follows. We compute a test-set
T , via the support, with N elements and we apply a random linear transformation
to T (see Theorem 3) to get T ∗. In this situation, we check how many points in
T ∗ can be lifted to V . If this number is N , then we can conclude that Ir =< 0 >.
If not, we add to T ∗ a new point, as explained in Algorithm 1, to get T ∗∗ and we
repeat the process.

Example 3. We illustrate Algorithm 2 by a toy example. We consider the ideal I ⊂
C[x, y, z, w] defined by the generators

I =< −w2x2 + 2wx3 − 2x3z + 2x2y2 + 2x2yz + x2z2 − 2xy2z
−2xyz2 + y4 + 2y3z + y2z2 + 2w2x− 2wx2 − w2,
w2x2 − 2wx3 + 2x4 − 2x3z + 2x2y2 + 2x2yz + x2z2−
2xy2z − 2xyz2 + y4 + 2y3z + y2z2 − 2w2x+ 2wx2 + w2 > .

One may check that V = V(I) ⊂ C4 has degree 4. Now, we consider the projection
π2 : V ⊂ C4 → C2; (x, y, z, w) 7→ (x, y). We want to check whether π2(V) = C2 or,
equivalently, whether I ∩ C[x, y] =< 0 >. For this purpose, we apply Algorithm 2 with
N = 15. So, we need a (4, 2)-disjoint test set of cardinality 29. Applying Algorithm 1
one get the following disjoint test set

C = {(−18, 28), (−15,−30), (−6,−5), (−5, 28), (−2,−17),
(−2, 29), (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 0), (1, 1), (1, 2),
(1, 3), (2, 0), (2, 1), (2, 2), (3,−13), (3, 0), (3, 1), (4, 0), (9, 6),
(11, 15), (12,−12), (13,−22), (16,−23), (19, 28), (21, 25)}.
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Decomposing C = A ∪ B, as in Step 3, by using some of the oracles described
in the previous remark, we get that #(A) = 24 and #(B) = 5; Indeed, B =
{(1, 0), (1, 1), (1, 2), (1, 3), (2, 2)} ⊂ C2 \ π2(V). Therefore, I ∩K[x, y] =< 0 >.

Now, we repeat the example but using the projection π2 : V ⊂ C4 →
C2; (x, y, z, w) 7→ (x,w). So, C is as above but in this case it decomposes as
C = A ∪ B with #(A) = 1 and #(B) = 28, being A = {(0, 0)}. Thus, in this
case I ∩ C[y, z] 6=< 0 >.

What could be the interest of having some test-by-examples of the nullity of an
elimination ideal? Obviously, such tests could help computing the dimension of a
polynomial ideal and selecting a collection of independent variables modulo the ideal.
But, although our current work does not address this issue, the specific application
of the zero-testing method we have in mind –and also the initial motivation for this
work— is automated geometric theorem proving, within the realm of the “proof by
exhaustion” method3.

Without going into details, it happens that, for some approaches, the truth of a cer-
tain type of geometric statements involves checking that some multivariate polynomial
is identically zero; and this is accomplished by verifying that the polynomial is zero on
some sort of test set, where each element of the set corresponds to a geometric instance
of the given statement (say, a particular position of a vertex on a triangle). Some
attempts in this direction have been labeled as the method of proving by examples.
We can find early occurrences of this approach in the works of [8],[9] and [25], while
in [4] a survey of these early procedures for automatic theorem proving in geometry,
till 1988, is presented. The dissertation of Kortenkamp [10] or the paper [11] provide
a fine analysis on the advantages and limitations of this approach, in the context of
Dynamic Geometry.

More recently, both the master dissertation of Weitzhofer [23] and the doctoral
dissertation of Kovács [12], reconsider, extend, implement and test this technique in
the popular program GeoGebra, following the completely general theorem proving and
discovery approach of [21], that we can summarize as follows.

Let {H ⇒ T} be a geometric statement, where H = {h1, . . . , h`} stands for the
ideal of equations describing the geometric construction of the hypotheses and T = (f)
describes the thesis (or, more generally, the theses). Both ideals lie on a polynomial
ring K[X], where the variables X = {x1, . . . , xn} refer to the coordinates involved
in the algebraic description of the hypotheses, over a base field K. Fix a maximum-
size set Y = {x1, . . . , xm} of independent variables for the hypotheses ideal H (i.e.
m = dim(H)), and label as “non-degenerate” the irreducible components of H where
Y remains independent. Consider L, an algebraically closed extension on K (for in-
stance L = C and K = Q), and let the geometric instances verifying the hypotheses
(respectively, the thesis) of the statement be the algebraic variety V(H) (respectively,

3“Proof by exhaustion, also known as proof by cases. . . is a method. . . in which the statement to
be proved is split into a finite number of cases and each case is checked to see if the proposition in
question holds”. C.f. https://en.wikipedia.org/wiki/Proof_by_exhaustion
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V(T )) in the affine space Ln.
We say that a statement is “generally true” iff T holds over all non-degenerate

components; and that it is “generally false” if it does not hold over any of them. Then
it is shown that

a) The statement {H ⇒ T} is generally true if and only if

I ∩K[Y ] 6= 〈0〉 .

where I is the ideal I = 〈h1, . . . , h`, f · t− 1〉 ⊂ K[X, t].

b) The statement {H ⇒ T} is generally false if and only if

I∗ ∩K[Y ] 6= 〈0〉 .

where I∗ is the ideal I∗ = 〈h1, . . . , h`, f〉 ⊂ K[X].

see [21].
Obviously, here the key tool is to decide –by dragging, on the GeoGebra window,

the construction to a suitable number of positions, i.e. by considering some special
values of (x1, . . . , xn) and verifying if the statement is false or true in these cases–
if the elimination ideal of hypotheses and the negation of the theses or the ideal of
hypotheses and theses is or not zero. See the above mentioned academic works for
details of the excellent performance of this technique in the prototype version already
implemented. Moreover, in [14], a detailed benchmark is presented on the comparative
performance of different proving methods implemented in GeoGebra. The first column
contains a list of ggb files describing geometric statements, alphabetically ordered.
Then, there is a series of blocks (labeled as Recio, Botana, Botana D, BotanaGiac,
etc.) referring to the considered theorem proving method, each one containing two
columns: Result (true, false, empty, i.e. undefined for some reason) and Speed (in
milliseconds, t/o means time-out!). Details about the different methods are provided
in [13], although, concerning the method we are dealing with here, the reference in
[13] is very limited: only the two-variables case is sketched, with some hints about
its generalization for three variables. Notice that we are considering just a prototype
implementation, thus it happens that, in many instances, some of the methods are not
programmed to include some types of input (for example, in [13] the so called Recio’s
method –i.e. the one described in the current paper– is not yet programmed to deal
with circles, thus it yields no answer in many cases!). Despite all these limitations it
is clear that, when applicable, our method is much faster than any other one.

We finish with an example of the application of our algorithms to a geometric
problem.
Example 4. In this example we illustrate how the ideas described above are applicable
to prove that Simson’s Theorem is generically true. The Theorem of Simson claims
that
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Given a triangle abc and a point d on its circumcircle,
the feet e, f, g of the perpendiculars from d to the lines
bc, ab, and ac, respectively, are collinear.

We will follow the notation in [20] (subsections 1.4 and 1.5) but adding, as a non-
degeneracy hypothesis, the condition h6 below. Thus, the variables in the construction

c=(0,0) a=(1,0)

b=(r,s)d=(m,n)

f=(t,u)

e=(v,w)

g=(m,0)

Figure 1: Illustration of Simson’s Theorem

are {r, s,m, n, q, t, u, v, w}, being {r, s,m} a maximum size set of independent variables
(see Fig. 1). The hypotheses are

h1 = s(t− 1)− u(r − 1) (f is on the line ab).
h2 = (t−m)(r − 1) + s(u− n) (df is perpendicular to ab).
h3 = −rw + sv (e is on the line cb).
h4 = r(m− v) + s(n− w) (de is perpendicular to cb).
h5 = m2s− n2s+ nr2 + ns2 +ms− nr (d is on the circumcircle).
h6 = qs− 1 (abc does not degenerate as a triangle).

And the thesis
F = (w − u)(m− t) + u(v − t).

Therefore, we consider the ideal

I =< h1, ...h6, zF − 1 >⊂ C[r, s,m, n, q, z, t, u, v, w].

The variety V = V(I) ⊂ C10 has degree d = 32. In order to decide whether I ∩
C[r, s,m] =< 0 > we apply Algorithm 2 with the third optimization approach described
in the remark after the algorithm, namely taking the support with N = (32+3

3 ) = 6545,
applying a random bijective affine transformation and checking whether all elements are
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liftable. For the random affine transformation we have taken integers in {−10..10}, and
we have consider an upper triangular matrix. The precise transformation T is

Y =

 7 0 9
0 2 −3
0 0 6

X +

 −5
9
6

 .

The result is that none element in T (Supp(N)) can be lifted. Therefore, the conclusion
is that elimination ideal is non-zero, and hence the theorem is generically true. The
computation were performed with Maple 2017 on a PC with i7-5500U CPU 240GHz,
and the 6545 lifting checks took 1.3 seconds.
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[14] Kovács, Z. (2018). Prover benchmark for GeoGebra 611. https:

//prover-test.geogebra.org/job/GeoGebra-provertest/ws/test/scripts/

benchmark/prover/html/all.html

[15] Kounailis, E., Rusinowitch, M. (1990). Mechanizing inductive reasoning. In
theEight National Conference on Artificial Intelligence. AAAI-90 Proceedings.
240–245.

[16] Lipton, R. J.(2009). The curious history of the Schwartz-Zippel lema. In Gödel’s
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[21] Recio, T., Vélez, M.P. (1999(: Automatic discovery of theorems in elementary
geometry, Journal of Automated Reasoning, 23, 63–82.

[22] Schwartz J.T. (1980). Fast probabilistic algorithms for verification of polynomial
identities. Journal of ACM. 27: 701–717.

15

 https://www.researchgate.net/publication/215908130_Using_Automatic_Theorem_Proving_to_Improve_the_Usability_of_Geometry_Software
 https://www.researchgate.net/publication/215908130_Using_Automatic_Theorem_Proving_to_Improve_the_Usability_of_Geometry_Software
 https://www.researchgate.net/publication/215908130_Using_Automatic_Theorem_Proving_to_Improve_the_Usability_of_Geometry_Software
http://www.jku.at/content/e263/e16099/e16086/e173791?view=PUBD&pub_id=51957
http://www.jku.at/content/e263/e16099/e16086/e173791?view=PUBD&pub_id=51957
http://test.geogebra.org/~kovzol/data/Prove-20150219b/
http://test.geogebra.org/~kovzol/data/Prove-20150219b/
https://prover-test.geogebra.org/job/GeoGebra-provertest/ws/test/scripts/benchmark/prover/html/all.html
https://prover-test.geogebra.org/job/GeoGebra-provertest/ws/test/scripts/benchmark/prover/html/all.html
https://prover-test.geogebra.org/job/GeoGebra-provertest/ws/test/scripts/benchmark/prover/html/all.html
 https://rjlipton.wordpress.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/ 
 https://rjlipton.wordpress.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/ 


[23] Weitzhofer, S. (2013). Mechanic proof of theorems in plane geometry. Master-
arbeit, Johannes Kepler University, Linz. Available at http://test.geogebra.

org/%7Ekovzol/guests/SimonWeitzhofer/DiplArbeit.pdf

[24] Zariski, O. and Samuel, P. (1958). Commutative Algebra, Vol. 1, Van Nostrand.

[25] Zhang J., Yang L. and Deng M. (1990). The parallel numerical method of me-
chanical theorem proving. Theoretical Computer Sience 74:253–271.

[26] Zippel R. (1979). Probabilistic algorithms for sparse polynomials. In: Ng E.W.
(eds) Symbolic and Algebraic Computation. EUROSAM 1979. Lecture Notes in
Computer Science, vol 72. Springer, Berlin, Heidelberg.

16

 http://test.geogebra.org/%7Ekovzol/guests/SimonWeitzhofer/DiplArbeit.pdf
 http://test.geogebra.org/%7Ekovzol/guests/SimonWeitzhofer/DiplArbeit.pdf

