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Abstract: Early fault detection and diagnosis in heating, ventilation and air conditioning (HVAC)
systems may reduce the damage of equipment, improving the reliability and safety of smart buildings,
generating social and economic benefits. Data models for fault detection and diagnosis are increasingly
used for extracting knowledge in the supervisory tasks. This article proposes an autonomic cycle of
data analysis tasks (ACODAT) for the supervision of the building’s HVAC systems. Data analysis tasks
incorporate data mining models for extracting knowledge from the system monitoring, analyzing
abnormal situations and automatically identifying and taking corrective actions. This article shows a
case study of a real building’s HVAC system, for the supervision with our ACODAT, where the HVAC
subsystems have been installed over the years, providing a good example of a heterogeneous facility.
The proposed supervisory functionality of the HVAC system is capable of detecting deviations, such
as faults or gradual increment of energy consumption in similar working conditions. The case study
shows this capability of the supervisory autonomic cycle, usually a key objective for smart buildings.

Keywords: HVAC system; supervisory system; building management systems; autonomic computing

1. Introduction

Buildings consume above one-third of the total electrical energy supplied to the city. Research on
energy efficiency in buildings becomes imperative. Energy consumption can be normally cut down
by deploying a BMS (building management system), which monitors and controls the building
facilities, such as the elevators, the heating, ventilation and air conditioning (HVAC) or the lighting
systems [1]. The BMS processes the logs coming from the connected devices deployed in the building
for controlling the equipment, supervising the system or optimizing the energy efficiency. The energy
supervisory system is one of the key components of any BMS, comprising a meter module and an
efficiency analyzer that captures abnormal situations [1–3]. The supervisory function shows what it is
worth in case of unforeseen malfunction, such as hardware failures, voltage fluctuations, insufficient
fluid pressure or temperature out of range. These events, when not being supervised, turn into expenses
due to the required inspections to identify in the building the points where they were originated.

Focusing on the building services, the HVAC system is the most consuming one, as it works with
boilers, coolers, air-handling units, cooling towers or water pumps. A smart building requires hence
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to wisely adjust the HVAC’s operational modes to save energy. The automation and optimization
have been applied for decades in this field, but there is still room to improve. Previous studies
propose an autonomous management architecture that operates on a multi-HVAC model based on
the autonomic cycle of data analysis tasks (ACODAT) concept [1], leading to improving the energy
efficiency and reducing costs. This management system gathers the data read from the system and
environment sensors and regulate the controllers, following the multi-HVAC model predictions.
Another article proposes the LAMDA (learning algorithm for multivariant data analysis) robust
fuzzy-based control method for HVAC, being susceptible to be incorporated in the management system
as an ACODAT [4]. This study keeps this line of research and proves the idea of ACODAT for the
supervision of building HVAC systems.

ACODAT paradigm was initially proposed for smart classrooms [5] and lately applied to different
fields, such as telecommunications [6], e-learning environments [7,8] or Industry 4.0 [9]. It is based on
the autonomic computing paradigm proposed by IBM, also known as MAPE-K (monitors, analyze,
plan and execute—knowledge base) [10], which works in autonomic cycles. The first phase, known as
the monitoring phase, collects and prepares the data coming from the managed resources. Then, in the
analysis phase, complex situations are identified, and future situations assessed for the planning phase,
in which the instruction set will be built to approach the system’s goals. Finally, the instruction set is
executed in the execution phase. ACODAT, similarly to MAPE-K’s cycles, allows the development
of an autonomous intelligent cycle for achieving the desired behavior, by using sets of data analysis
tasks, able to perform both individually and coordinated. In this proposal, the analysis tasks interact
with each other assuming specific roles in the cycle [5,7,8], to monitoring the supervised process and
analyzing the observations, so that the management system can make effective decisions based on the
actual behavior of the HVAC and leads to accomplish the objectives for which it was designed.

This study proposes an ACODAT-based HVAC supervisory autonomous cycle, centered in the fault
detection and diagnosis (FDD) of abnormal situations, being able to trigger alarms. The current HVAC
system operation is identified with improved knowledge models. Traditionally, these knowledge models
were affected by unrealistic situations or not well-calibrated mathematical models. This article presents a
proposal to overcome this problem, in which the ACODAT-based module makes use of real-time data
for ongoing modeling of the HVAC equipment, and discovers its behavior with the context information.
The article will show how well the knowledge-extraction is performed with the chosen machine learning
(ML) techniques leading to reduce the energy consumption and prevent the equipment’s degradation
with an autonomic HVAC supervision.

The use of the ACODAT-based supervisory module for building’s HVAC equipment is a novel
proposal, which could be expressed as the use of autonomic cycles of data analysis tasks for the
self-supervision of building HVAC systems. This article is organized as follows: Section 2 summarizes
the scientific work around the proposal. Section 3 presents the functionality of the ACODAT-based
supervisory module for HVAC systems. Section 4 proves the concept in a case study and its performance.
Finally, Section 5 raises the conclusions of this research.

2. Related Work

BMS is considered as an assistant tool requiring a human behind and never has been the advantage
of getting some of their functions running autonomously. In any case, several considerations related to
this topic have been treated independently, such as its automation, control optimization, FDD, process
supervisory management or its energy efficiency improvements with predicting models. The multiple
dimensions of the proposed problem, such as its nonlinear responses, dynamic nature, wide and
unpredictable range of perturbations and, sometimes, the fear of the building owners and the operators
to new experimental technologies, make it complex. The next subsections describe the main elements
of this proposal.
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2.1. Smart Buildings

The ‘smart building’—or ‘intelligent building’—concept has been primarily associated with the bare
automation of the systems providing any service to building’s users. It extended certain characteristics
of the ‘smart home’, where the technology automated several processes with schedule and remote
control [11]. In general, the most consuming systems were the first ones to be automatized (controlled
and supervised), as a whole, with building automation systems (BAS). The BAS, also known as BMS,
stresses its management behavior to plan midterm and long-term strategies for the improvement of the
performance of the systems. The introduction of ICT (information and communications technologies)
allowed this significant advance. The advances in telecommunications enabled the use of the existing
data networks for the interconnection of the elements, and even, the systems. The state of the equipment,
the controlled variables and the context information, could be gathered to make better decisions about
the comfort and energy savings. But it is yet a hard task to get the perfect optimization of all systems.
However, the automated supervision brings benefits, such as the maintenance cost reduction and the
robustness against unpredictable perturbations [12].

On the other hand, the industry around the smart cities is increasingly providing solutions in areas
like energy, water, mobility, buildings or government in the short term. Energy is probably the most
concerning matter because of its economic impact and social concerns. Buildings consume over 40% of
the electrical energy in the most populated cities of the West [13]. The HVAC system is the building
service that consumes more with 32.7% of the power supply on average, while lighting requires 17.1%
of the supply and the computers and appliances the 13.6% [14]. When buildings are public, such as
offices, malls or museums, the HVAC consumption is even higher, reaching 40.3% on average of the
total supply.

To address this problem, researches have been seeking to optimize the consumption of the building’
services, like HVAC, lighting or elevators, applying control policies, automation and optimization.
If the energy efficiency is critical, other objectives, such as improving the security & access control
or people-centered policies, are gradually getting importance in smart building’s considerations.
Technology evolution makes systems become ‘smarter’. Energy efficiency has been achieved with good
practices in the daily operations, with social responsibility, government’s enforcement regulation or by
financial departments’ cost-effectiveness pressure. Now, a smart building is broadening the response to
these challenges with AI, the Cloud, Big Data, IoT or hardware parallelization, to improve the mobility,
ubiquity, accuracy and interoperability.

The study of Navigant Research pointing at a cognitive management concept, identified in 2016
the following trends in the smart building’s market [15]. Utility companies, such as electricity, water,
telephone or gas suppliers, have started significant investments in BMS aiming to hopefully experience
a noticeable development in management. Another trend is that the energy cloud will redefine
buildings as energy assets. Climate policies will be oriented towards improving the energy efficiency.
Buildings will optimize the experience of the occupants and their health conditions. New operational
practices will drive to more savings and generate new financial opportunities. Finally, cybersecurity will
become in this new context a key differentiator. However, some of these trends are difficult to implement
and expensive, not giving back clear returns (e.g., the energy cloud) [16].

2.2. HVAC Systems

HVAC systems are complex structures, made up of coolers, heat pumps, heating or cooling
coils, boilers, air-handling units, fans, pumps, thermal storage systems and liquid or air distribution
systems. Deployed sensors and actuators allow the regulation of the controllable variables, such as
indoor temperature, humidity, fluid pressure flowing throughout the pipes, chilled or heated water
temperature or air fans speed. The system is difficult to model due to its dynamic and nonlinear
nature [1].

The simplest way for controlling HVAC has been by sequencing ON–OFF orders, but these are far
to meet the multi-objective building requirements [17]. Continuous regulation is widely performed
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with classic and inexpensive proportional integral derivative (PID) controllers. Nonlinearities, like
partial loads, requiring self-tuning techniques, such as relay-autotuning, open-loop step tests and
more recently fuzzy logic, Ziegler–Nichols or Cohen–Coon methods [4]. HVAC also requires multiple
input and multiple output variables (MIMO) handling, like splitting the mechanism into several SISO
subsystems—or just the PID. This in any case remains difficult to stabilize [4]. Complexity arises in
applying multi-objective optimization requiring advanced control methods. Advanced control works
with models that fall into three categories: ‘white box’, ‘black box and ‘gray box’ [17].

White box models are built with direct mathematical formulations, modeling the mass balance,
heat transfer, thermal momentum or flow rates with differential equations. The system analysis and
generalization are simple but require deep knowledge in physics field. These models can be used
only in simple systems, like SISO and steady-state systems, because otherwise could incur in heavy
computational costs or low accuracy due to simplifications.

Black box or empirical models work with data and need to be built in a preliminary phase, by relating
the recorded outputs to the inputs via statistic or ML methods. These data models are being implemented
for real-time control, plant modeling, controller design, system performance improvement, calibration
and parameterization. Once the model is learned, they are very fast, consume low computational
resources, and can be used for simulating any layer components, since heat pumps up to complete
subsystems, like multi-HVAC [1]. As a drawback, they have less capability of generalization, remaining
constrained to the experience learned from the actual data.

Gray or hybrid models balance the black and white box drawbacks, improving simultaneously the
accuracy and generalization capabilities. They normally use optimization like least squares, gradient descent
or genetic algorithm (GA) to discover the ideal system parameters. fuzzy logic (FL) optimization shows
also satisfactory performance, using simple mathematics—without formulating the physics inside- ruling
robustly the systems even when they were nonlinear and complex. fuzzy adaptive network (FAN),
Takagi–Sugeno fuzzy model (TS) and adaptive neuro-fuzzy inference system (ANFIS) controllers improve
the accuracy of the prediction with a fast execution. However, when higher accuracy is needed, they
require more grading, increasing exponentially the number of rules, and therefore, performing slower.
When contextual information, such as the year season or scheduled activities are incorporated into the
system’s knowledge, they are translated into fuzzy rules that shorten the training stage.

Other models are used to fit the system to desired trajectories based on evolutionary algorithms or
statistics or linear or polynomial regressions, like nonlinear ARX (autoregressive with exogenous inputs),
ARMAX (autoregressive-moving average with exogenous variables) and ARIMA (autoregressive
integrated moving average) models. ANNs (artificial neural networks) also contribute through the
application of NNARX (neural network autoregressive with exogenous inputs), FFBP (feed forward back
propagation) and RBF (radial basis function). frequency–domain, state–space, geometric, case-based
reasoning, stochastic and instantaneous methods are also applied.

2.3. BMS

The BMS is a computer-based control system that supervises and manages the building’s
service, actuating in the networked electromechanical equipment. It was originally intended for
monitoring the systems and improve the energy savings with the automation of control and is
also known as BAS (building automation system). Nowadays, BMS usually stores data that can be
analyzed for making longer-term decisions supporting the optimization of multiple objectives, such as
healthier environments, pleasant indoor climate or cost reduction. The architecture has evolved from
closed and standalone to an open and networked paradigm with more efficient remote procedures,
providing intelligence and analytics, becoming in a cloud-based and multi-sourced architecture [14].

However, it is unclear in the state-of-the-art that the current technology can simultaneously optimize
the multiple required objectives. The estimations about energy savings differ considerably depending
on where solutions are applied, i.e., production, load or user’s behavior; the type of building; or the
number of pursued objectives. For example, some authors claim that energy can be saved up to 27%
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working on the BMS [18]. Others estimate that they can save up to 20% of the energy applying control
optimization in space heating and others that can be reduced up to 10% in lighting and ventilation [19].

Focusing on the technological challenges for the research applied to BMS, the following ones are
identified [20]:

• The integration and usability of heterogeneous networks, technologies and applications into one
single platform;

• The maintenance and support of smart, self-adaptive, autonomous applications and objects.
• The on-demand and flexible service provision;
• The size of the foreseen infrastructure with an estimation of 500 billion devices connected to the

Internet by 2020, 50 billion of them via mobile wireless [21];
• The machine-machine communication and multi-agent orchestration.

2.4. Self-Management

HVAC management literature has treated about supervision of control and optimization processes
with predicting models, networked elements in higher hierarchical layers or orchestrated in multi-agent
architectures. However, the potential of an autonomic management entity has not been fully studied
and proved yet. Plain operational decisions still require manual procedures. The autonomic learning
capability of the management system will probably lead to improve the system control accuracy and
robustness. The ACODAT-based management for HVAC will likely improve the multi-objective based
on changing fuzzy policies [1]. The original idea published by IBM in 2001 [22] was that the software
was sufficiently intelligent for caring of itself, similar to what the autonomic nervous system does,
getting self-configuration, self-optimization, self-protection and self-healing. The data analysis tasks
comprised in an autonomous cycle work together for shared common goals in the managed process,
exploiting the data collected from the system to build knowledge models that describe, optimize and
predict its behavior. They co-operate among them and interact with the system according to their
specific roles.

ACODAT is decision-making oriented [5,7,8], and its tasks work together to achieve the objective
of the supervised process. The tasks have different roles in the autonomous cycle, such as observing the
process, analyzing and interpreting the events and making decisions to reach the objective for which
the cycle was designed. This cycled solution allows solving complex problems in real time. The detailed
description of the roles of each task is as follows:

• Monitoring: Tasks in charge of observing the supervised system. They capture data and information
about the behavior of the system. In addition, they are responsible for the preparation of the data
for the next steps (preprocessing, selecting the relevant features, etc.).

• Analysis: Tasks in charge of interpreting, understanding and diagnosing what is happening in
the monitored system. These tasks use building knowledge models of observed dynamics and
behaviors, to understand what is happening in the system.

• Decision-making: Tasks in charge of defining and implementing the necessary actions based on
the previous analysis, in order to improve the performance, detect failures, among other things, in
the supervised system. These tasks impact the dynamics of the system to improve it. The effects of
these tasks are again evaluated in the monitoring and analysis steps, restarting a new iteration of
the cycle.

An ACODAT has a multidimensional data model that works with the data collected from different
sources, to characterize the behavior of the context and transform it into knowledge. Particularly, it can
work with multiple data models, like ontologies, cognitive maps, etc. It runs on a single platform that
integrates the necessary tools required for the tasks to process the information. Some of these tools are
of data mining, semantic mining or linked data.
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Thus, the tasks specifically required for the HVAC management perform system and context
monitoring, data analysis, state diagnosis and decision-making, transformed into physical signals for
the actuators.

2.5. Supervision System

The supervision system interacts with the controller. The latter regulates the machines and/or
processes and the former watches the activity to detect abnormal situations [2,3,23]. FDD is one of
these supervision systems indicating abnormal conditions necessary to discover. Faults in coolers are
usually caused by degraded installations or bad human practices. coolers’ performance degradation is
hardly detected and causes 42% of the service calls and 26% of repairing expenses [23].

Classifying fault severity level has three steps: the detection of the fault, its isolation and
its identification. First-generation FDDs were based on rules and statistics and provided simplistic
knowledge with a limited set of expected faults, and thus the support of field experts was unavoidable [3].
Today’s generation uses ML techniques and stands out for detection and diagnosis [24,25]. An AFD
(automatic fault detection) system continuously monitors the HVAC system’ states with fuzzy
algorithms [26]. Recent AI models allow dynamic fault detection thresholds minimizing the number of
false positives and reducing the number of missed faults, with agglomerative clustering that starts
with one cluster per data point and groups them into likelihood-based clusters. Some studies associate
these models with the Bayesian’s DBNs (dynamic Bayesian networks) and Markov’s HMM (hidden
Markov model) techniques.

The fault prognosis (early diagnosis) by detecting equipment degradations allows keeping the
optimum performance throughout the facility’s life cycle. Classical fault detection and diagnosis is
based on supervised learning models, while the prognosis is based on RL [27]. The most common
reinforced learning (RL) is implemented with MDP (Markov decision process) or its variant, POMDP
(partially observable Markov decision process), necessary when the context state is not fully known.
RL can be applied to a multi-agent problem, such as MARL (multi-agent reinforcement learning) or
deals with the optimal coordination between cooperative or competitive agents with decentralized
POMDP. When the problem applies to different tasks, TL (transfer learning) transfers knowledge once
the problem is solved to support solving the next one. MTL (multi-task learning) is also based on
this principle, but tasks are variants of the same problem. Another important approach is the MORL
(multi-objective reinforced learning), whereas the objective is to learn multiple policies simultaneously
for every objective [28,29].

Kim et al. review studies about the automated FDD (AFD) since 2004 for commercial buildings [30].
They categorize AFD’s methods in three groups and analyze several to understand their strengths
and weaknesses. Deshmukh et al. present analytical methods embodied in useful software tools to
identify and evaluate some building system faults, which cause large building energy inefficiencies [31].
They define the target faults, such as the imbalanced airflows within several large air-handling units.
The experiments show that embracing uncertainty with an HVAC’s fault detection system is paramount
to a good fault inference. Deshmukh, continuing his study, considers algorithms for faults like stuck
dampers and leaking dampers [32]. These damper’s fault detection algorithms can be applied to both
outdoor and return air dampers. They combine expert-rule based fault detection models with the
first principles of thermodynamics, for fault detection with minimal non-intrusive measurements.
The algorithms focus on detecting faults with minimal data in a large monitored academic building.
The experiment used the data collected from the BEMS (building energy management system) of an
academic building in Boston.

3. ACODAT-Based supervision of HVAC Systems

This section describes the proposed ACODAT-based supervision approach for HVAC systems.
It is a novel and versatile concept that allows concurrent data-driven models to reach strategic goals.
This concept has not previously been used in the context of supervision tasks in smart buildings.



Energies 2020, 13, 3103 7 of 24

3.1. General Architecture

The multi-HVAC model is made of one or several HVAC’ subsystems, formed of coolers and their
associated mechanisms, water pumps, electro-valves, etc. The proposed autonomic cycle supervises
each subsystem and works with the data obtained by the BMS. ACODAT-based supervision is composed
of four data analysis tasks, as shown in Figure 1.
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Figure 1. ACODAT-based supervision for HVAC systems.

By monitoring the subsystems, Task 1 prepares the data and Task 2 detects failures. Task 3 diagnoses
failures and Task 4 notifies failures and possible causes for the decision-making. Hence, the functionalities
provided by the ACODAT-based supervision are as follows:

• Monitoring process: The tasks watch the subsystem, capture the data and get the information
about its behavior, preprocessing or selecting relevant features, for consumption in the next steps.

• Analysis process: The tasks interpret, understand and diagnose in real time what happens in the
subsystem assisted with data-driven models, discovering their dynamics.

• Decision-making process: The tasks define and launch the necessary physical actions on the
subsystem’s controllable elements based on the passed analysis to accomplish the goals. The effects
of these tasks are sent back for monitoring and analysis, re-starting a new cycle.

Table 1 shows the tasks proposed for the supervision, their roles in the ACODAT-based supervision
system and data sources. The next subsections describe the set of tasks according to the role in the
ACODAT-based supervision system.



Energies 2020, 13, 3103 8 of 24

Table 1. ACODAT-based supervision tasks, roles and data sources for heating, ventilation and air
conditioning (HVAC).

Role Task Data Source

Monitoring
Task 1—Data preparation

HVAC’ subsystem
Environment

context

Task 2—Failure detection Processed data from previous task

Analysis Task 3—Fault diagnosis Processed data from previous task

Decision
Making Task 4—Notification Processed data from previous task

3.2. Monitoring Role

This section describes the tasks where the role in the ACODAT-based supervision system is the
monitoring of the supervised process. According to Table 1, these tasks are the data preparation (Task 1)
and the detection of failures (Task 2).

Specifically, Task 1 prepares the data, gathering it from the system and context sources, cleaning it
and transforming it, improving its quality. The data may come from other autonomic cycles, such as
for example from other building’ systems. Table 2 describes Task 1′s activities. Specifically, some of the
activities defined in this task are: The selection of the target variables, a phase of feature engineering
and data cleaning, among other data preparation processes. Particularly, feature engineering consists
of the extraction of features from raw data, several feature analysis processes and fusion and selection
of features.

Table 2. Description of Task 1 of data preparation.

Task 1 Data Preparation

Description: Data collection

Data source:
HVAC system
Environment

Context

Data analytics type: Classification/Prediction

Data analytics technique: Correlation analysis
Outlier detection

Knowledge model type: Predictive
Prescriptive

Related data analytics task: Failure detection

Autonomic cycle type: Monitoring

The monitoring process, then provides fault detection. The objective of this task is the real-time
analysis of the variables’ behavior and detects when they deviate from the stipulated as normal ranges,
identifying hence immediately the potential faults. The description of this task can be seen in Table 3.

Particularly, this task extracts the knowledge for the failure detection, for which it uses classification
and prediction models. Classification models are not totally data-driven, requiring an expert to identify
the equipment’s normal working ranges. Prediction models, on the contrary, work autonomously,
self-training only with data extracted from the original database. Once trained, the incoming real-time
data are compared with the predictive model’s output at a given time. Unexpected deviations between
both raise an indication that a potential failure is occurring.
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Table 3. Description of Task 2 for fault detection.

Task 2 Fault Detection

Description: Failure identification
Data source: Previous task
Data analytics type: Classification

Data analytics technique: K-neighbors
Random forest

Knowledge model type: Classification model
Related data analytics task: Failure diagnosis
Autonomic cycle type: Monitoring

Once the knowledge model to detect failures is selected, it is necessary to specify which algorithm
to apply for the case study, based on its performance [33] in terms of accuracy and prediction error [34].
The accuracy is defined as the ratio between the correct predictions over all the observations, while the
error is the mean squared error (MSE) between the observed values and their corresponding estimations
produced by the model.

3.3. Analysis Role

This section describes the task with the role in the ACODAT-based supervision system of
interpretation and analysis of the information from the supervised process. According to Table 1,
this task carries out a diagnosis of the failure (Task 3).

Thus, Task 3 performs the fault diagnosis, i.e., it determines where the failures come from and
their possible causes, as shown in Table 4. Its goal is to identify in which area of the building the
problem is present and why it happens. Particularly, this task defines a knowledge model to carry out
a diagnostic of the fault. The diagnostic model must assess the potential causes of the failures.

Table 4. Description of Task 3 for analysis.

Task 3 Fault Diagnosis

Description: Failure’s origin identification
Possible causes

Data source: Previous task

Data analytics type: Prediction
Clustering

Data analytics technique:
Decision tree

neural networks
Clustering

Knowledge model type: Diagnosis model

Related data analytics task: Failure detection

Autonomic cycle type: analysis

3.4. Decision-Making Role

In this section, is described the task which role in the ACODAT-based supervision system is to
decide from the current situation detected and diagnosed in the previous phases. According to Table 1,
this task is the notification of the current state of the supervised process (Task 4).

Task 4 notifies detected and diagnosed occurrences from the previous task. It raises alarms or alerts
triggered by abnormal-tagged situations in the subsystems, such as an excess of energy consumption,
failures, outliers, among other situations. Alarms simply warn about something, while alerts not only
warn, but also request further surveillance on something. In the proposed case study, Task 4 raises
alarms for any failure, and reports alerts when the subsystems are shutdown.
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4. Case Study

The proposed concept is proven with a real case. The experiment works with actual data obtained
from the BMS controlling the HVAC systems of the Teatro Real (Royal Theatre) in Madrid.

4.1. Experiment Context

Teatro Real is the opera palace in Madrid, Spain. The total floor square footage in squared meters
is 65,000 m2 (700,000 ft2). The theatre has a capacity of 1746 seats. The building has 11 lounges for
events, 4 rehearsal rooms, 7 multipurpose studios, an office area surrounding the main theater room
occupying several floors and warehouses and technical areas in the basements. Figure 2 is a photo of
the theatre’ seats.
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Figure 2. Teatro Real of Madrid. View of the seats.

The building is used from September to July, requiring heating in the winter and cooling in the
summer season. The HVAC system has had multiple HVAC systems deployed for decades. Four coolers
remain operative; these are two water–air heat pumps with 195 kW of nominal capacity each for
heating and cooling, and two water–water coolers with 350 kW each for extra cooling connected to
two cooling towers. In the multi-HVAC model, each cooler and its associated equipment are an HVAC
subsystem. The multi-HVAC system is supervised and operated with a commercial BMS that reads
the temperatures from the sensors located all around and sets the instructions for the actuators for
regulating the water or the air flow rates and the fluid temperature.

The diversity of cases of use makes the building HVAC operation difficult, and the supervision
requires support from the engineering department. Figure 3 shows the working scenario where the
supervision system is deployed.

The BMS samples 169 historical variables every 15 min, including the outdoor temperature,
selected zone temperatures, power supply by transformers, thermal energy generated for each HVAC
subsystem, their COP (coefficient of performance). Other query results stored by the BMS are a table with
45 additional temperatures from other building rooms every hour. The persistent database also contains
a table with different variables read from different elements only during the shows and rehearsals from
69 sensors every 10 min. This is the data that feeds the first tasks of the supervisory system.

Figure 4 shows the ACODAT instantiation in the opera’s HVAC, where the ACODAT tasks embed
into the BMS. Particularly, in Figure 4 is shown the BMS, which has our supervision system based
on ACODAT. Additionally, there are two other components for the management of the multi-HVAC
system. A controller for each HVAC subsystem that regulates its behavior using control loops and the
optimizer that determines the ideal configuration of the multi-HVAC system (it determines the level of
operation of each HAVC subsystem).
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Particularly, in a previous work has been introduced the autonomous management architecture
of the multi-HVAC model based on ACODAT that sear to optimize the configuration of the HVAC
subsystems in a given moment improve the energy efficiency and costs, and other work that proposes
a fuzzy-based control method for HVAC [4], which can be incorporated in the management system.
This study is a continuation of the previous research and introduces the concept of ACODAT for the
supervision of building multi-HVAC systems.

The following values are chosen from each HVAC subsystem for the experiment:

• Fluid- specific heat capacity in subsystem j: c f luid(j);

• Refrigerant fluid density in subsystem j: ρ f luid(j);

• Maximum electrical power consumed in subsystem j: Pmax(j);
• Maximum temperature provided with subsystem j: Tmax(j);
• Thermal capacity of subsystem j: CAP( j).
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Some of them are normally given by the manufacturer in the technical specifications under
standard working conditions and specifically, for the two heat pumps and the two water–water coolers
in the Teatro Real of Madrid, Table 5 shows the information.

Table 5. Cooler characteristics obtained from user manuals.

Parameter Value

cwater(Chiler) 4.186 J/g ◦C
ρwater(Cooler) 1 Kg/L
CAP(Cooler) 350 KW

The ACODAT-based supervisory system use in this experiment the historical data in the BMS’
database to capture value deviations in the HVAC system’ components, such as the performance
degradation of each subsystem. The ACODAT does not require different training sessions because
the data analysis tasks can implement continuous learning that could be discretionally calibrated
with mid-term context-based information, such as seasonal ones. Particularly, the dataset used has
information of different periods about the year.

The software of the experiment was implemented in Python on Jupyter (IPython Project,
open-source software, Atlanta, USA): Python 3.7.3 (Mar 27, 2019, 17:13:21), IPython 7.4.0. The libraries
used for the study are: pandas, numpy, matplotlib.pyplot, sklearn (metrics: pairwise_distances,
model_selection: train_test_split, cluster: KMeans, mpl_toolkits.mplot3d: Axes3D, apriori: apyori).

4.2. Instantiation of ACODAT

This section instantiates ACODAT in every phase of the supervision of the Teatro Real’s
multi-HVAC system.

4.2.1. Task 1: Preparation of the Data.

The HVAC system is made up of 4 coolers that bring together pumps, cooling towers and other
elements in 4 HVAC subsystems, called: ‘Grupo Frio 1′ (cold group 1), ‘Grupo Frio 2′ (cold group 2),
‘Bomba Calor Carlos’ (Charles heat pump) and ‘Bomba Calor Felipe’ (Philip heat pump). The data extraction
process is simple and just requires collection and understanding. The collection is carried out on a
database made of several tables that are the result of pre-existing queries over some chosen variables
with different sampling rates and events. The most significant table reads the assigned sensors every
15 min and the information was taken over several years some selection of numerical variables read
from sensors deployed in the HVAC system and its context.

Target Variable Selection

For data understanding, the target variables/features for FDD are identified and unnecessary ones
are removed. In Teatro Real, the example takes the performance of each subsystem, ‘COP’ and ‘potency’
(consumed energy) as target variables. New variables may be generated for evaluation when needed,
and in this case, it was necessary to calculate a new variable for each subsystem, ‘Thermal Power’
(thermal capacity).

Feature Relevance analysis

Features are ranked with random forest Classifier, for providing a good view of their significance.
Figure 5 shows the features-relevance ranking for the target variable ‘COP cold group 1′. Figure 5 is
an example of the “influence” of each variable (feature) on one of the target variables, the ‘COP cold
group 1′. For example, the variable ‘potency cold group 1′ has the highest influence on this target
variable. The variables shown in Figure 5 are the sensed from the different sensors in the multi-HVAC
system about the 4 coolers (thermal potency, potency, output temperature in the coolers and water
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entry to the towers, among others). The score of all the variables adds up to (100%), so they have
a greater weight if they are the most important. It is similarly determined for each target variable,
in order to determine the relationship with the rest of the variables, information used to build the
knowledge models in the second data analysis task 2.

Statistical analysis

This task uses statistics to analyze the central values of the variables, getting a better understanding
of the variables’ behavior, in order to improve the data quality by taking out the outliers. Table 6 shows
a partial table with the statistical metrics of some variables. The variables shown in Table 6 correspond
to the Charles heat pump (potency, COP, kilocalories generated, input and output temperature in the
coolers, among others). With this information of each variable (mean, maximal and minimum values,
first, second and third quartile, among other measures), different studies can be done to determine if
it is necessary to normalize the variables, detect outliers, among other things. For example, we can
detect an outlier if that value is more than 1.5 times distant from the first or third quartile—between
these values, it would be considered normal.
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Table 6. Partial table with some statistic values of some HVAC system variables.

Outdoor
Temperature (oC)

Input Temperature
Charles Heat Pump

(oC)

Output Temperature
Charles Heat Pump

(oC)

Kilo-Calories Generated
Charles Heat Pump

(kcal/h)

Potency Charles
Heat Pump

(kw)

COP Charles
Heat Pump

count 79,285.00 79,285.00 79,285.00 79,285.00 79,285.00 79,285.00
mean 15.08 22.31 29.45 113,632.62 33.62 1.60

std 11.35 5.38 13.68 128,906.15 43.91 2.06
min -1.40 0.00 0.0 0.00 0.00 0.00
25% 6.97 18.95 16.94 8493.35 0.48 0.00
50% 13.35 21.11 34.74 40,299.85 0.50 0.00
75% 23.72 25.80 42.45 220,046.69 67.60 3.69
max 43.80 38.67 47.89 509,556.66 164.21 74.74

Data Cleaning

The information obtained from the statistical analysis leads to discover the outliers with the
classical interquartile range (IQR) and minimize the number of false positives in ulterior fault detection.
The outliers are in distances beyond 1.5 times the IQR, i.e., in Q1—1.5 * IQR or Q3 + 1.5 * IQR.
In addition, repeated variables and null or zero values are eliminated, as they are unnecessary.
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Correlation Analysis

After the statistical analysis and data cleaning processes, the variables are correlated using
the classical Pearson’s correlation coefficient, which quantifies the linear distance between two
variables [35]. This provides an approximate view of the dependency level between each pair of
variables. Figure 6 depicts with colors, ranging from yellow to dark blue for positive and inverse
correlations, respectively. Only independent variables are considered. These independent variables
are used in order to analyze the target variables of the supervision model, to determine with what
independent variables it is related. This information is used to build the knowledge models in the
second data analysis task 2.
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4.2.2. Task 2: Detection of Failures

For the case study, the target variable selected was the COP and the knowledge model to detect
failures is a predictive model. Thus, the algorithms used were MLP (multilayer perceptron), K-NN
(K-nearest neighbor) and gradient boosting. The MLP regressor predicts the subsystem’s behavior with
a configurable MLP, such as the number of neurons, layers or activation functions. The K-NN regressor
assigns values with the vote of the plurality of its k “nearest neighbors” in the training set. The gradient
boosting regressor belongs to the family of ensemble algorithms that combines several weak predictive
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models (weak learners)—normally decision trees—to create stronger predictive models. Table 7 shows
the performance of each algorithm predicting the COP of the 4 coolers in the Teatro Real.

Based on these results, the K-NN regressor was selected as the predicting model for variables COP,
because it reaches the highest accuracy and the lowest MSE (mean squared error). The performance is
similar in the other HVAC subsystems.

For predicting ‘potency’, a random forest regressor is also compared with the other 2 models
that were evaluated for the COP. random forest regressor is an ensemble of learning methods for
classification and regression, which bags multiple decision trees diced from the dataset and combines
the obtained results. The combination uses average techniques, like weighted average, majority vote or
normal average. Table 8 shows the quality metrics of the variable “potency” for the HVAC subsystems.

Random forest regressor performs better than the other models to predict the ‘potency’ in terms
of accuracy and MSE. The results are similar for every HVAC subsystem.

Table 7. Quality of the algorithms used to predict the variable COP.

Variable Data Model Accuracy MSE

COP cold group 1
MLP regressor 70.6% 0.254

K-neighbors regressor 84.2% 0.138
gradient boosting regressor 80.1% 0.17

COP cold group 2
MLP regressor 83.3% 0.404

K-neighbors regressor 89.3% 0.258
gradient boosting regressor 87.6% 0.303

COP Charles heat pump
MLP regressor 75.6% 0.036

K-neighbors regressor 78.7% 0.03
gradient boosting regressor 71.1% 0.042

COP Philip heat pump
MLP regressor 69.9% 0.024

K-neighbors regressor 74.2% 0.021
gradient boosting regressor 65.8% 0.027

Table 8. Quality of the data model algorithms used to predict the variable potency.

Variable Model Accuracy MSE

Potency cold group 1

MLP regressor 74.5% 184.6
K-neighbors regressor 87.8% 87.5

Gradient boosting regressor 92.0% 59.1
Random forest regressor 97.4% 18.6

cold group 2

MLP regressor 0.21% 803.1
K-neighbors regressor 95.2% 38.7

Gradient boosting regressor 95.1% 40.2
Random forest regressor 98.8% 9.9

Potency Charles heat pump

MLP regressor 91.2% 168.0
K-neighbors regressor 96.1% 73.4

Gradient boosting regressor 97.7% 43.2
random forest regressor 99.2% 15.8

Potency Philip heat pump

MLP regressor 88.2% 239.0
K-neighbors regressor 96.1% 77.4

Gradient boosting regressor 96.5% 71.1
Random forest regressor 98.9% 23.0

4.2.3. Task 3: Diagnosis of Failures

In this case study, the diagnostic model used is based on a clustering approach. The centroid of
each cluster is analyzed to extract the knowledge about the pattern of the fault, in order to diagnose
the fault. The clustering algorithm is the K-means and the metric to measure the consistency within
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the clusters of data, the silhouette coefficient. The elbow method allows finding out the appropriate
number of clusters to discover knowledge from the data. The algorithm was tested with a different
number of clusters, as shown in Figure 7. The higher the coefficient is, the better defined the clusters
are. The score goes from −1, for wrong clustering results, to +1, for highly dense clustering, and the
intermediate scores around zero indicate that clusters are overlapped.
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Table 9 shows the application of the elbow method from 2 to 5 clusters in the case study, concluding
that the best number of clusters is 3. The value of K has a relationship with the number of faults that
can be detected using this dataset. With the elbow method, is detected the number of faults (clusters)
that can be analyzed with this dataset, because it contains information about them (their centroids).
The analysis of the information in each centroid must be carried out by experts to understand the type
of faults (pipes or ducts blocked, engine overheating, valve problems).

Table 9. Silhouette Coefficient obtained for different number of clusters applied to one single
HVAC subsystem.

No. Clusters Silhouette Coefficient

2 0.48
3 0.51
4 0.49
5 0.41

Repeating the method in every HVAC subsystem, the obtained results are similar. Then, the analysis uses the cluster
centroids of each subsystem to diagnose a given problem. The diagnosis of any problem comes from detected
situations from the previous task and is associated with its corresponding cluster.

5. Results: Supervisory Dashboard

This Section describes the last task of the autonomous cycle that displays a dashboard, where the
actual data stream is steadily monitored with its corresponding expected ranges. The dashboard also
includes another gauge, a watchdog for notifying the failures and their possible causes.

The data analysis tasks of the autonomous cycle all work at once, so that the knowledge models
interact with each other with the common objectives. The autonomous cycle cleans and transforming
the data assisted with statistical analysis in Task 1, preparing it for the next tasks. Task 2 assesses
the best algorithm among K-NN, RF (random forest), MLP and gradient boosting for predicting the
‘COP’ and ‘potency’ variables. Once the algorithm is chosen, the data stream coming from the HVAC
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subsystems is parsed through the predicting model. Thus, the stream is monitored and triggers the
next data when detects a deviation that could be a potential failure. When a potential failure is detected,
the next task analyzes the possible causes with the K-means clustering algorithm, which classifies it
into one of the possible clusters learned from the data. The centroids are analyzed to define the cause
and diagnosis.

5.1. Multi-HVAC System: Overall, Status

The overall picture of the system is depicted in a grid of boxes that display the actual real-time
values of the target variables from each system. Figure 8 is a screenshot of the developed system, with the
‘COP’ and ‘potency’ of the four coolers of the Teatro Real’s HVAC. The gray color of the blocks and light
gray of the text indicate ‘normal condition’.
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5.2. Variables: Time–Domain Evolution

The time evolution of the monitored variables is also visible on the dashboard. Figure 9 is a screenshot
depicting the last 10 samples of the ‘COP’ and ‘potency’ of coolers 1 and 2 of the Teatro Real, along with a
standard interpolation curve that allows an intuitive interpretation of the current subsystems’ operation.
The dispersion graphic shows both the actual values read from the sensors and the predicted values.
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The picture shows the differences between the observed and the predicted values, which will be
compared with the data-calibrated threshold for deciding or not to raise an event to the next task.

5.3. Clustering of Detected Events

In the data stream coming from the subsystems, suddenly a problem is detected in one of them
due to an abnormal difference between the observed and predicted values. For example, supposing
the reported problem corresponds to the variable ‘potency’ of ‘cold group 1′, the data are sent to the
clustering analysis to get a diagnosis. Figure 10 is a screenshot of the read variables, showing the block
corresponding to the compromised behavior (‘potency cold group 1′) in dark pink and white text.
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5.4. Failure Notification

The clustering analyzes the abnormal values and generate alarms or alerts, describing the issue
and pointing to its possible cause/diagnosis. Figure 11 is a screenshot of the notification window,
where it is possible to detect the reported alarm coming from ‘potency cold group 1′, with basic
textboxes indicating which problem is, the possible cause and the suggested actions.
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5.5. Case Study Performance

This section evaluates the performance of the proposed ACODAT-based supervisory module
under different exception scenarios, where the context information varies, or the real-time data stream
coming from the HVAC system can be changed to simulate standard failures and also unexpected
situations, such as the visit of a dignitary to the Teatro Real. The goal is to analyze the capability of
the system to properly detect these exceptions, and thus, the metric is the right decision on known
abnormal situations.



Energies 2020, 13, 3103 19 of 24

The context is defined by the outdoor weather, the number of visitors in the opera building or the
current indoor temperature. The possible abnormalities are bounded in the experiment according to
the following environmental conditions (EC):

(1) Extreme weather conditions;
(2) Visit of dignitaries;
(3) Excessive energy consumption rises;
(4) A combination of 1 and 3.

The other combinations are not analyzed, because condition 2 is the most important in these
cases. In the case of the abnormal situations, it is considered the failure of one or two of the HVACs
systems. The experiment has trialed 30 iterations of the four environmental conditions with random
failures in 1 subsystem, and another 30 with random failures in 2 subsystems. The obtained results are
shown in Table 10.

Table 10. Results of the simulations.

Simulated Conditions % of Correct Diagnosis

EC 1 & failure in 2 HVACs 83%
EC 1 & failure in 1 HVAC 94%
EC 2 & failure in 2 HVACs 87%
EC 2 & failure in 1 HVAC 97%
EC 3 & failure in 2 HVACs 82%
EC 3 & failure in 1 HVAC 85%
EC 4 & failure in 2 HVACs 81%
EC 4 & failure in 1 HVAC 84%

Success decision rate ranges from 81% in EC 4 & 2 HVACs (2 faults in extreme weather and energy
excess) to 97% in EC 2 & 1 HVACs (1 fault in the visit of dignitaries), thus, the difference is 16% between
the two. Comparing ECs averages, EC 2 outperforms the average 6% (92%), followed by EC 1 (89%),
EC 3 (84%) and EC 4 (83%). With regard to the number of faults discovered, 1 HVAC is 8% better (90%)
than 2 HVAC (83%).

In general, the data-driven models of ACODAT for supervision are not much affected by the
environmental conditions, because these variables are used for the calculation of the cost of the
deployment of the configuration of HVAC subsystems, and not in the diagnosis of the current situation
(the centroid of our clustering model determines the current operational state of the HVAC system of
the opera and is based in the variables of the HVAC subsystems).

6. Comparison with other Works

In this section, we compare our approach with similar works. This is a qualitative comparison
(see Table 11), where the next criteria are considered:

(a) The approach is based on the autonomous paradigm for the self-supervision process;
(b) The approach considers the integration of several machine learning approaches for the supervision;
(c) The approach is easily adaptable and extensible;
(d) The approach considers different aspects for a correct supervision: detection, diagnosis, among others.
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Table 11. Comparison with other works.

Work
Criteria

(a) (b) (c) (d)

[2] x x
[3] x

[23] x x x
[26] x

[32,35] x x
Our work x x x x

The authors of [2] present a method of evaluation of diagnostic information systems in district
heating efficiency supervision based on exploring the evolution of the information system and analyzing
its dynamic features. They use data mining in the data acquired from district heating substations’
energy meters to provide the automated discovery of the diagnostic knowledge base necessary for
the efficient supervision of district heating-supplied buildings. The implemented algorithm consists
of several steps, including preparation, segmentation, aggregation and knowledge discovery stage,
where classes of abstract models representing the energy efficiency constitute an information system
representing diagnostic knowledge about the energy efficiency of buildings favorably operating
under similar climate conditions and supplied from the same district heating network. The study [3]
enables the supervision of buildings by the use of semantic technologies. They define an information
base that describes the main physical and conceptual building elements, their characteristics and
interrelationships, as well as the constraints that apply to them. Additionally, they define a logical
framework based on the rules, which allows describing any domain as a set of facts, a set of rules and a
set of constraints.

The focus of [23] is to develop a generic FDD scheme for centrifugal coolers and also to develop
a nominal data-driven model of the cooler that can predict the system response under new loading
conditions. They use support vector machines, principal component analysis and partial least squares
like the fault classification techniques; and a genetic algorithm-based approach to select a sensor suite
for maximum diagnosability and also evaluated the performance of selected classification procedures
with the optimized sensor suite. The study [26] describes a dynamic, machine learning-based technique
for detecting faults in commercial air handling units. It is an automated fault detection and diagnostics
tool to be used by the building energy systems. The authors of [32,35] present analytical methods
embodied within useful software tools to quickly identify and evaluate selected building system faults
that cause large building energy inefficiencies. As a first step to developing this general framework for
fault detection, first-order faults such as simultaneous heating and cooling and imbalanced airflows
within several large air-handling units were targeted.

Our approach proposes an autonomous cycle of tasks for the self-supervision of a process,
which integrates several machine learning approaches for the different aspects to be considered during
the supervision: detection, diagnosis, among others. The main finding of this work is that it is necessary
to integrate a set of data analysis tasks, to achieve a better performance of the system in its supervision
task. This integrative scheme is effective, to consider the complexities of the problem, at the level of
data extraction and preparation, its use to understand what is happening, and finally, make decisions.
Autonomous cycles naturally manage and integrate those aspects, simplifying the development of
robust solutions.

As a final comment, we have shown the application of the concept of autonomous cycles of data
analysis tasks for the supervision of multi-HVAC systems. We have studied its behavior in different
scenarios, and its adaptability to the context. Something to highlight is that this system is quite
flexible, since it can incorporate more data analysis tasks to make a deeper study of the supervision
problem, if required, as well as update the implementation of the analysis tasks with new approaches
or techniques.
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7. Conclusions

This study proposes a novel supervisory module for the management of building HVAC systems.
The work brings data-based ACODAT concept from other fields and applies it to a multi-HVAC
model, for the building HVAC management. The ACODAT concept was successfully proven in
telecommunications [6], Education with smart classroom [7,8], but it is still unknown in HVAC
management [1].

Thanks to ACODAT, the supervisory scheme is capable to detect faults and degradations in the
HVAC subsystems and notify the diagnosis of unknown events. The ACODAT tasks are based on
several ML techniques that work together with common goals—failure detection and diagnosis- that
are autonomously achieved.

The proposed autonomic cycle was proven with real data from the BMS that operates the HVAC
installations of the Teatro Real of Madrid (Spain). The HVAC System of this building is heterogeneous,
which has been deployed along several decades, making the scenario very appropriate for extending
the results to other scenarios.

The results with real data show the ability of the proposed supervisory scheme to detect and
differentiate among several environmental conditions, potential failures coming from different abnormal
values in the monitored variables. A success rate of 87% on average is promising, as the tasks considered
in the experiment are simplistic and, in the future, can be more focalized to specific problems of the
HVAC subsystems.

The second objective of this study of proving that the ACODAT supervisory scheme provides a
novel detection approach in the buildings. In addition to the flexibility of selecting the most appropriate
algorithms and model configurations, the ACODAT supervisory scheme can be re-trained in real
time becoming increasing adapted to the supervised system and improving its predicting accuracy.
The real-time training will improve the accuracy of the diagnosis.

A future work will extend this supervisory scheme based on ACODAT for other types of buildings,
such as public buildings, commercial malls, museums, etc. Other future work is extended the current
dataset with information about more faults, in order to extend the capability of our system to diagnose
a bigger number of faults. In addition, other future works will incorporate meta-learning approaches
to autonomously update the knowledge models of the cycle or other sources of knowledge, such
as the SBOnto [12,36] or the BOnSAI [37] ontologies, which describe the domain of knowledge in
smart buildings. A final work will study the integration of the scheme with existing BMS standards
aiming to optimize and effectively control the HVAC systems, which is an essential requirement of
smart buildings.
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Acronyms

ACODAT autonomic cycle of data analysis tasks
AFD automatic fault detection
AI artificial intelligence
ANFIS adaptive neuro-fuzzy inference system
ANN artificial neural networks
ARIMA autoregressive integrated moving average
ARMAX autoregressive-moving average with exogenous variables
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ARX autoregressive with exogenous inputs
BAS building automation system
BEMS building energy management system
BMS building management system
EC environmental conditions
COP coefficient of performance
DBN dynamic Bayesian networks
FAN fuzzy adaptive network
FDD fault detection and diagnosis
FFBP feed forward back propagation
FL fuzzy logic
GA genetic algorithms
HMM hidden Markov models
HVAC heating, ventilation and air conditioning
IQR interquartile range
K-NN K-nearest neighbor
LAMDA learning algorithm for multivariant data analysis
MAPE-K monitors, analyze, plan and execute—knowledge base
MARL multi-agent reinforcement learning
MAS multi-agent system
MDP Markov decision process
MIMO multiple input and multiple output variables
ML machine learning
MLP multilayer perceptron
MORL multi-objective reinforced learning
MSE mean squared error
MTL multi-task learning
NNARX neural network autoregressive with exogenous inputs
PID proportional integral derivative control
POMPD partially observable Markov decision process
RBF radial basis function
RL reinforced learning
SISO single input and single output variables
TL transfer learning
TS Takagi–Sugeno fuzzy model
WCSS within cluster sum of squares
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