Mixed-dicyclopentadienyl niobium and tantalum complexes: synthesis and reactivity
 X-ray molecular structures of $\mathrm{Ta}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right) \mathrm{Cl}_{2}$ and $\mathrm{Ta}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left\{\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right\} \mathrm{H}_{3}$

Aurora Castro, Manuel Gómez, Pilar Gómez-Sal ${ }^{1}$, Antonio Manzanero ${ }^{1}$, Pascual Royo *
Departamento de Química Inorgánica, Universidad de Alcalá de Henares, Campus Universitario, 28871 Alcalá de Henares, Spain

Received 25 October 1995

Abstract

$\mathrm{MCp}^{*} \mathrm{Cl}_{4},\left(\mathrm{Cp}^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ reacts with $\mathrm{LiCp}\left(\mathrm{Cp}=\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{Cp}^{\prime}\right) ; \mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{Cp}^{\prime \prime}\right)\right)$ and sodium amalgam, in 1:1:1 molar ratio to give the paramagnetic dicyclopentadienyl niobium and tantalum(IV) complexes, $\mathrm{MCp}^{*} \mathrm{CpCl}_{2},\left(\mathrm{M}=\mathrm{Nb}, \mathrm{Cp}=\mathrm{Cp}^{\prime} \mathbf{1} ; \mathrm{Cp}^{\prime \prime}\right.$ 2; $\mathrm{M}=\mathrm{Ta}, \mathrm{Cp}=\mathrm{Cp}^{\prime} 3 ; \mathrm{Cp}^{\prime \prime} 4$). Reactions of 3 and 4 with $1 / 2$ equivalent of PCl_{5} afford the diamagnetic trichlorocomplexes $\mathrm{TaCp}{ }^{*} \mathrm{CpCl}_{3},\left(\mathrm{Cp}=\mathrm{Cp}^{\prime} \mathbf{5} ; \mathrm{Cp}^{\prime \prime} \mathbf{6}\right)$, while oxidation with dry O_{2} gives the diamagnetic dinuclear complexes $\left[\mathrm{TaCp}{ }^{*} \mathrm{CpCl}_{2}\right]_{2}(\mu-\mathrm{O})$, $\left(\mathrm{Cp}=\mathrm{Cp}^{\prime} 7 ; \mathrm{Cp}^{\prime \prime} 8\right)$, and with air are transformed into the corresponding oxoderivatives $\mathrm{TaCp}{ }^{*} \mathrm{CpCl}(\mathrm{O}),\left(\mathrm{Cp}=\mathrm{Cp}^{\prime} 9 ; \mathrm{Cp}^{\prime \prime} 10\right)$. Treatment of compounds $\mathbf{3}$ and $\mathbf{4}$ with a slight excess of lithium aluminium hydride affords the trihydrido complexes $\mathrm{TaCp}^{*} \mathrm{CpH}_{3}$ ($\mathrm{Cp}=\mathrm{Cp}^{\prime} 11 ; \mathrm{Cp}^{\prime \prime} 12$). The trihydrido complex 12 reacts with two-electron donor ligands on heating to yield the hydrido tantalum(III) compounds $\mathrm{TaCp}^{*} \mathrm{Cp}{ }^{\prime \prime} \mathrm{H}(\mathrm{L})\left(\mathrm{L}=\mathrm{CO} 13, \mathrm{C}_{2} \mathrm{H}_{4} \mathbf{1 4}, \mathrm{RNC} 15\right)$. All the new complexes were characterized by usual IR and NMR spectroscopic methods. The crystal structurcs of $\mathbf{3}$ and $\mathbf{1 2}$ were determined by X-ray diffraction studies. Crystals of $\mathbf{3}$ are orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$, with $Z=4$ in a unit cell of dimensions $a=11.775(5) \AA, b=12.821(1) \AA, c=13.037(7) \AA$. Crystals of 12 are triclinic, space group $P \overline{1}$ with $Z=2$ in a unit cell of dimensions $a=7.384(4) \AA, b=10.861(2) \AA, c=16.731(3) \AA, \alpha=75.94(2)^{\circ}$, $\beta=84.75(3)^{\circ}$ and $\gamma=72.57(4)^{\circ}$. Both structures were solved from diffractometer data by a combination of direct and Fourier methods and refined by full-matrix least squares fit on the basis of 4088 (3) and 4594 (12) observed reflections to R and R_{w} values of 0.040 and 0.064 (3) and 0.022 and 0.033 (12) respectively.

Keywords: Niobium; Tantalum; Group 5; Oxo-chloro mixed species; Hydrides; Silyl; Cyclopentadienyl

1. Introduction

The chemistry of di-pentamethylcyclopentadienyl complexes of the heavier Group 5 elements niobium and tantalum is receiving growing attention [1] after the dichlorides were made readily accessible in high yields [2]. Such derivatives offer advantages over their η^{5} $\mathrm{C}_{5} \mathrm{H}_{5}$, since they exhibit higher thermal stability. They provide excellent starting matcrials for the preparation of sufficiently stable complexes in different oxidation states. However, the chemistry of the mixed-ring analogues $\mathrm{MCp}^{*} \mathrm{CpCl}_{2}$ [3] has been less extensively studied, and in some cases the complexes are not well characterized and their reactivity scarcely explored.

[^0]We herein report a convenient synthesis of mixed-ring dicyclopentadienyl complexes of stoichiometry MCp*$\mathrm{CpCl}_{2} \quad\left(\mathrm{Cp}{ }^{*}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5} ; \quad \mathrm{M}=\mathrm{Nb}, \quad \mathrm{Cp}=\eta^{5}\right.$ $\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{Cp}^{\prime}\right) \mathbf{1} ; \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{Cp}^{\prime \prime}\right) \mathbf{2} ; \mathrm{M}=$ $\mathrm{Ta}, \mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{Cp}^{\prime}\right) \mathbf{3} ; \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}$ $\left(\mathrm{Cp}^{\prime \prime}\right) 4$), together with studies of their reactivity. We also report the X -ray molecular structures of $\mathrm{TaCp}^{*} \mathrm{Cp}^{\prime} \mathrm{Cl}_{2}$ 3, and $\mathrm{TaCp}{ }^{*} \mathrm{Cp}^{\prime \prime} \mathrm{H}_{3} \mathbf{1 2}$.

2. Results and discussion

2.1. Dicyclopentadienyl niobium and tantalum(IV) compounds

Treatment of a mixture of the previously described [4,5] compounds $\mathrm{MCp}^{*} \mathrm{Cl}_{4},(\mathrm{M}=\mathrm{Nb}, \mathrm{Ta})$ and $\mathrm{LiCp}[6]$
$\left(\mathrm{Cp}=\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{SiMe}_{3}\right)\left(\mathrm{Cp}^{\prime}\right) ; \mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\left(\mathrm{Cp}^{\prime \prime}\right)\right)$ with 1 equivalent of sodium amalgam in toluene at room temperature affords the paramagnetic mixed-ring dicyclopentadienyl complexes $\mathrm{MCp}^{*} \mathrm{CpCl}_{2}(\mathrm{M}=\mathrm{Nb}, \mathrm{Cp}=$ $\mathrm{Cp}^{\prime} \mathbf{1} ; \mathrm{Cp}^{\prime \prime} \mathbf{2} ; \mathrm{M}=\mathrm{Ta}, \mathrm{Cp}=\mathrm{Cp}^{\prime} \mathbf{3} ; \mathrm{Cp}^{\prime \prime} \mathbf{4}$) as shown in Scheme 1.

All the complexes are dark-green solids, soluble in aromatic hydrocarbons and less soluble in saturated hydrocarbons and ethyl ether; they are air- and mois-ture-sensitive, and rigorously dried solvents and handling under dry inert atmosphere were found to be imperative for successful preparations. The analytical and spectrocopic data for compounds 1-4 are consistent with their formulation, and their monomeric nature is supported by their magnetic behaviour and confirmed by the X-ray molecular structure of the tantalum complex 3.

The IR spectra of complexes $\mathbf{1 - 4}$ show the characteristic absorptions (see Experimental section) for the pentamethylcyclopentadienyl [7] ($\nu_{\mathrm{C}-\mathrm{C}} \sim 1025 \mathrm{~cm}^{-1}$) and mono- or bis-(trimethylsilyl)cyclopentadienyl [8] ($\nu_{\mathrm{C} \cdot \mathrm{H}}$
$\sim 838 \mathrm{~cm}^{-1}$) rings, for the trimethylsilyl substituents [9] $\left(\nu_{\delta \mathrm{s}}\left(\mathrm{CH}_{3}\right) \sim 1245 \mathrm{~cm}^{-1}\right)$ and for the $\mathrm{M}-\mathrm{Cl}$ stretching vibrations [10] ($\left.\nu_{\mathrm{M}-\mathrm{Cl}} \sim 330 \mathrm{~cm}^{-1}\right)$.

Magnetic susceptibility measurements at room temperature give magnetic moments $\mu_{\text {cff }}$ of 1.7-1.8 μ_{B}, similar to those found for the analogous dicyclopentadienyl compounds reported [11]. The ${ }^{1} \mathrm{H}$ NMR spectra of compounds 3 and 4 were recorded in chloroform- d_{1}, whereas benzene- d_{6} was required for the niobium derivatives 1 and 2 since they decompose in chloro-form- d_{1}. The spectra show broad signals which were assigned to the methyl groups of the pentamethylcyclopentadienyl ring (not observed for compounds 1 and 2) and to the ring protons of the mono- and bis-trimethylsilylcyclopentadienyl ligands (split for compounds 1 and 2), according to their relative intensities and the relaxation times obtained (see Experimental section). The resonance due to the SiMe_{3} substituents, appears as a much narrower signal at $\delta 2.3\left(\mathbf{3}, T_{1}=8.1+0.04\right.$ $\mathrm{ms})$ and $\delta 1.8\left(4, T_{1}=8 \pm 0.05 \mathrm{~ms}\right)$. This spectral behaviour can be explained in terms of "contact and

$$
\begin{aligned}
& \mathbf{M}=\mathrm{Ta}, \mathrm{Cp}=\mathrm{Cp}^{\prime} \mathbf{3}, \mathrm{Cp}^{\prime \prime} \mathbf{4} \\
& \mathrm{M}-\mathrm{Ta} \downarrow \text { (iii) } \\
& \text { TaCp }{ }^{*} \mathrm{CpH}_{3} \\
& \mathrm{Cp}=\mathrm{Cp}^{\prime} \mathbf{1 1}, \mathrm{Cp}^{\prime \prime} \mathbf{1 2} \\
& \text { TaCp }{ }^{*} \mathrm{Cp}^{\prime \prime} \mathrm{H}(\mathrm{CO}) \\
& 13 \\
& \mathrm{TaCp}{ }^{*} \mathrm{Cp}^{\prime \prime} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \quad \mathrm{TaCp}{ }^{*} \mathrm{Cp}{ }^{\prime \prime} \mathrm{H}(\mathrm{RNC}) \\
& 14 \\
& \mathrm{R}=2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}, 15
\end{aligned}
$$

Reagents and conditions:
(i) 1 equivalent $\mathrm{LiCp}\left(\mathrm{Cp}=\mathrm{C}_{5} \mathrm{H}_{5-x}\left(\mathrm{SiMe}_{3}\right)_{x}, x=1,2\right)$, 1 equivalent $\mathrm{Na}-\mathrm{Hg}$, toluene, 12 h , RT.
(ii) $1 / 2$ equivalent PCl_{5}, toluene, $1 \mathrm{~h}, \mathrm{RT}$.
(iii) LiAlH_{4} excess, diethyl ether, $12 \mathrm{~h}, \mathrm{RT}, \mathrm{H}_{2} \mathrm{O}$.
(iv) Dry O_{2} (1 atm), THF, 2-3 h, RT.
(v) Air, THF, 12 h , RT.
(vi) $\mathrm{CO}(1 \mathrm{~atm})$, toluene, $72 \mathrm{~h}, 120^{\circ} \mathrm{C}$.
(vii) $\mathrm{C}_{2} \mathrm{H}_{4}(1 \mathrm{~atm})$, toluene, $36 \mathrm{~h}, 120^{\circ} \mathrm{C}$.
(viii) 1 equivalent $2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}$, toluene, $72 \mathrm{~h}, 120^{\circ} \mathrm{C}$.
pseudo-contact shifts" [12], indicating that the unpaired electron is essentially localized on the metal-Cp system, causing a very high downfield shift as observed for the ring proton resonances.

Cooling a toluene solution of the tantalum derivative 3 to $-40^{\circ} \mathrm{C}$ gave crystals suitable for X-ray diffraction studies. An ORTEP drawing of 3 based on the X-ray structural analysis with the atomic labelling scheme is shown in Fig. 1. Final atomic coordinates and equivalent isotropic thermal parameters for the non-hydrogen atoms are shown in Table 1. Selected bond distances and angles are given in Table 2.

The molecule has the typical bent-metallocene structure with the tantalum atom in a pseudotetrahedral coordination if the centroids of the cyclopentadienyl rings are considered as ocuppying one unique coordination site. The molecule is very similar to those reported before for $\mathrm{Ta}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}$ [13] and $\mathrm{NbCp}_{2} \mathrm{Cl}_{2}$, ($\mathrm{Cp}=\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ [14a], $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}$ [14b]), showing only small variations probably derived from the difference between the two Cp rings. The distances from the tantalum atom to the Cp planes are 2.105 and $2.075 \AA$ for Cp^{*} and Cp^{\prime} respectively, and the mean distance from tantalum to the carbon atoms shows the same trend ($2.427 \AA$ for Cp^{*} and $2.402 \AA$ for Cp^{\prime}). The $\mathrm{Ta}-\mathrm{Cl}$ distances are also significantly different (Ta$\mathrm{Cl}(1) 2.447$ (3) and $\mathrm{Ta}-\mathrm{Cl}(2) 2.418(3) \AA)$. These values are of the same order as those found in $\mathrm{Ta}\left(\eta^{5}\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right)_{2} \mathrm{Cl}_{2}$ [13] and shorter than the $\mathrm{Cl}-\mathrm{Nb}$ distances in $\mathrm{NbCp}_{2} \mathrm{Cl}_{2}$ [14]. The very short $\mathrm{Ta}-\mathrm{Cl}(2)$ distance may be related to the differences in the two Cp rings. The $\mathrm{Cl}(1)-\mathrm{Ta}-\mathrm{Cl}(2)$ angle has a value of $85.3(1)^{\circ}$, as expected for d^{1} complexes [14].

The angle between the two Cp planes has a typical value of $49.5(3)^{\circ}$, but both Cp planes form different angles with the equatorial plane $\mathrm{Cl}(1)-\mathrm{Ta}-\mathrm{Cl}(2)$ (23.03(4) ${ }^{\circ}$ for Cp^{*} and $26.5(2)^{\circ}$ for Cp^{\prime}). The SiMe_{3} group is out of the Cp plane with the Si atom placed $0.296 \AA$ above this plane. The $\mathrm{C}-\mathrm{C}$ and $\mathrm{Si}-\mathrm{C}$ distances have normal values.

2.2. Chloro and oxo dicyclopentadienyl tantalum(V) compounds

Treatment of $\mathrm{TaCp}^{*} \mathrm{CpCl}_{2} \mathbf{3}$ and $\mathbf{4}$ with the stoichiometric amount of PCl_{5} in toluene gave the air-sensitive diamagnetic trichloro derivatives $\mathrm{TaCp}^{*} \mathrm{CpCl}_{3}(\mathrm{Cp}=$ $\mathrm{Cp}^{\prime} 5 ; \mathrm{Cp}^{\prime \prime} 6$) as orange solids soluble in most organic solvents.

The mixed-ring tantalum metallocenes $\mathbf{3}$ and $\mathbf{4}$ are also oxidized by bubbling dry O_{2} through their THF solutions, giving diamagnetic μ-oxo dinuclear complexes $\left[\mathrm{TaCp}{ }^{*} \mathrm{CpCl}_{2}\right]_{2}(\mu-\mathrm{O}),\left(\mathrm{Cp}=\mathrm{Cp}^{\prime} 7 ; \mathrm{Cp}^{\prime \prime} 8\right)$. However, when their THF solutions are exposed to air, the mononuclear oxo tantalum(V) derivatives TaCp^{*} $\mathrm{CpCl}(\mathrm{O}),\left(\mathrm{Cp}=\mathrm{Cp}^{\prime} 9 ; \mathrm{Cp}^{\prime \prime} \mathbf{1 0}\right)$ are obtained. The oxo-

Fig. 1. ORTEP view of the molecular structure of $\mathrm{Ta}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\eta^{5}\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right) \mathrm{Cl}_{2}, 3$, with the atom numbering scheme.
complexes $\mathbf{7 - 1 0}$, were isolated as air-sensitive solids, insoluble in saturated hydrocarbons, and were analytically and spectroscopically characterized. The IR spectra of complexes 7 and 8 containing μ-oxo bridges show the $\nu_{\text {(Ta-O-Ta) }}$ [15] at $755-760 \mathrm{~cm}^{-1}$, whereas $\nu_{(\mathrm{Ta}=0)}[14,16]$ absorptions are observed at 901-910 cm^{-1} for complexes 9 and 10 with terminal oxo lig-

Table 1
Positional parameters of $\mathbf{3}$ with ESDs in parentheses

Atom	x	y	z	$B\left(\AA^{2}\right)$
Tal	$0.17373(3)$	$0.23314(3)$	$0.19098(2)$	$1.936(5)$
Cl(1)	$0.1992(3)$	$0.0741(3)$	$0.2922(2)$	$4.53(5)$
$\mathrm{Cl}(2)$	$0.2098(3)$	$0.3243(3)$	$0.3501(2)$	$4.99(7)$
$\mathrm{Si}(1)$	$-0.0846(2)$	$0.2632(3)$	$0.3823(2)$	$2.87(5)$
$\mathrm{C}(11)$	$0.3762(8)$	$0.2228(9)$	$0.1699(7)$	$2.8(2)$
$\mathrm{C}(12)$	$0.3266(8)$	$0.1582(8)$	$0.0938(7)$	$2.8(2)$
$\mathrm{C}(13)$	$0.2666(7)$	$0.2211(9)$	$0.0250(7)$	$2.9(2)$
$\mathrm{C}(14)$	$0.2798(9)$	$0.3278(9)$	$0.0592(8)$	$3.4(2)$
$\mathrm{C}(15)$	$0.3467(9)$	$0.3283(9)$	$0.1457(9)$	$3.5(2)$
$\mathrm{C}(21)$	$-0.0225(8)$	$0.2528(8)$	$0.2500(7)$	$2.7(2)$
$\mathrm{C}(22)$	$0.0045(8)$	$0.3325(8)$	$0.1783(8)$	$2.9(2)$
$\mathrm{C}(23)$	$0.0263(8)$	$0.2862(9)$	$0.0808(8)$	$3.4(2)$
$\mathrm{C}(24)$	$0.0145(8)$	$0.1766(9)$	$0.0919(7)$	$3.2(2)$
$\mathrm{C}(25)$	$-0.0174(8)$	$0.1582(8)$	$0.1940(9)$	$3.2(2)$
$\mathrm{C}(31)$	$-0.240(1)$	$0.240(1)$	$0.363(1)$	$5.2(3)$
$\mathrm{C}(32)$	$-0.026(1)$	$0.157(1)$	$0.4651(9)$	$4.1(2)$
$\mathrm{C}(33)$	$-0.063(1)$	$0.395(1)$	$0.439(1)$	$4.9(3)$
$\mathrm{C}(111)$	$0.455(1)$	$0.185(1)$	$0.254(1)$	$5.1(3)$
$\mathrm{C}(121)$	$0.350(1)$	$0.044(1)$	$0.081(1)$	$4.6(3)$
$\mathrm{C}(131)$	$0.217(1)$	$0.188(1)$	$-0.0748(8)$	$5.2(3)$
$\mathrm{C}(141)$	$0.243(1)$	$0.423(1)$	$0.001(1)$	$5.8(3)$
$\mathrm{C}(151)$	$0.394(1)$	$0.423(1)$	$0.195(1)$	$6.7(3)$

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4 / 3)\left[a^{2} B(1,1)+\right.$ $b^{2} B(2,2)+c^{2} B(3,3)+a b(\cos \gamma) B(1,2)+a c(\cos \beta) B(1,3)+$ $b c(\cos \alpha) B(2,3)]$.
ands. The ${ }^{1} \mathrm{H}$ NMR spectra of compounds 5 and 6 show the expected singlets for the methyl groups of the pentamethylcyclopentadienyl ring, and for the SiMe_{3} group, and the two multiplets expected for the ring protons of the mono- and di-substituted cyclopentadienyl ligands, consistent [17] with $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$, and $\mathrm{AA}^{\prime} \mathrm{B}$ spin systems respectively.

Particularly significant are the observed ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the oxo complex 7 between 20 and $50^{\circ} \mathrm{C}$, which show four and five resonances for the silyl-substituted ring protons and carbon atoms respectively. This behaviour indicates that they are magnetically different, due to the absence of a symmetry plane perpendicular to the cyclopentadienyl rings, consistent with a structure in which the μ-oxo system bridges one equatorial side position of at least one of the tantalum atoms. However, the ${ }^{1} \mathrm{H}$ NMR spectrum of complex 8 , which is also a dinuclear complex, exhibits two resonances for the cyclopentadienyl ring protons ($\mathrm{AA}^{\prime} \mathrm{B}$ system), consistent with the presence of a plane of symmetry perpendicular to both rings and, therefore, with a structure in which both central positions are involved in the μ-oxo bridging system. The ${ }^{13} \mathrm{C}$ NMR data confirm this proposal.

The oxo-mononuclear complexes $\mathbf{9}$ and 10 show the NMR behaviour expected for species containing a chiral metal centre.

2.3. Dicyclopentadienyl tantalum hydrides

Treatment of the tantalum(IV) chlorides 3 and 4 with an excess of lithium aluminium hydride in diethyl ether over a period of several hours affords a yellow suspension, containing a mixture of the colourless tantalum(V) hydrides $\mathrm{TaCp}^{*} \mathrm{CpH}_{3}\left(\mathrm{Cp}=\mathrm{Cp}^{\prime}, 11 ; \mathrm{Cp}^{\prime \prime}\right.$, 12) and yellow tantalum(III) derivatives, probably similar to the reported [18] niobium complex characterized as the tetrahydridoaluminate compound $\mathrm{Cp}_{2} \mathrm{NbH}_{2} \mathrm{AlH}_{2}$. Addition of water to this mixture of disproportionation products gives the trihydrido complexes 11 and $\mathbf{1 2}$ in high yields, as shown in Scheme 1.

Both compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ are soluble in saturated and aromatic hydrocarbons and decompose in chlorinated solvents.

The IR spectra show the characteristic absorptions for both cyclopentadienyl rings, as well as other internal vibrations of the different substituents. The $\nu_{(\text {та }}$ н) ab sorption for the trihydrido complexes appears as a broad band at 1778 (11) and 1781 (12) cm^{-1}, consistent with data reported for similar hydrido derivatives [2c,3a].

The ${ }^{1} \mathrm{H}$ NMR spectra of both trihydrido compounds 11 and 12 show the expected resonances for the cyclopentadienyl rings along with one doublet and one triplet for the hydride protons, consistent with an AX_{2} spin system.

Table 2
Selected bond distances (\AA) and angles (deg) for 3 with ESDs in parentheses

Ta-coordination sphere		$\mathrm{Cp}{ }^{*}$ ring		$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}$	
Bond distances					
$\mathrm{Ta}(1)-\mathrm{CE}$	2.105	$\mathrm{C}(11) \ldots \mathrm{C}(12)$	1.42(1)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.42(1)
$\mathrm{Ta}(1)-\mathrm{CE}^{\prime}$	2.075	$\mathrm{C}(11)-\mathrm{C}(15)$	1.43(2)	$\mathrm{C}(21)-\mathrm{C}(25)$	1.42(1)
$\mathrm{Ta}(1)-\mathrm{Cl}(1)$	2.447(3)	$\mathrm{C}(11)-\mathrm{C}(111)$	1.52(2)	$\mathrm{C}(22)-\mathrm{C}(23)$	1.43 (1)
$\mathrm{Ta}(1)-\mathrm{Cl}(2)$	2.418(3)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.40 (1)	C(23)-C(24)	1.42(2)
		$\mathrm{C}(12)-\mathrm{C}(121)$	1.50(2)	$\mathrm{C}(24)-\mathrm{C}(25)$	1.40 (1)
		$\mathrm{C}(13)-\mathrm{C}(14)$	1.45 (2)	Si(1)-C(21)	1.88 (1)
		C(13)-C(131)	1.49(1)	$\mathrm{Si}(1)-\mathrm{C}(31)$	1.88(1)
		$\mathrm{C}(14)-\mathrm{C}(15)$	1.38(2)	Si(1)-C(32)	1.87(1)
		C(14)-C(141)	1.51(2)	Sil 1)-C(33)	1.86(1)
		C(15)-C(151)	1.48(2)		
Bond angles					
$\mathrm{Cl}(1)-\mathrm{Ta}(1)-\mathrm{Cl}(2)$	85.3(1)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(15)$	107.3(9)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(25)$	105.5(9)
$\mathrm{Cl}(1)-\mathrm{Ta}(1)-\mathrm{CE}$	107.5	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(111)$	125.0(1)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	109.1(9)
$\mathrm{Cl}(1)-\mathrm{Ta}(1)-\mathrm{CE}^{\prime}$	106.0	$\mathrm{C}(15)-\mathrm{C}(11)-\mathrm{C}(111)$	128.0(1)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	107.6(9)
$\mathrm{Cl}(2)-\mathrm{Ta}(1)-\mathrm{CE}$	106.9	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	108.7(9)	$\mathrm{C}(23) \mathrm{C}(24) \mathrm{C}(25)$	106.9(9)
$\mathrm{Cl}(2)-\mathrm{Ta}(1)-\mathrm{CE}^{\prime}$	108.7	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(121)$	125.1(9)	$\mathrm{C}(21)-\mathrm{C}(25)-\mathrm{C}(24)$	110.8(9)
$\mathrm{CE}-\mathrm{Ta}(1)-\mathrm{CE}^{\prime}$	132.4	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(121)$	125.6(9)	$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	129.8(7)
		$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	107.0(8)	$\mathrm{Si}(1)-\mathrm{C}(21)-\mathrm{C}(25)$	123.4(7)
		$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(131)$	127.0(1)	$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(31)$	104.2(5)
		$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(131)$	125.0(1)	$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(32)$	109.7(5)
		$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	108.6(9)	$\mathrm{C}(21)-\mathrm{Si}(1)-\mathrm{C}(33)$	111.9(5)
		$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(141)$	125.6(9)	C(31)-Si(1)-C(32)	108.8(6)
		$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(141)$	125.0(1)	$\mathrm{C}(31)-\mathrm{Si}(1)-\mathrm{C}(33)$	109.6(7)
		$\mathrm{C}(11)-\mathrm{C}(15)-\mathrm{C}(14)$	108.0(1)	$\mathrm{C}(32)-\mathrm{Si}(1)-\mathrm{C}(33)$	112.4(6)
		$\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(151)$	126.0(1)		
		$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(151)$	125.0(1)		

[^1]

Fig. 2. ORTEP view of the molecular structure of $\mathrm{Ta}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left\{\eta^{5}\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right\} \mathrm{H}_{3}, 12$, with the atom numbering scheme.

The molecular structure of 12 obtained by X-ray diffraction studies with the atomic numbering scheme is shown in Fig. 2. Final atomic coordinates and equivalent isotropic thermal parameters for non-hydrogen atoms are displayed in Table 3. Sclected bond distances and angles are given in Table 4. The molecular structure is that of a typical bent-metallocene similar to $\mathrm{M}\left(\eta^{5}\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{H}_{3},(\mathrm{M}=\mathrm{Nb}, \mathrm{Ta})$ [19]. The position of the hydrogen atoms found in the difference Fourier map could not be refined, but the $\mathrm{Ta}-\mathrm{H}(1)$ and $\mathrm{Ta}-\mathrm{H}(2)$ distances (1.77 and $1.75 \AA$) have normal values, whereas the $\mathrm{Ta}-\mathrm{H}(3)$ distance $(1.51 \AA$) is shorter than expected; however, the apparent differences may not be real.

The angle between the two cyclopentadienyl planes has a value of $37.9(1)^{\circ}$ and Ta -centroid distances have similar values ($\mathrm{Ta}-\mathrm{Cp}^{\prime \prime} 2.064 \AA$ and $\mathrm{Ta}-\mathrm{Cp}^{*} 2.078 \AA$),

Table 3
Positional parameters for $\mathbf{1 2}$ with ESDs in parentheses

Atom	x	y	z	$B\left(\AA^{2}\right)$
$\mathrm{Ta}(1)$	$0.19438(1)$	$0.17888(1)$	$0.20886(1)$	$2.912(3)$
$\mathrm{Si}(1)$	$0.4129(2)$	$-0.1971(1)$	$0.26473(8)$	$5.40(3)$
$\mathrm{Si}(2)$	$0.1796(2)$	$0.2521(1)$	$0.42252(6)$	$5.28(3)$
$\mathrm{C}(11)$	$0.1664(5)$	$0.1384(3)$	$0.3574(2)$	$4.14(7)$
$\mathrm{C}(12)$	$0.3252(5)$	$0.0372(3)$	$0.3351(2)$	$3.96(7)$
$\mathrm{C}(13)$	$0.2584(5)$	$-0.0426(3)$	$0.2936(2)$	$4.15(7)$
$\mathrm{C}(14)$	$0.0585(5)$	$0.0136(3)$	$0.2881(2)$	$4.42(8)$
$\mathrm{C}(15)$	$0.0015(5)$	$0.1231(4)$	$0.3265(2)$	$4.41(8)$
$\mathrm{C}(111)$	$0.6594(8)$	$-0.1875(5)$	$0.2424(4)$	$7.4(1)$
$\mathrm{C}(112)$	$0.316(1)$	$-0.2223(5)$	$0.1720(4)$	$9.0(2)$
$\mathrm{C}(113)$	$0.406(1)$	$-0.3379(5)$	$0.3543(4)$	$10.8(2)$
$\mathrm{C}(121)$	$0.4282(8)$	$0.2747(5)$	$0.4132(4)$	$8.6(1)$
$\mathrm{C}(122)$	$-0.008(1)$	$0.4137(5)$	$0.3951(3)$	$9.4(2)$
$\mathrm{C}(123)$	$0.139(1)$	$0.1702(7)$	$0.5315(3)$	$9.4(2)$
$\mathrm{C}(21)$	$-0.0911(4)$	$0.3286(3)$	$0.1455(2)$	$3.72(7)$
$\mathrm{C}(22)$	$0.0473(5)$	$0.3961(3)$	$0.1255(2)$	$4.19(7)$
$\mathrm{C}(23)$	$0.1920(5)$	$0.3265(4)$	$0.0756(2)$	$4.20(7)$
$\mathrm{C}(24)$	$0.1326(5)$	$0.2189(3)$	$0.0642(2)$	$4.00(7)$
$\mathrm{C}(25)$	$0.0386(4)$	$0.2196(3)$	$0.1073(2)$	$3.86(7)$
$\mathrm{C}(211)$	$-0.2786(6)$	$0.3758(5)$	$0.1911(3)$	$6.0(1)$
$\mathrm{C}(221)$	$0.0365(8)$	$0.5271(4)$	$0.1432(3)$	$7.7(1)$
$\mathrm{C}(231)$	$0.3536(6)$	$0.3729(5)$	$0.0325(3)$	$7.4(1)$
$\mathrm{C}(251)$	$-0.1618(6)$	$0.1306(4)$	$0.1051(3)$	$6.5(1)$
$\mathrm{C}(241)$	$0.2251(8)$	$0.1291(5)$	$0.0062(3)$	$7.1(1)$

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4 / 3)\left[a^{2} B(1,1)+\right.$ $b^{2} B(2,2)+c^{2} B(3,3)+a b(\cos \gamma) B(1,2)+a c(\cos \beta) B(1,3)+$ $b c(\cos \alpha) B(2,3)]$.
both features are comparable with that found for $\mathrm{TaCp}_{2} \mathrm{H}_{3}$.

The two cyclopentadienyl rings are eclipsed and their substituents are moved away from the metal to minimize their mutual repulsion. The silicon atoms are $0.193(1) \AA$ out of the Cp plane, and the methyl carbon atoms $\mathrm{C}(221)$ and $\mathrm{C}(241)$, eclipsed by the SiMe_{3} groups,

Table 4
Selected bond distances (\AA) and angles (deg) for 12 with ESDs in parentheses

Bond distances					
$\mathrm{Ta}(1)-\mathrm{C}(11)$	2.417(3)	Si(1) C(111)	1.858(6)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.423(6)
$\mathrm{Ta}(1)-\mathrm{C}(12)$	$2.380(3)$	Sif 1 -C(112)	$1.875(7)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.400(5)$
$\mathrm{Ta}(1)-\mathrm{C}(13)$	2.409 (3)	$\mathrm{Si}(1)-\mathrm{C}(113)$	$1.872(6)$	$\mathrm{C}(21)-\mathrm{C}(25)$	$1.416(5)$
$\mathrm{Ta}(1)-\mathrm{C}(14)$	$2.380(4)$	$\mathrm{Si}(2)-\mathrm{C}(11)$	$1.863(4)$	$\mathrm{C}(21)-\mathrm{C}(211)$	$1.527(5)$
$\mathrm{Ta}(1)-\mathrm{C}(15)$	$2.386(4)$	$\mathrm{Si}(2)-\mathrm{C}(121)$	$1.912(7)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.439(5)$
$\mathrm{Ta}(1)-\mathrm{C}(21)$	2.394(3)	$\mathrm{Si}(2)-\mathrm{C}(122)$	$1.864(5)$	$\mathrm{C}(22)-\mathrm{C}(221)$	$1.501(6)$
$\mathrm{Ta}(1)-\mathrm{C}(22)$	2.415(3)	$\mathrm{Si}(2)-\mathrm{C}(123)$	$1.864(5)$	$\mathrm{C}(23)-\mathrm{C}(24)$	1.423(6)
$\mathrm{Ta}(1)-\mathrm{C}(23)$	2.408(3)	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.438(4)$	$\mathrm{C}(23)-\mathrm{C}(231)$	$1.491(6)$
$\mathrm{Ta}(1)-\mathrm{C}(24)$	$2.414(3)$	$\mathrm{C}(11)-\mathrm{C}(15)$	$1.433(6)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.396(5)$
$\mathrm{Ta}(1)-\mathrm{C}(25)$	$2.399(3)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.444(6)$	$\mathrm{C}(24)-\mathrm{C}(241)$	$1.515(6)$
$\mathrm{Si}(1)-\mathrm{C}(13)$	1.869(3)	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.420(5)$	$\mathrm{C}(25)-\mathrm{C}(251)$	1.521 (6)
$\mathrm{Ta}(1)-\mathrm{CE}$	2.083	$\mathrm{Ta}(1)-\mathrm{CE}^{\prime}$	2.063		
Rond angles					
$\mathrm{CE}-\mathrm{Ta}(1)-\mathrm{CE}^{\prime}$	142.6	$\mathrm{C}(13)-\mathrm{Si}(1)-\mathrm{C}(111)$	110.5(2)		
$\mathrm{C}(13)-\mathrm{Si}(1)-\mathrm{C}(112)$	110.0(2)	$\mathrm{C}(13)-\mathrm{Si}(1)-\mathrm{C}(113)$	106.9(2)		
$C(11)-S i(2)-C(121)$	109.7(2)	$\mathrm{C}(11)-\mathrm{Si}(2)-\mathrm{C}(122)$	111.2(2)		
$\mathrm{C}(11)-\mathrm{Si}(2)-\mathrm{C}(123)$	107.1(3)				

CE is the centroid of the Cp^{*} ring. CE^{\prime} is the centroid of the $\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}$.
show an even more important deviation with respect to the Cp* plane ($0.194(5)$ and $0.188(5) \AA$).

A comparison between the two molecular structures of $\mathbf{3}$ and $\mathbf{1 2}$ containing mono- and di-silyl-substituted rings shows that the angle formed by the two cyclopentadienyl rings is smaller for complex $\mathbf{1 2}$ which contains the more substituted ring.

Simple adducts may be prepared by thermolysis of 12 in toluene in the presence of two-electron donor ligands. When $\mathrm{TaCp}^{*} \mathrm{Cp}^{\prime \prime} \mathrm{H}_{3}, \mathbf{1 2}$, is heated at $120^{\circ} \mathrm{C}$ under atmosphere of $\mathrm{CO}, \mathrm{C}_{2} \mathrm{H}_{4}$ or in the presence of $2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}$, hydrogen is displaced to give the hydrido tantalum(III) complexes $\mathrm{TaCp}{ }^{*} \mathrm{CpH}(\mathrm{L})(\mathrm{L}=$ $\mathrm{CO}, 13 ; \mathrm{C}_{2} \mathrm{H}_{4}, 14 ; 2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}, 15$), which are obtained in good yields, as shown in Scheme 1.

The IR spectrum of $\mathrm{TaCp}{ }^{*} \mathrm{Cp}^{\prime \prime} \mathrm{H}(\mathrm{CO}) \mathbf{1 3}$, displays the characteristic ν_{CO} stretching frequency at 1880 cm^{-1} consistent with considerable back-donation from tantalum to carbon monoxide. This value is expectedly higher than that observed for $\mathrm{TaCp}_{2}^{*} \mathrm{H}(\mathrm{CO}),\left(\nu_{\mathrm{CO}}=\right.$ $1865 \mathrm{~cm}^{-1}$) [3a] and is similar to that found for $\mathrm{TaCp}_{2} \mathrm{H}(\mathrm{CO}),\left(\nu_{\mathrm{CO}}=1885 \mathrm{~cm}^{-1}\right)$ [20], indicating that the increased electron density of the metal centre due to the $\mathrm{C}_{5} \mathrm{Me}_{5}$ ring is alleviated by the negative mesomeric effect [21] of the silyl groups in the disubstituted $\mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}$ ligand.

The $\nu_{\mathrm{C}=\mathrm{N}}$ absorption of the coordinated isocyanide ligand in complex 15 appears at $1860 \mathrm{~cm}^{-1}$, a displacement of $258 \mathrm{~cm}^{-1}$ to lower frequency with respect to the value observed for the free ligand $\left(2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}\right.$, $\nu=2118 \mathrm{~cm}^{-1}$), as a consequence of the π-electron donation to the antibonding ligand orbitals, which decreases the $\mathrm{C}-\mathrm{N}$ bond order [21].

The η^{2}-olefin compound $\mathrm{TaCp}{ }^{*} \mathrm{Cp}^{\prime \prime} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right), \mathbf{1 4}$, is formed in a quantitative yield and is thermally stable, with evolution of ethane only being observed by prolonged heating of 12 (3 days at $120^{\circ} \mathrm{C}$) under an excess of ethylene.

The NMR (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) behaviour of complexes $13-15$ is as expected for chiral complexes (see Experimental section). The ${ }^{1} H$ NMR spectrum of 14 reveals a small coupling (${ }^{3} J_{\mathrm{H}-\mathrm{H}_{\text {endo }}}=2.40 \mathrm{~Hz}$) between the endo ethylenic hydrogens and the metal-bound hydrogen atom. The upfield ${ }^{13} \mathrm{C}$ NMR shifts for the ethylenic carbons at $\delta 10.99$ and $\delta 9.77$ are indicative of a significant π-back donation, consistent with a significant contribution of a tantalacyclopropane system [22].

3. Experimental section

3.1. General considerations

All manipulations of air- and/or moisture-sensitive materials were carried out on a conventional vacuum
line, using standard Schlenk or cannula techniques, or in a drybox under an atmosphere of argon.

Solvents were dried and purified by prolonged reflux under appropriate drying agent (n-hexane over $\mathrm{Na}-\mathrm{K}$ alloy; toluene, THF and diethyl ether over sodium) and distilled under an argon atmosphere before use. Reagent-grade chemicals purchased from commercial sources and used without further purification were as follows: sodium and mercury (Panreac), phosphorus pentachloride (Fluka), lithium aluminium hydride (Al drich), carbon monoxide and ethylene (SEO), $\mathrm{MCp}^{*} \mathrm{Cl}_{4}$ ($\mathrm{M}=\mathrm{Nb}$ [4], Ta [5]), $\mathrm{LiCp}\left(\mathrm{Cp}=\mathrm{C}_{5} \mathrm{H}_{5-x}\left(\mathrm{SiMe}_{3}\right)_{x}\right.$, $x=1,2$) [6] and 2,6-Me $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NC}$ [23] were prepared by published methods.

IR spectra were recorded on a Perkin-Elmer 583 spectrophotometer ($4000-200 \mathrm{~cm}^{-1}$) using Nujol mulls between CsI pellets. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Varian VXR Unity- 300 and 500 MHz spectrometer. Chemical shifts are reported in δ units (positive chemical shifts to a higher frequency), relative to a TMS standard. Magnetic susceptibilities were measured by the Faraday method using a Bruker B-E 15 magnetic balance with a temperature control unit. C, H and N analyses were performed with a Perkin-Elmer 240C microanalyser.
3.2. Synthesis of $M C p^{*} \mathrm{CpCl}_{2},\left(M=N b, C p=C p^{\prime} 1\right.$; $C p^{\prime \prime} 2 ; M=T a, C p=C p^{\prime}$ 3; $C p^{\prime \prime}$ 4)

A toluene (75 ml) suspension of $\mathrm{MCp}^{*} \mathrm{Cl}_{4}(\mathrm{M}=\mathrm{Nb}$, 0.80 g ; $\mathrm{Ta}, 1.00 \mathrm{~g} ; 2.16 \mathrm{mmol})$ and $\mathrm{LiCp}\left(\mathrm{Cp}=\mathrm{Cp}^{\prime}\right.$, $0.31 \mathrm{~g}, 2.16 \mathrm{mmol}$ or $\mathrm{Cp}^{\prime \prime}, 0.47 \mathrm{~g}, 2.16 \mathrm{mmol}$) was added to 10% sodium amalgam ($0.052 \mathrm{~g}, 2.16 \mathrm{mmol}$). The mixture was stirred for 12 h at room temperature. The dark-green suspension was filtered through Celite and after concentration to ca .20 ml , the solution was cooled to $-40^{\circ} \mathrm{C}$ to give green crystals of $1-4$.

The data for 1 follow. Yield $0.47 \mathrm{~g}(50 \%)$. IR (Nujol mull, $\left.\nu \mathrm{cm}^{-1}\right): 1246(\mathrm{~s}), 1166(\mathrm{~m}), 1080(\mathrm{w}), 1022(\mathrm{~s})$, $900(w), \quad 836(\mathrm{vs}), 756(w), 725(w), 631(w), 430(w)$, 392(m), 330(m). ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$, in benzene- d_{6}): 14.3 (br, $1 \mathrm{H}, H_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}$), $12.2\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}\right.$), $10.0\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}\right), 1.3\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)$. Anal. Found: C, 47.61 ; $\mathrm{H}, 6.50 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{NbSi}$. Calc.: C, 47.56 ; H, 6.47%.

The data for 2 follow. Yield $0.55 \mathrm{~g}(50 \%)$. IR (Nujol mull, $\left.\nu \mathrm{cm}^{-1}\right): 1251(\mathrm{~s}), 1160(\mathrm{w}), 1080(\mathrm{w}), 1021(\mathrm{~m})$, $980(\mathrm{w}), 836(\mathrm{vs}), 756(\mathrm{~m}), 728(\mathrm{~m}), 691(\mathrm{w}), 632(\mathrm{w})$, $392(\mathrm{~m}, \mathrm{br}) .{ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$, in benzene $-d_{6}$): 14.28(br, $\left.1 \mathrm{H}, \quad H_{3} \mathrm{C}_{5}\left(\mathrm{SiMe}_{3}\right)_{2}\right), \quad 12.14\left(\mathrm{br}, \quad 2 \mathrm{H}, \quad \mathrm{H}_{3} \mathrm{C}_{5}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$. Anal. Found: C, 49.67; H, 7.20. $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{NbSi}_{2}$. Calc.: C, $49.60 ; \mathrm{H}, 7.10 \%$.

The data for 3 follow. Yield $0.56 \mathrm{~g}(70 \%)$. IR (Nujol mull, $\nu \mathrm{cm}^{-1}$): $1245(\mathrm{vs}), 1190(\mathrm{w})$, 1169(s), $1087(\mathrm{~s})$, 1027(s), 903(s), 839(s,br), 756(m), 695(m), 632(m), $479(\mathrm{~m}), 360(\mathrm{~s}), 301(\mathrm{~s}), 270(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$, in
chloroform- d_{1}): $26.00\left(\mathrm{br}, 15 \mathrm{H}, \mathrm{C}_{5} M e_{5}\right), 20.17(\mathrm{br}, 4 \mathrm{H}$, $H_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}$), 2.30(br, $9 \mathrm{H}, \mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}$). Anal. Found: C, $40.98 ; \mathrm{H}, 5.29 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Cl}_{2}$ SiTa. Calc.: C, 41.23 ; H, 5.38%.

The data for 4 follow. Yield $0.63 \mathrm{~g}(70 \%)$. IR (Nujol mull, $\nu \mathrm{cm}^{-1}$): 1264(m), 1241(s), 1190(w), 1088(m), $1060(\mathrm{w}), 1020(\mathrm{~m}), 920(\mathrm{~m}), 903(\mathrm{~m}), 875(\mathrm{~m}), 840(\mathrm{vs})$, $753(\mathrm{~m}), 720(\mathrm{w}), 695(\mathrm{w}), 625(\mathrm{w}), 377(\mathrm{w}), 296(\mathrm{~m}),{ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$, in chloroform- d_{1}): $26.00(\mathrm{br}, 15 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{Me}_{5}$), 23.00(br, $\left.3 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}_{5}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 1.80(\mathrm{~s}, 18 \mathrm{H}$, $\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right.$). Anal. Found: C, $42.30 ; \mathrm{H}, 5.96$. $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{Si}_{2}$ Ta. Calc.: C, $42.28 ; \mathrm{H}, 6.00 \%$.

3.3. Synthesis of $\mathrm{TaCp}^{*} \mathrm{CpCl}_{3}\left(\mathrm{Cp}=C p^{\prime} 5 ; C p^{\prime \prime} 6\right)$

$\mathrm{PCl}_{5}\left(\mathrm{Cp}=\mathrm{Cp}^{\prime}, 0.10 \mathrm{~g}, 0.47 \mathrm{mmol} ; \mathrm{Cp}=\mathrm{Cp}^{\prime \prime}, 0.09\right.$ $\mathrm{g}, 0.42 \mathrm{mmol}$) was added to a toluene (50 ml) suspension of $\mathrm{TaCp}{ }^{*} \mathrm{CpCl}_{2}\left(\mathrm{Cp}=\mathrm{Cp}^{\prime}, 0.50 \mathrm{~g}, 0.95 \mathrm{mmol}\right.$; $\left.\mathrm{Cp}=\mathrm{Cp}^{\prime \prime}, 0.50 \mathrm{~g}, 0.83 \mathrm{mmol}\right)$. The mixture was stirred for 1 h at room temperature and then the resultant orange suspension was decanted and filtered. The residual orange solid was washed with n-hexane ($2 \times 5 \mathrm{ml}$), dried in vacuo and identified as complexes 5 and 6 .

The data for 5 follow. Yield $0.43 \mathrm{~g}(80 \%)$. IR (Nujol mull, $\left.\nu \mathrm{cm}^{-1}\right): 1250(\mathrm{~s}), 1176(\mathrm{~m}), 1075(\mathrm{w}), 1027(\mathrm{~m})$, $904(\mathrm{~m}), 838(\mathrm{vs}), 759(\mathrm{~m}), 727(\mathrm{~m}), 635(\mathrm{~m}), 447(\mathrm{vs})$, 348(s), 325(m), 293(w). 'H NMR ($\delta \mathrm{ppm}$, in chloro-form-d $)_{1}$: 7.19 ($\mathrm{m}, 2 \mathrm{H}, \quad H_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}$), $6.83(\mathrm{~m}, 2 \mathrm{H}$, $\left.H_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}\right), \quad 2.53\left(\mathrm{~s}, \quad 15 \mathrm{H}, \quad \mathrm{C}_{5} M e_{5}\right), 0.35(\mathrm{~s}, \quad 9 \mathrm{H}$, $M e_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ ppm, in chloroform- d_{1}): $148.73\left(\mathrm{~s}, \mathrm{C}_{1}, C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), 133.53\left(\mathrm{~s}, \mathrm{C}_{2,5}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)$, 129.82(s, $\left.C_{5} \mathrm{Me}_{5}\right), 115.68\left(\mathrm{~s}, \mathrm{C}_{3.4}, C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), 13.24(\mathrm{~s}$, $\left.M e_{5} \mathrm{C}_{5}\right),-0.16\left(\mathrm{~s}, \mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)$. Anal. Found: C, 38.56 ; $\mathrm{H}, 5.09 . \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Cl}_{3}$ SiTa. Calc.: C, 38.62 ; H, 5.04%.

The data for 6 follow. Yield $0.42 \mathrm{~g}(80 \%)$. IR (Nujol mull, $\nu \mathrm{cm}^{-1}$): 1243(s), $1097(\mathrm{~m}), 1023(\mathrm{~m}), 935(\mathrm{~m})$, $911(\mathrm{~m}), 839(\mathrm{vs}), 760(\mathrm{~m}), 726(\mathrm{~m}), 635(\mathrm{w}), 450(\mathrm{~s})$, $380(\mathrm{~m}), 334(\mathrm{~s}) .{ }^{\text {i }} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$, in chloroform $-d_{1}$): $7.20\left(\mathrm{~m}, 2 \mathrm{H}, \quad \mathrm{H}_{3} \mathrm{C}_{5}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 6.77\left(\mathrm{~m},{ }^{1} \mathrm{H}, \quad \mathrm{H}_{3} \mathrm{C}_{5}(\mathrm{Si}-\right.$ $\left.\left.\mathrm{Me}_{3}\right)_{2}\right), 2.56\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} M e_{5}\right), 0.28\left(\mathrm{~s}, 18 \mathrm{H},\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2}\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\delta \mathrm{ppm}$, in chloroform- d_{1}): 151.98(s, $\left.\mathrm{C}_{1,3}, \quad C_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right), \quad 130.54\left(\mathrm{~s}, \quad C_{5} \mathrm{Me}_{5}\right)$, 127.48(s, $\left.\mathrm{C}_{2}, \mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 121.53\left(\mathrm{~s}, \mathrm{C}_{4,5}, C_{5} \mathrm{H}_{3}(\mathrm{Si}-\right.$ $\left.\mathrm{Me}_{3}\right)_{2}$), $13.5\left(\mathrm{~s}, \quad M e_{5} \mathrm{C}_{5}\right),-0.17\left(\mathrm{~s},\left(M e_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)\right.$. Anal. Found: C, 39.98; H, 5.70. $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{Cl}_{3} \mathrm{Si}_{2} \mathrm{Ta}$. Calc.: C, 39.90; H, 5.74%.
3.4. Synthesis of $\left[\mathrm{TaCp}^{*} \mathrm{CpCl}_{2}\right]_{2}(\mu-O),\left(\mathrm{Cp}=\mathrm{Cp}^{\prime} 7\right.$; Cp" 8)

A Schlenk tube containing a solution of $\mathbf{3}\left(\mathrm{Cp}=\mathrm{Cp}^{\prime}\right.$, $0.70 \mathrm{~g}, 1.33 \mathrm{mmol})$ or $4\left(\mathrm{Cp}=\mathrm{Cp}^{\prime \prime}, 0.70 \mathrm{~g}, 1.17 \mathrm{mmol}\right)$ in THF (70 ml) was sealed under 1 atm of dry O_{2}. The resulting orange solution was stirred for 2 or 3 h at room temperature, filtered and concentrated to ca. 15 ml. Yellow or orange crystals of 7 or 8 were obtained by cooling to $-40^{\circ} \mathrm{C}$ overnight.

The data for 7 follow. Yield $0.56 \mathrm{~g}(40 \%)$. IR (Nujol mull, $\nu \mathrm{cm}^{-1}$): 1243(vs), $1170(\mathrm{~m}), 1089(\mathrm{~m}), 1028(\mathrm{~s})$, $960(\mathrm{~m}), 845(\mathrm{vs}), 630(\mathrm{~m}), 415(\mathrm{~m}), 350(\mathrm{~s}), 330(\mathrm{~s}) .^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$, in chloroform- d_{1}): $7.05(\mathrm{~m}, 1 \mathrm{H}$, $\left.H_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}\right), 6.43\left(\mathrm{~m}, 1 \mathrm{H}, H_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}\right), 6.35(\mathrm{~m}, 1 \mathrm{H}$, $\left.H_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}\right), 5.80\left(\mathrm{~m}, 1 \mathrm{H}, H_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}\right), 2.54(\mathrm{~s}, 15 \mathrm{H}$, $\left.\mathrm{C}_{5} M e_{5}\right), 0.30\left(\mathrm{~s}, 9 \mathrm{H}, M e_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (δ ppm , in chloroform- d_{1}): $131.80\left(\mathrm{~s}, \mathrm{C}_{1}, C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right.$), $124.73\left(\mathrm{~s}, \mathrm{C}_{5}, C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), 121.93\left(\mathrm{~s}, \mathrm{C}_{2}, C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right.$), $119.61\left(\mathrm{~s}, C_{5} \mathrm{Me}_{5}\right), 114.02\left(\mathrm{~s}, \mathrm{C}_{4}, C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), 110.31(\mathrm{~s}$, $\left.\mathrm{C}_{3}, \quad \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), \quad 14.27\left(\mathrm{~s}, \quad M e_{5} \mathrm{C}_{5}\right), \quad-0.14(\mathrm{~s}$, $M e_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}$). Anal. Found: C, $40.70 ; \mathrm{H}, 5.32$. $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{Cl}_{4} \mathrm{OSi}_{2} \mathrm{Ta}_{2}$. Calc.: C, $40.61 ; \mathrm{H}, 5.30 \%$.

The data for 8 follow. Yield $0.57 \mathrm{~g}(40 \%)$. IR (Nujol mull, $\left.\nu \mathrm{cm}^{-1}\right): 1248(\mathrm{vs}), 1097(\mathrm{~s}), 1068(\mathrm{~s}), 1024(\mathrm{~s})$, $937(\mathrm{~m}), \quad 839(\mathrm{vs}), 887(\mathrm{w}), 760(\mathrm{~m}), 724(\mathrm{~s}), 635(\mathrm{~m})$, 397(s), 332(s), 246(m). ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$, in chloro-form- d_{1}): $7.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}_{5}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 6.75(\mathrm{~m}, 1 \mathrm{H}$, $\left.H_{3} \mathrm{C}_{5}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 2.56\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} M e_{5}\right), 0.26(\mathrm{~s}, 18 \mathrm{H}$, $\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\delta \mathrm{ppm}$, in chloroform$\left.d_{1}\right): 151.98\left(\mathrm{~s}, \mathrm{C}_{1,3}, C_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 130.47\left(\mathrm{~s}, \mathrm{C}_{5} M e_{5}\right)$, $127.57\left(\mathrm{~s}, \mathrm{C}_{2}, C_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 121.77\left(\mathrm{~s}, \mathrm{C}_{4.5}, C_{5} \mathrm{H}_{3}(\mathrm{Si}-\right.$ $\left.\mathrm{Me}_{3}\right)_{2}$), 13.45(s, $M e_{5} \mathrm{C}_{5}$), -0.19 (s, $\left.\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)$. Anal. Found: C, $41.80 ; \mathrm{H}, 5.95 . \mathrm{C}_{42} \mathrm{H}_{72} \mathrm{Cl}_{4} \mathrm{OSi}_{4} \mathrm{Ta}_{2}$. Calc.: C, 41.72; H, 6.00\%.

3.5. Synthesis of $T a C p^{*} C p C l(O),\left(C p=C p^{\prime} 9 ; C p^{\prime \prime} 10\right)$

Solutions of $\mathbf{3}(0.70 \mathrm{~g}, 1.33 \mathrm{mmol})$ or $\mathbf{4}(0.70 \mathrm{~g}, 1.17$ mmol) in THF (70 ml) were stirred in air for $12 \mathrm{~h}(\mathbf{3})$ or $2-3$ days (4). The resulting orange suspension was filtered, the solid washed with cold n-hexane (2×5 ml), dried in vacuo and identified as $\mathbf{9}$ or $\mathbf{1 0}$.

The data for 9 follow. Yield $0.27 \mathrm{~g}(40 \%)$. IR (Nujol mull, $\nu \mathrm{cm}^{-1}$): 1246(vs), 1171(m), 1088(m), 1032(s), $962(\mathrm{~m}), 901(\mathrm{~s}), 840(\mathrm{vs}), 630(\mathrm{~m}), 417(\mathrm{~m}), 368(\mathrm{~s}), 327(\mathrm{~s})$, 283(m). ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$, in chloroform- d_{1}): $7.84(\mathrm{~m}$, $\left.1 \mathrm{H}, H_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}\right), 6.57\left(\mathrm{~m}, 1 \mathrm{H}, H_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}\right), 6.22(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}$), $5.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}\right.$), $2.18(\mathrm{~s}$, $\left.15 \mathrm{H}, \mathrm{C}_{5} M e_{5}\right), 0.32\left(\mathrm{~s}, 9 \mathrm{H}, M e_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right) \mathrm{NMR}$ ($\delta \mathrm{ppm}$, in chloroform- d_{1}): $133.86\left(\mathrm{~s}, \mathrm{C}_{1}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right.$), $127.49\left(\mathrm{~s}, \mathrm{C}_{5}, C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right.$), $124.87\left(\mathrm{~s}, \mathrm{C}_{2}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right.$), $124.75\left(\mathrm{~s}, C_{5} \mathrm{Me}_{5}\right), 112.79\left(\mathrm{~s}, \mathrm{C}_{4}, C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), 119.19(\mathrm{~s}$, $\left.\mathrm{C}_{3}, \quad C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), \quad 12.11\left(\mathrm{~s}, \quad M e_{5} \mathrm{C}_{5}\right), \quad-0.11(\mathrm{~s}$, $M e_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}$). Anal. Found: C, 42.60; H, 5.49. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{28}$ ClOSiTa. Calc.: C, $42.81 ; \mathrm{H}, 5.59 \%$.

The data for 10 follow. Yield 0.34 g (45%). IR (Nujol mull, $\nu \mathrm{cm}^{-1}$): 1250(vs), 1027(s), $935(\mathrm{~s}), 910(\mathrm{~s})$, $840(\mathrm{vs}), 760(\mathrm{~s}), 635(\mathrm{~m}), 369(\mathrm{~s}), 330(\mathrm{~s}), 246(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$, in chloroform- d_{1}): $7.19(\mathrm{~m}, 1 \mathrm{H}$, $\left.H_{3} \mathrm{C}_{5}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 6.23\left(\mathrm{~m}, 1 \mathrm{H}, H_{3} \mathrm{C}_{5}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 5.80(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}_{3} \mathrm{C}_{5}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 2.28\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right), 0.32(\mathrm{~s}, 9 \mathrm{H}$, $\left(M e_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right), 0.24\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\delta \mathrm{ppm}$, in chloroform- d_{1}): $129.27 \mathrm{~s}, 128.76 \mathrm{~s}\left(\mathrm{C}_{1,3}\right.$, $\left.C_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right), \quad 127.65\left(\mathrm{~s}, \quad \mathrm{C}_{5}, \quad C_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$, $125.62\left(\mathrm{~s}, \quad C_{5} \mathrm{Me}_{5}\right), \quad 117.1\left(\mathrm{~s}, \quad \mathrm{C}_{4}, \quad \dot{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$,
$116.73\left(\mathrm{~s}, \mathrm{C}_{2}, C_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 17.14\left(\mathrm{~s}, M e_{5} \mathrm{C}_{5}\right), 2.10(\mathrm{~s}$, $\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right), 0.17\left(\mathrm{~s},\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)\right.$. Anal. Found: C, 43.57; $\mathrm{H}, 6.19$. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{ClOSi}_{2}$ Ta. Calc.: C, $43.70 ; \mathrm{H}, 6.29 \%$.

3.6. Synthesis of $T a C p^{*} C p H_{3}\left(C p=C p^{\prime} 11 ; C p^{\prime \prime} 12\right)$

Stirred solutions of $3\left(\mathrm{Cp}=\mathrm{Cp}^{\prime}, 1.00 \mathrm{~g}, 1.90 \mathrm{mmol}\right)$ or $4\left(\mathrm{Cp}=\mathrm{Cp}^{\prime \prime}, 1.00 \mathrm{~g}, 1.67 \mathrm{mmol}\right)$ and $\mathrm{LiAlH}_{4}(\mathrm{Cp}=$ $\mathrm{Cp}^{\prime}, 0.43 \mathrm{~g}, 11.44 \mathrm{mmol} ; \mathrm{Cp}=\mathrm{Cp}^{\prime \prime}, 0.38 \mathrm{~g}, 10.06$ mmol) in diethyl ether (50 ml) at $-78^{\circ} \mathrm{C}$ were slowly warmed to room temperature. After 12 h , the resulting yellow suspension was cooled to $0^{\circ} \mathrm{C}$ and treated dropwise with degassed $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{ml})$. The solvent was then removed under reduced pressure and the residue was dried in vacuo. Extraction into n-hexane $(2 \times 30 \mathrm{ml})$ followed by concentration and cooling to $-78^{\circ} \mathrm{C}$ afforded colourless crystals of $\mathbf{1 1}$ and $\mathbf{1 2}$.

The data for 11 follow. Yield $0.61 \mathrm{~g}(70 \%)$. IR (Nujol mull, $\nu \mathrm{cm}^{-1}$): 1778(s), 1248(s), 1084(in)), $1028(\mathrm{~m}), 947(\mathrm{~m}), 908(\mathrm{~m}), 837(\mathrm{vs}), 760(\mathrm{~m}), 726(\mathrm{~m})$, 635(w), 450(s). H NMR ($\delta \mathrm{ppm}$, in benzene- d_{6}): $4.85\left(\mathrm{t}, 2 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.58 \mathrm{~Hz}, \mathrm{H}_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}\right), 4.63(\mathrm{t}, 2 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.22 \mathrm{~Hz}, H_{4} \mathrm{C}_{5} \mathrm{SiMe}_{3}\right), 1.97\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} M e_{5}\right)$, $0.28\left(\mathrm{~s}, 9 \mathrm{H}, M e_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right),-0.23\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=11.35\right.$ $\mathrm{Hz}, \mathrm{Ta}-H),-1.69\left(\mathrm{~d}, 2 \mathrm{II},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=11.35 \mathrm{IIz}, \mathrm{Ta}-I I\right)$. $\left.{ }^{13} \mathrm{C}^{\prime} \mathrm{H}\right\}$ NMR ($\delta \mathrm{ppm}$, in benzene- d_{6}): 102.54(s, $C_{5} \mathrm{Me}_{5}$), $98.01\left(\mathrm{~s}, \quad \mathrm{C}_{1}, \quad C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), \quad 92.9\left(\mathrm{~s}, \mathrm{C}_{3.4}\right.$, $C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}$), $92.8\left(\mathrm{~s}, \mathrm{C}_{2.5}, \quad C_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right), \quad 12.77(\mathrm{~s}$, $M e_{5} \mathrm{C}_{5}$), $0.63\left(\mathrm{~s}, \mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)$. Anal. Found: C, 47.46; $\mathrm{H}, 6.90 . \mathrm{C}_{18} \mathrm{H}_{31} \mathrm{SiTa}$. Calc.: C, $47.36 ; \mathrm{H}, 6.85 \%$.

The data for 12 follow. Yield 0.62 g (70\%). IR (Nujol mull, $\nu \mathrm{cm}^{-1}$): 1781(s), 1246(s), $1176(\mathrm{~m})$, 1075(w), 1029(m), 904(m), 837(vs), 759(m), 727(m), 632(m), 447(vs). ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$, in benzene- d_{6}): $4.21\left(\mathrm{~m}, \quad 2 \mathrm{H}, \quad H_{3} \mathrm{C}_{5}\left(\mathrm{SiMe}_{3}\right)_{2}\right), \quad 4.14(\mathrm{~m}, \quad 1 \mathrm{H}$, $\left.H_{3} \mathrm{C}_{5}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 1.98\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} M e_{5}\right), 0.34(\mathrm{~s}, 18 \mathrm{H}$, $\left.\left(M e_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right),-0.68\left(\mathrm{t}, 1 \mathrm{H},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=9.9 \mathrm{~Hz}, \mathrm{Ta}-H\right)$, $-2.03\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=9.9 \mathrm{~Hz}, \mathrm{Ta}-H\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($\delta \mathrm{ppm}$, in benzene $-d_{6}$): $103.62\left(\mathrm{~s}, \mathrm{C}_{1,3}, C_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$, $101.55\left(\mathrm{~s}, \quad C_{5} \mathrm{Me}_{5}\right), \quad 97.40\left(\mathrm{~s}, \quad \mathrm{C}_{4,5}, \quad C_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$, 89.24(s, $\left.\mathrm{C}_{2}, C_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 12.56\left(\mathrm{~s}, M e_{5} \mathrm{C}_{5}\right), 0.54(\mathrm{~s}$, $\left(M e_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)$. Anal. Found: C, $47.80 ; \mathrm{H}, 7.50$. $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{Si}_{2}$ Ta. Calc.: C, $47.71 ; \mathrm{H}, 7.44 \%$.

3.7. Synthesis of $T a C p^{*} C p^{\prime \prime} H(C O), 13$

A Schlenk tube containing a solution of $12(0.50 \mathrm{~g}$, 0.94 mmol) in toluene (20 ml) was sealed under 1 atm of CO . The mixture was stirred at $120^{\circ} \mathrm{C}$ for 72 h to give a purple solution which was filtered and dried in vacuo. Extraction of the residue into n-hexane (2×5 ml) gave a purple solution which was filtered and cooled to $-40^{\circ} \mathrm{C}$ to give purple crystals of 13 . Yield $0.40 \mathrm{~g}(70 \%)$.

The data for 13 follow. IR (Nujol mull, $\nu \mathrm{cm}^{-1}$): $3730(\mathrm{w}), 2955(\mathrm{vs}), 2905(\mathrm{vs}), 1880(\mathrm{vs}), 1777(\mathrm{~m})$,
$1404(\mathrm{~m}), \quad 1378(\mathrm{vs}), \quad 1247(\mathrm{vs}), \quad 1183(\mathrm{~m}), \quad 1082(\mathrm{vs})$, 1029(m), 976(s), 920(s), 836(vs), 753(s), 689(m), $633(\mathrm{~m}), 496(\mathrm{w}), 463(\mathrm{w}), 372(\mathrm{w}) .{ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$, in benzene- d_{6}): $4.01 \mathrm{~m}, 3.95 \mathrm{~m}, 3.90 \mathrm{~m}\left(3 \mathrm{H}, H_{3} \mathrm{C}_{5}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$, $1.85\left(\mathrm{~s}, 15 \mathrm{H}, \quad \mathrm{C}_{5} M e_{5}\right), 0.29\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{2} \mathrm{C}_{3}\right)\right.$, $0.25\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right), \quad-6.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ta}-\mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\delta \mathrm{ppm}\right.$, in benzene- $\left.d_{6}\right)$: $268.63(\mathrm{~s}, \mathrm{CO})$, $107.4 \mathrm{~s}, 86.93 \mathrm{~s}\left(\mathrm{C}_{1,3}, C_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 97.73 \mathrm{~s}, 95.95 \mathrm{~s}$, $87.87 \mathrm{~s}\left(\mathrm{C}_{2.4 .5}, \quad C_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right), \quad 98.16\left(\mathrm{~s}, \quad C_{5} \mathrm{Me}_{5}\right)$, $12.33\left(\mathrm{~s}, M e_{5} \mathrm{C}_{5}\right), 0.92 \mathrm{~s}, 0.67 \mathrm{~s}\left(\left(M e_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)\right.$. Anal. Found: $\mathrm{C}, 47.12 ; \mathrm{H}, 6.59 . \mathrm{C}_{22} \mathrm{H}_{37} \mathrm{OSi}_{2}$ Ta. Calc.: C , 47.64; H, 6.72\%.

3.8. Synthesis of $\mathrm{TaCp}^{*} \mathrm{Cp}^{\prime \prime} \mathrm{H}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right), 14$

In a manner analogous to $\mathbf{1 3}$, a solution of $\mathrm{TaCp}{ }^{*} \mathrm{Cp}^{\prime \prime} \mathrm{H}_{3}(0.50 \mathrm{~g}, 0.94 \mathrm{mmol})$ in toluene (20 ml) was saturated with ethylene (1 atm). The mixture was stirred at $120^{\circ} \mathrm{C}$ for 36 h to give a yellow solution. Volatiles were removed in vacuo and the residue was extracted into n-hexane ($2 \times 10 \mathrm{ml}$). The resulting yellow solution was filtered and cooled to $-40^{\circ} \mathrm{C}$ to afford yellow microcrystals of 14 . Yield $0.45 \mathrm{~g}(86 \%)$.

The data for 14 follow. IR (Nujol mull, $\nu \mathrm{cm}^{-1}$): $1807(\mathrm{~m}), 1246(\mathrm{vs}), 1204(\mathrm{~m}), 1126(\mathrm{~s}), 1088(\mathrm{~s}), 1027(\mathrm{~m})$, 925(s), 836(vs), 755(s), 691(m), 634(s), 492(m), 376(m). ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$, in benzene- d_{6}): 4.53dd, 4.01dd, $3.17 \mathrm{dd}\left(3 \mathrm{H},{ }^{3} J_{\mathrm{H}-\mathrm{H}}={ }^{4} J_{\mathrm{H}-\mathrm{H}}=2.5 \mathrm{~Hz}, H_{3} \mathrm{C}_{6}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$, $1.65\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C}_{5} M e_{5}\right), 0.98\left(\mathrm{~m}, \mathrm{H}_{\mathrm{D}},{ }^{3} J_{\mathrm{D}-\mathrm{F}}=2.40 \mathrm{~Hz}\right.$, $\left.H_{4} \mathrm{C}_{2}\right), 0.85\left(\mathrm{~m}, \mathrm{H}_{\mathrm{C}},{ }^{2} J_{\mathrm{C}-\mathrm{D}}=11.30 \mathrm{~Hz}, H_{4} \mathrm{C}_{2}\right), 0.65(\mathrm{~m}$, $\mathrm{H}_{\mathrm{B}},{ }^{3} J_{\mathrm{B}-\mathrm{C}}=11.30 \mathrm{~Hz},{ }^{3} J_{\mathrm{B}-\mathrm{D}}=7.10 \mathrm{~Hz},{ }^{3} J_{\mathrm{B}-\mathrm{F}}=2.40$ $\left.\mathrm{Hz}, \mathrm{H}_{4} \mathrm{C}_{2}\right),-0.67\left(\mathrm{~m}, \mathrm{H}_{\mathrm{A}},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=10.95 \mathrm{~Hz},{ }^{3} J_{\mathrm{A}-\mathrm{C}}=\right.$ $\left.5.90 \mathrm{~Hz},{ }^{3} J_{\mathrm{A}-\mathrm{D}}=10.90 \mathrm{~Hz}, H_{4} \mathrm{C}_{2}\right),-3.38\left(\mathrm{t},{ }^{3} J_{\mathrm{B}-\mathrm{E}}={ }^{3}\right.$ $J_{\mathrm{D}-\mathrm{E}}=2.40 \mathrm{~Hz}, \mathrm{Ta}-H_{\mathrm{E}}$) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(\delta \mathrm{ppm}$, in benzene- d_{6}): $109.3 \mathrm{~s}, \quad 99.71 \mathrm{~s}\left(\mathrm{C}_{1,3}, \quad \mathrm{C}_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$, $107.23\left(\mathrm{~s}, C_{5} \mathrm{Me}_{5}\right), 100.78 \mathrm{~s}, 100.71 \mathrm{~s}, 92.51 \mathrm{~s}\left(\mathrm{C}_{2,4,5}, C_{5}\right.$ $\left.\mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 11.97\left(\mathrm{~s}, M e_{5} \mathrm{C}_{5}\right), 10.99 \mathrm{~s}, 9.77 \mathrm{~s}\left(C_{2} \mathrm{H}_{4}\right)$, 1.30s, $0.63 \mathrm{~s}\left(\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)\right.$. Anal. Found: C, $48.98 ; \mathrm{H}$, 7.31. $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{Si}_{2}$ Ta. Calc.: $\mathrm{C}, 49.80 ; \mathrm{H}, 7.45 \%$.

3.9. Synthesis of $T a C p^{*} C p^{\prime \prime} H(C N R), 15$

$\mathrm{TaCp}{ }^{*} \mathrm{Cp}^{\prime \prime} \mathrm{H}_{3} \quad(0.50 \mathrm{~g}, \quad 0.94 \mathrm{mmol})$ and $2,6-$ $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}(0.12 \mathrm{~g}, 0.94 \mathrm{mmol})$ were stirred in toluene (20 ml) at $120^{\circ} \mathrm{C}$ for 3 days. The resulting dark-green solution was evaporated to dryness and the residue extracted into n-hexane ($2 \times 15 \mathrm{ml}$). The resulting solution was filtered, concentrated to ca. 10 ml and
cooled to $-40^{\circ} \mathrm{C}$ overnight to give 15 as green microcrystalline solid. Yield $0.50 \mathrm{~g}(81 \%)$.

The data for 15 follow. IR (Nujol mull, $\nu \mathrm{cm}^{-1}$): 2357(w), 1860(m), 1783(vs), 1586(s), 1288(w), 1243(vs), 1188(s), 1085(s), 1027(m), 921(s), 837(vs), 761(s), 691(w), 630(s), 577(s), 499(s), 382(m). ${ }^{1} \mathrm{H}$ NMR ($\delta \mathrm{ppm}$, in benzene $-d_{6}$): $6.94 \mathrm{~m}, 6.92 \mathrm{~m}, 6.86 \mathrm{~m}(3 \mathrm{H}$, $\left.H_{3} \mathrm{C}_{6} \mathrm{Me}_{2}-\mathrm{NC}\right), \quad 4.26 \mathrm{~m}, \quad 4.19 \mathrm{~m}, \quad 4.03 \mathrm{~m}(3 \mathrm{H}$, $\left.H_{3} \mathrm{C}_{5}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 2.75\left(\mathrm{~s}, 6 \mathrm{H}, M e_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\mathrm{NC}\right), 1.95(\mathrm{~s}$, $\left.15 \mathrm{H}, \mathrm{C}_{5} M e_{5}\right), 0.35\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right), 0.30(\mathrm{~s}, 9 \mathrm{H}$, $\left(M e_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right),-4.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ta}-H) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\delta \mathrm{ppm}$, in benzene- d_{6}): 274.72(s, $\mathrm{CN}-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}$), $137.30 \mathrm{~s}, 134.19 \mathrm{~s}, 128.92 \mathrm{~s}, 125.52 \mathrm{~s}\left(\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{o}}, \mathrm{C}_{\mathrm{m}}, \mathrm{C}_{\mathrm{p}}\right.$, $\left.C_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-\mathrm{NC}\right), 106.83 \mathrm{~s}, 92.16 \mathrm{~s}\left(\mathrm{C}_{1,3}, C_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$, $100.05 \mathrm{~s}, 99.03 \mathrm{~s}, 92.69 \mathrm{~s}\left(\mathrm{C}_{2.4 .5}, C_{5} \mathrm{H}_{3}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 99.90(\mathrm{~s}$, $\left.C_{5} \mathrm{Me}_{5}\right), \quad 21.54\left(\mathrm{~s}, \quad M e_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}\right), \quad 12.54\left(\mathrm{~s}, \quad M e_{5} \mathrm{C}_{5}\right)$, $1.07 \mathrm{~s}, 0.86 \mathrm{~s}\left(\left(\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)\right.$. Anal. Found: C, $53.85 ; \mathrm{H}$, 6.94; N, 2.12. $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{NSi}_{2}$ Ta. Calc.: C, 54.78; H, 7.04; N, 2.13%.

3.10. X-ray data collection, structure determination and refinement for compounds 3 and 12

Crystallographic and experimental details of X-ray crystal structure determination for compounds $\mathbf{3}$ and $\mathbf{1 2}$ are given in Table 5. Suitable crystals of $\mathbf{3}$ and $\mathbf{1 2}$ were sealed in Lindeman tubes under argon and mounted on
an Enraf-Nonius CAD-4 automatic four circle diffractometer with bisecting geometric and using a graphiteoriented monochromator, with Mo $\mathrm{K} \alpha$ radiation (λ_{Mo} ${ }_{\mathrm{K} \alpha}=0.71073 \AA$). Data were collected at room temperature. Intensities were corrected for Lorentz and polarization effects in the usual manner. No extinction corrections were made. The structures were solved by a combination of direct methods and Fourier synthesis and refined (on F) by full matrix least squares calculations. Absorption correction was made using DIFABS methods [24].

All the non-hydrogen atoms were refined anisotropically. In the last cycle of refinement the hydrogen atoms were introduced from geometric calculation, refined for one cycle isotropically and then fixed, except for the hydride atoms and the hydrogen bonded to $\mathrm{C}(12), \mathrm{C}(14)$ and $\mathrm{C}(15)$ in $\mathbf{1 2}$ that were found in the difference Fourier synthesis map, and then fixed.

Final values of $R=0.040$ and $R_{w}=0.064$ were obtained for 3 and $R=0.022$ and $R_{w}=0.033$ for 12, with $R_{w}\left[\sum w\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \|^{2} / w\right| F_{\mathrm{o}}\right|^{\frac{w}{2}}\right]^{1 / 2}\right.$ and $w=$ $4 F_{0}^{2} /\left[\sigma\left|F_{\mathrm{o}}\right|\right]^{2}$.

Anomalous dispersion corrections and atomic scattering factors were taken from International Tables for X-Ray Crystallography [25]. Calculations were performed with the SDP package [26], and the programs multan [27] and dirdif [28] on a MicroVax II computer.

Table 5
Crystal and experimental data and structure refinement procedures for compounds $\mathbf{3}$ and $\mathbf{1 2}$

	3	12
Formula	$\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{Si}_{1} \mathrm{Ta}$	$\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{Si}_{2} \mathrm{Ta}$
Crystal habit	prismatic	prismatic
Colour	green	yellow
Crystal size (mm^{3})	$0.40 \times 0.22 \times 0.30$	$0.2 \times 0.20 \times 0.3$
Symmetry	orthorhombic $P 2,2,2$,	triclinic $P \overline{1}$
Unit cell determination	least squares fit from 25 reflections	
Unit cell dimensions:		
$a, b, c(\AA)$	11.775(5), 12.821(1), 13.037(7)	7.384(4), 10.861(2), 16.731(3)
$\alpha, \beta, \gamma(\mathrm{deg})$		75.94(2), 84.75(3), 72.57(4)
$v\left(\AA^{3}\right)$	1968.1(6)	1241.6(9)
Z	4	2
$D_{\text {cal. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.756	1.414
Mw	524.36	528.65
$F(000)$	1012	532
$\mu\left(\mathrm{cm}^{-1}\right)$	58.49	44.71
Scan mode	$\omega-2 \Theta$ scans; $\Theta_{\max }=30^{\circ}$	$\omega-2 \Theta$ scans; $\Theta_{\text {max }}=26^{\circ}$
N° reflections:		
measured	4675	5045
independent observed	$4088 I>2 \sigma(I)$ criterion	$4594 I>2 \sigma(I)$ criterion
Range of $h k l$	$h-15$ to $15 ; k 0$ to $16 ; l 0$ to 16	$h-9$ to $9 ; k-13$ to $13 ; 10$ to 20
Standard reflections	2 reflections every 120 min , no variation	
R	0.040	0.022
Rw	0.064	0.033
Max. peak in final diff. map (e \AA^{-3})	1.290	1.041
Min. peak in final diff. map (e \AA^{3})	-1.143	-0.687
Goodness of fit indicator	2.549	1.3665
Largest parameter shift/error	0.03	0.03

4. Supplementary material available

Tables of positional parameters of hydrogen atoms (Table S1-3, 1 page; Table S1-12, 2 pages), general displacement parameter expressions (Table S2-3, 1 page; Table S2-12, 1 page), complete bond distances and angles (Table S3-3, 3 pages; Table S3-12, 9 pages) and structure factors (Table S4-3, 21 pages; Table S4-12, 23 pages) for complexes $\mathbf{3}$ and $\mathbf{1 2}$ are available. Ordering information is given on any current masthead page.

Acknowledgment

We are grateful to DGICYT (Project PB-92-0178-C) for financial support of this research.

References

[1] (a) P.T. Wolczanski and J.E. Bercaw, Acc. Chem. Res., 13 (1980) 21. (b) M.E. Thompson and J.E. Bercaw, Pure Appl. Chem., 56 (1984) 1. (c) G.L. Hillhouse and J.E. Bercaw, J. Am. Chem. Soc., 106 (1985) 5474.
[2] (a) S.A. Cohen, Ph.D. Thesis, California Institute of Technology, 1982. (b) N.M. Doherty and J.E. Bercaw, J. Am. Chem. Soc., 107 (1985) 2670. (c) R.A. Bell, S.A. Cohen, N.M. Doherty, R.S. Threlkel and J.E. Bercaw, Organometallics, 5 (1986) 972.
[3] (a) V.C. Gibson, J.E. Bercaw, W.J. Bruton, Jr. and R.D. Sanner, Organometallics, 5 (1986) 976. (b) R. Broussier, J.D. Olivier and B. Gautheron, J. Organomet. Chem., 210 (1981) 169. (c) J.F. Reynoud, J.-C. Leblanc and C. Moïse, Trans. Met. Chem., 10 (1985) 291.
[4] J. de la Mata, R. Fandos, M. Gómez, P. Gómez-Sal, S. Mar-tinez-Carrera and P. Royo, Organometallics, 9 (1990) 2846.
[5] (a) S.J. McLain, C.D. Wood and R.R. Schrock, J. Am. Chem. Soc., 101 (1979) 4558. (b) W.A. Herrmann, W. Kalcher, H. Biersack, J. Bernal and H. Creswick, Chem. Ber., 114 (1981) 3558. (c) R.D. Sanner, S.T. Carter and W.J. Bruton, Jr., J. Organomet. Chem., 210 (1982) 157. (d) G. Hidalgo, M. Mena, F. Palacios, P. Royo and R. Serrano, J. Organomet. Chem., 340 (1988) 37.
[6] (a) E.W. Abel and M.O. Dunster, J. Organomet. Chem., 33 (1971) 161. (b) P. Jutzi and R. Sauer, J. Organomet. Chem., 50 (1973) C29.
[7] R.B. King and M.B. Bisnette, J. Organomet. Chem., 8 (1967) 287.
[8] (a) E.R. Lippincott and R.D. Nelson, Spectrochim. Acta, 10 (1958) 307. (b) H.P. Fritz, Adv. Organomet. Chem., l (1964) 239. (c) F.A. Cotton and T.J. Marks, J. Am. Chem. Soc., 91 (1969) 7281.
[9] (a) D.F. Ball, P.L. Goggin, D.G. McKean and L.A. Woodward, Spectrochim. Acta, 16 (1960) 1358.
[10] (a) K. Nakamoto, in M. Tsutsui (ed.), Characterization of Organumetallic Compounds, Interscience, New York, 1969. (b) R.J.H. Clark and M.A. Coles, J. Chem. Soc. Dalton Trans., (1974) 1462. (c) A. Antiñolo, M. Fajardo, A. Otero and P. Royo, J. Organomet. Chem., 234 (1982) 309; 246 (1983) 269; 265 (1984) 35.
[11] M.J. Bunker, A. de Cian, M.J.H. Green, J.J.E. Moreau and N. Siganporia, J. Chem. Soc. Dalton Trans., (1980) 2155.
[12] (a) H.M. McConnell and C.H. Holm, J. Chem. Phys., 27 (1957) 314. (b) H.M. McConnell and D.B. Chesnut, J. Chem. Phys., 28 (1958) 107. (c) A. Carrington and A.D. McLachlan, Introduction to Magnetic Resonance, Wiley, New York, 1979, p. 221.
[13] F.F. Miao and K. Prout, Cryst. Struct. Commun., /] (1982) 269.
[14] (a) K. Prout, T.S. Cameron, R.A. Forder, S.R. Critchley, B. Denton and G.V. Rees, Acta Crystallogr. Sect. B:, 30 (1974) 2290. (b) A. Antiñolo, J.M. Martinez de Ilarduya, A. Otero, P. Royo, A.M. Manotti-Lanfredi and A. Tiripicchio, J. Chem. Soc: Dalton Trans. (1988) 2685.
[15] (a) G.J.-J. Chen, J.W. McDonald, D.C. Bravard and W.E. Newton, Inorg. Chem., 24 (1985) 2327. (b) P. Jernakoff, C. de Meric de Bellefon, G.L. Geoffroy, A.L. Rheingold and S.J. Geib, Organometallics, 6 (1987) 1362.
[16] (a) E.H. Otto and H.H. Brintzinger, J. Organomet. Chem., 170 (1979) 209. (b) R.E. La Pointe, P.T. Wolczanski and J.F. Mitchell, J. Am. Chem. Soc., 108 (1986) 6382.
[17] M.F. Lappert, C.J. Pickett, P.I. Riley and P.I.W. Yarrow, J. Chem. Soc. Dalton Trans., (1981) 805.
[18] J.A. Labinger and K.S. Wong, J. Organomet. Chem., 170 (1979) 373.
[19] R.D. Wilson, T.F. Koetzle, D.W. Hart, A. Kvick, D.L. Tipton and R. Bau, J. Am. Chem. Soc., 99 (1977) 1775.
[20] F.N. Tebbe and G.W. Parshall, J. Am. Chem. Soc., 93 (1981) 3793.
[21] M. Gómez, J.M. Martinez de Ilarduya and P. Royo, J. Organomet. Chem., 369 (1989) 197.
[22] M.E. Eicher, H.G. Alt and M.D. Rausch, J. Organomet. Chem., 264 (1984) 30.
[23] A.P. Weber, G.W. Gokel and I.K. Ugi, Angew. Chem. Int. Ed. Engl., 11 (1972) 530.
[24] N. Walker and D. Stuart, difabs, Acta Crystallogr. Sect. A:, 39 (1983) 158.
[25] International Tables for X-Ray Crystallography, Vol. 4, Kynoch Press, Birmingham, UK, 1974.
[26] B.A. Frenz and Associates, Inc., SPD, 1985 (Texas A \& M College Station TX 77840, and Enraf-Nonius Delft, Holland).
[27] P. Main, S.E. Fiske, S.L. Hull, L. Lessinger, C. Germain, J.P. Declerq and M.M. Woolfsoon, multan, 1980, Universities of York and Louvain.
[28] P.T. Beurskens, W.P. Bossman, H.M. Doesburg, R.O. Gould, T.E.M. van der Heurk, P.A.S. Prick, S.H. Noordik, G. Beurskens and V. Parthasarathu, dirdif Manual 81, Tech. Rep. 1981/82, 1981 (Crystallographic Laboratory, University of Nijmegen, Toernooiveld, Netherlands).

[^0]: ${ }^{*}$ Corresponding author.
 ${ }^{1}$ X-ray diffraction studies.

[^1]: CE is the centroid of the $\mathrm{Cp}{ }^{*}$ ring. CE^{\prime} is the centroid of the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}$ ring.

