Document downloaded from the institutional repository of the University of Alcala: http://ebuah.uah.es/dspace/

This is a postprint version of the following published document:

Sendra, J.R. \& Sendra, J. 2017, "Computation of Moore-Penrose generalized inverses of matrices with meromorphic function entries", Applied Mathematics and Computation, vol. 313, pp. 355-366

Available at https://doi.org/10.1016/i.amc.2017.06.007
© 2017 Elsevier

This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License.

Computation of Moore-Penrose Generalized Inverses of Matrices with Meromorphic Function Entries.

J. Rafael Sendra
Grupo ASYNACS
Dpto. de Física y Matemáticas, Universidad de Alcalá
Ap. Correos 20, E-28871 Alcalá de Henares, Madrid (Spain)
rafael.sendra@uah.es
Juana Sendra
Dpto. Matemática Aplicada a las TIC.
Universidad Politécnica de Madrid, Spain
juana.sendra@upm.es

Abstract

In this paper, given a field with an involutory automorphism, we introduce the notion of Moore-Penrose field by requiring that all matrices over the field have Moore-Penrose inverse. We prove that only characteristic zero fields can be Moore-Penrose, and that the field of rational functions over a Moore-Penrose field is also Moore-Penrose. In addition, for a matrix with rational functions entries with coefficients in a field \mathbb{K}, we find sufficient conditions for the elements in \mathbb{K} to ensure that the specialization of the Moore-Penrose inverse is the MoorePenrose inverse of the specialization of the matrix. As a consequence, we provide a symbolic algorithm that, given a matrix whose entries are rational expression over \mathbb{C} of finitely many meromorphic functions being invariant by the involutory automorphism, computes its Moore-Penrose inverve by replacing the functions by new variables, and hence reducing the problem to the case of matrices with complex rational function entries.

keywords: Generalized inverses, Moore-Penrose fields, meromorphic functions, matrices of functions.

AMS subject classification: 15A09, 15A54.

1 Introduction

Moore-Penrose generalized inverses were introduced, independently, by E.H. Moore in [16] and by R. Penrose in [18]; see e.g. Theorem 1.1.1. in [4] for the equivalence of the two results, also in [2], or in Appendix A in [4], there is a nice summary and restatement of the paper by E.H. Moore. Since then, Moore-Penrose generalized inverses have been studied and applied by many authors (see e.g. [3], [4], [8], [20], [21], [27]). Most of these applications and analyses have been mainly developed for matrices with complex numbers as entries. Nevertheless, the theory can be extended to matrices over different fields and even over rings. For this purpose, one needs to consider, jointly with the ground algebraic structure, say a field \mathbb{K}, an involutory automorphism that plays the role of conjugation (we recall that a homomorphism φ is involutory if $\varphi \circ \varphi=\mathrm{Id}_{\mathbb{K}}$). In this situation, the Penrose axioms (see (11)) can be directly generalized. This line of research has been followed by different authors; see e.g. the books [10] and [5] or the papers [6], [7], [15], [22], or [17] where the case of idempotent semirings is treated, and hence the case of tropical matrices is included. Also, contributions to the case of polynomial matrices can be found [11], [12], [13], [26]. In addition, the symbolic treatment of the problem of computing generalized inverses have been addressed in [19], [23], [24], [25].

Some of the papers mentioned above provide characterizations to ensure the existence of the Moore-Penrose inverse of a given matrix with entries over different types of rings or over a field. In the first part of this paper (see Section [3) we consider a slightly different problem. We study those fields \mathbb{K} (with an involutory automorphism, that we will denote by φ) such that all matrices with entries in \mathbb{K} have generalized inverse. We call such fields Moore-Penrose fields (see Definition [3). We show that only fields of characteristic zero can be Moore-Penrose (see Corollary 5). The main result in Section 3 is the following. We prove that if (\mathbb{K}, φ) is a Moore-Penrose field, there exists a natural extension φ^{e} of φ from the field \mathbb{K} to the field of rational functions $\mathbb{K}(\mathbf{x})$, where x is a tuple of variables, such that $\left(\mathbb{K}(\mathbf{x}), \varphi^{e}\right)$ is also Moore-Penrose (see Theorem [12).

In [24] we have shown how to reduce the computation of Drazin inverses over certain computable fields to the computation of Drazin inverses of matrices with rational functions as entries; in particular, the method is applied to matrices with meromorphic functions as entries. The key idea in [24] is to derive a polynomial providing a criterium to ensure that the evaluation of the inverse is the inverse of the evaluation. In the second part of this paper (see Section (4) , we analyse the applicability of these ideas to the case of Moore-Penrose inverses. So we focus on the behaviour of the MoorePenrose inverse under specialization. More precisely, we consider a field (\mathbb{K}, φ) and its natural extension $\left(\mathbb{K}(\mathbf{x}), \varphi^{\mathrm{e}}\right)$. In this situation, if A is a matrix with entries in $\mathbb{K}(\mathbf{x})$, whose Moore-Penrose inverse exists, and \mathbf{a} is a tuple of self-adjoint elements of \mathbb{K} (i.e. $\varphi(\mathbf{a})=\mathbf{a}$), if the denominator of all the entries of A, and the denominator of all the entries of its generalized inverse, do not vanish at a it holds that the Moore-Penrose inverse of the specialization is the specialization of the Moore-Penrose inverse (see

Theorem [13] and Theorem (15). Note that, if (\mathbb{K}, φ) is Moore-Penrose, the condition of the existence of the Moore-Penrose inverse of A is not required.

The last section of the paper (see Section (5) is devoted to the case of matrices with functions as entries. More precisely, we consider the field $\operatorname{Mer}(\Omega)$ of meromorphic functions over a connected open subset of \mathbb{C}, and the involutory automorphism $\varphi(f(z))=\overline{f(\bar{z})}$, where - is the usual conjugation in \mathbb{C}. In this situation, we take a finite subset $\mathcal{F} \subset \operatorname{Mer}(\Omega)$ of self-adjoint functions, and we consider matrices with entries in $\left(\mathbb{C}(\mathcal{F}), \varphi_{\left.\left.\right|_{\mathbb{C}(\mathcal{F})}\right)}\right)$. As an application of the results in the previous sections, we prove that the computation of the Moore-Penrose inverse of a matrix with entries in $\mathbb{C}(\mathcal{F})$ can be reduced to the computation of the Moore-Penrose inverse of a matrix with rational functions as entries. As a consequence, we present a symbolic algorithm to compute the Moore-Penrose inverse of matrices in $\mathbb{C}(\mathcal{F})$. We finish Section ${ }^{5}$ with a brief empirical analysis, based on two tests. In the first test, we check the performance of Algorithm凹when the number of function entries is fixed, but the order of the matrix increases, while, in the second test, we fix the order of the matrix and we increase the number of functions. The results in both tests are satisfactory.

We thank the anonymous referee for helpful comments.

2 Preliminaries on Generalized Inverses

Let (\mathbb{K}, φ) be a field with an involutory automorphism φ; that is, φ is a field automorphism and $\varphi \circ \varphi=$ Id. We observe that an involutory map is always bijective. Let $\mathcal{M}_{m \times n}(\mathbb{K})$ be the ring of the $m \times n$ matrices with entries in \mathbb{K}. By abuse of notation, for $A=\left(a_{i j}\right) \in \mathcal{M}_{m \times n}(\mathbb{K})$, we will write $\varphi(A)$ to denote the matrix $\left(\varphi\left(a_{i j}\right)\right) \in \mathcal{M}_{m \times n}(\mathbb{K})$. Also, we denote by A^{*} the transpose of the matrix $\varphi(A)$. In this situation, the generalized inverse of A is introduced as a matrix $X \in \mathcal{M}_{n \times m}(\mathbb{K})$ such that

$$
\text { [Penrose axioms] }\left\{\begin{array}{l}
A X A=A \tag{1}\\
X A X=X \\
A X=X^{*} A^{*} \\
X A=A^{*} X^{*}
\end{array}\right.
$$

If X, satisfying the above conditions, exists then it is unique (see Theorem 1 in [10] pp. 112), and we call it the (Moore-Penrose) generalized inverse of A. If the generalized inverse of A exists, we denote it as A^{\dagger}.

The existence of A^{\dagger} does depend on the field \mathbb{K} and the involutory automorphism φ. A useful characterization is the following (see Theorem 3 in [10], pp. 116).

Theorem $1 A^{\dagger}$ exists if and only if $\operatorname{rank}\left(A A^{*}\right)=\operatorname{rank}(A)=\operatorname{rank}\left(A^{*} A\right)$.

The following theorem (see Theorem 3 in [10], pp. 116) provides an expression of A^{\dagger} when it exists.

Theorem 2 Let $r=\operatorname{rank}(A)$, and let us assume that A^{\dagger} exists, then

$$
A^{\dagger}=C^{*}\left(B^{*} A C^{*}\right)^{-1} B^{*}
$$

where B is any $m \times r$ submatrix of A containing exactly r linearly independent columns of A, and C is any $r \times n$ submatrix of A containing exactly r linearly independent rows of A.

Remark 1

1. If $\operatorname{rank}(A)=n$ then C is regular and $B=A$. Therefore, in that case,

$$
A^{\dagger}=C^{*}\left(B^{*} A C^{*}\right)^{-1} B^{*}=C^{*}\left(A^{*} A C^{*}\right)^{-1} A^{*}=C^{*}\left(C^{*}\right)^{-1}\left(A^{*} A\right)^{-1} A^{*}=\left(A^{*} A\right)^{-1} A^{*}
$$

Similarly, if $\operatorname{rank}(A)=m$ then

$$
A^{\dagger}=A^{*}\left(A A^{*}\right)^{-1}
$$

2. Theorem implies that, if A^{\dagger} exists then $A^{\dagger} \in \mathcal{M}_{n \times m}(\mathbb{K})$.

3 Moore-Penrose Fields

Theoremprovides a criterium to decide whether the generalized inverse of a particular matrix exists. In the following we look for conditions on the field \mathbb{K} to ensure that all matrices over \mathbb{K} have Penrore generalized inverse. For this purpose, throughout this section, (\mathbb{K}, φ) is a field with an involutory automorphim. First, we introduce the notion of Moore-Penrose field.

Definition 3 We say that (\mathbb{K}, φ) is a Moore-Penrose field if for all $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ the generalized inverse A^{\dagger} exists.

We know that $(\mathbb{C},-)$, where - is the complex number conjugation, is a Moore-Penrose field. However, $\left(\mathbb{Z}_{2}, \mathrm{id}\right)$ is not (see [10], Example 2, pp. 117).

The following theorem provides a characterization for the notion of Moore-Penrose field.

Theorem 4 The following statements are equivalent

1. (\mathbb{K}, φ) is a Moore-Penrose field.
2. If $\sum_{k=1}^{\ell} a_{k} \varphi\left(a_{k}\right)=0$, with $a_{k} \in \mathbb{K}$, then $a_{1}=\cdots=a_{\ell}=0$.

Proof: Taking into account Remark 8 and Corollary 6, both in [10], pp. 117, one deduces that statement (2) implies statement (1). Let us see that statement (1) implies statement (2). Let $\sum_{k=1}^{\ell} a_{k} \varphi\left(a_{k}\right)=0$, with $a_{k} \in \mathbb{K}$. We consider the matrix $A=\left(a_{1}, \ldots, a_{\ell}\right) \in \mathcal{M}_{1 \times \ell}(\mathbb{K})$. Since (\mathbb{K}, φ) is Moore-Penrose, by Theorem $\mathbb{\square}$ $\operatorname{rank}(A)=\operatorname{rank}\left(A A^{*}\right)=\operatorname{rank}\left(\left(\sum_{k=1}^{\ell} a_{k} \varphi\left(a_{k}\right)\right)\right)=0$. Therefore $a_{1}=\cdots=a_{\ell}=0$.

Corollary 5 If (\mathbb{K}, φ) is a Moore-Penrose field, then the characteristic of \mathbb{K} is zero.
Proof: Let \mathbb{K} has characteristic $p>0$. We denote by $1_{\mathbb{K}}$ and $0_{\mathbb{K}}$ the neutral element of \mathbb{K} w.r.t. the multiplication and addition, respectively. Then, since φ is a field homomorphism, then $\varphi\left(1_{\mathbb{K}}\right)=1_{\mathbb{K}}$, Let $A=\left(1_{\mathbb{K}}, \ldots, 1_{\mathbb{K}}\right) \in \mathcal{M}_{1 \times p}(\mathbb{K})$. Then, $\operatorname{rank}(A)=1$ and $\operatorname{rank}\left(A A^{*}\right)=\operatorname{rank}\left(\left(1_{\mathbb{K}}+\cdots+1_{\mathbb{K}}\right)\right)=\operatorname{rank}\left(\left(0_{\mathbb{K}}\right)\right)=0$.

Let us see an example of a field of characteristic 0 that is not a Moore-Penrose field.
Example 6 Let $\mathbb{K}=\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$. We consider the involutory automorphism

$$
\varphi: \mathbb{Q}(\sqrt{2}) \longrightarrow \mathbb{Q}(\sqrt{2}) ; a+b \sqrt{2}, a, b \in \mathbb{Q} \longmapsto a-b \sqrt{2} .
$$

Let $A=(\sqrt{2}+2, \sqrt{2}) \in \mathcal{M}_{1 \times 2}(\mathbb{Q}(\sqrt{2}))$. We have that

$$
\begin{array}{ll}
A & \text { and } \operatorname{rank}(A)=1 \\
A A^{*}=(0) & \text { and } \operatorname{rank}\left(A A^{*}\right)=0 \\
A^{*} A=\left(\begin{array}{cc}
2 & -2+2 \sqrt{2} \\
-2-2 \sqrt{2} & -2
\end{array}\right) & \text { and } \operatorname{rank}\left(A^{*} A\right)=1
\end{array}
$$

Therefore, applying Theorem $\mathbb{1}$, we get that A^{\dagger} does not exist, and hence $(\mathbb{Q}(\sqrt{2}), \varphi)$ is not Moore-Penrose.

We now introduce the subset of elements in \mathbb{K} that are φ-invariant (or self-adjoint) and we prove that it is a subfield of \mathbb{K}.

Definition 7 We denote by \mathbb{K}_{φ} the set $\mathbb{K}_{\varphi}=\{x \in \mathbb{K} \mid \varphi(x)=x\}$.
Lemma $8 \mathbb{K}_{\varphi}$ is a field.
Proof: Since φ is a field homomorphism, then $\varphi(0)=0$ and $\varphi(1)=1$, and hence $0,1 \in \mathbb{K}_{\varphi}$. Moreover, if $x, y \in \mathbb{K}_{\varphi}$ then $\varphi(x+y)=\varphi(x)+\varphi(y)=x+y$. So, $x+y \in \mathbb{K}_{\varphi}$. Similarly, if $x \in \mathbb{K}_{\varphi} \backslash\{0\}$, then $\varphi\left(x^{-1}\right)=\varphi(x)^{-1}=x^{-1}$. Thus, $x^{-1} \in \mathbb{K}_{\varphi}$. Therefore, \mathbb{K}_{φ} is a subfield of \mathbb{K}.

In the following we analyse the extension of the automorphism φ, first, to the polynomial ring $\mathbb{K}[\mathbf{x}]$, where \mathbf{x} denotes a tuple of r variables, and, second, to the field of
rational functions $\mathbb{K}(\mathbf{x})$. For this purpose, polynomials in $\mathbb{K}[\mathbf{x}]$, will be represented as $\sum a_{j} T_{j}$ where the sum has finitely many summands, $a_{j} \in \mathbb{K}$, and T_{j} are terms of the variables in \mathbf{x}.

We consider the ring homomorphism

$$
\begin{equation*}
\varphi^{\diamond}: \mathbb{K}[\mathbf{x}] \rightarrow \mathbb{K}[\mathbf{x}] ; P(\mathbf{x})=\sum a_{i} T_{i}(\mathbf{x}) \mapsto \sum \varphi\left(a_{i}\right) T_{i}(\mathbf{x}) \tag{2}
\end{equation*}
$$

and the field homomorphism

$$
\begin{equation*}
\varphi^{\mathrm{e}}: \mathbb{K}(\mathbf{x}) \rightarrow \mathbb{K}(\mathbf{x}) ; \frac{P(\mathbf{x})}{Q(\mathbf{x})} \mapsto \frac{\varphi^{\diamond}(P(\mathbf{x}))}{\varphi^{\diamond}(Q(\mathbf{x}))} \tag{3}
\end{equation*}
$$

Observe that φ° and φ^{e} are involutory, and hence bijective. We prove several lemmas that will be used in the proof of Theorem 12.

Lemma 9 Let $(\mathbb{K}[\mathbf{x}])_{\varphi^{\circ}}=\left\{P \in \mathbb{K}[\mathbf{x}] \mid \varphi^{\circ}(P)=P\right\}$. Then, $\mathbb{K}_{\varphi}[\mathbf{x}]=(\mathbb{K}[\mathbf{x}])_{\varphi^{\circ}}$.
Proof: Clearly $\mathbb{K}_{\varphi}[\mathbf{x}] \subset(\mathbb{K}[\mathbf{x}])_{\varphi^{\circ}}$. For the other inclusion, let $P \in(\mathbb{K}[\mathbf{x}])_{\varphi^{\circ}}$. Then, $\varphi^{\diamond}(P)-P=0$. Therefore, $\varphi^{\diamond}\left(\sum a_{j} T_{j}\right)-\sum a_{j} T_{j}=\sum\left(\varphi\left(a_{j}\right)-a_{j}\right) T_{j}=0$. Therefore, for all $a_{j}, \varphi\left(a_{j}\right)=a_{j}$. So, $P \in \mathbb{K}_{\varphi}[\mathbf{x}]$.

For the next lemmas, we recall that \mathbf{x} is an r-tuple of variables. Furthermore, in the sequel, we will denote by \mathbb{K}_{φ}^{r} the r-dimensional vector space $\mathbb{K}_{\varphi}^{r}:=\mathbb{K}_{\varphi} \times \cdots \times \mathbb{K}_{\varphi}$ (see Definition 7 and Lemma [8].

Lemma 10 Let $P \in \mathbb{K}(\mathbf{x})$. For every $\mathbf{a} \in \mathbb{K}_{\varphi}^{r}$, such that $P(\mathbf{a})$ is defined, it holds that $\varphi^{\mathrm{e}}(P)(\mathbf{a})=\varphi(P(\mathbf{a}))$.

Proof: We prove it first for polynomials. Say that $P=\sum b_{i} T_{i}(\mathbf{x}) \in \mathbb{K}[\mathbf{x}]$, where $T_{i}(\mathbf{x})$ are the terms appearing in P. Then, $\varphi^{\mathrm{e}}(P)=\sum \varphi\left(b_{i}\right) T_{i}(\mathbf{x})$ and $\varphi^{\mathrm{e}}(P)(\mathbf{a})=$ $\sum \varphi\left(b_{i}\right) T_{i}(\mathbf{a})$. On the other hand, $\varphi(P(\mathbf{a}))=\varphi\left(\sum b_{i} T_{i}(\mathbf{a})\right)=\sum \varphi\left(b_{i}\right) \varphi\left(T_{i}(\mathbf{a})\right)$, and since $\mathbf{a} \in \mathbb{K}_{\varphi}^{r}$, then $\varphi\left(T_{i}(\mathbf{a})\right)=T_{i}(\mathbf{a})$. So, $\varphi^{\mathrm{e}}(P)(\mathbf{a})=\varphi(P(\mathbf{a}))$. Now, for the case of rational functions, the result follows from the definition on φ^{e}.

In the sequel, we will use the following notation. Let $A=\left(f_{i, j}(\mathbf{x})\right)$ be a matrix whose entries are functions depending on the tuple of variables \mathbf{x}, and let a be in the intersection of the domains of all the functions $f_{i, j}$. Then, we denote by $A_{\mid \mathbf{x}=\mathbf{a}}$ the matrix $\left(f_{i, j}(\mathbf{a})\right)$. In addition, if the entries of A are rational functions, we denote by $\operatorname{den}(A)$ the least common multiple of all denominators in A.

Lemma 11 Let $A \in \mathcal{M}_{m \times n}(\mathbb{K}(\mathbf{x}))$. For every $\mathbf{a} \in \mathbb{K}_{\varphi}^{r}$, such that $\operatorname{den}(A)(\mathbf{a}) \neq 0$, it holds that

$$
\left(A^{*}\right)_{\mid \mathbf{X}=\mathbf{a}}=\left(A_{\mid \mathbf{X}=\mathbf{a}}\right)^{*}
$$

Proof: It is a direct consequence of Lemma 10

Theorem 12 Let (\mathbb{K}, φ) be a Moore-Penrose field. Then, $\left(\mathbb{K}(\mathbf{x}), \varphi^{\mathrm{e}}\right)$ is MoorePenrose.

Proof: Let us assume that $\left(\mathbb{K}(\mathbf{x}), \varphi^{\mathrm{e}}\right)$ is not Moore-Penrose. Then, there exists $A \in \mathcal{M}_{m \times n}(\mathbb{K}(\mathbf{x}))$ such that A^{\dagger} does not exist. By Theorem at least one of the rank equalities does not hold. Let us assume that $\operatorname{rank}(A) \neq \operatorname{rank}\left(A^{*} A\right)$; similarly if $\operatorname{rank}(A) \neq \operatorname{rank}\left(A A^{*}\right)$. Let \mathcal{R} be the set containing all denominators appearing during the Gaussian triangulation process of both A and $A^{*} A$. Let B and C be the triangular matrices output by the Gaussian triangulation process when applied to A and $A^{*} A$, respectively. Let \mathcal{S} be the set containing all numerators of the non-zero entries in B and C. Note that $\mathcal{R}, \mathcal{S} \subset \mathbb{K}[\mathbf{x}]$. In addition, let $T=\prod_{P \in \mathcal{R} \cup \mathcal{S}} P \in \mathbb{K}[\mathbf{x}]$. Let \mathcal{T} be the hypersurface defined by T in $\mathbb{K}_{\varphi}^{r} ; r$ is the length of the tuple \mathbf{x}. Since $T \neq 0$, and since \mathbb{K}_{φ} is infinity because \mathbb{K} is of characteristic zero (see Corollary $\mathbb{W}^{(1)}$), one has that $\mathbb{K}_{\varphi}^{r} \backslash \mathcal{T} \neq \emptyset$. We take an element $\mathbf{a} \in \mathbb{K}_{\varphi}^{r} \backslash \mathcal{T}$. Then, it holds that

1. $B_{\mid \mathbf{x}=\mathbf{a}}$ is the triangularization of $A_{\mid \mathbf{X}=\mathbf{a}}$, and $\operatorname{rank}(A)=\operatorname{rank}(B)=$ $\operatorname{rank}\left(B_{\mathbf{X}=\mathbf{a}}\right)=\operatorname{rank}\left(A_{\mid \mathbf{X}=\mathbf{a}}\right)$.
2. $C_{\left.\right|_{\mathbf{X}=\mathbf{a}}}$ is the triangularization of $\left(A^{*} A\right)_{\mid \mathbf{X}=\mathbf{a}}$, and $\operatorname{rank}\left(A^{*} A\right)=\operatorname{rank}(C)=$ $\operatorname{rank}\left(C_{\left.\right|_{\mathbf{x}=\mathbf{a}}}\right)=\operatorname{rank}\left(\left(A^{*} A\right)_{\mid \mathbf{x}=\mathbf{a}}\right)$.
3. $\left(A^{*} A\right)_{\left.\right|_{\mathbf{X}=\mathbf{a}}}$ is well-defined, and since $\mathbf{a} \in \mathbb{K}_{\varphi}^{r}$, we have, by lemma [1] that $\left(A^{*} A\right)_{\mid \mathbf{X}=\mathbf{a}}^{\mathbf{x}=\mathbf{a}}=\left(A^{*}\right)_{\mid \mathbf{X}=\mathbf{a}} A_{\mid \mathbf{X}=\mathbf{a}}=\left(A_{\mid \mathbf{X}=\mathbf{a}}\right)^{*} A_{\mid \mathbf{X}=\mathbf{a}}$.

In this situation, let $M=A_{\mid \mathbf{x}=\mathbf{a}} \in \mathcal{M}_{m \times n}(\mathbb{K})$. By (3) and (2), we have that $\operatorname{rank}\left(M^{\star} M\right)=\operatorname{rank}\left(A^{\star} A\right)$. By $(1), \operatorname{rank}(M)=\operatorname{rank}(A)$. Thus, using that $\operatorname{rank}(A) \neq \operatorname{rank}\left(A^{*} A\right)$, we get that $\operatorname{rank}(M) \neq \operatorname{rank}\left(M^{*} M\right)$. Therefore, by Theorem M^{\dagger} does not exists which is a contradiction with the fact that (\mathbb{K}, φ) is Moore-Penrose.

4 Moore-Penrose Inverse under Specializations

In this section, we consider matrices with rational functions entries and we analyse the behaviour of the Moore-Penrose inverse when the variables are substituted by field elements. We will use the notation $A_{\mid \mathbf{X}=\mathbf{a}}$ introduced in the previous section.
Theorem $13 \operatorname{Let}(\mathbb{K}, \varphi)$ be a Moore-Penrose field. We consider the Moore-Penrose field $\left(\mathbb{K}(\mathbf{x}), \varphi^{\mathrm{e}}\right)$. Let $A \in \mathcal{M}_{m \times n}(\mathbb{K}(\mathbf{x}))$, with $\mathbf{x}=\left(x_{1}, \ldots, x_{r}\right)$, and let $\mathbf{a} \in \mathbb{K}_{\varphi}^{r}$ such that

$$
\operatorname{den}(A)(\mathbf{a}) \operatorname{den}\left(A^{\dagger}\right)(\mathbf{a}) \neq 0
$$

Then

$$
\left(A^{\dagger}\right)_{\mid \mathbf{x}=\mathbf{a}}=\left(A_{\mid \mathbf{X}=\mathbf{a}}\right)^{\dagger}
$$

Proof: First we observe that $A_{\mid \mathbf{x}=\mathbf{a}}$ and $\left(A^{\dagger}\right)_{\mid \mathbf{x}=\mathbf{a}}$ are well defined. In addition, let P be any denominator in A^{*}. Then, $\varphi^{\mathrm{e}}(P)$ is a denominator in A. Furthermore, by Lemma 10, $0 \neq \varphi^{\mathrm{e}}(P)(\mathbf{a})=\varphi(P(\mathbf{a}))$. So $P(\mathbf{a}) \neq 0$, and $\left(A^{*}\right)_{\left.\right|_{\mathbf{x}=\mathbf{a}}}$ is also well-defined. Let $M=A_{\mid \mathbf{x}=\mathbf{a}}$. In this situation, from the Penrose axioms (see (II)), we have that

- $M=\left(A A^{\dagger} A\right)_{\mid \mathbf{X}=\mathbf{a}}=A_{\mid \mathbf{X}=\mathbf{a}}\left(A^{\dagger}\right)_{\mid \mathbf{X}=\mathbf{a}^{\prime}} A_{\mid \mathbf{X}=\mathbf{a}}=M\left(A^{\dagger}\right)_{\mid \mathbf{X}=\mathbf{a}^{\prime}} M$
- $\left(A^{\dagger}\right)_{\mid \mathbf{X}=\mathbf{a}}=\left(A^{\dagger} A A^{\dagger}\right)_{\mid \mathbf{X}=\mathbf{a}}=\left(A^{\dagger}\right)_{\mid \mathbf{X}=\mathbf{a}} A_{\mid \mathbf{X}=\mathbf{a}}\left(A^{\dagger}\right)_{\mid \mathbf{X}=\mathbf{a}}=\left(A^{\dagger}\right)_{\mid \mathbf{x}=\mathbf{a}} M\left(A^{\dagger}\right)_{\mid \mathbf{X}=\mathbf{a}}$
- $M\left(A^{\dagger}\right)_{\mid \mathbf{x}=\mathbf{a}}=A_{\mid \mathbf{X}=\mathbf{a}}\left(A^{\dagger}\right)_{\left.\right|_{\mathbf{X}=\mathbf{a}}}=\left(A A^{\dagger}\right)_{\left.\right|_{\mathbf{X}=\mathbf{a}}}=\left(\left(A^{\dagger}\right)^{*} A^{*}\right)_{\left.\right|_{\mathbf{x}=\mathbf{a}}}=$ $\left(\left(A^{\dagger}\right)^{*}\right)_{\mathbf{x}_{\mathbf{x}=\mathbf{a}}}\left(A^{*}\right)_{\mid \mathbf{x}=\mathbf{a}}$.

So, by Lemma [11, we get

$$
M\left(A^{\dagger}\right)_{\mid \mathbf{x}=\mathbf{a}}=\left(\left(A^{\dagger}\right)_{\mid \mathbf{x}=\mathbf{a}}\right)^{*}\left(A_{\mid \mathbf{X}=\mathbf{a}}\right)^{*}=\left(\left(A^{\dagger}\right)_{\mid \mathbf{x}=\mathbf{a}}\right)^{*} M^{*}
$$

- Reasoning as above, $\left(A^{\dagger}\right)_{\left.\right|_{\mathbf{x}=\mathbf{a}}} M=\left(\left(A^{\dagger}\right)_{\mid \mathbf{x}=\mathbf{a}}\right)^{*} M^{*}$.

Therefore, $\left(A^{\dagger}\right)_{\mid \mathbf{x}=\mathbf{a}}$ satisfies the Penrose axioms for M. Thus, by the uniqueness of the Moore-Penrose inverse, we conclude the proof.

Example $14 \operatorname{Let}(\mathbb{K}, \varphi)=(\mathbb{C},-\cdot)$. We consider its extension $\left(\mathbb{C}\left(x_{1}, x_{2}, x_{3}\right), \Psi^{\mathrm{e}}\right)$; see (3) for the definition of the involutory automorphism ${ }^{-\mathrm{e}}$. Note that $\mathbb{K}_{\varphi}=\mathbb{R}$. We consider the matrix

$$
A=\left(\begin{array}{ccc}
\frac{x_{1} x_{2}}{x_{3}} & x_{1} x_{3} & x_{2} x_{3} \\
\frac{x_{1} x_{2}}{x_{3}} & x_{1} x_{3} & 0
\end{array}\right) \in \mathcal{M}_{2 \times 3}\left(\mathbb{C}\left(x_{1}, x_{2}, x_{3}\right)\right) .
$$

The Moore-Penrose inverse is (see last part of this section for details on how to compute A^{\dagger})

$$
A^{\dagger}=\left(\begin{array}{cc}
0 & \frac{x_{2} x_{3}}{x_{1}\left(x_{3}{ }^{4}+x_{2}^{2}\right)} \\
0 & \frac{x_{3}{ }^{3}}{x_{1}\left(x_{3}{ }^{4}+x_{2}^{2}\right)} \\
\frac{1}{x_{2} x_{3}} & -\frac{1}{x_{2} x_{3}}
\end{array}\right) .
$$

By Theorem [13, we know that for all $a, b, c \in \mathbb{R} \backslash\{0\}$ it holds that

$$
\left(A_{\left.\right|_{\left(x_{1}, x_{2}, x_{3}\right)=(a, b, c)}}\right)^{\dagger}=\left(A^{\dagger}\right)_{\left(x_{1}, x_{2}, x_{3}\right)=(a, b, c)} .
$$

For instance

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)^{\dagger}=\left(A_{\mid\left(x_{1}, x_{2}, x_{3}\right)=(1,1,1)}\right)^{\dagger}=\left(A^{\dagger}\right)_{\left.\right|_{\left(x_{1}, x_{2}, x_{3}\right)=(1,1,1)}}=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
0 & \frac{1}{2} \\
1 & -1
\end{array}\right) .
$$

However, the specialization property does not hold, in general, if the values are not taken in \mathbb{K}_{φ}. For instance (i denotes the imaginary unit, that is $\mathrm{i}=\sqrt{-1}$),

$$
\begin{aligned}
& \left(\begin{array}{cc}
0 & \frac{1}{3}-\mathrm{i} \frac{1}{3} \\
0 & \frac{1}{3} \\
\frac{1}{2}-\mathrm{i} \frac{1}{2} & -\frac{1}{2}+\mathrm{i} \frac{1}{2}
\end{array}\right)=\left(A_{\left.\right|_{\left(x_{1}, x_{2}, x_{3}\right)=(1,1+\mathrm{i}, 1)}}\right)^{\dagger} \neq \\
& \left(A^{\dagger}\right)_{\left.\right|_{\left(x_{1}, x_{2}, x_{3}\right)=(1,1+\mathrm{i}, 1)}}=\left(\begin{array}{cc}
0 & \frac{3}{5}-\mathrm{i} \frac{1}{5} \\
0 & \frac{1}{5}-\mathrm{i} \frac{2}{5} \\
\frac{1}{2}-\mathrm{i} \frac{1}{2} & -\frac{1}{2}+\mathrm{i} \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

In addition, within the same example, we may consider a different field extension. We take $(\mathbb{K}, \varphi)=\left(\mathbb{C}\left(x_{1}\right), \cdot^{\mathrm{e}}\right)$ and we extend it to $\left(\mathbb{C}\left(x_{1}\right)\left(x_{2}, x_{3}\right), \varphi^{\mathrm{e}}\right)$, where $\varphi^{\mathrm{e}}=\left(-^{\mathrm{e}}\right)^{\mathrm{e}}$; see (3) for the definition of the involutory automorphisms $-^{\mathrm{e}}$ and $\left(\zeta^{\mathrm{e}}\right)^{\mathrm{e}}$, also we recall that $\mathbb{C}\left(x_{1}\right)\left(x_{2}, x_{3}\right)$ is the field of complex rational functions in the variable $\left\{x_{2}, x_{3}\right\}$ with coefficients in $\mathbb{C}\left(x_{1}\right)$. Now, $\mathbb{K}_{\varphi}=\mathbb{R}\left(x_{1}\right)$; we recall that $\mathbb{R}\left(x_{1}\right)$ is the field real rational functions in the variable x_{1}. In this situation, $A \in \mathcal{M}_{3 \times 2}\left(\mathbb{C}\left(x_{1}\right)\left(x_{2}, x_{3}\right)\right)$, and for every $b, c \in \mathbb{R}\left(x_{1}\right) \backslash\{0\}$ we have that

$$
\left(A_{\left.\right|_{\left(x_{2}, x_{3}\right)=(b, c)}}\right)^{\dagger}=\left(A^{\dagger}\right)_{\left.\right|_{\left(x_{2}, x_{3}\right)=(b, c)}} .
$$

For instance,

$$
\left(\begin{array}{ccc}
1 & x_{1}{ }^{4} & x_{1}{ }^{5} \\
1 & x_{1}{ }^{4} & 0
\end{array}\right)^{\dagger}=\left(A_{\left.\right|_{\left(x_{2}, x_{3}\right)=\left(x_{1}^{2}, x_{1}^{3}\right)}}\right)^{\dagger}=\left(\left.A^{\dagger}\right|_{\left.\right|_{\left(x_{2}, x_{3}\right)=\left(x_{1}^{2}, x_{1}^{3}\right)}}=\left(\begin{array}{cc}
0 & \frac{1}{1+x_{1}^{8}} \\
0 & \frac{x_{1}{ }^{4}}{x_{1}{ }^{8}+1} \\
\frac{1}{x_{1}^{5}} & -\frac{1}{x_{1}^{5}}
\end{array}\right) .\right.
$$

In the first part of this section we have been working with Moore-Penrose fields. Now, we see that in the case of fields, where the Moore-Penrose field property is not guaranteed, a similar treatment can be performed. So, we assume that we are given a
field with an involutory automorphism, (\mathbb{K}, φ), and we consider $\left(\mathbb{K}(\mathbf{x}), \varphi^{\mathrm{e}}\right)$, where φ^{e} is defined as in (3]). However, we do not ask (\mathbb{K}, φ) to be Moore-Penrose, and hence Theorem [12] cannot be applied. So, in general, we cannot ensure the existence of the Moore-Penrose inverse. In this situation, Theorem 13 can be reformulated as follows.

Theorem 15 We consider the fields (\mathbb{K}, φ) and $\left(\mathbb{K}(\mathbf{x}), \varphi^{\mathrm{e}}\right)$. Let $A \in \mathcal{M}_{m \times n}(\mathbb{K}(\mathbf{x}))$, with $\mathbf{x}=\left(x_{1}, \ldots, x_{r}\right)$, such that A^{\dagger} exists. Let $\mathbf{a} \in \mathbb{K}_{\varphi}^{r}$ such that

$$
\operatorname{den}(A)(\mathbf{a}) \operatorname{den}\left(A^{\dagger}\right)(\mathbf{a}) \neq 0
$$

Then $\left(A_{\mid \mathbf{x}=\mathbf{a}}\right)^{\dagger}$ exists and

$$
\left(A^{\dagger}\right)_{\mid \mathbf{X}=\mathbf{a}}=\left(A_{\mid \mathbf{X}=\mathbf{a}}\right)^{\dagger}
$$

In the last part of this section, we discuss different possibilities for computing the Moore-Penrose inverse of matrices of rational functions. We assume that (\mathbb{K}, φ) is a Moore-Penrose field. So, by Theorem 12, $\left(\mathbb{K}(\mathbf{x}), \varphi^{e}\right)$ is also Moore-Penrose. Let us assume that \mathbb{K} is a computable field (i.e. a field where the basic arithmetic is computable) and that an algorithm to compute $\varphi(\mathbf{a})$, with $\mathbf{a} \in \mathbb{K}^{r}$, is available. Then, it follows that $\mathbb{K}(\mathbf{x})$ is also computable and the algorithm to compute φ can be naturally extended to an algorithm to compute φ^{e}. Therefore, Theorem 2] and in particular Remark provide an algorithmic method to compute A^{\dagger} in $\left(\mathbb{K}(\mathbf{x}), \varphi^{\mathrm{e}}\right)$.

Now, let us consider the particular case of $\mathbb{K}=\mathbb{C}$, taking $\varphi=\div$ as the usual conjugation of complex numbers. There exist different algorithms for computing A^{\dagger} with $A \in$ $\mathcal{M}_{m \times n}(\mathbb{C})$ (see e.g. [3], [4]). In addition, different approaches for matrices with real polynomials and real rational functions have been presented in [11], [12], [13], [19], [25], [26]; see also [1], 9] for computing the inverse via limits. Now, let $A \in \mathcal{M}_{m \times n}(\mathbb{C}(\mathbf{x}))$. We observe that if $\lambda \in \mathbb{C}(\mathbf{x})_{\varphi} \backslash\{0\}$, i.e. $\bar{\lambda}=\lambda$, then $(\lambda A)^{\dagger}=1 / \lambda A^{\dagger}$. Therefore, since $\mathbb{R}(\mathbf{x}) \subset \mathbb{C}(\mathbf{x})_{\varphi}$, the algorithms for real polynomial matrices mentioned above extend naturally to the case of real rational function matrices. Moreover, if $A \in \mathcal{M}_{m \times n}(\mathbb{C}(\mathbf{x}))$, normalizing the complex rational functions, and multiplying the matrix by the least common multiple of all denominators, the computation of the Moore-Penrose inverse in $\mathcal{M}_{m \times n}(\mathbb{C}(\mathbf{x}))$ is reduced to the computation in $\mathcal{M}_{m \times n}(\mathbb{C}[\mathbf{x}])$, where $\mathbb{C}[\mathbf{x}]$ denotes the polynomial ring of the complex polynomials in the variables \mathbf{x}.

In [23], elimination theory techniques are applied to compute the Drazin inverse of matrices with rational function entries. For the case of the Moore-Penrose inverse of a matrix one may try to proceed similarly. However, a main difference appears here, namely the conjugation of the polynomials. Nevertheless, one could use the following scheme. We express the unknown matrix X in (II) as $X=Y+\mathrm{i} Z$ where Y, Z are unknown matrices with undetermined entries in $\mathbb{R}(\mathbf{x})$. Then, if we write X, Y as $X=\left(\alpha_{i j}\right), Y=\left(\beta_{i j}\right)$, the equalities in (11) provide a set $\mathcal{S}=\left\{H_{k}\left(\alpha_{11}, \ldots, \beta_{n m}\right)=0\right\}_{k \in I}$, where I is a finite set of indexes, and where $H_{k} \in \mathbb{C}(\mathbf{x})\left[\alpha_{11}, \ldots, \beta_{n m}\right]$, that is H_{k} is a polynomial in the variables $\alpha_{i j}, \beta_{i j}$ with coefficients in $\mathbb{C}(\mathbf{x})$; note that the total degree of each H_{K}, w.r.t. $\left\{\alpha_{11}, \ldots, \beta_{n m}\right\}$, is at most 2. Now, taking the real part and the
imaginary parts of H_{k} we get a new algebraic system defined by real polynomials. Since, the solution is unique, the system is zero-dimensional, and applying Gröbner bases techniques one derives the Moore-Penrose inverse.

Alternatively, one can also design an algorithm based on interpolation techniques as follows. Let $A \in \mathcal{M}_{m \times n}(\mathbb{C}[\mathbf{x}])$. By Theorem $[2$ and Remark $\mathbb{\square}$, one may deduce an upper bound of the degree w.r.t. x_{i} of the numerators and denominators of the entries in A^{\dagger}. On the other hand, by Theorem [13, we know that for every a $\in \mathbb{R}^{r}$, such that neither the denominator of A nor the denominator of A^{\dagger} vanishes at a, it holds that the specialization of the Moore-Penrose inverse is the Moore-Penrose inverse of the specialization. Therefore, taking sufficiently many tuples of real numbers, and using rational function interpolation, we may derive a candidate for the Moore-Penrose inverse of A. The correctness of the computed solution can be checked by substituting it in (II).

In spite of these disquisitions, in this paper we do not investigate in this direction. We focus on the application of Theorems [13] and to matrices with meromorphic functions (see Section (5) and, for this purpose, one may use any of the available algorithms to compute the Moore-Penrose inverses of rational function matrices that are involved in the process. In our case, we use the Maple implementation of the pseudoinverse function.

5 Application to Matrices of Functions

In this section we deal with matrices whose entries as functions. More precisely, let Ω be a connected open subset of \mathbb{C}. We consider the integral domain $\mathcal{O}(\Omega)$ of the holomorphic functions over Ω, as well as its field of fractions $\operatorname{Mer}(\Omega)$ of the meromorphic functions over Ω (see [14]). Furthermore, in $\operatorname{Mer}(\Omega)$ we introduce the involutory automorphism

$$
\begin{equation*}
\varphi: \operatorname{Mer}(\Omega) \rightarrow \operatorname{Mer}(\Omega) ; f(z) \mapsto \overline{f(\bar{z})} \tag{4}
\end{equation*}
$$

We consider $\left(\mathbb{C}(z),{ }^{-e}\right)$ (see (B)); that is, $\mathbb{C}(z)$ is the field of complex rational functions in z, and

$$
\begin{equation*}
-^{e}: \mathbb{C}(z) \rightarrow \mathbb{C}(z) ; R(z):=\frac{\sum_{i=0}^{k_{1}} a_{i} z^{i}}{\sum_{i=0}^{k_{2}} b_{i} z^{i}} \longmapsto \overline{R(z)}^{e}=\frac{\sum_{i=0}^{k_{1}} \overline{a_{i}} z^{i}}{\sum_{i=0}^{k_{2}} \overline{b_{i}} z^{i}} . \tag{5}
\end{equation*}
$$

Thus, since $\varphi(z)=\overline{\bar{z}}=z$ (see (4)), we have that the restriction of φ to $\mathbb{C}(z)$ is ${ }^{-}{ }^{e}$; that is, $\varphi_{\left.\right|_{C(z)}}=-^{e}$. In addition, we observe that the elements of the field $\mathbb{R}(z)$, of the real rational functions in the variable z, are φ-invariant. So $\mathbb{R}(z) \subset \operatorname{Mer}(\Omega)_{\varphi}$. Other φ-invariant meromorphic functions are, for instance, $e^{z}, \sin (z), \cos (z), \sinh (z), \cosh (z)$, $\Gamma(z) \in \operatorname{Mer}(\Omega)_{\varphi}$.

In this situation, we take a subset

$$
\begin{equation*}
\mathcal{F}=\left\{f_{1}(z), \ldots, f_{k}(z)\right\} \subset \operatorname{Mer}(\Omega)_{\varphi} \tag{6}
\end{equation*}
$$

being algebraically independent over \mathbb{C}; this means that there exists none non-zero polynomial $P \in \mathbb{C}[\mathbf{w}]$ such that $P\left(f_{1}, \ldots, f_{k}\right)=0$. Let us use the notation $\mathbf{w}=$ $\left(w_{1}, \ldots, w_{k}\right)$, and $\mathbf{f}=\left(f_{1}(z), \ldots, f_{k}(z)\right)$. Then, we consider the field extension

$$
\mathbb{C}(\mathcal{F})=\left\{\frac{P(\mathbf{f})}{Q(\mathbf{f})} \text { with } P, Q \in \mathbb{C}[\mathbf{w}] \text { and } Q(\mathbf{f}) \neq 0\right\} \subset \operatorname{Mer}(\Omega)
$$

Let $F \in \mathbb{C}(\mathcal{F})$, and let $P, Q \in \mathbb{C}[\mathbf{w}]$, with $Q(\mathbf{f}) \neq 0$, be such that $F=P(\mathbf{f}) / Q(\mathbf{f})$. Let us write P and Q as $P=\sum a_{i} T_{i}(\mathbf{w}), Q=\sum b_{i} T_{i}(\mathbf{w})$ where T_{i} are terms in the variables \mathbf{w} and $a_{i}, b_{i} \in \mathbb{C}$. Then,

$$
\left.\varphi(F)=\frac{\overline{\sum a_{i} T_{i}(\mathbf{f}(\bar{z}))}}{\overline{\sum b_{i} T_{i}(\mathbf{f}(\bar{z}))}}=\frac{\sum \overline{a_{i}} T_{i}(\overline{\mathbf{f}(\bar{z})})}{\sum \overline{b_{i}} T_{i}(\overline{\mathbf{f}}(\bar{z})}\right)=\frac{\sum \overline{a_{i}} T_{i}(\mathbf{f}(z))}{\sum \overline{b_{i}} T_{i}(\mathbf{f}(z))} \in \mathbb{C}(\mathcal{F}) .
$$

Therefore the restriction of φ to $\mathbb{C}(\mathcal{F})$ is also an involutory automorphism that, abusing of the notation, we denote again as φ. Thus, we have $(\mathbb{C}(\mathcal{F}), \varphi) \subset(\operatorname{Mer}(\Omega), \varphi)$.

Lemma 16 Let $P \in \mathbb{R}[\mathbf{w}]$. Then, $\varphi(P(\mathbf{f}))=P(\mathbf{f})$.
Proof: Let P be expressed as $P=\sum a_{i} T_{i}(\mathbf{w})$, where $a_{i} \in \mathbb{R}$ and T_{i} are terms in the variables w. Then

$$
\varphi(P(\mathbf{f}(z)))=\overline{\sum a_{i} T_{i}(\mathbf{f}(\bar{z}))}=\sum \overline{a_{i}} T_{i}(\overline{\mathbf{f}(\bar{z})}) .=\sum \overline{a_{i}} T_{i}\left(\varphi\left(f_{1}(z)\right), \ldots, \varphi\left(f_{k}(z)\right)\right) .
$$

Now, the result follows taking into account that $a_{i} \in \mathbb{R}$ and that $f_{i} \in \operatorname{Mer}(\Omega)_{\varphi}$.

Lemma 17 Let $F \in \mathbb{C}(\mathcal{F})$ be written as

$$
F=\frac{A(\mathbf{f}(z))+\mathrm{i} B(\mathbf{f}(z)))}{C(\mathbf{f}(z))+\mathrm{i} D(\mathbf{f}(z))}
$$

with $A, B, C, D \in \mathbb{R}[\mathbf{w}]$. Then

$$
F \cdot \varphi(F)=\frac{A(\mathbf{f}(z))^{2}+B(\mathbf{f}(z))^{2}}{C(\mathbf{f}(z))^{2}+D(\mathbf{f}(z))^{2}}
$$

Proof: Taking into account that A, B, C, D are real polynomials and that $f_{i} \in \operatorname{Mer}(\Omega)_{\varphi}$, by Lemma 16, one has that

$$
\begin{aligned}
F \cdot \varphi(F) & =\frac{A(\mathbf{f}(z))+\mathrm{i} B(\mathbf{f}(z)))}{C(\mathbf{f}(z))+\mathrm{i} D(\mathbf{f}(z))} \cdot \frac{\overline{A(\mathbf{f}(\bar{z}))+\mathrm{i} B(\mathbf{f}(\bar{z})))}}{\overline{C(\mathbf{f}(\bar{z}))+\mathrm{i} D(\mathbf{f}(\bar{z}))}} \\
& =\frac{A(\mathbf{f}(z))+\mathrm{i} B(\mathbf{f}(z)))}{C(\mathbf{f}(z))+\mathrm{i} D(\mathbf{f}(z))} \cdot \frac{\overline{A(\mathbf{f}(\bar{z}))}-\mathrm{i} \overline{B(\mathbf{f}(\bar{z})))}}{\overline{C(\mathbf{f}(\bar{z}))}-\mathrm{i} \overline{D(\mathbf{f}(\bar{z}))}} \\
& =\frac{A(\mathbf{f}(z))+\mathrm{i} B(\mathbf{f}(z)))}{C(\mathbf{f}(z))+\mathrm{i} D(\mathbf{f}(z))} \cdot \frac{A(\mathbf{f}(z))-\mathrm{i} B(\mathbf{f}(z)))}{C(\mathbf{f}(z))-\mathrm{i} D(\mathbf{f}(z))}=\frac{A(\mathbf{f}(z))^{2}+B(\mathbf{f}(z))^{2}}{C(\mathbf{f}(z))^{2}+D(\mathbf{f}(z))^{2}}
\end{aligned}
$$

Theorem $18(\mathbb{C}(\mathcal{F}), \varphi)$ is a Moore-Penrose field.
Proof: Let $F_{1} / G_{1}, \ldots, F_{k} / G_{k} \in \mathbb{C}(\mathcal{F})$ such that $\sum_{j=1}^{k} F_{j} / G_{j} \varphi\left(F_{j} / G_{j}\right)=0$. We prove that, $F_{1} / G_{1}=\cdots=F_{k} / G_{k}=0$. Let F_{i}, G_{i} be expressed as $F_{i}=P_{i}(\mathbf{f})$ and $G_{i}=Q_{i}(\mathbf{f})$ where $P_{i}=A_{i}+\mathrm{i} B_{i}, Q_{i}=C_{i}+\mathrm{i} D_{i}$ with $A_{i}, B_{i}, C_{i}, D_{i} \in \mathbb{R}[\mathbf{w}]$. By Lemma 17], we have that

$$
0=\sum_{j=1}^{k} \frac{F_{j}}{G_{j}} \varphi\left(\frac{F_{j}}{G_{j}}\right)=\sum_{j=1}^{k} \frac{A_{j}(\mathbf{f})^{2}+B_{j}(\mathbf{f})^{2}}{C_{j}(\mathbf{f})^{2}+D_{j}(\mathbf{f})^{2}}
$$

Let $H_{j}(\mathbf{w})=C_{j}(\mathbf{w})^{2}+D_{j}(\mathbf{w})^{2}$. Then,

$$
0=\sum_{j=1}^{k}\left(\prod_{i \neq j} H_{i}(\mathbf{f})\right)\left(A_{j}(\mathbf{f})^{2}+B_{j}(\mathbf{f})^{2}\right)
$$

Since \mathcal{F} is algebraically independent, we have that

$$
0=\sum_{j=1}^{k}\left(\prod_{i \neq j} H_{i}(\mathbf{w})\right)\left(A_{j}(\mathbf{w})^{2}+B_{j}(\mathbf{w})^{2}\right)
$$

Let us assume that there exists j_{0} such that either $A_{j_{0}}$ or $B_{j_{0}}$ are not zero; say that $A_{j_{0}} \neq 0$. By construction, since G_{i} is not zero, we have that $H_{i}(\mathbf{w})$ is not zero for all i. Let $\mathbf{a} \in \mathbb{R}^{k}$ such that $A_{j_{0}}(\mathbf{a}) H_{1}(\mathbf{a}) \cdots H_{k}(\mathbf{a}) \neq 0$. Then

$$
0=\sum_{j=1}^{k}\left(\prod_{i \neq j} H_{i}(\mathbf{a})\right)\left(A_{j}(\mathbf{a})^{2}+B_{j}(\mathbf{a})^{2}\right)
$$

which is a contradiction since it is a sum of positive real numnbers, and one of them, namely $\left(\prod_{i \neq j_{0}} H_{i}(\mathbf{a})\right)\left(A_{j_{0}}(\mathbf{a})^{2}+B_{j_{0}}(\mathbf{a})^{2}\right)$, is not zero. So, $A_{j}=B_{j}=0$ for all j. Thus, $P_{j}=0$, and hence $F_{j}=P_{j}(\mathbf{f})=0$ for all j. Now, the result follows from Theorem 4.

Theorem $19\left(\mathbb{C}(\mathcal{F})(\mathrm{x}), \varphi^{\mathrm{e}}\right)$ is a Moore-Penrose field.
Proof: It follows from Theorem [18] and Theorem [12].

Lemma $20 \mathbb{C}(\mathcal{F})_{\varphi}=\mathbb{R}(\mathcal{F})$.
Proof: Let $F / G \in \mathbb{R}(\mathcal{F})$. Say that $F=P(\mathbf{f})$ and $G=Q(\mathbf{f})$ with $P, Q \in \mathbb{R}[\mathbf{w}]$. Then, by Lemma 16, one has that

$$
\varphi\left(\frac{F}{G}\right)=\frac{\varphi(P(\mathbf{f}))}{\varphi(Q(\mathbf{f}))}=\frac{P(\mathbf{f})}{Q(\mathbf{f})}=\frac{F}{G}
$$

So, $\mathbb{R}(\mathcal{F}) \subset \mathbb{C}(\mathcal{F})_{\varphi}$. Conversely, let $F / G \in \mathbb{C}(\mathcal{F})_{\varphi}$. Then, $\varphi(F / G)=F / G$. We express F and G as $F=P(\mathbf{f}), G=Q(\mathbf{f})$, where $P, Q \in \mathbb{C}[\mathbf{w}]$, and let $P=A+\mathrm{i} B, Q=C+\mathrm{i} D$ with $A, B, C, D \in \mathbb{R}[\mathbf{w}]$. Then, using Lemma [16] we have that

$$
\frac{A(\mathbf{f})+\mathrm{i} B(\mathbf{f})}{C(\mathbf{f})+\mathrm{i} D(\mathbf{f})}=\frac{P(\mathbf{f})}{Q(\mathbf{f})}=\frac{F}{G}=\varphi\left(\frac{F}{G}\right)=\frac{\varphi(F)}{\varphi(G)}=\frac{A(\mathbf{f})-\mathrm{i} B(\mathbf{f})}{C(\mathbf{f})-\mathrm{i} D(\mathbf{f})}
$$

This implies that

$$
A(\mathbf{f}) D(\mathbf{f})-B(\mathbf{f}) C(\mathbf{f})=0
$$

So,

$$
\frac{F}{G}=\frac{P(\mathbf{f})}{Q(\mathbf{f})}=\frac{A(\mathbf{f})+\mathrm{i} B(\mathbf{f})}{C(\mathbf{f})+\mathrm{i} D(\mathbf{f})}=\frac{(A(\mathbf{f}) C(\mathbf{f})+B(\mathbf{f}) D(\mathbf{f}))+\mathrm{i}(-A(\mathbf{f}) D(\mathbf{f})+B(\mathbf{f}) C(\mathbf{f}))}{C(\mathbf{f})^{2}+D(\mathbf{f})^{2}}
$$

Therefore,

$$
\frac{F}{G}=\frac{(A(\mathbf{f}) C(\mathbf{f})+B(\mathbf{f}) D(\mathbf{f}))}{C(\mathbf{f})^{2}+D(\mathbf{f})^{2}} \in \mathbb{R}(\mathcal{F}) .
$$

We consider the following map, that transforms a matrix with function entries into a matrix with rational function entries.

$$
\text { Rat: } \begin{array}{rll}
\mathcal{M}_{m \times n}(\mathbb{C}(\mathcal{F})) & \rightarrow \mathcal{M}_{m \times n}(\mathbb{C}(\mathbf{w})) \\
& \left(a_{i, j}(\mathbf{f})\right) & \mapsto\left(a_{i, j}(\mathbf{w})\right)
\end{array}
$$

In the following we relate, via the map Rat, the Moore-Penrose inverse of matrices in $\mathcal{M}_{m \times n}(\mathbb{C}(\mathcal{F}))$ to the Moore-Penrose inverse of matrices in $\mathcal{M}_{m \times n}(\mathbb{C}(\mathbf{w}))$. We recall that in $\mathcal{M}_{m \times n}(\mathbb{C}(\mathcal{F}))$ we use the automorphism φ introduced in (4), and in $\mathcal{M}_{m \times n}(\mathbb{C}(\mathbf{w}))$ we take

$$
\begin{aligned}
&{ }^{-e}: \mathbb{C}(\mathbf{w}) \\
& R(\mathbf{w}):=\frac{\sum_{I=\left(i_{1}, \ldots, i_{k}\right)} a_{I} w_{1}^{i_{1}} \cdots w_{k}^{i_{k}}}{} \sum_{I=\left(i_{1}, \ldots, i_{k}\right)} b_{I} w_{1}^{i_{1}} \cdots w_{k}^{i_{k}} \mapsto \overline{\mathbb{C}(\mathbf{w})} \\
& R(z)^{e}=\frac{\sum_{I=\left(i_{1}, \ldots, i_{k}\right)} \overline{a_{I}} w_{1}^{i_{1}} \cdots w_{k}^{i_{k}}}{\sum_{I=\left(i_{1}, \ldots, i_{k}\right)} \overline{b_{I}} w_{1}^{i_{1}} \cdots w_{k}^{i_{k}}} .
\end{aligned}
$$

Theorem 21 Let $A \in \mathcal{M}_{m \times n}(\mathbb{C}(\mathcal{F}))$. Then

$$
\left(\operatorname{Rat}(A)^{\dagger}\right)_{\mathbf{w}=\mathbf{f}}=A^{\dagger}
$$

Proof: $\operatorname{Rat}(A) \in \mathcal{M}_{m \times n}(\mathbb{C}(\mathbf{w})) \subset \mathcal{M}_{m \times n}(\mathbb{C}(\mathcal{F})(\mathbf{w}))$. By Theorem $19\left(\mathbb{C}(\mathcal{F})(\mathbf{w}), \varphi^{\mathrm{e}}\right)$ is Moore-Penrose and, by Lemma [20, $\mathbb{C}(\mathcal{F})_{\varphi}=\mathbb{R}(\mathcal{F})$. Now, since \mathcal{F} is algebraically independent, it holds that $\operatorname{Rat}(A)(\mathbf{f}) \operatorname{den}\left(\operatorname{Rat}(A)^{\dagger}\right)(\mathbf{f}) \neq 0$, and hence the result follows from Theorem 13

In the first part of this section, we have assumed that \mathcal{F} (see (6id) is algebraically independent. This hypothesis has been used in two places. First for the definability of the map Rat, and secondly in the proof of Theorem [19, In the following theorem, we see how to proceed when \mathcal{F} is algebraically dependent.

Theorem 22 Let $A \in \mathcal{M}_{m \times n}(\mathbb{C}(\mathcal{F}))$, with \mathcal{F} not necessarily algebraically independent. If

$$
\operatorname{den}\left(\operatorname{Rat}(A)^{\dagger}\right)(\mathbf{f}) \neq 0
$$

Then A^{\dagger} exists and

$$
\left(\operatorname{Rat}(A)^{\dagger}\right)_{\left.\right|_{\mathbf{w}=\mathbf{f}}}=A^{\dagger}
$$

Proof: We observe that $\left(\mathbb{C}(\mathbf{w}), \varphi_{\mathrm{C}_{(}(\mathbf{W})}\right)$ is Moore-Penrose (see Theorem [21). So, $\operatorname{Rat}(A)^{\dagger}$ exists. $\operatorname{Rat}(A) \in \mathcal{M}_{m \times n}(\mathbb{C}(\mathbf{w})) \subset \mathcal{M}_{m \times n}(\mathbb{C}(\mathcal{F})(\mathbf{w}))$. By Lemma 20 , $\mathbb{C}(\mathcal{F})_{\varphi}=\mathbb{R}(\mathcal{F})$. By construction, $\operatorname{den}(\operatorname{Rat}(A))(\mathbf{f}) \neq 0$. So, the result follows from Theorem [15.

Using the previous results one can derive the following algorithm for computing the Moore-Penrose inverses of matrices with entries in $\mathbb{C}(\mathcal{F})$.

```
\(\underline{\text { Algorithm } 1 \text { Moore-Penrose inverse computation of matrices of functions }}\)
Given \(\mathcal{F}\) as in (6), not necessarily algebraically independent, and \(A \in \mathcal{M}_{m \times n}(\mathbb{C}(\mathcal{F}))\),
the algorithm computes the Moore-Penrose inverse \(A^{\dagger}\).
1: For \(i \in\{1, \ldots, k\}\) replace in \(A\) the function \(f_{i}(z)\) by the variable \(w_{i}\); that is, compute the matrix \(\operatorname{Rat}(A)\). Let \(B(\mathbf{w}) \in \mathcal{M}_{m \times n}(\mathbb{C}(\mathbf{w}))\) be the resulting matrix of the execution of this step.
2: Compute \(B^{\dagger}\).
3: For \(i \in\{1, \ldots, k\}\) replace in \(B^{\dagger}\) the variable \(w_{i}\) by the function \(f_{i}(z)\). Let \(C(\mathbf{f}) \in\) \(\mathcal{M}_{m \times n}(\mathbb{C}(\mathcal{F}))\) be the resulting matrix of the execution of this step.
4: If \(\operatorname{den}\left(B^{\dagger}\right)(\mathbf{f})=0\) return that the method fails.
5: Return \(C(\mathbf{f})\).
```


Remark 2

1. In Step 1, we replace the input matrix A, that depends on the meromorphic functions in \mathcal{F}, by the matrix B that depends on rational functions. For this purpose, each function in \mathcal{F}, appearing in A, is replaced by a new variable. Thus, the entries in B are rational functions that depend on as many variables as functions we have in \mathcal{F}. Therefore the running time of the algorithm is affected by the number of different meromorphic functions in \mathcal{F}. In Subsection 5.1 we show an empirical test (see Test-2) where this phenomenon is analyzed.
2. For the execution of Step 2 of the algorithm see the last part of Section 4 where we have commented different possibilities.

We illustrate the above ideas with a couple of examples; we recall that $\mathrm{i}=\sqrt{-1}$.
Example 23 Let $\mathcal{F}=\left\{\Gamma(z), \cos (z), e^{z}, \sin (z)\right\}$. Note that \mathcal{F} is algebraically dependent. We take $\mathbf{w}=\left(w_{1}, w_{2}, w_{3}, w_{4}\right)$ and the matrix

$$
A=\left(\begin{array}{cc}
\frac{\mathrm{i}}{e^{z}+\mathrm{i} \sin (z)} & \frac{\Gamma(z)}{\cos (z)+\mathrm{i} \sin (z)}
\end{array}\right) .
$$

In the Step 1 of the Algorithm we get the matrix

$$
B=\operatorname{Rat}(A)=\left(\frac{\mathrm{i}}{w_{3}+\mathrm{i} w_{4}}, \frac{w_{1}}{w_{2}+\mathrm{i} w_{4}}\right) .
$$

In the Step 2 we get the Moore-Penrose inverse of B

$$
B^{\dagger}=\binom{-\frac{\left(w_{2}\left(\mathrm{i} w_{3}-w_{4}\right)\right)^{2}+\left(w_{4}\left(\mathrm{i} w_{3}-w_{4}\right)\right)^{2}}{w_{1}^{2} w_{3}^{2}+w_{1}^{2} w_{4}^{2}+w_{2}^{2}+w_{4}^{2}}}{\frac{\left(w_{3}^{2}+w_{4}^{2}\right) w_{1}\left(w_{2}+\mathrm{i} w_{4}\right)}{w_{1}^{2} w_{3}^{2}+w_{1}^{2} w_{4}^{2}+w_{2}^{2}+w_{4}^{2}}}
$$

Since, $\operatorname{den}\left(B^{\dagger}\right)$ does not vanish at $\mathbf{f}=\left(\Gamma(z), \cos (z), e^{z}, \sin (z)\right)$, the Moore-Penrose inverse of A is

$$
\begin{gathered}
A^{\dagger}=\left(B^{\dagger}\right)_{\mid \mathbf{w}=\mathbf{f}}= \\
\binom{\mathrm{i} e^{z}-\sin (z)}{\frac{\Gamma(z)\left(-\mathrm{i} \cos (z)^{2} \sin (z)+i e^{2 z} \sin (z)-\cos (z)^{3}+\cos (z) e^{2 z}+i \sin (z)+\cos (z)\right)}{-\cos (z)^{2} \Gamma(z)^{2}-\Gamma(z)^{2} e^{2 z}-\Gamma(z)^{2}-1}}
\end{gathered} .
$$

Example 24 Let $\mathcal{F}=\left\{\cos (z), e^{z}\right\}$. We take $\mathbf{w}=\left(w_{1}, w_{2}\right)$ and the matrix
$A=\left(\begin{array}{ccccc}\frac{\mathrm{i} e^{z}}{\mathrm{i} e^{z}+\cos (z)} & \frac{\mathrm{i} e^{z}}{\cos (z)-\mathrm{i} e^{z}} & \frac{\mathrm{i} e^{z}}{\mathrm{i} e^{z}+\cos (z)} & \frac{\mathrm{i} e^{z}}{\cos (z)-\mathrm{i} e^{z}} & \frac{\mathrm{i} e^{z}}{\mathrm{i} e^{z}+\cos (z)} \\ \frac{\cos (z) e^{z}+\mathrm{i} e^{z}}{\cos (z)-\mathrm{i} e^{z}} & \frac{\cos (z) e^{z}+\mathrm{i} e^{z}}{\mathrm{i} e^{z}+\cos (z)} & \frac{\cos (z) e^{z}+\mathrm{i} e^{z}}{\cos (z)-\mathrm{i} e^{z}} & \frac{\cos (z) e^{z}+\mathrm{i} e^{z}}{\mathrm{i} e^{z}+\cos (z)} & \frac{\cos (z) e^{z}+\mathrm{i} e^{z}}{\cos (z)-\mathrm{i} e^{z}}\end{array}\right)$.
In the Step 1 of the Algorithm we get the matrix
$B=\operatorname{Rat}(A)=\left(\begin{array}{ccccc}\frac{\mathrm{i} w_{2}}{\mathrm{i} w_{2}+w_{1}} & \frac{\mathrm{i} w_{2}}{w_{1}-\mathrm{i} w_{2}} & \frac{\mathrm{i} w_{2}}{\mathrm{i} w_{2}+w_{1}} & \frac{\mathrm{i} w_{2}}{w_{1}-\mathrm{i} w_{2}} & \frac{\mathrm{i} w_{2}}{\mathrm{i} w_{2}+w_{1}} \\ \frac{w_{1} w_{2}+\mathrm{i} w_{2}}{w_{1}-\mathrm{i} w_{2}} & \frac{w_{1} w_{2}+\mathrm{i} w_{2}}{\mathrm{i} w_{2}+w_{1}} & \frac{w_{1} w_{2}+\mathrm{i} w_{2}}{w_{1}-\mathrm{i} w_{2}} & \frac{w_{1} w_{2}+\mathrm{i} w_{2}}{\mathrm{i} w_{2}+w_{1}} & \frac{w_{1} w_{2}+\mathrm{i} w_{2}}{w_{1}-\mathrm{i} w_{2}}\end{array}\right)$.

In the Step 2 we get the Moore-Penrose inverse of B

$$
B^{\dagger}=\left(\begin{array}{cc}
\frac{-\left(w_{1}^{2}+w_{2}^{2}\right)\left(\mathrm{i} w_{2}-w_{1}\right)}{12 w_{1} w_{2}^{2}} & \frac{-\left(w_{1}^{2}+w_{2}^{2}\right)\left(\mathrm{i} w_{1}^{2}+\mathrm{i} w_{2}-w_{1} w_{2}+w_{1}\right)}{12 w_{2}^{2} w_{1}\left(w_{1}^{2}+1\right)} \\
\frac{-\left(w_{1}^{2}+w_{2}^{2}\right)\left(w_{1}+\mathrm{i} w_{2}\right)}{8 w_{1} w_{2}^{2}} & \frac{\left(w_{1}^{2}+w_{2}^{2}\right)\left(\mathrm{i} w_{1}^{2}-\mathrm{i} w_{2}+w_{1} w_{2}+w_{1}\right)}{8 w_{2}^{2} w_{1}\left(w_{1}^{2}+1\right)} \\
\frac{-\left(w_{1}^{2}+w_{2}^{2}\right)\left(\mathrm{i} w_{2}-w_{1}\right)}{12 w_{1} w_{2}^{2}} & \frac{-\left(w_{1}^{2}+w_{2}^{2}\right)\left(\mathrm{i} w_{1}^{2}+\mathrm{i} w_{2}-w_{1} w_{2}+w_{1}\right)}{8 w_{2}^{2} w_{1}\left(w_{1}^{2}+1\right)} \\
\frac{-\left(w_{1}^{2}+w_{2}^{2}\right)\left(w_{1}+\mathrm{i} w_{2}\right)}{8 w_{1} w_{2}^{2}} & \frac{\left(w_{1}^{2}+w_{2}^{2}\right)\left(\mathrm{i} w_{1}^{2}-\mathrm{i} w_{2}+w_{1} w_{2}+w_{1}\right)}{8 w_{2}^{2} w_{1}\left(w_{1}^{2}+1\right)} \\
\frac{-\left(w_{1}^{2}+w_{2}^{2}\right)\left(\mathrm{i} w_{2}-w_{1}\right)}{12 w_{1} w_{2}^{2}} & \frac{-\left(w_{1}^{2}+w_{2}^{2}\right)\left(\mathrm{i} w_{1}^{2}+\mathrm{i} w_{2}-w_{1} w_{2}+w_{1}\right)}{12 w_{2}^{2} w_{1}\left(w_{1}^{2}+1\right)}
\end{array}\right) .
$$

Since, $\operatorname{den}\left(B^{\dagger}\right)$ does not vanish at $\mathbf{f}=\left(\cos (z), e^{z}\right)$, the Moore-Penrose inverse of A is $A^{\dagger}=\left(B^{\dagger}\right)^{\mathbf{W}=\mathbf{f}}{ }$.

5.1 Some empirical tests

In this subsection we execute two different empirical tests to analyse the behaviour of Algorithm $\mathbb{\square}$. For this purpose, we have implemented Algorithm \rrbracket in the computer algebra system Maple. We consider on one hand, the Maple command to compute directly the Moore-Penrose Inverse of matrices in $\mathcal{M}_{m \times n}(\mathbb{C}(\mathcal{F}))$, namely MatrixInverse $(A$ method=pseudo), and on the other the implementation of Algorithm In the implementation of Algorithm when we execute Step 2, we apply the Maple command mentioned above.

In the first test, we check the performance when the number of functions in \mathcal{F} is fixed but the order of the matrix increases. However, in second test, we fix the order of the matrix and we increase the number of functions. In both cases, the results are satisfactory.

All executions were done on a Intel(R) Core(TM) i7-6600U with 2.60 GHz and $16,0 \mathrm{~GB}$ RAM using Maple 18.

We recall that i denotes the imaginary unit, that is $\mathrm{i}=\sqrt{-1}$.
Test-1. In this test, we fix the number of functions appearing in the input matrix to 4 , that is $\#(\mathcal{F})=4$, and we increase the order of the matrix from 1 to 8 . More precisely, we take $\mathcal{F}=\left\{\cos (z), \sinh (z), \cosh (z), e^{z}\right\}$, and we consider the matrix

$$
A=\left(\frac{\cos (z) \sinh (z) \cosh (z) e^{z j_{1}}+\mathrm{i}(1+\sinh (z))}{\cos (z) \cosh (z)+\mathrm{i}\left(1+e^{z j_{2}}\right)}\right)_{1 \leq j_{1}, j_{2} \leq 8} \in \mathcal{M}_{8 \times 8}(\mathbb{C}(\mathcal{F}))
$$

Then, we run Algorithm \square for computing $A_{k_{1} k_{2}}^{\dagger}$ for all the $k_{1} \times k_{2}$ principal submatrices $A_{k_{1} k_{2}}$ of A, where $k_{1}, k_{2} \in\{1, \ldots, 8\}$ (see Table (1). Alternatively we have directly
executed the Maple command for computing $A_{k_{1} k_{2}}^{\dagger}$ (see Table [2), such that if the execution time is bigger than 30 minutes, the computation is stopped.

$A_{k_{1} k_{2}}^{\dagger}$	$k_{2}=1$	$k_{2}=2$	$k_{2}=3$	$k_{2}=4$	$k_{2}=5$	$k_{2}=6$	$k_{2}=7$	$k_{2}=8$
$k_{1}=1$	0.046	0.016	0.031	0.062	0.125	0.202	0.484	0.717
$k_{1}=2$	0.016	0.172	0.281	0.702	1.685	3.323	6.599	16.349
$k_{1}=3$	0.031	0.047	0.702	1.934	4.259	8.221	18.876	45.459
$k_{1}=4$	0.015	0.063	0.171	3.323	8.393	15.491	36.395	88.639
$k_{1}=5$	0.016	0.078	0.172	0.561	13.494	25.897	59.358	151.353
$k_{1}=6$	0.032	0.078	0.187	0.577	1.669	38.937	89.857	220.304
$k_{1}=7$	0.015	0.109	0.266	0.624	1.809	4.462	121.728	310.473
$k_{1}=8$	0.031	0.094	0.312	0.671	1.872	4.571	12.121	417.272

Table 1: Time in seconds of the execution of Algorithm to get $A_{k_{1} k_{2}}^{\dagger}$ in Test 1.

$A_{k_{1} k_{2}}^{\dagger}$	$k_{2}=1$	$k_{2}=2$	$k_{2}=3$	$k_{2}=4$	$k_{2}=5$	$k_{2}=6$	$k_{2}=7$	$k_{2}=8$
$k_{1}=1$	0.280	0.749	2.449	6.194	10.218	16.614	33.540	85.957
$k_{1}=2$	0.437	2.979	10.983	38.111	83.117	146.563	$>30 \mathrm{~m}$	$>30 \mathrm{~m}$
$k_{1}=3$	0.234	0.250	126.330	$>30 \mathrm{~m}$				
$k_{1}=4$	0.577	0.733	1.326	$>30 \mathrm{~m}$				
$k_{1}=5$	0.561	0.640	1.404	3.416	$>30 \mathrm{~m}$	$>30 \mathrm{~m}$	$>30 \mathrm{~m}$	$>30 \mathrm{~m}$
$k_{1}=6$	0.452	0.780	1.310	3.557	11.466	$>30 \mathrm{~m}$	$>30 \mathrm{~m}$	$>30 \mathrm{~m}$
$k_{1}=7$	0.453	0.858	1.451	3.869	13.322	41.325	$>30 \mathrm{~m}$	$>30 \mathrm{~m}$
$k_{1}=8$	0.546	0.905	1.560	4.883	14.664	47.253	114.005	$>30 \mathrm{~m}$

Table 2: Time in seconds of the direct execution of the Maple command to get $A_{k_{1} k_{2}}^{\dagger}$ in Test 1.

We observe that all executions in Algorithm took less than 7 minutes, and all but 5 cases took less than 1.5 minutes. However, the direct application of the Maple command failed (i.e. was stopped after 30 minutes) when the orders were not small.

Test-2. In this test, we fix the order of the matrix, and we increase the number of functions. More precisely,

$$
\left\{A_{n}:=\left(\frac{\cos (z)+k_{1} \mathrm{i} \sum_{j=1}^{n} e^{z^{j}}}{k_{2} \sin (z)+\mathrm{i} e^{z}}\right)_{1 \leq k_{1} \leq 4,1 \leq k_{2} \leq 5}\right\}_{n \in \mathbb{N}}
$$

So, $A_{n} \in \mathcal{M}_{4 \times 5}(\mathcal{F})$, where $\#(\mathcal{F})=n+2$. In this situation, we apply Algorithm \square (see Table (3), as well as the Maple direct command (see Table (4), to compute $\left\{A_{n}^{\dagger}\right\}_{n \in \mathbb{N}}$ till
the time of execution is bigger than 20 minutes. We observe that Algorithm runs under 20 minutes till order 9 , and hence with rational functions involving at most 11 variables. However, the direct application of the Maple command run till order 3.

A_{n}^{\dagger}	$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$	$n=7$	$n=8$	$n=9$	$n \geq 10$
	0.858	1.669	3.962	7.722	7.286	31.059	69.858	497.580	911.483	$>20 m$

Table 3: Time in seconds of the execution of Algorithm to get A_{n}^{\dagger} in Test 2.

A_{n}^{\dagger}	$n=1$	$n=2$	$n=3$	$n \geq 4$
	110.449	237.824	512.042	$>20 m$

Table 4: Time in seconds of the direct execution of the Maple command to get A_{n}^{\dagger} in Test 2.

6 Conclusions

We have introduced the notion of Moore-Penrose field and we have seen that the characteristic of a Moore-Penrose field has to be zero, and that the field of rational functions preserves the property of being Moore-Penrose (see Corollary ${ }^{\text {b }}$ and Theorem [12). From the computational point of view we have found a criterium to guarantee that the specialization of a matrix, with rational functions, commute with its MoorePenrose inverse (see Theorems [13 and [15). In addition, the applications of these results provide a symbolic algorithm to reduce the computation of the Moore-Penrose inverse of matrices, whose entries are rational expression of finitely many self-adjoint meromorphic functions, to the case of the Moore-Penrose inverse of matrices with complex rational functions entries. As future work one may deal with the question of speeding up the running time when the order of the matrix or the number of variables in the rational functions is not small, for instance with interpolation techniques, or to extend the current results to matrices with rational functions with coefficients on other fields.

Acknowledgement: Authors supported by the Spanish Ministerio de Economía y Competitividad, and by the European Regional Development Fund (ERDF), under the Project MTM2014-54141-P.

References

[1] H.H. Bauschke and R.M. Corless. Analyzing a projection method with Maple. MapleTech 4(1), 2-7, 1997.
[2] A. Ben-Israel. The Moore of the Moore-Penrose Inverse. The Electronic Journal of Linear Algebra ISSN 1081-3810. A publication of the International Linear Algebra Society Volume 9, 150-157, 2002.
[3] A. Ben-Israel, T.N.E. Greville. Generalized Inverses: Theory and Applications, Second ed., Springer-Verlag, Berlin, 2003.
[4] S.L. Campbell, C.D. Meyer. Generalized Inverses of Linear Transformations. Series: Classics in Applied Mathematics, SIAM, 2009.
[5] K.P.S. Bhaskara Rao. Theory of Generalized Inverses Over Commutative Rings. Algebra, logics and applications, series volume 17. Taylor \& Francis, 2005.
[6] K.P.S. Bhaskara Rao, R.B. Bapat. Generalized Inverses over Integral Domains. Linear Algebra and its Applications 140, 181-196, 1990.
[7] D. Huylebrouck, R. Puystjens and J. van Geel. The Moore-Penrose inverse of a matrix over a semi-simple artinian ring. Linear and Multilinear Algebra 16, 239-246, 1984.
[8] J. Ji, X. Chen. A new method for computing Moore-Penrose inverse through Gauss-Jordan elimination. Applied Mathematics and Computation. 245, 271-278, 2014.
[9] C.W. Groetsch. Generalized Inverses of Linear Operators. Monographics and textbooks in pure and applied mathematics, vol. 37, Marcel Dekker, Inc, NY, 1977.
[10] R.E. Kalman. Algebraic Aspects of the Generalized Inverse of a Rectangular Matrix. In Generalized Inverses and Applications: Proceedings of an Advanced Seminar. Academic Press 1976, 111-124.
[11] N.P. Karampetakis. Computation of the generalized inverse of a polynomial matrix and applications. Linear Algebra and its Applications 252, 35-60, 1997.
[12] N.P. Karampetakis, P. Tzekis. On the computation of the generalized inverse of a polynomial matrix. IMA Journal of Mathematical Control and Information 18, 83-97, 2001.
[13] N.P. Karampentakis, S. Vologianidis. DFT calculation of generalized and Drazin inverse of polynomial matrix. Applied Mathamatics and Computation 143, 501521, 2003.
[14] L. Kaup, B. Kaup. Holomorphic Functions of Several Variables. An Introduction to the Fundamental Theory, Walter de Gruyter, Berlin, New York, 1983.
[15] J.J. Koliha, D. Djordjević, D. Cvetković. Moore-Penrose inverse in rings with involution. Linear Algebra and its Applications 426, 371-381, 2007.
[16] E.H. Moore. On the reciprocal of the general algebraic matrix. Bulletin of the American Mathematical Society 26:3 94-395, 1920.
[17] S. Pati. Moore-Penrose Inverse of Matrices on Idempotent Semirings. SIAM Journal on Matrix Analysis and Applications 22:2, 617-626, 2000.
[18] R. Penrose. A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society 51, 406-413, 1955.
[19] M.D. Petković, M.S. Stanimirović. Symbolic computation of the Moore-Penrose inverse using partitioning method. International Journal of Computer Mathematics 82, 355-367, 2005.
[20] M.D. Petković, P.S. Stanimirović. Iterative method for computing the MoorePenrose inverse based on Penrose equations. Journal of Computational and Applied Mathematics 235, Issue 6, 1604-1613, 2011.
[21] M.D. Petković, P.S. Stanimirović. Two improvements of the iterative method for computing Moore-Penrose inverse based on Penrose equations. Journal of Computational and Applied Mathematics 267, 61-71, 2014.
[22] R. Puystjens. Moore-Penrose Inverses for Matrices over some Noetherian Rings. Journal of Pure and Applied Algebra 31, 191-198, 1984.
[23] J. Sendra, J.R. Sendra. Gröbner basis computation of Drazin inverses with multivariate rational function entries. Applied Mathematics and Computation 259, 450-459, 2015.
[24] J.R. Sendra, J. Sendra. Symbolic computation of Drazin inverses by specializations. Journal of Computational and Applied Mathematics 301, 201-212, 2016.
[25] M. Tasić, P.S. Stanimirović. Symbolic and recursive computation of different types of generalized inverses. Applied Mathematics and Computation 199, 349-367, 2008.
[26] S. Vologiannidis, N.P. Karampetakis. Inverses of multivariable polynomial matrices by discrete Fourier transforms. Multidimensional Systems and Signal Processing 15, 341-361, 2004.
[27] H. Zhu, J. Chen, X. Zhang, P. Patrício. The Moore-Penrose inverse of 2×2 matrices over a certain $*$-regular ring. Applied Mathematics and Computation 246, 263-267, 2014.

