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Abstract

Parametric representations of geometric objects, such as curves or surfaces,
may have unnecessarily huge integer coefficients. Our goal is to search for an al-
ternative parametric representation of the same object with significantly smaller
integer coefficients. We have developed and implemented an evolutionary algo-
rithm that is able to find solutions to this problem in an efficient as well as robust
way.

In this paper we analyze the fitness landscapes associated with this evolu-
tionary algorithm. We here discuss the use of three different strategies that are
used to evaluate and order partial solutions. These orderings lead to different
landscapes of combinations of partial solutions in which the optimal solutions are
searched. We see that the choice of this ordering strategy has a huge influence on
the characteristics of the resulting landscapes, which are in this paper analyzed
using a set of metrics, and also on the quality of the solutions that can be found
by the subsequent evolutionary search.
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1 Introduction: Evolutionary Search for Optimal

Coefficients of Curve Parametrizations

Rational curves, and more generally unirational algebraic sets, admit parametrizations
with rational functions. Since this representation is not unique, many optimization
questions arise. In particular, we are interested in computing parametrizations with
small height. As documented in [1] we dealt with this problem and developed and
implemented an evolutionary algorithm that is able to find solutions to this problem
in an efficient as well as robust way (see also [2]). In this paper we analyze the fitness
landscapes associated with this evolutionary algorithm.

The problem we are dealing with is stated as follows: We are given a (proper)
parametrization of an space curve, expressed as

P(t) =

(
p1(t)

q(t)
, . . . ,

pr(t)

q(t)

)
(1)

where pi, q ∈ Z[t] are coprime polynomials. The problem consists in finding a, b, c, d ∈
Z, with ad − bc 6= 0, such that when t is substituted by (at + b)/(ct + d) the height
(i.e., the maximum coefficient in absolute value) of

P

(
at+ b

ct+ d

)
(2)

is minimal. In [1] we presented an evolutionary algorithm that is able to solve this
problem. Roughly speaking, this algorithm works in two phases: First, partial solutions
are identified and collected in the set Ωe. Each element o in Ωe is defined as o =
(o1, o2) ∈ Z2 with gcd(o1, o2) = 1. Second, the best combinations of elements in Ωe for
composing the final complete solution of the given problem have to be found.

The composition of complete solution candidates from partial solution candidates
is defined as follows: Using (o1,o2) ∈ Ωe × Ωe with o1 = (a, c), and o2 = (b, d),
the associated complete solution candidate is So1,o2 := (a, b, c, d). Conversely, every
complete solution candidate (a, b, c, d) ∈ Space(Ωe) can be seen as a combination of
elements in Ωe, namely (a, c), (b, d) ∈ Ωe.

In order to measure the quality of a complete solution candidate s := So1,o2 we
use the notion of complete quality as the height of the resulting parametrization after
substituting t by (at+ b)/(ct+ d).

Qualityc(s,P) is the height of P

(
at+ b

ct+ d

)
. (3)

This second phase of the algorithm is implemented as an evolutionary algorithm that
finds the best combination of partial solutions.

2



2 Orderings of Combinations of Partial Solutions

and Resulting Fitness Landscapes

The key for the second phase of the evolutionary algorithm is to work with a suitable
ordered copy of Ωe, denoted as Ωord

e . Since we use an evolutionary process to find opti-
mal combinations of partial solutions, the fitness function that evaluates these partial
solutions is of essential importance. In this section we describe different strategies to
order Ωe, and later we analyze the resulting fitness landscapes of them in comparison
with the option of not ordering the space of solutions, that is taking Ωord

e = Ωe.

2.1 Ordering Combinations of Partial Solutions

For describing the orders used to generate Ωord
e we will use the same notation as in [1],

that we briefly recall here. Let PH(t, h) be the homogenization of P(t) (see (1)). We
express PH(t, h) as

PH(t, h) = (P1(t, h), . . . , Pr(t, h), Q(t, h)) (4)

Given o ∈ Ωe we consider the following functions to order the search space

1. [Gcd-order] We take the partial quality function as

Qualitygcd
p (o,P) := gcd(P1(o), . . . , Pr(o), Q(o)). (5)

Then, we consider the following order: if o1,o2 ∈ Ωe, we say that

o1 ≤gcd o2 ⇐⇒ Qualitygcd
p (o1,P) ≤ Qualitygcd

p (o2,P).

Qualitygcd
p is the partial quality function used in the implementation in [1]. The

reason of using this function is based on Lemma 3.1. in [1], and it ensures
that if the complete solution candidate s := So,o∗ is generated by means of the
partial elements o and o∗, and the gcd of the leading coefficients (resp. of the
independent coefficients) of the polynomials in the output parametrization is
given by Qualityp(o,P) (resp. Qualityp(o∗,P)). We denote the corresponding
space of solutions as ΩGcd

e .

2. [∆-order] In [1], in order to reduce the search space, we used a constant k (usually
taken as k = 102) that represents the potential expected improvement given by
a partial solution candidate. This is controlled by asking that k ·∆(o) is smaller
than the quality (i.e. the height) of the input parametrization P (see (20) in [1]),
where ∆(o) is defined as

∆(o) :=
max{|P1(o)|, . . . , |Pr(o)|, |Q(o)|}
gcd(|P1(o)|, . . . , |Pr(o)|, |Q(o)|)

.
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Based on this fact we define in a new partial quality function as

Quality∆
p (o,P) := ∆(o). (6)

Then, we introduce a new order in Ωe as follows: if o1,o2 ∈ Ωe, we say that

o1 ≤∆ o2 ⇐⇒ Quality∆
p (o1) ≥ Quality∆

p (o2).

We denote the corresponding space of solutions as Ω∆
e .

3. [Non-order] As a third option, we consider none order in Ωe. So, elements in
Ωe are stored as they appear in the computation. We denote the corresponding
space of solutions as ΩNon

e .

Figures 1, 2 and 3 show exemplary fitness landscapes of combinations of elements in Ωe

for a given problem where partial solution candidates are unordered (shown in Figure
1) or ordered by means of their evaluation according to Qualitygcd

p (shown in Figure 2)

or ordered by means of their evaluation according to Quality∆
p (shown in Figure 3).

Figure 1: Fitness landscape for combinations of elements of ΩNon
e for the parametriza-

tion P1(t) defined in Section 3. Each cell (x, y) represents the fitness of combination
of x ∈ ΩNon

e and y ∈ ΩNon
e .
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Figure 2: Fitness landscape for combinations of elements of ΩGcd
e for the parametriza-

tion P1(t) defined in Section 3. Each cell (x, y) represents the fitness of combination
of x ∈ ΩGcd

e and y ∈ ΩGcd
e .

Figure 3: Fitness landscape for combinations of elements of Ω∆
e for the parametrization

P1(t) defined in Section 3. Each cell (x, y) represents the fitness of combination of
x ∈ Ω∆

e and y ∈ Ω∆
e .
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2.2 Analysis of Resulting Fitness Landscapes

For characterizing fitness landscapes formed using fitness functions and estimating their
effects on the performance of the algorithm we perform the following analyses:

� On the one hand we use metrics describing the characteristics of the surfaces
following guidelines given for example in [3]. Concretely, we use metrics that
describe the local characteristics of the surfaces as well as a metric that describes
the landscape on a higher level:

– The ruggedness is calculated as the standard deviation of the values around
a point p: ruggedness(p, k) = σ(Q(p, k)) where for all points qi ∈ Q(p, k)
the distance to p in x- and y-direction is not greater than k: |x(qi)−x(p)| ≤
k, |y(qi) − y(p)| ≤ k. The ruggedness of a landscape is then the average
ruggedness of all points.

– A trajectory based metric is defined in the following way: Starting from a
point (x, y), k new points are collected as points p1 . . . pk where each point pj
is reached as mutation of point pj−1: pj−1 = mutation(pj). The range of the
so reached trajectory is calculated as range(p) = max(L(p)) − min(L(p))
where L(pi) is the fitness value of point pi according to landscape L (i.e., the
value of matrix L in cell x(pi), y(pi)). For each point (x, y) in a landscape
L we now calculate such a trajectory and calculate the mean range of the
trajectories for various values of k.

– For analyzing landscapes on a higher level, a given landscape L is divided
in k×k equally sized, rectangular, non-overlapping regions. For each region
r we calculate the mean value of L in that region as mean(L(r)), and then
the standard deviation of all those mean values of the regions quantifies the
surface of the fitness landscape on a higher level.

� On the other hand we estimate the hardness of the resulting problem by mea-
suring how hard it becomes to solve the composed problem, i.e., how much effort
has to be done in the second phase of the algorithm to find (nearly) optimal
solutions.

Using these metrics and measures we characterize the fitness landscapes retrieved
using different partial fitness functions for a series of benchmark problem with varying
size and hardness. This shall lead us to a deeper understanding of the effects of the
fitness functions for partial solutions. Those partial fitness functions that lead to
better fitness functions will then be used instead of other ones that lead to suboptimal
orderings of the partial solution candidates that make it difficult or impossible for the
evolutionary algorithm to find optimal complete solutions.
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3 Empirical Tests

For our empirical tests we generated 5 different curve parametrizations in the following
way: We start from a simple parametrization

P∗(t) =

(
t3 + t2 + t+ 1

t3 + 2
,
t3 + 2t+ 5

t3 + 2

)
.

Then we take random integer numbers a, b, c, d ∈ {−100, . . . , 100}, such that ad− bc 6=
0, and we consider as input parametrizations those obtained as

P(t) = P∗
(
at+ b

ct+ d

)
.

We executed this process 5 times to get {P1(t), . . . ,P5(t)}; in the appendix the reader
may see the particular parametrizations Pi(t) generated in that way.

We then executed our evolutionary algorithm 5 times for each Pi(t), taking

� Ωord
e according with the three options described in Subsection 2.1, that is: gcd-

order, ∆-order and non-order.

� (µ, λ) ∈ {(5, 20), (20, 80), (40, 100)}, where µ defines the number of individuals
in the population and λ defines the number of children created each generation
using mutation.

In the Tables 1,2,3 we show the qualities (i.e. the heights) of the inputs and outputs
generated by our algorithm for each of the instances.

One observes in Tables 1,2,3 that the gcd-order and the ∆-order provides much
better outputs than the non-order strategy, at least for P1,P4,P5. However, for P2,P3

there is no significant improvement. This is due to the fact that the size of the space
of candidate solutions was taken small: the size of the prime seed set was taken as
N0 = 120 and the initial size of the amplitude as ω0 = 10 (see Subsection 3.4. in [1]
for details). However, if we repeat the experiment for P2 and P3 with N0 = 500 and
ω0 = 20 we get significant improvements, see Table 4.

Analyzing the characteristics of the fitness landscapes obtained using the three
available ordering methods shows why some orderings make it easier for the evolu-
tionary algorithm to find good solutions than others. As we show in Table 5, for all
problem instances the ruggedness is lower in the landscapes obtained using the gcd-
order and ∆-order strategies, and also the difference between maximum and minimum
values seen during random walks is smaller when using these two ordering strategies
than when using the Non-order strategy. For all but one problem instances we see
that also the fluctuation of the mean values seen in distinct regions of the landscapes
is minimal when using the Non-order strategy. These facts are closely related to the
fact that the algorithm was able to find better results using the gcd-order or the ∆-
order strategy then when using the Non-order strategy as smoother fitness landscapes
as well as landscapes with variability in the quality of regions are more beneficial for
evolutionary algorithms.
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Input
height

Height (µ± σ)
of the solutions

found using gcd-order

Height (µ± σ)
of the solutions

found using ∆-order

Height (µ± σ)
of the solutions

found using Non-order

P1 288,860,052 6,4 ± 2.13 36,061.8 ± 80,460.1 87,120.2 ± 156,264.6

P2 405,421,961 3.5 ∗ 106 ± 0.2 ∗ 106 84.1 ∗ 106 ± 179.6 ∗ 106 6.4 ∗ 106 ± 6.4 ∗ 106

P3 28,254,849 219,860 ± 83,628.9 16,882.2 ± 31066.1 69,143.2 ± 51,933.4

P4 308,177,730 72 ± 17.9 80.6 ± 37.8 121,064.2 ± 236,637.1

P5 235,460,125 13 13 396,022.8 ± 409,214.0

Table 1: Results for 5 executions of the algorithm for (µ, λ) = (5, 20).

Input
height

Height (µ± σ)
of the solutions

found using gcd-order

Height (µ± σ)
of the solutions

found using ∆-order

Height (µ± σ)
of the solutions

found using Non-order

P1 288,860,052 5 61.4 ± 126.1 683.8 ± 1346.6

P2 405,421,961 4.2 ∗ 106 ± 1.9 ∗ 106 3.5 ∗ 106 ± 0.2 ∗ 106 3.4 ∗ 106

P3 28,254,849 9,116.6 ± 7,251.8 9,394.8 ± 14,323.8 8,140.6 ± 4,270.8

P4 308,177,730 43.2 ± 21.4 51.2 ± 26.7 125,894.8 ± 262,565.6

P5 235,460,125 13 13 75,423.6 ± 101,119.8

Table 2: Results for 5 executions of the algorithm for (µ, λ) = (20, 80).

Input
height

Height (µ± σ)
of the solutions

found using gcd-order

Height (µ± σ)
of the solutions

found using ∆-order

Height (µ± σ)
of the solutions

found using Non-order

P1 288,860,052 5 5 624.8 ± 938.8

P2 405,421,961 3.4 ∗ 106 3.5 ∗ 106 ± 0.2 ∗ 106 3.4 ∗ 106

P3 28,254,849 6,532.6 ± 4852.3 2,989 5,627.4 ± 3,814.7

P4 308,177,730 40.8 ± 22.5 43.2 ± 21.4 12,102.6 ± 9,001.5

P5 235,460,125 13 13 45,549.2 ± 55,968.7

Table 3: Results for 5 executions of the algorithm for (µ, λ) = (40, 100).

Input
height

Height (µ± σ)
of the solutions

found using gcd-order

Height (µ± σ)
of the solutions

found using ∆-order

Height (µ± σ)
of the solutions

found using Non-order

P2 405,421,961 5.6 ± 1.3 68,479 ± 113,588.3 2,991.4 ± 3,674.9

P3 28,254,849 168 ± 38.0 32,353.8 ± 72,334.2 105,001.6 ± 95,940.2

Table 4: Results for 5 executions of the algorithm for N0 = 500 and ω0 = 20 with
(µ, λ) = (5, 20).
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Problem
instance

Ordering
method

rugg(1) rugg(5) walk(5) walk(25) regions(10) regions(20/50)

gcd-order 3.16 3.27 5.16 10.61 1.06 1.67
P1 ∆-order 3.06 3.02 5.00 9.78 1.31 2.15

Non-order 3.29 3.63 5.45 11.94 0.82 1.20

gcd-order 3.47 3.73 6.31 10.14 3.60 3.68
P2 ∆-order 3.20 3.27 5.83 8.62 4.56 4.57

Non-order 3.54 3.86 6.39 10.48 3.29 3.43

gcd-order 2.89 3.12 4.70 10.04 0.65 0.92
P3 ∆-order 2.75 2.73 4.51 8.75 0.99 1.70

Non-order 2.90 3.23 4.74 10.46 0.62 0.77

gcd-order 1.56 1.83 2.75 5.47 1.43 1.72
P4 ∆-order 1.52 1.77 2.69 5.18 0.96 1.68

Non-order 1.88 2.61 3.43 7.66 0.71 0.81

gcd-order 1.47 1.75 2.52 5.25 1.10 1.35
P5 ∆-order 1.45 1.70 2.54 5.03 0.56 1.15

Non-order 1.66 2.27 2.95 6.70 0.85 0.88

Table 5: Characteristics of the fitness landscapes obtained for problem instances
P1 . . .P5 using the three here discussed ordering strategies: rugg(1) and rugg(5) are
the ruggedness of the landscapes calculated using windows with k = 1 and k = 5,
respectively; walk(5) and walk(25) are the mean differences of maximum and min-
imum values seen in random walks of size 5 and 25, respectively; regions(10) and
regions(20/50) are the standard deviations of the mean values of 5 × 5 and 50 × 50
regions formed for the landscapes, only for problem P2 we give this number for 20×20
regions as the landscape is significantly smaller than the others (namely 150× 150) so
that a division into 50× 50 regions does not make sense.

4 Conclusions

The strategy chosen for forming the landscapes of combinations of partial solutions
is an important factor in the optimization of coefficients of curve parametrizations.
Smoother fitness landscapes as well as landscapes with variability in the quality of
regions are more beneficial for evolutionary algorithms, and we see that using the
ordering strategies that lead to such landscapes, namely the gcd-order and the ∆-order
strategy, makes it significantly easier for the evolutionary algorithm to find good or
even optimal results.

References

[1] Sendra, J.R., Winkler, S.M.: A heuristic and evolutionary algorithm to optimize the
coefficients of curve parametrizations. J. Comput. Appl. Math. 305, 18–35 (2016)

[2] Sendra, J.R.,Winkler, S.M.: Corrigendum to: a heuristic and evolutionary algo-
rithm to optimize the coefficients of curve parametrizations. J. Comput. Appl.
Math. 308, 499–500 (2016)

[3] Pitzer, E., Beham, A., Affenzeller, M.: Generic hardness estimation using fitness
and parameter landscapes applied to robust taboo search and the quadratic as-

9



signment problem. In: Proceedings of 14th Annual Conference on Genetic and
Evolutionary Computation (GECCO 2012), pp. 393–400. ACM (2012)

5 Appendix

P1(t) =

(
−3(233249t3−24258832t2+146016t−5061888)

38254393t3+163261332t2+24603696t+11389248
, 76864793t3+288860052t2+115474320t+30371328

38254393t3+163261332t2+24603696t+11389248

)
P2(t) =

(
5(12158068t3−6802022t2+15201096t+3384199)

84931477t3−172122063t2+176542149t+8227491
, 237008044t3−405421961t2+272461253t+3377827

84931477t3−172122063t2+176542149t+8227491

)
P3(t) =

(
7358720t3+19698886t2+16246038t+5572147

9185147t3+25675122t2+15941058t+4255014
, 10594934t3+28254849t2+12651343t+5085215

9185147t3+25675122t2+15941058t+4255014

)
P4(t) =

(
−4(3346250t3+31468950t2+47528505t+24705216)

19289000t3−148878900t2−261544410t−118552113
,

10(4703300t3−20671290t2−30817773t−12664701)

19289000t3−148878900t2−261544410t−118552113

)
P5(t) =

(
29717625t3+12012650t2−18885620t+5783416

2(60381625t3−15266850t2−10545780t+3608776)
, 235460125t3−49858450t2−27360100t+8326952

2(60381625t3−15266850t2−10545780t+3608776)

)
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