
On the Use of Websockets to Maintain Temporal States in Stateless Applications

Josefa Gómez, Abdelhamid Tayebi, Juan Casado

Computer Science Department,

University of Alcalá

Alcalá de Henares, Spain

email: josefa.gomezp@uah.es, hamid.tayebi@uah.es, juan.casado@edu.uah.es

Abstract—This paper studies the use of Websockets to maintain

temporal states in stateless applications. Concretely, it is used in

a web-based application that calculates the propagation loss in

outdoor environments. The reasons why Websockets are used

and their limitations are discussed. A comparison with other

similar technologies is also included.

Keywords - web; WebSockets; communication protocols; real

time web interfaces; stateless applications.

I. INTRODUCTION

Current web applications require fast communication
between the server and the clients to produce close to real time
updates on the web interface. If feedback is not received about
the progress of the computations performed by the server, the
user experience breaks apart. In [1], it is discussed that web
page loading time increases user frustration and discomfort
while browsing the web. This also is applicable to the waiting
time between a user action and the webpage displaying the
requested information.

The computational model that we will describe solves the
waiting time problem for certain types of large computations.
Once this computational model is described, REpresentational
State Transfer (REST) and WebSockets will be analyzed,
theoretically and experimentally, as the possible
communication components to solve it.

Certain types of large computations need to hold a state in
order to be performed or optimized. An algorithm that sorts a
list of elements or looks for the shortest path on a graph needs
those data structures as state. An algorithm that calculates
propagation can be optimized by holding certain information
as state and reuse it like if the state where a cache. But this
state is temporal, once the computation has ended it is no
longer needed to be held in the server.

In order to solve the waiting time problem, while
performing a computation, the user must be informed of the
progress of that computation. Ideally, by showing the current
computation progress with as much detail as if it were the final
result. The computation will be performed in the server and
the representation update will be performed in the client,
therefore, both processes will be concurrent. With this,
solving the waiting time problem is transformed into finding
the best way to hold that temporal state while the server
informs the client about the progress of the computation.

Nowadays, lots of web applications and web services are
based on the REST architectural style. REST has become very
popular due to its simplicity and the fact that it builds upon the
HyperText Transfer Protocol (HTTP), so developers are

familiar with it. However, the REST architectural style has
some disadvantages such as the lack of saving the stateful
information between request-response cycles. In addition,
there is no mechanism to send push notifications from the
server to the client (to the web browser). This implies that it is
hard to implement any type of services where the server
updates the client without the use of client-side polling of the
server or some other type of web hook. Consequently, every
REST-based application is stateless, any state management
tasks must be performed or initiated by the client.

Due to the fact that HTTP is half duplex, the server is not
able to initiate a data transmission to a client as long as it has
not been specifically asked for. Until now, web applications
that needed bidirectional communication required an abuse of
HTTP to poll the server for updates while sending upstream
notifications as distinct HTTP calls. The disadvantages of
using REST to maintain temporal states are mainly three.
First, the server must use several TCP connections for each
client: one for the client to send an initial request to the server
where the operation to perform is described and a new one for
each message that contains the progress or fraction of
performed work. Second, the wire protocol has a high
overhead, with each client-to-server message having an HTTP
header. And third, the server is forced to maintain a mapping
from the outgoing connections to the initial computation
request to track which progress information must be sent to
each client.

Combined, these disadvantages make REST hardly usable
to perform computations that need temporal state on the server
replicated context. In this context, multiple instances of the
same server would run as separated process on the same or
different machines, without one instance knowing the
existence of the others. When a request is made it is handled
by a load balancer that redirects it to one of the instances.
Different connections from the same client may be answered
by different instances of the server. Due to that, the server that
received the initial computation request needs to share
information with the other instances. This not only interfere
with the idea of the replicated context, instances should not
need to communicate, but also creates new synchronization
problems. Some solutions make the client manage the
temporal state and others make use of databases, both of
which are slow and create an extra layer of complexity.

WebSockets [2]-[4] is a new protocol that provides a
solution to overcome the aforementioned limitations.
WebSockets uses a single TCP connection for traffic in both
directions that allows a bidirectional, full-duplex, persistent

21Copyright (c) IARIA, 2020. ISBN: 978-1-61208-803-7

ICIW 2020 : The Fifteenth International Conference on Internet and Web Applications and Services

socket connection between a web page and a remote server.
Moreover, it is supported by all major web browsers.

Based on the two-way communication connection, the
server can receive and process data, and can also send data
back to the browser. Also, communication is more efficient
than using HTTP if we focus on the size of the message and
on the speed, especially for large messages, since in HTTP,
for example, you have to send the headers in each request.
This adds bytes.

According to the benchmarking done in [5] to compare the
performance of HTTP vs WebSockets, the latter can be 50%
faster than HTTP. This means that in many cases and
depending on the needs of the project, WebSockets can be
faster than traditional HTTP APIs. However, WebSockets is
not the solution to all problems, other protocols perform
certain tasks better than WebSockets does. In Section II, a
comparison of several protocols vs. tasks is presented. A
practical application of WebSockets in a real web-based
simulation tool is described in Section III. Finally, conclusions
are presented in Section IV.

II. EXPERIMENTAL RESULTS

To empirically test the performance differences between
WebSockets and REST communication protocols, a
demonstrative application was built. The design of this
application aims to make the comparison as fair as possible,
to let us inspect the strengths of both protocols.

If the application were to be built in the server replicated
context, REST would have had major disadvantages. It would
have been required to use a database to hold the temporal state
or to hold it on the client and send it back and forth to the
server in each request.

Therefore, the application will not be tested on this
context. To hold the temporal state on the REST protocol, a
random key is generated for each client. This key is provided
to them as a response to their initial computation request. By
providing this key, on each following request, the server will
be able to know which temporal state belongs to each
connection that requests a progress update on a computation.
On the other hand, WebSockets will hold its temporal state on
the single TCP connection that is created between the client
and the server.

The developed demonstration takes as input a JSON
document, which describes the computation to perform.
Computations are a tree of actions, if one action is the child of
another it will be performed after its father. On the other hand,
if one action is in the same tree level of another they will be
computed concurrently. Each computation has two steps, first
a list of data is created according to the configuration on the
JSON file and then the list is sorted with a certain criteria and
sorting algorithm. The computations are performed on the
server, while the client displays a graphical representation of
the current position of the elements on the list. Multiple
representations are available.

The server and the client communicate with REST or
WebSockets allowing us to catch and dump the
communication traces and inspect the transmitted packages
with applications like Tcpdump or WhireShark.

Performing the same computations, the data shown in
Table I have been collected with REST and WebSockets as
communication protocols.

TABLE I. COMPARISON UNDER NOMINAL LOAD

 REST WebSockets

Packets 135.098 44.976

Transmitted data 27.634.885 bytes 4.723.849 bytes

Communications 22.481 22.480

Mean Time 86s 778ms 35s 226ms

For a single computation, 22.479 intermediate results have

been sent from the server to the client to perform a close to
real time graphical representation of its state. In order to
archive that using WebSockets, an extra communication was
needed to send the computation description to the server. In
the case of REST, two extra communication where needed.
One communication was used to send the computation to the
server and another to inform the client that the computation
had ended. Using WebSockets the client can be informed of
the finalization of the computation by the server closing the
channel.

In average, using WebSockets, there are two packets
exchange between the client and the server, which leaves a
total of 16 packets for stablishing the connection (8 packets)
and closing it (8 packets). With REST, an average of six
packets are exchanged between the server and the client per
communication. This quantity should have been eight packets,
but the libraries used try to reuse TCP connections by not
always sending ‘FIN’ packets in order to save resources. Only
36 connections where closed in average along this
computation. Additionally, REST performs Cross-Origin
Resource Sharing (CORS) checks from time to time using a
HTTP OPTIONS request. For this computation an average of
17 CORS checks were made.

REST not only uses around three times more packets along
the computation, those packets are also almost six times
heavier than WebSockets ones. This is because they need to
carry a longer header. WebSockets is able to use a smaller
header because the header is sent once, when the connection
is stablished, and since the connection is never closed there is
no need to resend it on every data transmission along that
same connection.

The benefits of WebSockets not only can be seen on the
amounts of data and packets transmitted but also in the time
taken. Using REST, the communication will take more than
double the time than with WebSockets.

Performing the smallest computation that the demo
program is able to make, the following statistics have been
recorded. This computation requires two updates of the user
interface and which means a total of three and four
communications for WebSockets and REST respectively.

With this second comparison, an improvement of the
REST performance against WebSockets is expected. The
theory around these protocols suggests that WebSockets
should take longer to initiate the communication channel but,

22Copyright (c) IARIA, 2020. ISBN: 978-1-61208-803-7

ICIW 2020 : The Fifteenth International Conference on Internet and Web Applications and Services

in the long run, with multiple data transmissions between the
server and the client, it should surpass REST efficiency as
seen on the first comparison.

TABLE II. COMPARISON UNDER MINIMUM LOAD

 REST WebSockets

Packets 44 22

Transmitted data 7.127 bytes 2.489 bytes

Communications 4 3

Mean Time 0s 048ms 0s 015ms

Nevertheless, this expectation has not been backed up by

the experimentally recorded data (see Table II). REST has
improved its efficiency in the transmitted packets department
but has not in the transmitted data and mean time ones.
Examples of the traces used to calculate these statistics are
included on Figure 1 for REST and on Figure 2 for
WebSockets. The reason for this difference is that REST
expends almost the same resources as WebSockets does for
the whole communication just for the CORS request (blue
section of Figure 1). Looking just at the time column of one
single REST communication (one green section of Figure 1
and the proportional part of the red section) it can clearly be
seen that is more efficient than the same communication on
WebSockets protocol (blue section, red section and one green
section of Figure 2).

So, if the CORS request is not taken into account, the
expectations about REST are met. REST is a more efficient
protocol for single sporadic data transmissions than
WebSockets. On the other hand, WebSockets is more efficient
for multiple communications even if their number is small.

III. PRACTICAL USE OF WEBSOCKETS IN A WEB-BASED

APPLICATION

 WebSockets is a stateful protocol, while HTTP
connections are stateless. This means that WebSockets creates
a connection that is kept alive on the server until the socket is
closed and messages are exchanged bidirectionally. This
particular feature is very useful to overcome three frequent
problems that arise in the use and development of a web-based
simulation tool like the one presented in [6] by the authors:

• It is desirable to display a progress bar in order to inform
the users about the state of the calculations performed to
provide the propagation loss. If the progress bar is not
displayed, the users do not know how long it will take to
complete the requested task.

• It is desirable to obtain partial results of the request made
while it is being completed without interrupting this process.
This combined with a progress bar not only informs about the
lasting time, but also lets visualize earlier some of the
requested information. Additionally, it entertains the users
creating better user experiences.

• On the context of replicated servers, which is the case of
our application, it is desirable to communicate always with the
same server. At least during a computation. This allows to

perform better optimizations without adding extra layers of
complexity like databases or other ways of sharing
information between the server instances. Avoiding this
complexity is not only desirable from a design point of view.
It also makes the application cheaper, no data is saved on disk,
wasted computation time is minimal and no more than the
necessary data is sent to the web.

In addition, authentication is also simplified by using
Websockets. When using WebSocket, authentication is
performed when the connection is established, so future
requests under the same channel do not need to be
authenticated again. This method greatly simplifies the
authentication process. Therefore, Websockets improves the
security of the system because there is no need of passing user
credential in every request.

A web-based simulation [6] has been developed by the
authors. This application is able to predict propagation losses
in urban and rural environments by applying a semi-empirical
algorithm. Now, the authors are improving that simulation
tool. Deterministic methods are being included. These
methods provide results more accurate but they have the
disadvantage of consuming lots of resources (time and
memory), so Websockets are very useful to inform the client
about the state of the computations that are carried out in the
server.

IV. CONCLUSIONS

WebSockets is a great protocol that solves three
communication problems: 1) Sending multiple packets of data
between the server and the client with a single communication
negotiation required. 2) Creating a channel between a client
and a server through which the client can receive notification
from the server without polling. 3) Granting a stable
connection between a client and a single instance of a
replicated server that is behind a load balancer.

Those characteristics are exploitable to achieve close to
real time updates on the progress and current state of long-
lasting computations without major complications. While the
computations are been performed, the progress or new
calculated portions or approximations to the final solution are
been sent to the client with a minimum performance loss and
minimum design considerations. At the same time, the clients
will be displaying fresh and updated information to the users
with each packet received, creating a better user experience.

ACKNOWLEDGMENT

This work is supported by the program “Programa de
Estímulo a la Investigación de Jóvenes Investigadores” of
Vice rectorate for Research and Knowledge Transfer of the
University of Alcala and by the Comunidad de Madrid (Spain)
through project CM/JIN/2019-028.

23Copyright (c) IARIA, 2020. ISBN: 978-1-61208-803-7

ICIW 2020 : The Fifteenth International Conference on Internet and Web Applications and Services

REFERENCES

[1] P. Saed and Y. Yahya, "Loading time effects: A case study of

Malaysian Examination Syndicate web portal," Proceedings of
the 2011 International Conference on Electrical Engineering
and Informatics, Bandung, 2011, pp. 1-5, doi:
10.1109/ICEEI.2011.6021664.

[2] I. Fette and A. Melnikov, The WebSocket Protocol, Internet
Requests for Comments, RFC Editor, RFC 6455, World Wide
Web Consortium, Cambridge, MA, USA, 2011,
http://www.rfc-editor.org/rfc/rfc6455.txt [retrieved:
September, 2020]

[3] B. Soewito, F. Christian, D. Gunawan, and I. Kusuma.
“Websocket to Support Real Time Smart Home Applications”.

Procedia Computer Science. 157. 2019. 560-566.
10.1016/j.procs.2019.09.014.

[4] Y. Wang, L. Huang, X. Liu, T. Sun, and K. Lei.. Performance
Comparison and Evaluation of WebSocket Frameworks: Netty,
Undertow, Vert.x, Grizzly and Jetty. 13-17. 2018.
10.1109/HOTICN.2018.8605989.

[5] HTTP vs Websockets: A performance comparison, available
online at: https://blog.feathersjs.com/http-vs-websockets-a-
performance-comparison-da2533f13a77[retrieved: September,
2020]

[6] A. Tayebi, J. Gomez, F. Saez de Adana, O. Gutierrez, and M.
Fernandez de Sevilla, "Development of a Web-Based
Simulation Tool to Estimate the Path Loss in Outdoor
Environments using OpenStreetMaps [Wireless Corner],"
IEEE Antennas and Propagation Magazine, vol. 61, no. 1,
pp.123-129, Feb.2019.

Figure 1. REST packet trace.

Figure 2. WebSockets packet trace.

24Copyright (c) IARIA, 2020. ISBN: 978-1-61208-803-7

ICIW 2020 : The Fifteenth International Conference on Internet and Web Applications and Services

