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Abstract: Demand response (DR) is emerging as the workhorse of achieving energy efficiency
and reducing our carbon footprint, which persists as a major challenge amongst all the different
energy-chain players, i.e., the utility providers, policy makers, consumers, and the technology sector.
For instance, the Internet-of-Things (IoT) paradigm and network-enabled appliances/devices have
escalated the expectations of what technology could do for the acceptance of DR programs. In this
work, we design, deploy on a scalable pilot testbed, and evaluate a collaboration-based approach
to the demand-side management of a community of electricity consumers that jointly targets green
consumption. The design of the framework architecture is centralized via the so-called aggregator,
which optimizes the demand scheduled by consumers along with their time frame preferences
towards the maximization of the consumption of renewables. On the pilot, we opt for lightweight,
yet efficient platforms such as Raspberry Pi boards,and evaluate them over a series of network
protocols, i.e., MQTT-TLS and CoAP-DTLS, paying special attention to the security and privacy of the
communications over Z-Wave, ZigBee, and WiFi. The experiments conducted are configured using
two active Living Labs datasets from which we extract three community scenarios that vary according
to the flexibility or rigidity of the appliances’ operation time frame demand. During the performance
evaluation, processing and communication overheads lie within feasible ranges, i.e., the aggregator
requires less than 2 s to schedule a small consumer community with four appliances, whereas the
latency of its link to households’ controllers adds less than 100 ms. In addition, we demonstrate
that our implementations running over WiFi links and UDP sockets on Raspberry Pi 4 boards are
fast, though insecure. By contrast, secure CoAP (with DTLS) offers data encryption, automatic key
management, and integrity protection, as well as authentication with acceptable overheads.

Keywords: cooperative demand response; consumption scheduling; renewable supply; Raspberry Pi
board; performance evaluation; CoAP; MQTT; TLS/DTLS

1. Introduction

Today, the growing demand from the public for access to clean energy is posing one of the biggest
challenges for many utilities that are moving beyond deciding whether or not to prioritize a switch
to renewable sources [1]. For instance, consumers’ lifestyle choices, such as hybrid/electric vehicles,
diets from sustainable food agriculture, and/or energy-efficient habits, are reflecting the new reality
of green energy. In addition, governments and policy makers are providing program support, e.g.,
appliance retrofitting, tax credits, and other incentives, to promote energy efficiency in households,
public and municipal facilities, residential and commercial buildings, and industry [2]. For example,
rate changes and price transparency form part of a larger suite of approaches to deliver and encourage
energy efficiency by encouraging consumers to understand their rates and energy usage [3].
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In the smart, energy-efficient home, consumer engagement is commonly promoted by financial
incentives [4]; consumers respond to increases in energy prices by changing energy usage behavior,
as well as by investing in energy-saving technologies and practices [5,6]. The Internet-of-Things
(IoT) technology and applications, such as in the smart home, are driving multiple opportunities
not only to increase residential energy efficiency and peak demand reduction, but also to expand
grid assets as a cyber-physical system [7]. Indeed, network-enabled appliances and user devices
have escalated the expectations of what technology can do for energy efficiency, e.g., bill reduction,
household comfort, and safety enhancement [8,9]. Moreover, the emergence of low cost platforms has
also enabled the implementation of a series of home controllers to obtain consumption data, generate
demand/load profiles, and control smart appliances [10,11]. For example, the architecture of a smart
home Energy Management System (EMS) proposed in [12] simultaneously monitors both energy
consumption and renewable energy generation over ZigBee and Power Line Communications (PLC).
A remote energy management server aggregates the energy data from numerous home systems for
statistics and data analytics. Furthermore, the test bench described in [13,14] uses low performance
processing platforms to emulate four smart homes and generate energy demand profiles from datasets
produced by monitoring campaigns. This test bench implements a demand forecasting method based
on an optimization algorithm that tends to reduce the uncertainty of renewable generation and the
power exchanged between the consumers and the utility. Other testbed pilots such as in Belgium [15],
Shanghai [16,17], The Netherlands [18,19], and others [4] have measured the time flexibility of smart
appliances, electricity consumption feedback from in-home displays, performance indicators for
recognizing patterns, and the effectiveness of price incentives, respectively.

Although the consumer community could also benefit from any of the aforementioned
achievements, they look at the problem on a household scale. By contrast, we believe that the
cooperation amongst groups of consumer communities towards common goals can indeed catapult
the acceptance of energy efficiency programs such as Demand Response (DR) [20,21] and the slow
advance of microgeneration [22]. Figure 1 depicts the main objectives and technical players involved
in the development of energy efficient communities emphasizing the evolution of the role and
engagement of both utilities and consumers in response to new energy system structures and
policies, technology innovation, and expectations. Indeed, emerging digitalization and secure IoT
innovations for monitoring and balance of supply and demand enable consumers to be much more
active participants in the electricity market and will help them pursue not only bill reduction, but
also sustainability goals. On the one hand, the improvement of building energy efficiency involves
reducing the total energy consumption of buildings, reducing the peak energy demand, the energy cost
of EV charging and other fixed building energy load, and also, leveraging renewable energy sources.
The approach in [23] co-scheduled multiple energy sources such as grid electricity, on-site fuel cell
generators, solar, wind, and battery storage along with the control of the building HVAC (Heating,
Ventilation, and Air Conditioning) system. Its implementation on an ARM processor monitored
battery status, controlled charging and discharging at the circuit level, and provided battery protection.
Another good example of new energy innovations is the application of the Geographic Information
System (GIS); it can provide insights into communities’ lifestyle choices that relate to green energy, but
also, it can guide location-based decisions, e.g., where to site renewable energy infrastructure [24–26].

On the other hand, demand-side management and DR programs have become the workhorse of
achieving energy efficiency under both individual energy management and, more recently, residential
(multi-consumer) scenarios [27–32]. The latter scenarios seek decentralization so as to provide highly
available and scalable approaches to cooperative consumers/prosumers. In particular, the authors
in [27] dealt with the lack of aggregators through smart-contracts into a blockchain environment where
the participants of a community of smart-buildings iteratively proposed a forecast of their power
profile (consumption and/or production) and until a consensus was collectively reached. From their
simulation results, the authors showed a community of 30 buildings taking 2 h to get a reliable forecast,
which also depended on the computational time of each node and other factors. Further discussion on
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the optimization of the day-ahead sequence, on the computational and communication costs, as well
as on the network architecture of their framework would enlighten the feasibility of their decentralized
approach. Blockchain technology was again the scheme applied to the distributed and secure DR
program in [33]. Self-enforcing smart contracts were defined and used to implement the levels of
energy demand flexibility (the expected energy demand and adjustments to its energy baseline) the
prosumers may provide during DR events, associated incentive and penalty rates, as well as rules for
balancing the energy demand with the energy production. From their simulations, the authors showed
how the aggregated energy demand profile of all participating prosumers was shifted by 7% so as to
match the expected level during high energy production peaks. Moreover, based also on simulations,
residential cogeneration was scheduled in [34] considering delay intolerant and delay tolerant load
demands in the community. This algorithm was based on cooperative resource sharing and assumed
the existence of a central controller. Their validation however lacked addressing the consequences
of non-cooperation.
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Figure 1. Energy-efficient communities’ main players and objectives.

In summary, this type of scenario, which requires multiple-household coordinated load
scheduling, motivates our work, which aims at validating the following challenges or working
assumptions:

(i) The potential and acceptance of DR frameworks mostly depend on the accessibility, security,
and user-friendliness of the technology that will manage the consumers’ response. The results of
a consumer survey of 207 Japanese households [35] revealed that end-users in the studied pilots
preferred technologies that automatically shifted their energy use. In this regard, our proposal
requires minimal human intervention and relies on home controllers and a community aggregator
for re-adjustments of the participants’ joint consumption and energy load reallocation. Besides,
our testbed deployment opts for lightweight cost-effective hardware platforms such as Raspberry
Pi boards to implement both roles/devices.

(ii) Only a small fraction of a wide variety of recompiled DR frameworks has been tested in physical
systems [25]. The use of data augmentation or feature extraction techniques has also barely
been explored, and the use of data-driven support models should be further investigated as
well. For instance, the work in [29] compared a novel DR for collaborative purposes, which was
effective for a larger number of participants, but it did not state how practical the framework
could be under real data validation. In our framework, the scheduling algorithm was built and
evaluated considering real datasets so as to validate the feasibility and performance overheads
of cooperative scenarios. In particular, we extracted three types of consumer communities
according to the elasticity of the appliances’ operation time frame demand.
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(iii) DR has been addressed and approached from different technologies, standards,
configurations, and implementations that can result in different measurement and security
requirements [4,36,37]. Our system and network architecture is validated on prototypes
that showcase the feasibility of our proposal under a series of network protocols and links,
community scenarios (so varying the complexity of the algorithm) and consumer behaviors,
and over different hardware platforms.

Hence, our work contributes to addressing these challenges as follows:

1. We implement and deploy a pilot testbed of the cooperative DR framework described in [38].
The system defines a set of consumers reaching coordinated behavior through an aggregator,
which implements a fair scheduler (or shared resource allocation algorithm) in response to the
utility’s incoming supply from renewables. Participating households’ controllers, which connect
to and control the smart appliances via wireless communications, compile a 24h vector of
planned consumption per appliance in slots of 1 h of granularity. The aggregator then optimizes
the preferred time intervals of operation for the community consumers’ appliances and other
household devices, maximizing the consumption of the 24 h vector of available supply from
renewable sources. We implement both system roles over five different hardware platforms
(a laptop, Raspberry Pi 4, 3B+, and 3B boards, and an Arduino Mega board) for performance
comparison. The deployment of the pilot testbed is located in the Department of Electronics
(DEPECA) at the University of Alcala (Madrid, Spain).

2. We analyze the computational cost involved in the centralized scheduling and compare our
results with the relevant related work. In this regard, we configure a series of community settings
varying the number of appliances, so the complexity of the algorithm, and extracting different
consumer behaviors from two active Living Labs anonymized datasets [39,40]. In particular,
we look at the appliances’ operation time frames so as to set our consumers’ preferences. The
identified scenarios represent three types of consumer communities according to the tolerance or
elasticity of their demands. From our experiments, the processing overhead lies within feasible
ranges, i.e., the aggregator requires less than 2 s to schedule small consumer communities that
involve six appliances. Measurement and comparison of performance overhead on five different
hardware platforms show the Raspberry Pi 4 board being an efficient, lightweight deployment
option for both home controllers and aggregator devices. Our results enhance the calculations
in [14], which, implementing a similar EMS at both the household and community levels on
Raspberry Pi boards, showed an execution time of 1800 s for four households.

3. We analyze the communication overheads imposed by the following network protocols:
sockets-UDP, MQTT (MQ Telemetry Transport, ISO/IEC PRF 20922) [41,42], the Constrained
Application Protocol (CoAP) [43], and links over WiFi, ZigBee, and Z-Wave. These are chosen
due to their lightweight properties regarding message size, management, and overhead. We also
evaluate the security of the communication between the aggregator and home controllers adding
Transport Layer Security/Datagram Transport Layer Security (TLS/DTLS). Measures on our
pilot testbed demonstrate that MQTT-TLS incurs additional cost compared to CoAP-DTLS.
For instance, we demonstrated that our applications running over WiFi links and UDP sockets
on Raspberry Pi 4 boards are fast, though insecure. Secure CoAP (with DTLS) displays data
encryption, automatic key management, and integrity protection, as well as authentication with
acceptable overheads (about 200 ms). In addition, we compare our results to other studies’
simulations [44,45] and analyze MQTT [46] and CoAP libraries [47,48] over highly constrained
platforms. Our study concludes that certain implementations are interoperable and faster while
achieving the confidentiality and integrity of messages as, well as authentication and solving
availability problems.

The reminder of the article is organized as follows. The system design and network architecture
are presented in Section 2. A pilot testbed description and the evaluation of the computational and
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communication cost, as well as an informal security analysis are detailed in Section 3. Finally, Section 4
concludes considering some future research directions.

2. Framework Architecture

Figure 2a depicts the cooperative framework’s roles and their interaction flow, where a community
of households shares a utility provider and an aggregator. Similarly, a residential building may
accommodate a series of households, as illustrated in Figure 2b. At a glance, a home controller
device (C-diamond) communicates via WiFi with the household connected appliances and devices
and with the common aggregator (A-diamond). In the scope of the household, the home controller
was implemented on a Raspberry Pi 3; the consumer interacts with this device via a mobile app, also
connected through WiFi, to introduce the appliances’ load time preferences. The community aggregator,
developed on a Raspberry Pi 4, is located in the proximity of consumers and communicates with
the home controllers via WiFi and with the utility provider (RW-diamond). The latter represents the
electricity supply from renewables, and its communication link (likely cellular 4G-5G) was not tested
on our testbed. More specifically, our framework’s devices implement the network protocol stack in
Figure 3. We further elaborate on these devices’ implementations in the following sections.
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Preferences link
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Figure 2. (a) Cooperative demand response framework for a smart community targeting renewables;
(b) The residential building of a series of households containing a home controller device (C-diamond)
that communicates via WiFi with the common aggregator (A-diamond).
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Figure 3. Protocol stack in our pilot’s device implementation.

2.1. Home Controller

A household participating in the framework connects the smart appliances to a Raspberry
Pi 3B+ board, which functions as a home controller and communicates through: (1) ZigBee [49],
a protocol that counts on a low data rate and power consumption; (2) Z-Wave [50], used for short-range
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communication due to its low latency; and (3) WiFi, which has a high data rate and long range. We are
not considering PLC here; though it performs well in smart grid applications [51], some challenges are,
however, still unsolved such as IP integration or real-time communication issues [52].

This device not only handles the appliances’ operation, but it is also the gateway to the aggregator,
as well as the collector of the consumer’s load time frame preference for every appliance to be
scheduled. We developed an app in this regard. The home controller receives the following input
data from the user app via WiFi: fixed demand fD (kWh cost in standby mode), variable demand
vD (kWh when the appliance is on), duration L in number of hours of activation, and the period
[tbeg, tend], which represents the time frames of flexibility and has to be no less than L, for every smart
appliance identified by IDi. This information is compiled on a bi-dimensional array (as many rows as
the number of appliances; notation: Variableslot

appliance) and sent to the aggregator as shown in Figure 4.
Figure 5 illustrates the aforementioned messages between app-home controller, and home

controller-aggregator. Therefore, the aggregator gathers all consumers’ demands and, considering their
time preferences, generates a 24 h reallocated demand vector for every consumer’s smart appliance.
Reallocated vectors are sent privately back to the corresponding controller via WiFi. A discussion on
the security of the links is included in Section 3.4.
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The home controller performs appliance control according to the reallocated vector without
human intervention.
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2.2. Aggregator

The aggregator role can be decentralized over the group of consumers following different strategies
(e.g., a round robin between the involved consumers or a more complex distributed method). On our
pilot testbed, we centralized the role on a single point of data collection and processing. Therefore, it
centralizes the collection of the participating consumers’ electricity demand and applies a resource
allocation sharing to the optimization of the joint consumption targeting the available supply from
renewable sources. A Raspberry Pi 4 platform implemented the algorithm, which was coded in C++
language and compiled using Linaro toolchain Version 7.4.0. It provided the dual-band IEEE 802.11ac
wireless network and the possibility to boot the Linux OP on a MicroSD card.

Figure A1 (see Appendix A) illustrates a sequence diagram with the main steps of the algorithm
design. The algorithm runs every 24 h dealing with an optimization problem of local search such that,
for every slot (1 h), the sum of the appliances’ consumption minimizes the depletion of the available
renewable supply. A 24 h vector rw (in kWh) represents this supply and is sent by the utility to the
aggregator daily.

There could be different possible solutions on which, for every appliance, the requested operative
time L in hours lies within the preferred activation period [tbeg, tend]. The algorithm searches along
the joint demand matrix rx looking for the optimal time tsched to begin the uninterrupted operation of
the every appliance during its L hours and within the operating time tolerance as shown in Figure 6.
The objective function in Appendix A, Figure A1, illustrates this method, which determines the optimal
adjustment on rx, that is the matrix rx that minimizes the total overconsumption (in hours) of the
supply rw at a certain time slot. Further discussion on the algorithm implementation would be beyond
the scope of this paper, and we therefore refer the interested reader to [38] for details on the algorithm
in pseudocode.
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Figure 6. Local search on the 24 slot array of demand per appliance and their corresponding re-allocated
array. Notation: Variableslot

appliance.

The interaction aggregator–utility was simulated on our testbed; we identified two types of
scenarios regarding the availability and the homogeneity of the incoming supply along the day slots.
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Indeed, it is an influential factor on the performance of the algorithm if the power supply comes
from storage, so homogeneously received by the consumer community, by contrast, it displays peaks.
A further description of the identified scenarios is included in Section 3.1.

Finally, a 24 h reallocated demand vector results from the algorithm execution for every appliance;
the aggregator forwards this vector privately to the corresponding consumer’s home controller
that controls and monitors the appliance functioning. Backup to the app is also performed for
user visualization. In terms of formal validation of the optimization algorithm, we have to remark that

In terms of formal validation of the optimization algorithm, we have to remark that our
cooperative DR framework forms a coalitional game with transferable utility, which enables the
study of the emergence and stability of the cooperative behavior between a community of consumers.
The coalition of consumers cooperates and obtains a certain overall gain from that cooperation, i.e.,
jointly achieves a greener consumption of electricity. Since some consumers may contribute more to
the coalition than others, it is important to decide the final distribution of generated surplus among
them. Consumers can autonomously make a decision to join or leave a coalition based on well-defined
individual preference relations. These preferences are based on a coalition value function that takes into
account the benefits received from joining the coalition, in terms of effective supply and satisfaction
of own demand, as well as the cost in terms of the deviation of final supply from the pre-planned
demand scheduling. The Shapley value can provide one possible answer under this cooperative game
situation by seeking the characterization of the properties and stability of the “grand coalition”, i.e.,
joint action of all players. It was our aim to show that the grand coalition of the community consumers
was stand-alone stable if and only if no consumer was interested in leaving the cooperative agreement
to adopt free rider behavior. This formal validation is out of the scope of this paper.

Regarding the design, our network architecture considered basic security capabilities desired
for IoT environments, such as (i) the privacy of the transmitted data (e.g., by using cryptographic
protocols), (ii) the integrity of the data to guarantee that the data have not been modified during transit,
and (iii) the authentication between end parties (e.g., by using authentication protocols). Section 3.4
further elaborates on the security of the proposal. In addition, the complexity of decentralizing the
aggregator role was analyzed in [53] by evaluating traffic volume and communication reliability during
the home-to-home collaboration. The strategy of clustering was adopted to reduce traffic volumes.
Their simulation results showed more efficient communication and reliable smart community services
when the home controller communicated without intermediaries.

3. Testbed Evaluation

We deployed a pilot testbed in DEPECA as depicted in Figure 7a to validate the aforementioned
architecture under a controlled environment comprised of two households and the aggregator. Smart
appliances, which we emulated by smart plugs and switches, were connected to the home controller via
Z-Wave, ZigBee, or WiFi, as depicted in Figure 7b. We evaluate the application-level and network-level
performance (computational and communication) overheads in the following sections, starting with
the analysis of the datasets used to generate our experiments and scenarios.

3.1. Dataset and Scenarios

We generated a series of scenarios for the appliances’ consumption and activation time
periods, extracting this information from real datasets, i.e., UK Domestic Appliance Level Electricity
(UK-DALE-2017) [39], Pecan Street Dataport [40], and Reference Energy Disaggregation Data Set
(REDD) [54]. These sources gather volunteers’ energy data, previously anonymized, that contain
detailed power usage information from several homes. In some cases, we needed to determine the
component appliance contributions from an aggregated electricity signal so as to identify types of
appliances and to approximate the power/standby usage per type. Table 1 shows extracted information
for the different types of device; this feeds a pre-set configuration of the consumer app.
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Figure 7. Testbed setting (a) and smart switches and the framework’s key devices (b).

Table 1. Common household appliance energy use.

ID Appliance

Average
Annual
Consumption
(kWh)

Average
Power
ON Mode
(W)

Average
Standby
Mode
(W)

Annual
ON
Mode
(h)

Annual
Standby
Mode
(h)

AP1 Coffee machine 21.5 313.4 2.9 184 655
AP2 Bread maker 17.7 105.1 0.7 207 72
AP3 Refrigerator 190 500 4.7 2400 141
AP4 Dishwasher 220 700 3.7 480 168
AP5 Freezer 327 335 1.7 2640 152
AP6 Microwave 56 800 1.8 360 180
AP7 Oven 60 900 1.9 280 800
AP8 Toaster 80 1350 0.7 120 300
AP9 Lighting 20 12 0.2 4800 1800

AP10 Blu-ray player 5.5 15.3 0.8 81 228
AP11 CD player 24.8 19.5 2.7 982 1804
AP12 Games console 31.7 42.3 2.8 715 1742
AP13 HiFi 75.1 11.2 3.2 575 2492
AP14 TV+DVD 40.1 43.8 2.5 2158 937
AP15 Desktop 119.4 67.2 5.7 3407 1649
AP16 Laptop 21.3 32.3 1.6 554 832

Preliminary results from simulations of the algorithm described in [38] helped us to identify the
influential factors that impacted the final output of the algorithm in different terms such as performance
time, fairness of the scheduling, as well as the indicators to extract potential consumer behaviors.
For instance, we established the following three types of community scenarios:

Scenario I. Flexible community, where consumers’ time preferences are relaxed, so demanded load
can be satisfied for a very delay tolerant range. Figure 8a displays the aggregated demand vector
at the aggregator prior to the reallocation and Figure 8d,g as a result of the optimized scheduling.
The sample community, though delay tolerant, demands at similar time frames, generating peaks
or overloading. However, our result from the aggregation was satisfactory in distributing the
load along the different time slots and their supply.

Scenario II. Rigid community, where participants demand a more selfish preferred period, thus
limiting the possibilities of reallocation at the aggregator. Figure 8e,h shows how the aggregator
has a low margin to adjust the demand homogeneously along the day.

Scenario III. Diverse community, where demands display more heterogeneous dynamism. Figure 8f,i
illustrates this behavior where the appliances’ activation preferences of the two households vary
with no pattern. The aggregator is able to balance the load uniformly throughout the day.
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Experiments consisting of two households with 16 appliances showed a benevolent scheduling
algorithm when Scenario I was applied. Note that the appliance operative time was equally set in all
scenarios. More selfish behaviors made the algorithm suffer in achieving a proportionate aggregated
matrix. We elaborate further on the effects on the performance of the different scenarios in the
following section.
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Figure 8. Aggregated vector for two consumers (loads drawn in two colors) prior to the scheduling
(a,b,c) and as a result of the optimized scheduling with uniform supply (d,e,f) and uneven supply
(g,h,i).

3.2. Computational Cost

We now measure the computational time at the aggregator on our testbed deployment.
We implemented the scheduling algorithm on different platforms and operative systems as shown in
Table 2. We sought a cost-effective solution for our cooperative energy-efficient community, and we
looked for the most reliable and scalable.

Table 2. Computational cost (an average) measured on different platforms.

Model CPU RAM
Clock
Frequency
(GHz)

O.S
Execution Time
3 appliances
(s)

ExecutionTime
32 appliances
(s)

Execution Time
52 appliances
(s)

Laptop
Dual core
Intel i5

8 GB
LPDDR3 2.3

Mac OS
10.15 1.02 ± 0.17 2.56 ± 0.20 4.10 ± 0.31

Raspberry
Pi 4

Quad Core
Cortex A72

2GB
LPDDR4 1.5

Linux
Ubuntu 1.45 ± 0.01 11.85 ± 0.03 19.39 ± 0.02

Raspberry
Pi 3B+

Quad Core
Cortex A53

1 GB
LPDDR2 1.4

Linux
Ubuntu 2.70 ± 0.31 22.27 ± 0.04 36.66 ± 0.36

Raspberry
Pi 3B

Quad Core
Cortex A53

1 GB
LPDDR2 1.2

Linux
Raspbian 3.13 ± 0.09 26.12 ± 0.05 42.59 ± 0.10

Arduino
Mega

ATmega2560
Microcontroller

Flash
256 KB 0.016 - 1030 ± 6 - -

Figure 9 compares the computational cost of the scheduling process on the aggregator for the
two consumers in the different scenarios of preference tolerance and size in terms of the number
of appliances. The results of the algorithm in the deployment were in accordance with our prior
simulations in [38], where we showed how the size of the community in the number of appliances
impacted the computational cost the most. We also measured the effect of other variables, i.e.,
the number of consumers collaborating, the volume of fixed and/or shiftable demand, the total
community load from the demanded duration, the flexibility of the preferred time interval, and the
volume of available renewable supply. The performance time was feasible and suitable (19 s for
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scheduling 52 appliances for both Scenarios I and II) for the deployment in real settings on a Raspberry
Pi board. We remark that the board temperature increased 6.90% during the optimization process,
reaching up to 62 ◦C.

Our aggregator performed efficiently for communities with very high variable demand under
Scenario I. Peaks of both consumption and rw supply (as in Figure 8d,g), were handled in less than 3 s.
Moreover, our scheduling algorithm better managed the reallocation of a rigid demand when supply
came uniformly along the day (see Figure 8e). By contrast, Scenario III represents the upper bound of
4 s when dealing with irregular supply as shown in Figure 8i. Moreover, we implemented the logic of
the aggregator on other platforms such as Arduino MEGA board, which presented an extra delay of
about 1000 s compared to the performance on the Raspberry Pi board and limited the scheduling of
large appliance number scenarios due to its variable storage of 8KB SRAM.

Figure 9. Total computational cost for two consumers in different settings regarding the number of
appliances: comparison between Scenarios I and II on pilot deployment and computer simulation.

3.3. Communication Cost

Table 3 compiles the message structure and size of the interactions between the consumers’ app,
home controller, and aggregator. We conducted a series of experiments varying the network protocol,
the Quality of Service (QoS), and security requirements, as follows.

Table 3. Messages’ structure and size: Consumer on testbed comprised of 4 appliances. Headers and
payload are depicted in Figure 5.

Message Structure Size Protocols (over WiFi) (ms)
UDP CoAP/DTLS MQTT/TLS

APP→ Controller : m1: { fD, vD,L, tbeg, tend, ID} 48B= 8B/data (×6 data fields)
∀ appliance to be scheduled

Controller → Aggregator : m1 ×4 appliances 192B= 48B/appliance (×4 appls.) 21±2 95±13 162±15

Utility→ Aggregator : [0, · · · , 23] (kWh) 192B= 8B/slot (×24 slots)

Aggregator → Controller : [0, · · · , 23] (kWh) ×4 appls. 768B= 192B/appliance (×4 appls.) 25±3 109±21 175±20

Controller → Appliance : [0, · · · , 23] (ON/OFF) 192B= 8B/slot (×24 slots) over ZigBee/Z-Wave: ≈20
∀ appliance to be scheduled
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Sockets UDP: We configured a communication architecture based on UDP over IEEE 802.11 and the
use of sockets on our pilot testbed. Figure 10 illustrates the interaction home controller-aggregator
to be analyzed.

socket ( )

bind ( )

recvfrom ( )

blocked until 
data is received

processing of
received data

DATA APPLIANCES 
PREFERENCES vector
vD, fD, L, tbeg ,tend, ID

UDP (802.11)

sendto ( )

socket ( )

blocked until 
data is received

Socket creation and association

Data 
transmission

Socket 
creation 

sendto ( )

socket ( ) DATA vector
CONFIRMATION

UDP (802.11)

socket ( )

recvfrom ( )

Socket 
creation and 
association

exit succes

Aggregator Consumer

Figure 10. Consumer–aggregator UDP communication.

CoAP: We implemented CoAP over UDP/DTLS to guarantee message confidentially, integrity, and
authentication. In particular, we used DTLS v1.2 [55] under FreeCoAP, a C library developed by
targeting GNU/Linux devices using GnuTLS. Figure 11a illustrates the handshake procedure for
a particular DTLS session, in which both the home controller and aggregator are equipped with
certificates and private keys so as to establish a secure channel. The implementation handles
reordering and loss of the packets used for the DTLS handshake (and cipher selection). Figure 11b
shows a capture of the complete message sequence and how the consumer concludes with a
message “Encrypted Alert” to finalize the DTLS session. We could encapsulate the application
data on a single CoAP message, which was not exceeding the maximum transmission unit in
IEEE 802.11 WiFi (1500 bytes); therefore, there was no need for packet fragmentation. Note that
the duplicated “Application Data” message in the sniffer’s capture was neither generated by
UDP, nor by our application.

DT
LS

 h
an

ds
ha

ke

Listening 

 Consumer Aggregator

ServerHello
Certificate

Cipher suite:
TLS_ECDHE_ECDSA_AES_128_GCM_SHA256 

Certificate request
Server Key Exchange

ServerHelloDone
Certificate

Cipher suite 
Certificate Validated
Client Key Exchange
ChangeCipherSpec

Finished

ChangeCipherSpec
Finished

ClientHello
HelloVerifyRequest

ClientHello

Application Data

DTLS 
handshake 
messages

Data transmission 
via secure connection

(a) (b)

Figure 11. CoAP/DTLS handshake (a) and capture of the communication (b) between
consumer-aggregator. Application data are sent authenticated and encrypted with a fresh and unique
session key on a single DTLS datagram over UDP/IP.

MQTT: Widely used between IoT devices due to its high portability and reduced footprint in terms of
memory and power, we implemented MQTT over TCP port 1883 for a non-secure communication
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and over TCP port 8883 to add TLS. Figure 12a illustrates MQTT’s publish/subscribe model
and the application data messages along with the Quality of Service (QoS) level demanded
by the client. In particular, MQTT QoS Level 2, which avoids message duplication and sends
acknowledgments as shown Figure 12b, was the most suitable for our framework deployment.

(a) (b)

AggregatorConsumer

SYN

[SYN,ACK]

ACK

CONNECT COMMAND

TCP connection 
establishment

TCP connection 
& DATA publish

ACK

CONNECT ACK

PUBLISH('vD, fD, L, tbeg end, ID' QoS0)

PUBLISH('vD, fD, L, tbeg end, ID' QoS1)

PUBACK

PUBLISH('vD, fD, L, tbeg end, ID' QoS2)

PUBREC

PUBREL

PUBCOMP

DISCONNECT REQUEST

ACK

[FIN,ACK]TCP connection 
establishment

 

Data
 transmission

QoS2 

MQTT
connect

Figure 12. MQTT handshake (a) and capture of the communication with QoS Level 2 (b), insecure,
without TLS, between the consumer and aggregator. Application data fit in a single MQTT datagram,
which was sent clear over TCP/IP.

We measured the communication cost between consumer and aggregator over the aforementioned
network protocols. Table 3 compiles the average cost, whereas Figure 13 shows the Round Trip Time
(RTT) on the box plot. CoAP/DTLS proved to be faster (90 ms) than MQTT/TLS (160 ms), even though
DTLS was slow due to the public key cryptography methods applied. Moreover, under congested
networks, MQTT achieved an RTT of 30–100 ms under any of the QoS levels, which was an acceptable
delay range over a non-secure context. We also measured the additional resources needed during the
communication process in terms of processor and memory usage and chip temperature in Table 4.

Figure 13. Link latency of the consumer–aggregator communication with the tested protocols.
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Table 4. Resources needed for networking protocols on the consumer (left) and aggregator (right).

Protocol CPU (%) RAM (%) ROM (Bytes) T (◦C)

UDP 4.1/0.3 0.3/0.3 @13K/@13K 58.5/55.8
MQTT
QoS0 4.3/0.3 0.3/0.3 @150K/@150K 58.7/55.8

MQTT
QoS1 5/0.3 0.3/0.4 @150K/@150K 58.4/55.8

MQTT
QoS2 4.1/0.5 0.4/0.4 @150K/@150K 58.5/55.3

MQTT
TLS 2.1/5.4 0.4/0.3 @200K/@200K 58.5/55.3

CoAP
DTLS 2.2/7.6 0.4/0.3 @74K/@58K 58.4/55.8

3.4. Informal Security Analysis

In this section, we provide an informal analysis of the security of the proposed framework
discussing several attack scenarios and forms of malicious behavior that can occur during
entities’ interaction.

Eavesdropping and Related Attacks. An attacker cannot listen to the messages transmitted during
the communication between the home controller and aggregator when the transport layer implements
DTLS/TLS protocols; these allow parties to mutually authenticate and establish a session key under
which all the communication is encrypted. Similarly, message reply attacks are prevented too since the
attacker will not be able to reproduce the session by using previously exchanged information.

Message Modification Attacks. An attacker can modify some messages with the hope of altering
application data sent from consumers to the aggregator, or vice versa. As in the previous case, a secure
channel established between both parties prevents this situation from occurring. Nonetheless, such
a modification can be detected due to it leading to an incorrect message authentication during the
DTLS/TLS verification, which gives no gains for the attacker.

Message Insertion Attacks. An attacker can try to generate fake messages and insert them into the
channel; it is, however, detectable as in the case of message modification.

Message Dropping Attacks. Given enough control over the network infrastructure, an attacker can
try to delete some of the messages exchanged. By doing so, the only result achieved is a failure in the
correct execution of the scheduling algorithm, which can be viewed as a denial of service, but it cannot
enable the attacker to gain any useful information.

Impersonation Attacks. Assume that an attacker can be successful in hijacking a session between any
pair of participants. Even in this case, messages exchanged among trusted peers are safe from spoofing,
since they are encrypted by authenticated public keys. In other words, the attacker cannot generate
the correct encryption. Note that this is a particular case of trying to exhibit malicious behavior against
the other party.

Attacks Against the Public Key Authentication Process. TLS/DTLS cipher suites negotiated between
the aggregator and consumers include: Elliptic Curve Diffie–Hellman (ECDHE) exchange of the
asymmetric keys used for the encryption decryption of the symmetric key (in this case, the AES
128 bit key) that encrypts the data transmission on an efficient mode of operation known as
Galois/Counter Mode (GCM); the Elliptic Curve Digital Signature Algorithm (ECDSA) used to
authenticate the aforementioned key exchange; and the negotiated hash function SHA256. We applied
the encrypt-then-MAC design that avoids some padding oracle attacks. In addition, every piece of the
handshake is hashed together, and the final hash is transmitted along with the encrypted pre-master
secret. The other side verifies this hash to ensure all data that was meant to be sent was received.

Assurance of Data Integrity. We assumed that the hash function could not be manipulated.
Any modification on the TLS/DTLS protocol messages could be easily detected.
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ID Spoofing. TLS/DTLS adds a stateless cookie sent by the server as a protection from spoofed IP
addresses’ attacks. This mechanism forces the attacker/client to be able to receive the cookie.

Denial-of-Service Attacks. TLS/DTLS’s stateless cookie exchange is also a protection from possible
Denial-of-Service (DoS) attacks. This mechanism, however, does not provide any defense against
DoS attacks mounted from valid IP addresses. We configured the retransmission timers to handle
message loss. Furthermore, whether reliability of home controllers incurs a problem, our network
architecture may switch from using the WiFi-based community network to using the relatively reliable
and ubiquitously available cellular network for data communication. Similarly, the availability of the
aggregation device is at stake in centralized architectures.

Brute force attacks. To avoid password cracking at the home controller, default passwords and
user accounts should be disabled, SSH secured, allowing access only from machines with authorized
SSH keys (as for communication with the app), as well as a firewall installed and well-configured.
Non-required services should be disabled as well. In addition, whenever both the controller and
the aggregator act as the TLS/DTLS server, the secret value should change frequently. We refer the
reader to [56] for a review of the attacks on Raspberry Pi boards and their possible countermeasures,
including physical attacks.

Non-cooperative Consumer. A consumer might try to exhibit a malicious behavior by individually
deviating from the framework rules, e.g., by sending an incorrect schedule or canceling his/her home
controller’s control of the appliances according to the reallocated load. The aggregator is capable of
detecting non-consistent consumption data of a certain consumer and remove it from consideration by
computing the distance between the data to be scheduled and a consumption pattern.

Overall, we believe that TLS/DTLS protocols provide sufficient security and privacy of the
communications between consumers-aggregator, though specific authentication protocols could be
adopted to protect consumers’ information at the aggregator.

4. Conclusions

The development of innovative Demand Response (DR) services leverages consumers to get
more control over their electricity consumption. In our proposal, residential households have the
chance to cooperate towards the integration of renewable energy resource information into the
community’s energy management. We implemented a new scheduling algorithm that aggregates the
electricity demand of the appliances of a community of participating consumers. This aggregation
of the appliances’ time frame preferences is optimized given an objective function, which is fed
with the available supply from renewable sources. This algorithm, though previously presented
in [38], was refined and further explained here. In this work, we described decisions made on
the network architecture and hardware platforms for deploying a cost-efficient solution based on
Raspberry Pi boards and network-enabled plugs and switches as retrofitted appliances. The pilot
testbed deployed served to evaluate the feasibility of (i) the centralized aggregation algorithm’s
overheads, (ii) the suitability of cost-effective platforms as home controllers that autonomously control
the appliances, and (iii) the overheads and security of the communication links between the aggregator
and the home controllers. To validate the feasibility of (i), we analyzed the pilot performance in terms
of the computational and communication costs under a series of network protocols (sockets-UDP,
MQTT/TLS, and CoAP/DTLS) and links (WiFi, ZigBee, and Z-Wave), community scenarios (varying
the number of appliances, so the complexity of the algorithm), and consumer behaviors (regarding
their preferences’ flexibility). We extracted consumption information in time frames from the Living
Labs datasets in [39,40] that configured the experiments conducted on our testbed. In particular, the
scenarios represented three types of consumer communities according to the flexibility or rigidity of
the appliances’ operation time frame demand. Processing and communication overheads lied within
feasible ranges, i.e., the aggregator required less than 2 s to schedule consumer communities with
four appliances each, whereas the latency of the link with home controllers took less than 100 ms.
To validate the feasibility of (ii), we implemented our framework over five different hardware platforms
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(a laptop, Raspberry Pi 4, 3B+, and 3B board, and an Arduino Mega board). Experiments conducted
considering different sizes of consumer communities showed feasible results, the Raspberry Pi 4 board
being an efficient, lightweight deployment option for both home controllers and aggregator devices.
Finally, to validate the feasibility of (iii), the security of the communication between the aggregator
and home controllers was analyzed and found to comply with the relevant security properties such as
availability, confidentiality, and integrity. For instance, we demonstrated that our applications running
over WiFi links and UDP sockets on Raspberry Pi 4 boards were fast though insecure. Secure CoAP
(with DTLS) displayed data encryption, automatic key management, and integrity protection, as well
as authentication with acceptable overheads (about 200 ms).

Immediate future work will focus on a deeper analysis of the consumers’ behavior so as to
extract potential patterns and/or automatize the estimation of consumption by using machine learning
techniques. The inclusion of microgeneration on the framework will also be considered. We are
also progressing on the negotiations with some local utility providers to get their inputs from real
estimations of the renewable supply. For instance, measuring consumption and energy utilization,
as well as instilling energy-efficient behaviors in consumers are as necessary as promoting advances
on energy utilization and therefore production and provision mechanisms with the same or bigger
emphasis. We envision our cooperative DR framework and testbed to evolve towards achieving a
balanced method between green energy consumption and provision. Furthermore, the study of an
efficient mechanism to distribute the aggregator role is still an open issue.
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Abbreviations

The following abbreviations are used in this manuscript:
N Consumer number
rw Twenty-four h supply vector from renewables
tsched Scheduled start time of the appliance
tend Latest final time appliance
tbeg Earliest start time appliance
tend Latest final time appliance
vD Variable demand
fD Fixed demand
L Duration of the planned operation of the appliance in the next day
IoT Internet-of-Things
ICT Information and Communication Technologies
MQTT Message Queuing Telemetry Transport
DTLS Datagram Transport Layer Security
TLS Transport Layer Security
TCP Transmission Control Protocol
UDP User Datagram Protocol
CoAP Constrained Application Protocol
RTT Round Trip Time
DR Demand Response
DF Demand Function
OF Objective Function
DSM Demand-Side Management
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Appendix A. Aggregator: Design of the Cooperative Scheduling Algorithm

We include as an Appendix a more detailed design of the scheduling algorithm process. Figure A1
shows the C++ refined code for the aggregator that was initially presented and simulated in [38].
It depicts the sequence diagram of the aggregation of all consumer participants’ appliance demands
and the optimization of the time frames given their preference tolerance.

The main demand function (DF ) calls the additional functions that will search for the minimum
from the maximum values of diary consumption, i.e., min.DF (·). This function leads the reallocation
until any of the 24 slots with the remaining renewable supply in the global variable rx becomes
null. Note that rx = rw− f D at the initial call and at every iteration given the current appliance’s
consumption. When in this initialization of rx < 0 for any slot, the function terminates. The algorithm
not only outputs the vector rx with the used supply from renewables, but also an additional array with
the energy needed to complete the demand from fossil sources in the case of depleting the provision
from renewables. Furthermore, this function outputs an array of 24 slots with the definitive supply
for every appliance given the operation time demanded L, the preference interval [tbeg, tend], and the
available supply rw.

For instance, this reallocation occurs within the function (OF )’s domains. It is responsible for
searching the optimum time slot tsched for starting the appliance’s operation. The optimization will
determine how appropriate an adjustment is by minimizing the total overconsumption (in hours) of
the community appliances against the available renewable supply at a certain time slot.

Main function Optimization(double
appliances[i][j], double RW[24], double

appliance number, consumers)

Variables definition tbeg, tend, tsched

Initial optimised
point

Fixed consume
calculation

minimal consumption
24 hours

Objective function
(result, hourly demand, demanded RW) =

consumption(number of appliances
double RW[24], number of consumers)

for appliance = 1:
size(Appliances)

for ihour = 1:24

Demand(ihour)

tbeg = tsched(appliances)
tend = tbeg + appliances(iappliances,x)-1

RW = RW - Fixed demand

YesNo

ihour >= tbeg
and

hour <= tend??

Minimal_demand
(ihour)

Calcule of fixed
demand

for appliance = 1:total
appliances number

for ihour = 1:24

hourly variable
consumption

hourly fixed 
consumption

RWs = fixed RW -
hourly demand

RWs(RWs < 0) = 0

Demanded RW =
min(RW,hourly_demand)

R1 = sum(RW), 
R2=max(hourly_demand)
Result = sum (R1 + R2)

tsched,mybest,stopmessage =
PSO(objective function, number of

appliances,tbeg,tend)

Default
parameters

Error with
not enough

input
parameters

Exception

Current
position

for i = 1:Number
of appliances

currentposition(i) =
random(tbeg(i),
tend(i), number
of appliances,1)

Velocity =
W*rand(N,number

of appliances)

CurrentFitness =
zeros(N,1)

margin < 4?

for i = 1:N

CurrentFitness(i) =
Objectivefunction(currentposition(i;))

Update local best
Update global best

R1 = rand(N,number of appliances)
R2 = rand(N,number of appliances)

velocity = W*velocity*C1*(R1*)
(localbestposition)

end forfor i = 1:number of appliances

iter = 0

iter < maxiteration?

X = globalbest
FX = globsalbestfitness

END

iter++

for i = 1:N
Update local best 
Update globalbest

Globalbestfitness
globalbestposition

Globalbest?
Update

velocity and
position

updated
appliances

Objective function (OF)@tsched (tsched,Appliances, fixed_RW) 

Evaluate current
position

bound data tbeg tend

R1 = random(N,Number of appliances)
R2 = random(N,Number of appliances

velocity update
Currentposition=Currentposition+velocity

indexes = currentposition < tbeg(i)*ones(N,1)
currentposition (indexes,i)=tbeg(i)

indexes = currentposition > tend(i)*ones(N,1)
currentposition (indexes,i) = tbeg(i)

end 
forfor i=1:number of appliances Localbest

Currentfitness(i) =
objectivefunction

(currentposition(i,)))

Demand Function (DF)  
Optimization function  @tsched Objectivefunction(tsched, number of appliances, tbeg, tend) 

YesNo

ihour >= tbeg
and

 hour <= tend??

tbeg = tsched(appliances)
tend = tbeg+appliances(iappliances,3)-1

indexes=currentposition < tbeg(i)*ones(N,1)
currentposition (indexes,i)=tbeg(i)

indexes = currentposition > tend(i)*ones(N,1)
currentposition (indexes,i) = tbeg(i)

Main Function  
Global RX

RWi = RW - RX

Global RX

number of appliances,
appliances, RW[24], consumers

Consumer
configuration strategy

Yes

No

consumer < All consumer
 and min(RX) > 0 ?

Consumer ++

No

Yes
min (RX) = 0 ?

 Fixed RW
calculation

RX = RW -
Demanded_RW RX (RX < 0) = 0 

Figure A1. Activity graph describing the implementation of the aggregation and optimization algorithm.
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