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December 5, 2017

Abstract

In this paper we show that not all affine rational complex surfaces can be parametrized bi-
rational and surjectively. For this purpose, we prove that, if S is an affine complex surface
whose projective closure is smooth, a necessary condition for S to admit a birational surjective
parametrization from an open subset of the affine complex plane is that the curve at infinity
of S must contain at least one rational component. As a consequence of this result we provide
examples of affine rational surfaces that do not admit birational surjective parametrizations.
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1 Introduction

Some computational problems, of mathematical nature, can be approached by means of algebro-
geometric techniques. In these situations, either because of the problem itself directly relates to an
algebraic variety or because the problem is translated into an underlying algebraic variety, techniques
from computational algebraic geometry are applied. Specially important are those cases where the
associated algebraic variety is unirational, since then two different types of representations of the
geometric object, namely a set of generators of its ideal or a rational parametrization of it, are
available. Examples of this claim appear in some practical applications in computer geometric design
(see [2], [5], [11], [16]), where the connection to algebraic geometry is direct. Other examples can
be found in the study and solution of algebraic differential equations by means of the analysis of
an associated algebraic variety (see e.g. [6], [8], [9], [12], [13], [14]); for instance, an algebraic non-
autonomous first order ordinary differential equation induces an algebraic surface and the existence,
and actual computation, of a general rational solution is derived from a birational parametrization of
this surface (see [14]).

Nevertheless, when dealing with parametric representations one needs to guarantee that certain
problematic situations do not appear. An specially important difficulty may occur when dealing with
parametrizations that are not surjective. That is, let us work with, say, a rational affine variety X,
and we take a birational affine parametrization f of X; in other words, a dominant birational map
f : Cr f(Cr) ⊂ X ⊂ Cn, and let us assume that f is not surjective, i.e. f(Cr) ( X. Then, the
feasibility of the use of f depends on whether the desired property of the variety, or the information
derived from the variety, is only readable from the non-reachable zoneX\f(Cr) of the algebraic variety.
Example 1.1., in [20], illustrates the described difficulty for the problem of computing the distance of
a point to an algebraic surface. Another example of this situation can be found in Example 1, in [19],
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for computing the intersection of two surfaces using the implicit equation of one of the surfaces, and
a parametrization of the other. In [18], Example 1, the authors illustrate the problem of analyzing
cross sections in a surface when using a non surjective parametrization. An slightly different version of
this commented dificulty can be found in the frame of algebraic differential solutions. Let us say that
y(x, c) is the rational general solution of an algebraic non-autonomous first order differential equation
F (x, y, y′) = 0. Then, P(x, c) = (x, y(x, c), y′(x, c)), where the derivative is with respect to x, is a
rational surface parametrization of the affine surface F (x1, x2, x3) = 0. So, for each specialization of
c, P(x, c) defines an integral rational curve on the surface. Now, observe that the non-surjectivity
of P relates to the existence of rational singular solutions; and example illustrating this phenomenon
can be found in [14], Example 7.1.

When the affine complex variety X is a curve, the problem admits a direct solution, in the sense
that X can always be parametrized birationally and surjectively. Furthermore, in [1] and [17] one may
find algorithms for this purpose. For the case of surfaces, the problem turns to be more complicated.
The question has been approached from two different point of views: either providing one surjective
birational affine parametrization of X (see e.g. [7], [15] , [19]), or determining finitely many birational
affine parametrizations f1, . . . , fs of X such that the union of their imagines does cover the whole affine
surface, that is ∪si=1fi(C2) = X (see e.g. [3], [7], [18], [21], [20]). Nevertheless, the following natural
question arises: does there exist a surjective birational affine parametrization for every rational affine
surface?

In this paper, we answer this question and we prove that, in general, the answer is no. More pre-
cisely, in Theorem 3.1, we describe the intersection of the projective closure of the given affine surface
with the plane at infinity under the assumption that the surface can be parametrized surjectively
and birationally; in fact, we see that this intersection has to be either smooth or contain at least one
rational component. As a consequence, in Example 4.2, we show that the Fermat cubic surface cannot
be parametrized surjectively with a birational parametrization.

2 Preliminaries

In this section, we recall some basic facts that will be used throughout the paper; we refer the reader
to [4], [10] for further details. We also include some consequences whose reference is unknown to us.
We work over the complex field C. A variety is an irreducible and reduced projective scheme. We
remind the reader that a variety X is normal iff the local ring OX,x is integrally closed for all x ∈ X.
We also recall that any smooth variety is normal.

Some classic results:

Theorem 2.1. [10, Exercise II.3.22(c)] Let f : X → Y be a surjective morphism of schemes. Then,
the dimension of the general fiber of f is dimX − dimY .

Theorem 2.2. [10, Exercise I.3.20] Let X be a quasi projective normal surface. Let f : X AN be
a rational map, whose indeterminacy locus is finite. Then f is a regular morphism.

Theorem 2.3. [10, Lemma V.5.1] Let f : X PN be a birational map. If X is normal, the
fundamental locus of f has codimension at least 2 in X.

Theorem 2.4. [4, Theorem II.7] Let X be a smooth surface. Let f : X PN be a rational map.
Then there exists a commutative diagram

Y

X PN

g

||
h
""

f //
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where g is a composite of blowups and h is a morphism.

Corollary 2.5. In the hypotheses of Theorem 2.4, for any fundamental point P of f , h(g−1(P )) is a
connected finite union of rational curves.

Proof. Let E be the connected component g−1(P ) of the exceptional divisor. Since g is a composite
of blowups, E is a connected union of irreducible curves, all of them isomorphic to P1.

If h(g−1(P )) = h(E) is not a connected finite union of rational curves, due to the connectedness
of E and the fact that it is one dimensional, h(E) must be a single point Q ∈ f(X) ⊂ PN . Taking
an affine neighbourhood U ⊂ PN of Q, we have that V = f−1(U) ∪ {P} is neighbourhood of P in X.
Applying Theorem 2.2 to f |V , we have that f can be extended to P , which contradicts the fact that
it is a fundamental point.

Theorem 2.6. [10, Corollary V.5.4 and Theorem V.5.7](Castelnuovo’s criterion of contractibility)
Let X be a smooth surface and C an irreducible curve in X. There exists a smooth surface Y and a
birational morphism f : X → Y contracting C to a point iff C ' P1 and C2 = −1. In such case, f is
the blowup of the point f(C) ∈ Y .

Remark 2.7. Theorem 2.6 says that any birational morphism between nonsingular surfaces is a
composite of blowups, each one being the blowup of a closed point.

Regarding blowups, let us recall how they behave with respect to the Picard group:

Theorem 2.8. [10, Exercise II.8.5] Let f : X → Y the blowing up of a smooth surface Y at a closed
point y ∈ Y . Then PicX ' PicY ⊕〈E〉, where E is the exceptional divisor and the inclusion of PicY
is given by the pullback f∗.

Theorem 2.9. (Zariski’s Main Theorem, see e.g. [10, Corollary III.11.4]) Let f : X → Y be a
birational projective morphism between irreducible and reduced varieties. Suppose Y to be normal.
Then, for any y ∈ Y , f−1(y) is connected.

3 Surjective parametrizations of affine surfaces

This section is devoted to proving the following result.

Theorem 3.1. Let f : C2 CN be a rational map. Let S be the Zariski closure of f(C2) in CN ,
and suppose that f is birational and surjective onto S. Let S be the Zariski closure of S in PN and
S∞ = S − S the hyperplane section at infinity. If S is smooth, then S∞ has at least ρ(S) rational
components, where ρ(S) is the Picard number (i.e. rank of the Picard group) of S.

To prove Theorem 3.1, we consider Theorem 2.4 and get the commutative diagram

Y

P2

C2

S

S

PN

CN

g
||

h
""f //

f //

↪→

↪→

↪→ ↪→ ↪→

(1)
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We also establish some more notation. We denote by F (f) the (finite, by Theorem 2.3) fundamental
locus of f , and by L∞ = P2 \ C2 the line at infinity of the plane.

We prove two lemmas before attacking Theorem 3.1.

Lemma 3.2. In the conditions of Theorem 3.1, and with the notation above, then it holds that
h(g−1(F (f)) ⊂ S∞.

Proof. We know by Theorem 2.3 that F (f) is a finite set. Let P ∈ F (f) be one of its elements
and let E = g−1(P ) be the connected component of the exceptional divisor corresponding to P . Let
C = h(E). We know by Corollary 2.5 that C is a finite union of rational curves. By Theorem 2.1, any
general point Q ∈ C satisfies that h−1(Q) is zero dimensional (otherwise, h−1(C) would be a surface
in Y , contradicting the birationality of f).

On the other hand, Theorem 2.9 implies that h−1(Q) is connected. Therefore, h−1(Q) is a single
point P ∈ Y . However, since Q ∈ C = h(E), this means that P ∈ E, so Q 6∈ f(C2). Since f is
surjective onto S, this means that Q ∈ h(Y ) \ S = S \ S = S∞. As this happens for general Q ∈ C,
we have that C ⊂ S∞.

This is valid for any P ∈ F (f), so the proof is completed.

Lemma 3.3. In the conditions of Theorem 3.1, and with the notation above, it holds that h(g−1(L∞)) ⊂
S∞.

Proof. If f(L∞) is a curve C, by Theorem 2.1, any general point Q ∈ C satisfies that h−1(Q) is zero
dimensional (otherwise, h−1(C) would be a surface in Y , contradicting the birationality of f). On
the other hand, Theorem 2.9 implies that h−1(Q) is connected. Therefore, h−1(Q) is a single point
P ∈ Y .

However, since Q ∈ C = f(L∞), we have that g(h−1(Q)) = g(P ) ∈ L∞, and then Q 6∈ f(C2) = S.
This means Q ∈ h(Y ) \ S = S \ S = S∞. The generality of Q means that f(L∞) ⊂ C ⊂ S∞.

Now, consider the case of f contracting L∞ to a point Q ∈ S. Since S is smooth, the proper
transform L̃∞ of L∞ by g (i.e. L̃∞ is the Zariski closure of g−1(L∞)− g−1(F (f))) is a component of

the exceptional divisor of h. This means that L̃∞
2
< 0. This is only possible if g blows up at least

one point P ∈ L∞ (i.e. there is a fundamental point of f in L∞). Then, by Corollary 2.5 and Lemma
3.2, we have that S∞ contains h(g−1(P )), which is one dimensional.

By Theorem 2.9, g−1(P ) is connected. Therefore, since P ∈ L∞, we have that g−1(P ) ∪ L̃∞ is

connected. This implies that h(g−1(P ) ∪ L̃∞) is connected, so f(L∞) = Q ∈ h(g−1(P )) ⊂ S∞.

Corollary 3.4. In the hypotheses of Theorem 3.1 and with the notation above, let C be a closed curve
in P2 such that f(C) consists of a single point Q ∈ S. Then Q ∈ S∞.

Proof. Note that C ∩ L∞ is not empty by Bezout’s Theorem. Then C ∪ L∞ is connected. This
means that h(g−1(C ∪ L∞)) is connected. Since h(g−1(L∞)) is always one dimensional (in the proof
of Lemma 3.3, we see that, if L∞ is contracted by f , then L∞ ∩ F (f) is not empty), this means that
Q ∈ h(g−1(L∞)), so Q ∈ S∞ by Lemma 3.3.
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Proof. (of Theorem 3.1) Let ρ(Y ) be the Picard number of Y . Since ρ(P2) = 1, we have that g is
a composition of ρ(Y ) − 1 blowing ups by Theorem 2.8. This means that the exceptional divisor E
consists of ρ(Y ) − 1 rational components. On the other side, by Theorem 2.8 and Remark 2.7, h
contracts exactly ρ(Y )−ρ(S) irreducible rational curves. This means that h(g−1(L∞)∪E), being the
image by h of ρ(Y ) rational curves consists of at least ρ(S) rational curves. By Lemmas 3.2 and 3.3,
we have that h(g−1(L∞) ∪ E) ⊂ h(g−1(L∞ ∪ F (f))) ⊂ S∞, so we have at least ρ(S) rational curves
in S∞.

Corollary 3.5. Let S ⊂ AN be a closed surface. Let S be its Zariski closure in PN . Suppose that S
is smooth and that none of the components of S∞ = S − S is rational. Then there does not exist a
birational surjective parametrization f : A2 → S.

Proof. For any surface S, ρ(S) is at least one.

4 Examples and nonexistence results

The next example illustrates that the conditions given by Theorem 3.1 are sharp. We find a family of
examples where just one rational component at the infinity is enough to have a surjective parametriza-
tions from C2.

Example 4.1. Consider the d-th Veronese embedding vd : P2 → PN , where N = (d+2)(d+1)
2 , given by

all degree d monomials: vd(x0 : x1 : x2) = (xd0 : xd−10 x1 : . . . : xd2). Let C ⊂ P2 be a curve of degree
d − 1 and L∞ be the line at infinity x0 = 0. Then the ideal of C ∪ L∞ is given by a homogeneous
polynomial of degree d. This means that vd(C∪L∞) is the intersection of S̃ = vd(P2) with a hyperplane
H. Therefore, if we compose vd with the suitable automorphism of PN that takes H to the hyperplane
at infinity, we get a parametrization f of the image S such that S∞ = f(C ∪ L∞). This means that
S = S \ S∞ is covered by P \ (C ∪ L∞) = C2 \ C, and fC2\C is an isomorphism.

The next example is one of the main motivations of this paper: finding examples of rational affine
surfaces that do not admit birational surjective parametrizations.

Example 4.2. Consider S to be a smooth cubic surface. It is well known that S is isomorphic to
P2 blown up at 6 generral points. Then ρ(S) = 7. On the other side, due to the degree, S∞ has
at most three components. Then, by Theorem 3.1, it is impossible to give a birational surjective
parametrization of the complement in S of any hyperplane section.

Example 4.3. Consider S to be a smooth quadric hypersurface. There are only two possibilities for
S∞. If S∞ has singularities, then it must consist of two lines. Then the structure of S as P1 × P1

gives the affine part the structure of C1×C1 ' C2. We would have the well-known parametrization of
the paraboloid. However, if the curve at infinity is nonsingular, then it is an irreducible conic. Since
ρ(S) = ρ(P1×P1) = 2, by Theorem 3.1, there does not exist a birational surjective parametrization of
S ∩ A3.

The following example shows that Theorem 3.1 is not a characterization:

Example 4.4. Let S be P1×P1. Let C and C ′ be two curves in S of types (2, 1) and (1, 2) respectively
(regarding S as a quadric, C and C ′ would be twisted cubics). Since C + C ′ is of type (3, 3), it is a
very ample divisor. This means that we can consider S ⊂ P15 with S∞ = C + C ′.
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Now suppose there exists f : A2 99K S = S − S∞ birational and surjective. Consider the extension
of the inverse f−1 to the complement of a finite subset of S. Such map can only contract curves in

S∞ (if f
−1

(C ′′) is a point P ∈ P2, then P ∈ F (f) and, by Lemma 3.2, we have that C ′′ ⊂ S∞).

Looking at the proof of Theorem 3.1, at least one among C and C ′ corresponds to a fundamental
point P of f . Let us say that C ⊂ h(g−1(P )). Then, g contracts the proper transform C̃ of C by

h to P . This means that C̃ is a component of the exceptional divisor E of g, so it has negative
self-intersection. If g is the composition gsgs−1 · · · g1g0 of blowups, then h must be a composition
hshs−1 · · ·h2h1 of blowing downs. This means that E consists of s + 1 rational components. Since

h(E+ L̃∞) ⊂ S∞ = C +C ′, we get that h contracts exactly s components of E+ L̃∞. Since h factors

as exactly s blowups, this means that h does not contract any curve outside E + L̃∞. Then there are
two possibilities:

• If h covers C ′ with L̃∞ and C with C̃. Then h contracts all of E − C̃ to points. This implies
that C ∩ C ′ consists of just one point, due to the nature of blowing up.

• If h contracts L̃∞, then h contracts all components of E but two, used to cover C and C ′. This
also implies that C ∩ C ′ consists of just one point, due to the nature of blowing up.

However, choosing general (2, 1) and (1, 2) curves for C and C ′ one obtains that C ∩ C ′ consists of
5 different points, leading to contradiction. Therefore, S cannot be covered by a birational surjective
parametrization despite it satisfies the necessary condition of Theorem 3.1
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